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Abstract

Childhood viral and bacterial infections remain an important public problem, and research into their dy-

namics has broader scientific implications for understanding both dynamical systems and associated method-

ologies at the population level. Measles and pertussis are two important childhood infectious diseases. Measles

is a highly transmissible disease and is one of the leading causes of death among young children under 5 glob-

ally. Pertussis (whooping cough) is another common childhood infectious disease, which is most harmful for

babies and young children and can be deadly.

While the use of ongoing surveillance data and – recently – dynamic models offer insight on measles

(or pertussis) dynamics, both suffer notable shortcomings when applied to measles (or pertussis) outbreak

prediction. In this thesis, I apply the Sequential Monte Carlo approach of particle filtering, incorporating

reported measles and pertussis incidence for Saskatchewan during the pre-vaccination era, using an adaptation

of a previously contributed measles and pertussis compartmental models. To secure further insight, I also

perform particle filtering on age structured adaptations of the models. For some models, I further consider

two different methods of configuring the contact matrix.

The results indicate that, when used with a suitable dynamic model, particle filtering can offer high

predictive capacity for measles and pertussis dynamics and outbreak occurrence in a low vaccination context.

Based on the most competitive model as evaluated by predictive accuracy, I have performed prediction and

outbreak classification analysis. The prediction results demonstrated that the most competitive models could

predict the measles (or pertussis) outbreak patterns and classify whether there will be an outbreak or not in

the next month (Area under the ROC Curve of measles is 0.89, while pertussis is 0.91).

I conclude that anticipating the outbreak dynamics of measles and pertussis in low vaccination regions

by applying particle filtering with simple measles and pertussis transmission models, and incorporating time

series of reported case counts, is a valuable technique to assist public health authorities in estimating risk and

magnitude of measles and pertussis outbreaks. Such approach offers particularly strong value proposition

for other pathogens with little-known dynamics, important latent drivers, and in the context of the growing

number of high-velocity electronic data sources. Strong additional benefits are also likely to be realized from

extending the application of this technique to highly vaccinated populations.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 General burden of communicable diseases

Infectious diseases have significantly influenced the health status of peoples throughout the world. Histori-

cally, the number of deaths caused by infectious diseases is staggering. For example, in the fourteenth-century

century in Europe, 25 million people (out of a total population of approximately 100 million) died due to

the bubonic plague alone [2]. In the past several decades, infectious diseases still cause deaths among people

worldwide, even in the vaccination era. For example, the human immunodeficiency virus (HIV), the etiologi-

cal agent of acquired immunodeficiency syndrome (AIDS), has a significant impact on the mortality pattern

of people both in developing and developed countries [2]. Measles is still one of the leading cause of death

globally among children under 5 years old [80]. Recently, reflecting the growth of global worldwide, and closer

contacts between human populations and animal populations, some new infectious diseases have emerged and

have caused mass mortality, such aforementioned HIV, as the severe acute respiratory syndrome (SARS) [85]

outbreak in China in 2002, pandemic H1N1 [77] in 2009 worldwide, and the recent Ebola [9] virus outbreak

in West Africa among 2014-2016.

Understanding the outbreak patterns of infectious diseases can aid in forecasting and help public health

agencies design intervention strategies to prevent and control such diseases, such as by setting outbreak

response measures, setting vaccination targets, and allocating financial and human resources, etc.

Childhood communicable diseases are a significant part of communicable diseases. Although vaccinations

are used worldwide, most children will have at least 6 to 8 respiratory infections (i.e., infections in the

lungs and breathing tubes) each year [46]. Childhood viral and bacterial infections remain an important

public problem, and research into their dynamics has broader scientific implications for understanding both

dynamical systems and associated methodologies at the population level [92, 30, 13]. In this thesis, the

dynamics of measles and pertussis are investigated to estimate and predict their transmission patterns.

Measles is a serious childhood infectious disease, which often leads to complications and death. Before the

vaccination era, almost every child had been infected by measles [48]. Even in the vaccination era, measles is

still commonly transmitted worldwide, including across countries in Europe, Asia, the Pacific and Africa [33].
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It remains a leading cause of vaccine-preventable infant mortality [33]. In recent years, several countries been

able to declare measles elimination (absence of continuous measles transmission for greater than 12 months

[33]) by implementing a highly effective vaccination program and other control measures, like the United

States and Canada. However, measles can still be brought in by unvaccinated travelers from other countries

where measles still persists. Such transmission can result in outbreaks which are dangerous and costly to

control [33]. Thus, research into measles dynamics remains essential for prevention and control. Moreover,

the dynamics of measles have played a key role in theoretical epidemiology [11, 13, 97, 76, 2, 43, 44, 18, 49, 48].

Additionally, measles presents a unique opportunity because it exhibits both endemic and episodic dynamics

[13]. In large cities, the dynamics of measles exhibits endemic cycles, while in small towns it exhibits recurrent

outbreaks with periods of local extinction [13]. Before mass vaccination began in the 1960s, the outbreak

of measles presented both regular (annual, biennial and triennial cycles) and irregular dynamics (with some

exhibiting low dimensional chaos) [30, 76].

Pertussis (whooping cough) is another common childhood infectious disease. It is a serious respiratory

infection caused by the pertussis bacteria, which is most harmful for babies and young children and can be

deadly [37]. Before the vaccination era, about 8000 people died each year because of pertussis in the United

States. In recent years, although vaccinations are widely spread in the United States, between 15,000 and

50,000 cases of pertussis are reported anually, and fewer than 20 people die each year [37]. With regards to

natural history and transmission dynamics, pertussis is different from measles, in that it is more complex.

For example, pertussis immunity acquired from infection and vaccination wanes over time, whereas immunity

from measles is typically permanent. Moreover, more than one type of infected persons must be considered

in pertussis dynamics. The reason is that the infectivity of an infected person who has a history of previous

infection is lower than that of a newly infected person [48, 50].

Finally, in this thesis, the outbreak patterns of both measles and pertussis are studied by the use of models

incorporating particle filtering algorithms, traditional mathematical dynamic models and noisy surveillance

data.

1.1.2 Shortcomings of the previous methods

Traditionally, many public health agencies seek to anticipate future transmission of infectious diseases based

upon time series of reported incident case counts. In recent years, simulation models have increasingly

been used to predict the spread of infectious diseases within the population, and the potential impact of

interventions on that spread. Although both these methods have their own benefits, and have played an

important role in estimating and predicting measles and pertussis outbreak patterns, each suffers from notable

limitations.

In many jurisdictions worldwide, the surveillance reports of some significant epidemiology diseases are

collected on a regular basis, such as for measles, pertussis, chickenpox, etc. These data – often summarized

as epidemiological curves – have offered great value for public health agencies seeking to understand trends
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in the incidence and anticipate future evolution. For example, identifying and confirming suspected cases

through surveillance allows early detection of outbreaks, and supports comparing recent activity to reference

periods. However, the reported time series data are often quite noisy, particularly for contexts marked by

smaller population or low incidence or diagnosis rates [18], such as are characteristic for measles and pertussis.

Such reports are also delayed – sometimes by months, and are frequently woefully incomplete, due to the fact

that many families of those infected elect not to seek care, especially in case that the infection is not serious.

When used unassisted, it is difficult to secure quantitatively rigorous insights from time series into the future

evolution of the currently observed patterns – evolution that will be shaped by a complex combination of local

circumstances, including birth rates, contact patterns, and the size of the local pool of susceptible as affected

by vaccination rates and recent history of other outbreaks, etc. Perhaps most importantly when considered

as a tool for planning, use of time series alone cannot itself be used to investigate counterfactuals, such as how

future incidence is likely to be affected by an outbreak response immunization campaign, enhanced contact

tracing, advisories, or social distancing measures.

Dynamic modeling has played a significant role in providing insight into infectious disease outbreak

dynamics [11, 13, 97, 76, 43, 44, 18, 49, 48]. Most such contributions employing models seek to incorporate

some aspects of local epidemiology, and often draw on surveillance data. While they serve as powerful tools

for investigating counterfactuals, such models also suffer from an essential set of shortcomings. Firstly, while

dynamic models are commonly calibrated to empirical data, this process is typically undertaken on a one-

time basis, and with significant human involvement. While calibration can allow for estimation of model

parameters, it provides weak support for ongoing estimation of the latent state needed to keep the state of a

model aligned with observations on an ongoing basis. It is rare for a dynamic model to incorporate ongoing

arriving ground data; and while systems doing so can be found for other infectious diseases [20], the author

is not aware of any such support for pertussis and measles. More profoundly, a dynamic model of necessity

represents a simplified characterization of processes in the real world. Inevitably, such models often omit,

simplify and mis-estimate some factors. These drawbacks and the infeasibility of anticipating the realized

outcome of factors represented as stochastic in the model will inevitably lead the model to diverge from the

unfolding epidemiological situation.

1.2 Research goals of this thesis

Particle filtering is a machine learning algorithm based on the idea of Monte Carlo approximation and for

recursive Bayesian inference [74]. The particle filtering algorithm is normally implemented in the state space

model which represents the dynamic system, including both a state transition model and measurement model.

In this thesis, the particle filtering algorithm can link the aggregate system dynamics (compartmental)

models of measles and pertussis to the empirical datasets (noisy surveillance data) to compensate for weak-

nesses of both. Specifically, the state transition models are employed by the compartmental models of measles
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and pertussis in a way that incorporates stochastic processes as system noise, while the surveillance data of

measles and pertussis are used as the empirical data in the particle filtering algorithm. Thus, the stochastic

processes are incorporated in the system dynamics models and the particle filtering algorithm allows for

on-line learning. Moreover, the noisy surveillance data can be incorporated in the particle filtering models to

inform and provide a ”survival of the fittest” among particles, where each such particle posits some state for

the entire compartmental model at each point in time. In this regard, it is to be underscored that particle

filtering supports estimation of the entire state of the dynamic model (both latent or observable) for each

point in time.

This thesis seeks to support more accurate estimation and prediction dynamics for pertussis and measles

by applying a computational statistics technique that combines the best features of insights from ongoing

(although noisy) empirical data and dynamic models (although fraught by systematic errors, omissions, and

stochastic divergence over time) while mitigating important weaknesses of each. The use of sequential Monte

Carlo methods in the form of particle filtering [84, 95, 27, 78, 102, 107, 73, 77, 91, 64, 101] has provided an

effective and versatile approach to solving this problem in other infectious diseases, such as influenza. This

thesis investigates the combination of particle filtering methods with the compartmental models (e.g., SEIR

model) of measles and pertussis to recurrently estimate the latent state of the population with respect to

the natural history of infection, to anticipate measles and pertussis evolution and outbreak transitions in the

pre-vaccination era.

1.3 Thesis statement

I hypothesize that when applied to measles or pertussis transmission models, particle filtering will allow for

localized estimation of model state and improve predictive accuracy of the models.

I propose to judge whether the model supports localized estimation of model state by examining if the

high probability density region of the model’s prediction of empirical data lies near those data. For the sake

of the thesis statement, I will further consider an acceptable improvement to predictive accuracy as being

achieved if the sampled discrepancy of model’s predictions vs. observed data (as defined by the discrepancy

in chapter 3) is reduced.

1.4 Thesis organization

The balance of this thesis is organized as follows. Chapter 2 provides the background of this research,

including a literature review – related to mathematical epidemiology modelling and the machine learning

method of particle filtering, two mathematical methodologies used in this thesis – the detailed mathematical

introduction of the particle filtering algorithm and the deduction of the age-structured demographic model,

and a brief introduction of the empirical datasets employed in this thesis. Chapter 3 introduces the particle

filtering model of measles, with the aggregate demographic model. Chapter 4 introduces the particle filtering
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model of measles, with age-structured demographic models (with two age groups). Chapter 5 introduces the

particle filtering models of pertussis with 4 different models, including an aggregate model, an age-structured

model with two age groups, and two age-structured model with 32 age groups (employing different methods

in calculating the contact matrix). Chapter 6 introduces a method for classifying outbreak occurrence with

the prediction results of the particle filtering models of both measles and pertussis. Chapter 7 provides a

summary and conclusion of this research, and discuss the contribution of this thesis.
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Chapter 2

Background

2.1 Literature review

There is a notable literature in two fields relevant to the research purpose of this thesis (incorporating

the machine learning method of particle filtering with system dynamic models of pertussis and measles, to

estimate and predict transmission patterns): infectious disease transmission modelling and particle filtering.

The infectious disease transmission modelling literature mainly covers the mathematical characterization and

simulation of communicable diseases, especially in measles and pertussis. The particle filtering component

of the literature discussed here primarily covers this machine learning method, especially as it relates to

infectious transmission simulation.

2.1.1 Mathematical epidemiology modelling

Mathematical models are important tools in characterizing and analyzing the transmission pattern of infec-

tious diseases. The associated mathematical equations are formulated by several assumptions that simplify

aspects the real world (e.g., contact process, infectious individuals) to variables, parameters, and formulas

[2, 48]. The joint application of mathematical models and computer simulation to the study of infectious

disease transmission provides a helpful approach for supporting research insight into the spread of disease

within the population. This approach could also contribute to transmission prediction, determine the sensi-

tivity of parameters, provide conceptional results (e.g., the basic reproductive number threshold R0), evaluate

intervene policies, etc.

A central idea of mathematical epidemiology models is dividing the total population into different sub-

groups [45, 93, 61, 2]. Thus, the mathematical epidemiology models are also named compartmental models.

Hethcote (2000) [48] summarized them to a general form of MSEIR model. M indicates the infants that still

retain passive immunity. After losing these maternal antibodies, they will flow into the susceptible class (S).

In some situations, the newborns lack passive immunity. They would correspondingly immediately enter the

susceptible class S. Individuals recently infected by infectious individuals and are yet not in the infectious

state will be labeled to be exposed class (E). Then, if they enter the infectious state, they will be labeled

as the infectious class (I). Finally, after the end of the infectious period, these individuals will flow into the

recovered class (R) with permanent or temporary infection-acquired immunity.
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The first mathematical epidemiology model was formulated by Daniel Bernoulli (1760) [12], to evaluate

the effectiveness of variolation against smallpox. Then after a prolonged gap, deterministic mathematical

epidemiological models currently widely applied emerged in the early twentieth centuries.

Hammer (1906) [45] introduced one of the most important concepts in epidemiological mathematics, which

is called the “mass action” principle by analogizing transmission contacts to chemical reaction kinetics. This

principle obtains under the assumption that the population is homogeneously mixed. It posits that the

number of new infectious individuals is related proportionally both to the density of susceptible individuals

and density of infectious individuals per unit time per unit spatial area.

Ross (1911) [93] extended the discrete-time mathematical model of Hammer (1906) [45] to ordinary

differential equations (continuous-time model), in the prevention of malaria.

Kermack and McKerdrick (1927) [61] contributed to the establishment of threshold theory. They found

that a threshold density of susceptible population existed in general. The epidemic will not occur if the

susceptible population density is below this threshold, even if there are a few of infectious individuals entering

the community. Both this threshold theory and the “mass” action principle are the cornerstones of modern

theoretical epidemiology [2].

Soper (1929) [99] employed Ross’ mathematical framework of ordinary differential equations to analyze

the underlying mechanisms of periodically occurring infectious diseases.

After these periods, the literature related to mathematical epidemiology models grew rapidly [8, 2, 51, 49,

50, 48, 72, 22, 63]. However, there existed two approaches for calculating the homogeneous mixing process.

This situation persisted until 1995, when de Jong et al. [60] interpreted these two approaches and identified

the correct one.

To understand this interpretation, it bears emphasis that the “force of infection” (denote as λ) charac-

terizes the hazard rate (probability density) with which infection spreads to susceptibles in epidemiology

mathematical models, and plays a central role in mathematical epidemiology. De Jong et al. (1995) [60]

characterized two traditional approaches for characterizing the force of infection as “true mass action” and

“pseudo mass action”. In the approach of “pseudo mass action” [1], the force of infection was calculated by

λ = βSI, where S is the total numbers of the susceptible individuals, I is the total number of the infectious

individuals, and β is the transmission coefficient. De Jong et al. [60] noted that this “pseudo mass action”

would violate the “mass action” proposed by Hammer (1906) [45] in the situation that the population den-

sity kept constant, while the total population size changed. However, the “pseudo mass action” fitted the

situation where the population density and population size would not change much. Then, De Jong et al.

[60] argued that “true mass action” represented force of infection as λ = βSI/N , where N was the total

population. In short, it simply let the “force of infection” depend on the total population of N , in contrast

with the “pseudo mass action” method. Finally, De Jong et al. [60] compared the results with these two

approaches to prove the correctness of the “true mass action”. They further discussed that the reason the

“true mass action” did not perform well is that this homogeneous mix theory is too simple to simulate some
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complex situations (e.g., considering heterogeneous contacts). However, the “true mass action” theory offers

a greater robustness than does “pseudo mass action”.

It is notable that the compartments included in the MSEIR model [48] were not all contained in each

mathematical models. Whether one or some of these classes were contained or not was determined by the

characteristic of the specific disease, and also by the purpose of the models. For example, among the models

that simulated measles, Bjornstad et al. (2002) [13] only considered the compartments of S, I and R , while

Earn et al. (2000) [30] and Bolker and Grenfell (1995) [15] considered the classes of S, E, I and R. For

those diseases lacking lifelong natural immunity, recovered individuals (the class R) will flow back to S, after

their immunity disappears. The classic models for this kind of diseases (e.g., influenza) are SIRS [29, 59, 50].

During the vaccine era in which immunization is widely used to protect the susceptible individuals, a new

compartment was imported into the mathematical structure, which was the vaccinated class (denoted as V ).

Susceptible individuals obtaining immunity by vaccination will entering into this class. Many mathematical

models have been formulated considering this compartment in the vaccination era [5, 71, 50].

Although the classic mathematical epidemiology framework with an aggregated population demonstrated

exceptional versatility in researching of infectious diseases, some assumptions were too simple to simulate

some complex situations, such as the homogeneous mixing between susceptible and the infectious individuals.

Several approaches have been employed to let the mathematical models characterize and simulate the real

world more accurately.

Several infectious diseases exhibit strong seasonal fluctuation in specific areas or throughout the world,

such as influenza [29], measles [30], etc. Normally, one or more specific parameters would be imported or

modified to capture such seasonal fluctuation. Bolker and Grenfell (1995) [15] and Dushoff et al. (2004) [29]

modified the transmission coefficient (β) from constant in the classic “mass action” to vary sinusoidally with

time to capture the seasonal fluctuation (β = β0(1 + β1cos2πt)). Earn et al. (2000) [30] let the transmission

coefficient vary with school terms (high during school terms, low otherwise). Meanwhile, the values of

the transmission coefficient also changed based on the fluctuation patterns of measles in different areas

(e.g., annually, biennially, etc.) – the transmission coefficients were becoming smaller, while the fluctuation

intervals were bigger.

Age-structured models [50, 97, 15, 30, 48, 105] were also widely employed to simulate heterogeneous

mixing in the real world, instead of the simplified homogeneous mixing. The age-structured models, initially

applied in sexual transmitted diseases, were employed for other infectious diseases, especially for the childhood

infectious disease, like measles [15, 97] and pertussis [50].

Lotka (1922) [68] proposed a demographic model with a stable population. This demographic model

consisted of an initial-boundary problem with a partial differential equation for age-dependent population

growth. Kermack and McKendrick (1927) [61] combined this demographic model with epidemic models. This

mathematical epidemiology model sometimes is called the Lotka-McKendrick model or the McKendrick-von

Foerster model [48].
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Schenzle (1984) [97] introduced an age-structured model of pre- and post-vaccination to measles transmis-

sion. It indicated the results of this age-structured model could match the empirical data (annual numbers

of reported measles cases in England and Wales) better than the global mass-action model.

Hethcote (1997) [50] introduced an age-structured pertussis model with steady-state population age

structure. It combined Lotka’s [68] demographic model with the pertussis epidemiology model. In this

age-structured model, the population was split into 32 age groups. It consisted of 384 ordinary differential

equations in total, while in each age group, there were 12 ordinary differential equations related to the total

compartments.

With the growth of computational power, agent-based modelling and simulation is becoming a relatively

new approach to simulate systems consisting of autonomous and interacting agents [69, 70, 90, 7, 38, 86],

compared with deterministic mathematical models. Agent-based simulation can simulate heterogeneity on

the level of each individual, compared with age-structured mathematical modelling, which is on the level of

refined population groups. Agent-based models could also capture the complexity of the human behaviors,

particularly regarding to mobility patterns and social networks [38].

Compared with the deterministic mathematical models with differential equations, the agent-based models

could consider stochastic processes in the real world more easily. Osgood (2004) [81] compared the difference

of the computational resource and error scaling among three methods of representing the heterogeneity –

using stocks disaggregated by attribute value, agent-based disaggregation and using co-flows. This research

concluded that the structured stock disaggregation models were best suited to problems with low number

of attribute dimensions or a large population size, while the agent-based models suited for problems exhibit

important heterogeneity with respect to medium or high numbers of attributes dimensions and population

sizes. Osgood (2007) [82] provided an overview of trade-offs between the two modeling traditions – agent-based

modeling and system dynamics, and argued that the most important difference was between individual-based

and aggregate models, rather than the formalism used to characterize change. Osgood (2009) [83] focused

on representations of multiple co-morbidities by both aggregate and individual representations. It concluded

each of the methods had their own advantages and disadvantages. The individual representation exhibited

high resolution and transparent representation. However, they have significant drawbacks that slow the

modeling. While the aggregate representations of co-morbidities are possible, they suffer from a variety of

shortcomings, such as low fidelity.

Perez and Dragicevic (2009) [86] proposed a GIS-agent based model. This model simulated the outbreak

of measles in an urban area where different activities were taking place in the daily routine of each. The

results of this model indicated that it could successfully generate different scenarios of outbreaks in complex

and real geographic urban settings, by considering the movement and interaction of each individual in the

model. Subsequently, Liu et al. (2015) [66] built an agent-based model to study the effects of the vaccination

coverage, clustering of immunity, and contact investigations in preventing uncontrolled measles outbreaks.

Doroshenko et al. (2016) [24] employed agent-based modelling to study the effects of an outbreak response
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immunization focused on young individuals in averting pertussis cases. The important elements of the

structure of this model were drawn from the research of Hethcote [50] with a deterministic aggregate model

employing differential equations. Sanstead et al. (2015) [96] built an age-based model to study age-related

trends in the incidence of pertussis. They fitted three years of outbreak data (2004, 2008 and 2012) to the

model, to identify the factors that have contributed to them. Finally, they found no single factor accounted

for these observed trends, and that the agent-based modelling was a useful tool for future research.

Although the agent-based modelling approach has its own advantages compared with traditional aggregate

mathematical models based on differential equations, it requires more computational and cognitive costs,

which may limit the sensitivity analysis and model scope. Due to the limited resources at hand, the cost and

benefit of each approach guide the choice [90].

To apply mathematical modelling to simulate infectious diseases, several parameters or processes need to

be simplified, compared to their real world complexity. For example, the contact process among individuals

in the real world is stochastic. However, the contact process is normally simplified to be a represented

by constant contact rate parameter in deterministic models and some agent-based models. Given that

simplification effort is required to quantify these parameters through several approaches. These approaches

include (in approximately the decreasing order of the preference) “the use of recorded measurements, inference

from related data, logic, educated guesswork, or adjustments needed to provide a better simulated fit to

history” [53]. In a situation lacking recourse to detailed measurement of a parameter, while it is too important

to be ignored in the model, we could following a calibration approach to estimate the value of these parameters,

to adjust the model to fit available historical data. Normally, the calibration method used in the infectious

diseases is performed offline [24, 96, 104, 95]. And it is notable that the off-line calibration process is typically

time-consuming and inflexible in terms of handling on-going empirical data.

Models represented by differential equations could also capture the stochastic processes in the level of pop-

ulation groups, by combining the mathematical models (differential equations) with statistical epidemiology

[71, 63, 8, 13, 44], including through the use of stochastic differential equations.

Bjornstad et al. (2002) [13] worked on a model that paralleled several approaches and factors in eco-

logical population dynamics, including “intrinsic density dependence vs. extrinsic forcing, deterministic vs.

stochastic dynamics, spatial coupling and synchronize, etc”. The model was particularly notable for combin-

ing the SEIR deterministic model with the statistical knowledge. The model was named TSIR (Time-series

Susceptible-Infected-Recovered) model, and could capture both endemic cycles and episodic outbreaks of

measles. Finally, they analyzed this model with short-term empirical data on measles epidemiology drawn

from 60 cities. It indicated that this model could describe and regenerate the quantitative and qualitative

properties of these different types of dynamics. Grenfell et al. (2002) [44] as a companion paper showed

how the stochastic TSIR model could capture the long-term dynamical patterns of measles. Finally, it also

discussed the balance between the noises (stochastic factors) and determinism scales in the context of the

highly nonlinear ecological system of measles.
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2.1.2 Particle filtering method

Particle filtering is a Monte Carlo or simulation-based algorithm for recursive Bayesian posterior inference

[74]. In data science, normally we need to estimate some unknown quantities from some given observed

data from the real world. Bayes’ theorem provides an approach to calculate the posterior distribution of

the unknown quantities given observed data. In the Particle Filtering context, these observed data are most

commonly time series – data arriving over time. The Bayesian method of particle filtering has the ability

to incorporate such observed data on-line [25]. The particle filtering method is widely used in several areas,

including “tracking, time series forecasting, online parameter learning, etc.” [74].

Markov models (or Markov chains) play an important role in the analysis of time series [10]. In latent

Markov models, the states in the state space are normally unobservable in the real world. Typically, the latent

states are considered as being characterized by a first-order Markov chain and in a discrete time context.

The chain indicates that the latent states at next timepoint are only dependent on the state at the previous

timepointd the observed data at each timepoint is only dependent on the latent state at that timepoint

[74, 10, 25]. The HMM (Hidden Markov Model) is a widely used algorithm for latent Markov models, in the

situation where the hidden states are discrete and finite sets [89, 74].

The Kalman filter is a well known and widespread algorithm which contributes to the Bayesian inference

of continuous latent state state space models, in linear and Gaussian dynamic systems [52, 74]. Prior to the

introduction of the particle filtering algorithm, the extended Kalman filter (EKF) is the most popular method

to perform on nonlinear estimation [58, 67]. It is notable that the extended Kalman filter still assumes that

the posterior follows the Gaussian distribution [58, 67, 74]. Thus, for more general non-linear non-Gaussian

state space models, the extended Kalman filter algorithm may be biased and finally lead to filter divergence

[67].

Particle filtering is referred to under many different names, including Bayesian filtering, optimal (non-

linear) filtering, stochastic filtering, bootstrap filtering, the condensation algorithm, interacting particle ap-

proximations and on-line inference and learning [25, 6]. The particle filtering method was advanced to be

applied to a more general situation, with non-linear and non-Gaussian models. Several excellent tutorials

[6, 26, 17] on particle filtering have been published in the following years. They have given systematically

introductions and examples of the set of particle filtering algorithms.

Gordon et al. (1993) [42] is commonly regarded as the first instance of the particle filtering algorithm.

The key idea of particle filtering is to represent the required posterior probability density function (PDF)

of system state by a numerical method of a set of weighted samples, in contrast to the analytic method of

Kalman filter, which assumes a Gaussian distribution around a maximum likelihood estimate. If the total

number of samples is large enough, we consider that these weighted samples could collectively represent

the PDF. With Bayesian recursive estimation, the PDF could be calculated by two recurrence equations

theoretically. Finally, by incorporating sequential importance sampling / resampling [94], the particle filtering

is an algorithm for propagating and updating these samples (particles) to obtain an estimate of the value of
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system state (including latent states) at each time step. When considering their weighting, the distribution

of these samples approximates the PDF at the corresponding time steps.

After the particle filtering algorithm was introduced by Gordon et al. (1993) [42], it has become a

popular approach for solving estimation problems numerically on-line. Several variants of the particle filtering

algorithm have been proposed under the generic framework of sequential importance sampling.

The sampling importance re-sampling filter is the one introduced by Gordon et al. (1993) [42]. It has

the advantages that both the importance weight and the importance density could be easily evaluated and

sampled. However, it also suffers from a notable weakness. As the state space variables are explored without

the consideration of the observed data, this filtering algorithm could be inefficient and is sensitive to outliers

[6, 87]. Moreover, it may result in a rapid loss of diversity of particles, because of the re-sampling undertaken

in each iteration.

The auxiliary sampling importance re-sampling filter was introduced by Pitt and Shephard (1999) [87].

This algorithm could overcome the weakness of sampling importance re-sampling filter in terms of sensitivity

to outliers. Specifically, the auxiliary sampling importance re-sampling filter was derived from the framework

of sequential importance sampling, by introducing a new importance density which related the probability of

the current latent states and the index given the observed data. Then, the pair of the current state variables

and the index of particles of the last time step could be sampled from this importance density. Finally, a set

of samples from the current state could be obtained by omitting the index in the pairs from the marginal

density of current states given the observed data. Because the indexes were considered as the auxiliary

variables, this algorithm then was named auxiliary sampling importance re-sampling filter.

Musso et al. (2001) [75] proposed the regularized particle filtering algorithm, to overcome the problem

of particle impoverishment (loss of the diversity of particles), where most of the particles occupy the same

point of the sate space in some specific time steps, offering a poor representation of the posterior density.

The regularized particle filtering is similar to the method of sampling importance re-sampling introduced

in Gordon et al. (1993) [42], except for the re-sampling step. Specifically, the regularized particle filtering

samples from the continuous kernel density [98] of the posterior density of the current states given the

observed data in the re-sampling step. However, the sampling importance re-sampling algorithm re-samples

from the discrete posterior density represented by the particles.

The property of recursively calculating the density of posterior and updating weights allows the particle

filtering algorithm to incorporate ongoing arrival of observed data online. It is powerful in some application

fields, such as tracking. However, in the off-line situation, it may lose information if the density of the

current states are only calculated based on the observations received up to the current time. The observed

data received after the current time in the off-line situation also contribute to the estimation of the density

of the current states (especially in the situation of state space models with high-dimensional states). Then,

the approach of calculating the density of current states based on the observations in the later time steps is

known as smoothing. Several previous research has been conducted related to smoothing particle filtering
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algorithms. Kitagawa and Sato (2001) [62] worked on the fixed-lag approximation. It is also the simplest

smoothing approach. Some more complex smoothing algorithms were also proposed, like forward filtering-

backward smoothing, the generalized two-filter formula, etc. [26]. However, the implementation of the

smoothing algorithm is a high cost of the computer resources, compared with the normal particle filtering

algorithm without smoothing, both in memory and computational time.

The resample-move algorithm [41] was normally applied to address the degeneracy problem. Like the

technique of Markov Chain Monte Carlo (MCMC) [3]. The key idea of the resample-move is to design

an MCMC transition kernel (such as in Metropolis-Hastings sampler or Gibbs sampler scheme), and then

apply this transition kernel to each particle, before or after the re-sample steps. By the application of the

resample-move algorithm, the diversity of particles would be increased. Finally, the degeneracy problem

would be reduced. This indicates that the MCMC resample-move algorithm is simple and could easily to

be incorporated in any invariant of particle filtering algorithms. Cappe et al. (2007) [17] indicated that

the MCMC schemes were found to be particularly effective in fixed-lag smoothing approaches and in static

parameter estimation. Similar to the smoothing algorithm, the MCMC resample-move algorithm also requires

high computational loads of the computer resources.

Although several variants of the particle filtering algorithm have been proposed, the limitations have

not been eliminated. For example, the variance of posterior density would be high, if the variance of the

likelihood function is high. In such cases, frequent re-sampling would be performed. This would taken to

make the results of the particle filtering unreliable [26]. In high-dimensional systems with complex patterns

of probability density functions, the variance of the density functions may be high, because it is difficult to

be represent by simple probability density functions. Loss of the diversity of particles is a problem for a long

sequence of time steps.

Andrieu et al. (2010) [4] proposed a particle Markov chain Monte Carlo (PMCMC) method by combining

the two powerful approaches in sampling from high dimensional probability distributions – the particle

filtering algorithm to sample from trajectories of states and MCMC to sample from parameter values, yielding

a joint distribution of parameter values and model state trajectories. In this new method, the particle

filtering was employed to generate high dimensional proposal distributions for MCMC algorithms. While

this PMCMC algorithm also requires high computational loads of the computer resources, several research

has been conducted to address this problem, such as parallel implementation in recent years [47, 65, 100].

2.1.3 Particle filtering in epidemiology modelling

The particle filtering algorithm has been widely used in system dynamic models since it was proposed,

including in the epidemiology modelling [84, 95, 27, 55, 78, 102, 107, 73, 77, 91, 64, 101].

Ong et al. (2010) [77] deployed a real-time influenza epidemic surveillance system by incorporating the

particle filtering to a standard and stochastic compartmental SEIR model, with the surveillance data arriving

each day. Process data and forecasts were then uploaded to a public website. This research indicated that
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the real-time surveillance system was capable of showing the progress of the epidemic and indicating the

time of peaks. Moreover, this particle filtering model was capable of being used for the prediction when the

epidemic wave ended and when a second wave appeared. Also, the longer the data fed in along the epidemic

cycle, the greater the accuracy of the prediction of the particle filtering model.

Dukic et al. (2012) [27] incorporated Google Flu Trends data with the particle filtering method and

state-space methodology to track the evolution of the epidemic process. Specifically, the research extended a

classical mathematical epidemiology model (a seasonal susceptible-exposed-infected-recovered SEIR model)

as the state-space model. The particle filtering model incorporated with this state-space model could track

the influenza outbreaks, based on U.S. Google Flu Trends.

Dureau et al. (2013) [28] also extended the mathematical SEIR framework to yield a state space model and

incorporated this state space model into the particle filtering and particle MCMC algorithm. And the final

machine learning models were fed by the observed data of 2009 H1N1 in England. Moreover, this research

used stochastic extensions (Brownian Motion) to capture the character of the time-varying parameters in the

state space models. Finally, a diffusion-driven mathematical model with age structure (divided into two age

groups – children and adults) was implemented in the machine learning algorithm.

Osgood and Liu (2014) [84] explored the robustness, tolerance and correctness of the particle filtering

model implementing a SEIR mathematical framework and the epidemiological and measurement processes

to the particle filtering algorithm with on-going ground truth data, which were generated by an agent-based

models (ABM). Finally, this research compared the ground truth situation within the ABM to the results of

particle filtering in the context of an aggregate, incomplete and systematically biased compartmental model,

and indicated that the particle filtering approach can significantly improve model accuracy despite systematic

bias, and offers the potential to be widely applied.

Yang et al. (2014) [107] compared six state-of-the-art filter methods in the estimation and prediction

of influenza, by incorporating mathematical models with the SIRS framework and Google Flu Trends data.

These six models included three particle filter methods – basic particle filter (PF) with re-sampling and

regularization, maximum likelihood estimation via iterated filtering (MIF), and particle Markov chain Monte

Carlo (PMCMC) – and three ensemble filters – the ensemble Kalman filter (EnKF), the ensemble adjust-

ment Kalman filter (EAKF), and the rank histogram filter (RHF). The results showed that in the context

of influenza and among the specific six filter methods, the basic particle filter method and the three ensem-

ble methods performed better than the particle Markov chain Monte Carlo and the maximum likelihood

estimation via iterated filtering.

In the previous literature, the state space models implemented in the particle filtering algorithm were

all extended from the deterministic mathematical models (compartmental models). However, there is also

some research explored by applying agent-base modeling as the state space model in the particle filtering

algorithm.

Kreuger and Osgood (2015) [64] initially implemented an agent based model for use with the particle
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filtering algorithm. The research employed three different network types in the agent-based models – random,

small world, distance-based – and three particle weight update rules – no weight updating, weight updating

every one time step, weight updating every five time steps. The results indicated that although the particle

filtering model did not show benefits in general, the particle filtering models have the capability to compensate

for mismatches between the model characterization of the dynamics of the system and the actual dynamics

as captured in the ground-truth model. The authors proposed several possible hypotheses for the limitations

observed in this research.

Tabataba et al. (2014) [101] implemented a high resolution agent-based model using realistic social

contact networks with a synthetic dataset for Ebola for use with a variant of the particle filtering algorithm

– smart beam particle filtering. The results showed that the smart beam particle filtering approach could

find near-optimal results with a lower number of particles.

The literature related to particle filtering applied in the fields of infectious disease modelling have indicated

that this filtering method could benefit the estimation of system state variables, the inference of model

parameters and the prediction of transmission. Two research works related to the combination of variants of

Kalman filter and epidemiology models are further reviewed as supplementary.

Qian et al. (2014) [88] applied an extended Kalman filter approach in an SIR aggregate mathematical

epidemiology framework, by evaluating this system with a two level system – a ground truth data generated

from an agent-based model featuring an empirical dynamic contact network as gathered via wireless proximity

sensing and a noisy dataset of measurements. This research concluded that although the Kalman filter

algorithm suffered some limitations, it still offered capacity to improve outbreak peak estimation and could

compensate the inaccuracies in aggregate model structure and parameter estimates. Chen et al. (2012) [18]

extended the SIR mathematical framework for a state space model, and then linked this aggregate state

space model with an extended Kalman filter algorithm. Measles surveillance data with annual time series

from 1980 to 2007 of four cities was fed into the model. The authors could employ this model to incorporate

surveillance data to estimate parameters and predict unobserved elements in the model. In addition, a particle

filter framework has also been applied in this paper for comparison with the results of the extended Kalman

filter model. Although the extended Kalman filter has was shown to have several limitations, the results

generated from the extended Kalman filter model and particle filtering models of parameter estimation were

demonstrated to be similar.

2.2 Introduction of two mathematical methodologies

2.2.1 Particle filtering algorithm

Particle filtering is a general Monte Carlo sampling method for performing inference in state space models.

The approach estimates time-evolving internal states of dynamic systems where random perturbations are

present, and information about the state is obtained via noisy measurements made at each time step. Particle
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filtering is a popular numerical method for filtering problems in general state space methods, especially in non-

linear non-Gaussian scenarios [6, 74, 26]. In a general discrete-time state-space model in a particle filtering

context, the states of a system evolve between measurement points k according to equations specifying how

the current states are related to previous one [6, 74]:

xNk = gk(xNk−1, ϑk−1) (2.1)

where xNk is the vector representing the states of the system at time k, N indicates the length of the vector

x. ϑk−1 is the vector representing state process noise. gk is a possibly non-linear and time-dependent

function describing the evolution of the state vector between measurement points. In cases of non-linear

state equations (such as obtain for communicable disease models), gk is in general not expressible in a closed

form, with the mapping between successive observation points depending instead on numeric integration.

However, in this project, we are dealing with a continuous-time state space system – the system of ordinary

differential equations (ODEs). The state model of particle filtering in a continuous-time dynamic system can

be characterized as follows:
dxN

dt
= g(xN , ϑ) (2.2)

Such ODEs can be solved by numerical integration over discrete time intervals. In such case, the function gk

in Equation (2.1) represents the numerical integration of function g in Equation (2.2), that is:

xNk = gk
(
xNk−1, ϑk−1

)
=

∫ k

k−1

g(xN (t), ϑ(t))dt+ xNk−1 (2.3)

Within this equation, it bears emphasis that gk is in general not specifiable in closed form and the state

vector xNk is the integration of the ODE system in the time intervals [k-1, k ]. xNk is assumed in general to

be latent and unobservable, and information concerning xNk is obtained from a noisy observation vector yMk .

The measurement model describes how noisy measurements are related to the states [6]:

yMk = hk(xNk , nk) (2.4)

Where hk is also a possibly non-linear time-dependent function describing the measurement process and nk

is the vector representing measurement noise. M indicates the length of the observation vector yk. This

thesis focuses on cases in which the observed data are measured at evenly spaced time points, with different

integer spacing optionally being allowed for different particular measurands (e.g., the total measles cases

can be measured monthly, while the measles cases of each age group are measured yearly). In this dynamic

system, the state model is represented by continuous-time functions, which are then sampled with Equation

(2.3) in uniformly distributed discrete time to build the measurement model – Equation (2.4). On the basis

of Equations (2.2)-(2.4), we apply the approach for particle filtering of discrete-time systems of Equation

(2.1) to our continuous-time system without loss of generality, simply by re-scaling time. Moreover, the noise

in the state model of the continuous-time system can also be characterized in numerical integration of a

stochastic differential equation, which will be discussed in greater detail in Equation (2.3).
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Making the simplifying assumption for exposition that all measurements are uniformly distributed and

to occur at integer times, the intention of the particle filter model is to derive or sample from the sequential

marginal distribution of
{
p(xN0:n|yM0:n)

}
n=0:T

for all the particle numbers n up to time T, where x0 indicates

the initial value of the state vector, and there is no measurement at y0. The technique for achieving this is a

recursive formulation. To characterize the means by which the particle filter method operates, we introduce

below the Recursive Bayes Filter [6], general Sequential Importance Sampling [6, 74, 84], and Resampling

[6, 74, 84].

Recursive Bayes filter

Suppose we seek filtered estimates of xNk at time k based on the observed data yM1:k. From the Bayesian

perspective, the tracking problem is to recursively calculate the probability of being in state xNk , given the

empirical data yM1:k. It is notable that the initial probability density function (PDF) of p(xN0 |yM0 ) = p(xN0 ) is

known as the prior. Thus, p(xNk |yM1:k) could be obtained recursively by two stages: prediction and update [6].

The prediction stage: Suppose the required p(xNk−1|yM1:k−1)is available at time k-1. The prediction stage

calculates the prior pdf p(xNk |yM1:k−1) of the time k using state update equation gk (see Equation (2.1) and

(2.3)) to calculate state vector xNk based on a posited state vector xNk−1. For the current case, gk is given by

a numerical integration of the compartmental model. According to the Chapman–Kolmogorov equation:

p
(
xNk
∣∣yM1:k−1

)
=

∫ +∞

−∞
p
(
xNk , x

N
k−1

∣∣yM1:k−1

)
dxNk−1 (2.5)

By the probabilistic chain rule, in general: p (AB|C) = p(ABC)
P (C) = p(A|BC)P (BC)

P (C) = p(A|BC)P (B|C)

Thus Equation (2.5) can be rewritten as:

p
(
xNk
∣∣yM1:k−1

)
=

∫ +∞

−∞
p
(
xNk

∣∣∣xNk−1, y
M

1:k−1

)
p(xNk−1|yM1:k−1)dxNk−1 (2.6)

Because for a first-order Markov-Chain, p
(
xNk

∣∣∣xNk−1, y
M

1:k−1

)
= p

(
xNk
∣∣xNk−1

)
, the first term in the

integral above can be rewritten, yielding the key relation:

p
(
xNk
∣∣yM1:k−1

)
=

∫ +∞

−∞
p
(
xNk
∣∣xNk−1

)
p(xNk−1|yM1:k−1)dxNk−1 (2.7)

It bears emphasis that Equation (2.7) can be used to sample from p
(
xNk
∣∣yM1:k−1

)
via Monte Carlo inte-

gration.

The update stage: Given the capacity to sample from p
(
xNk
∣∣yM1:k−1

)
provided by the prediction stage, the

update stage provides a means of calculating p
(
xNk
∣∣yM1:k

)
. By the application of Bayes’ rule, we can obtain:

p
(
xNk
∣∣yM1:k

)
=

p(yM1:k|xNk )p(xNk )

p(yM1:k)
(2.8)
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Recognizing that p
(
yM1:k

)
= p(yMk , y

M
1:k−1), we can rewrite this as:

p
(
xNk
∣∣yM1:k

)
=

p(yMk , y
M
1:k−1|xNk )p(xNk )

p(yMk , y
M
1:k−1)

(2.9)

By application of Bayes’ rule and the probabilistic chain rule as above, we obtain:

p
(
yMk , y

M
1:k−1

∣∣xNk ) = p
(
yM1:k−1, y

M
k

∣∣xNk )
= p

(
yM1:k−1

∣∣yMk , xNk ) p (yMk ∣∣xNk )
= p

(
yMk
∣∣xNk ) p(yMk , x

N
k |yM1:k−1)p(yM1:k−1)

p(yMk , x
N
k )

(2.10)

by the definition of a joint distribution: p
(
yM1:k−1, y

M
k

∣∣xNk ) = p(yM1:k−1| yMk , xNk )p(yMk |xNk ).

Similarly, we could get:

p
(
yMk , y

M
1:k−1

)
= p(yMk | yM1:k−1)p(yM1:k−1) (2.11)

Substituting Equation (2.10) and Equation (2.11) into Equation (2.9), and cancelling the term involving

p(xNk ), we obtain:

p
(
xNk
∣∣yM1:k

)
=
p(yMk |xNk )p(yMk , x

N
k |yM1:k−1)p(yM1:k−1)p(xNk )

p(yMk | yM1:k−1)p(yM1:k−1)p(yMk , x
N
k )

=
p(yMk |xNk )p(xNk |yM1:k−1)p(yMk |xNk , yM1:k−1)p(xNk )

p(yMk | yM1:k−1)p(yMk |xNk )p(xNk )

(2.12)

By the properties of a first-order Markov chain, we know that p
(
yMk
∣∣xNk , yM1:k−1

)
= p

(
yMk
∣∣xNk ) . Cancelling

the p
(
yMk
∣∣xNk ) term in both numerator and denominator, we obtain:

p
(
xNk
∣∣yM1:k

)
=

p(yMk |xNk )p(xNk |yM1:k−1)

p(yMk | yM1:k−1)
(2.13)

where the second term in the numerator is as given in Equation (2.7) and the denominator is a normal-

ization term also depending on that term. That normalization term is given by:

p(yMk | yM1:k−1) =

∫ +∞

−∞
p(yMk |XN

k )p(XN
k |yM1:k−1)dXN

k (2.14)

Because Equations (2.14) does not depend on xNk , it can be treated as a constant when sampling from

p
(
xNk
∣∣yM1:k−1

)
. In Equation (2.13), the density p(yMk |xNk ) is defined by the measurement model (2.4). Reflect-

ing the application of Bayes’ rule in Equation (2.13), it is fruitful to think of each observation as leading to

Bayesian update. Within this update, the observed data yMk is used to update the prior density p(xNk |yM1:k−1)

by multiplication of that prior by the density p(yMk |xNk ) so as to obtain the posterior density p(xNk |yM1:k) of

the current state xNk given all previous data yM1:k.

The prediction stage (as given by Equation (2.7)) depends on p(xNk−1|yM1:k−1) in order to determine

p
(
xNk
∣∣yM1:k−1

)
. By contrast, the update stage takes the output from the prediction stage and specifies (via

Equation (2.13)) how to calculate p
(
xNk−1

∣∣yM1:k−1

)
on from it – exactly what is needed to continue on to
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the next iteration of the prediction stage. Recursively calculating Equation (2.7) and (2.13) with alterna-

tions of prediction and Bayesian stages for progressively larger values of k can finally yield the solution of{
p(xN0:n|yM0:n)

}
n=0:T

. For a Gaussian and linear system, these equations can be solved analytically via the

well-known Kalman filter algorithm. However, in general, these two functions cannot be carried out analyti-

cally, such as for the model considered here, which exhibits both non-Gaussian and non-linear characteristics.

As result, we require the approximation method of Monte Carlo Sampling.

Sequential importance sampling

Sequential importance sampling (SIS) is the most basic Monte Carlo method used to sample when the predict

and update equation of the recursive Bayes filter are not analytically tractable [6]. The key idea of SIS is to

estimate the posterior distribution p(xN0:k−1|yM1:k−1) at a given time – for example, k-1 – with a weighted set

of samples
{
x
N(i)
0:k−1, w

(i)
k−1

}Ns

i=1
(Ns is the total number of particles). It bears emphasis that x

N(i)
0 indicates

the initial value of the state vector of sample i. The weight {w(i)
k−1}

Ns

i=1
of the initial state is normally

set to a uniformly value, and the weight are normalized at each time step, and thus
∑Ns

i=1 w
(i)
k = 1. Then

recursively update these samples to obtain samples approximating the posterior distribution at the next time

step p
(
xN0:k

∣∣yM1:k

)
. These samples are also named particles [6].

Before introducing SIS, the simpler concept of importance sampling will be demonstrated. In importance

sampling, we seek to sample (draw values) from a target distribution p(x). In many cases, this can be

difficult – for example, p(x) may not be analytically expressible, with the value of p(x) for a given x requiring

computation by numerical methods. Sampling via traditional methods (e.g., by computing a cumulative

distribution function) can thus pose problems; in other cases, x is drawn from a space with moderate to

high dimensionality, and construction of a cumulative distribution is cumbersome and inefficient. Instead,

sampling from p(x) can be approximated by drawing samples from a different “proposal” distribution of q(x)

supporting easy sampling. Suppose that we sample {x(i)}ni=1 from q(x) which can represent the key features

of p(x). Then the target density can be approximated as [6, 74, 84]:

p̂ (x) =

n∑
i=1

w(x(i))δX(i) (2.15)

where w(x(i)) = p(x(i))
q(x(i))

, and δX(i)(x) is a Dirac - delta mass centered at x(i). This “importance sampling”

emphasizes (via higher weights) samples which are more heavily weighted in p(x), but requires just the ability

to evaluate p(x)
q(x) for those samples drawn from q(x), rather than sampling from p(x) (e.g., by computing the

cumulative distribution and sampling using it).

We now return to SIS – which extends the principle of importance sampling to successive times. If applied

to the posterior distribution at time k-1, the importance sampling yields:

p
(
x
N(i)
0:k−1

∣∣∣yM1:k−1

)
≈

n∑
i=1

w
(i)
k−1δxN(i)

0:k−1

(2.16)
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Then, if a sample x
N(i)
0:k−1is drawn from a proposal distribution q(x

N(i)
0:k−1|yM1:k−1), according to importance

sampling, we could get:

w
(i)
k−1 =

p
(
x
N(i)
0:k−1

∣∣∣yM1:k−1

)
q
(
x
N(i)
0:k−1

∣∣∣yM1:k−1

) (2.17)

The key idea of SIS is to update samples x
N(i)
0:k−1 and their weights w

(i)
k−1. Then they can approximate the

posterior distribution at the next time step p(x
N(i)
0:k |yM1:k). To do this, we first assume that the value of the

proposal distribution at time k can be factored by the definition of joint distribution as follows ([6]):

q(xN0:k|yM1:k) = q(xNk |xN0:k−1, y
M
1:k)q(xN0:k−1|yM1:k)

= q(xNk |xN0:k−1, y
M
1:k)q(xN0:k−1|yM1:k−1)

(2.18)

where the final term on the right is simply that being calculated but at the previous time step. This

recurrence relation specifies a formulation that expresses the value of the proposal distribution at time k in

terms of its value at the previous time q(xN0:k−1|yM1:k−1) and the probability (density) of the updated state

taking into account the new measurement at time k, which is q(xNk |xN0:k−1, y
M
1:k). If a sample (particle) is

drawn with a weight w
(i)
k−1 from the importance-sampling approximated distribution q(xN0:k−1|yM1:k−1) at time

k -1, then the task is to formulate an equation to update the weight of that particle to draw from the target

distribution q(xN0:k|yM1:k) for time k.

According to Equation (2.13) we could get:

p
(
xN0:k

∣∣yM1:k

)
=

p(yMk |xN0:k)p(xN0:k|yM1:k−1)

p(yMk | yM1:k−1)

=
p(yMk |xN0:k)p(xNk , x

N
0:k−1|yM1:k−1)

p(yMk | yM1:k−1)

=
p
(
yMk
∣∣xNk , xN0:k−1

)
p
(
xNk
∣∣xN0:k−1, y

M
1:k−1)p(xN0:k−1|yM1:k−1)

p(yMk | yM1:k−1)

(2.19)

Because the process is assumed to be well characterized by a first-order Markov chain, we know that:

p
(
yMk
∣∣xNk , xN0:k−1

)
= p

(
yMk
∣∣xNk ) (2.20)

p
(
xNk
∣∣xN0:k−1, y

M
1:k−1) = p

(
xNk
∣∣xNk−1) (2.21)

Substituting Equation (2.20) and (2.21) into Equation (2.19), we obtain:

p(xN0:k|yM1:k) =
p(yMk |xNk )p(xNk |xNk−1)p(xN0:k−1|yM1:k−1)

p(yMk |yM1:k−1)
(2.22)

According to Equation (2.14), we know that the denominator of Equation (2.22) is constant. Then, by

substituting Equation (2.22) and (2.18) into (2.17), we could get:

w
(i)
k ∝

p
(
yMk

∣∣∣xN(i)
k

)
p
(
x
N(i)
k

∣∣∣xN(i)
k−1

)
p
(
x
N(i)
0:k−1

∣∣∣yM1:k−1

)
q
(
x
N(i)
k

∣∣∣xN(i)
0:k−1, y

M
1:k

)
q
(
x
N(i)
0:k−1

∣∣∣yM1:k−1

) (2.23)
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Finally, recognizing that the final terms in the numerator and denominator are as given for w
(i)
k−1 in

Equation (2.17), we obtain ([74], [6]):

w
(i)
k ∝ w

(i)
k−1

p
(
yMk

∣∣∣xN(i)
k

)
p
(
x
N(i)
k

∣∣∣xN(i)
k−1

)
q
(
x
N(i)
k

∣∣∣xN(i)
0:k−1, y

M
1:k

) (2.24)

Because process gk is Markovian, , then we can getq
(
x
N(i)
k

∣∣∣xN(i)
0:k−1, y

M
1:k

)
= q

(
x
N(i)
k

∣∣∣xN(i)
k−1 , y

M
k

)
.

Then, in this case, the recursively updated equations simplify to:

x
N(i)
k ∼ q

(
x
N(i)
k

∣∣∣xN(i)
k−1 , y

M
k

)
(2.25)

w
(i)
k ∝ w

(i)
k−1

p
(
yMk

∣∣∣xN(i)
k

)
p
(
x
N(i)
k

∣∣∣xN(i)
k−1

)
q
(
x
N(i)
k

∣∣∣xN(i)
k−1 , y

M
k

) (2.26)

Finally, the general algorithm of Sequential Importance Sampling as applied to particle filtering can be

summarized as follows. Let Ns be the number of particles, X
N(i)
k the state vector of particle i at time k ([74],

[84], [6], [26]).

Algorithm 1: SIS particle filter

1. At time k=0:

(1) Sample X
N(i)
0 from q0(xN0 );

(2) Compute a weight for each particle w
(i)
0 = 1

Ns
. It indicates that the weight at initial time step follows

uniform distribution.

2. At time k ≥ 1, perform a recursive update as follows:

(1) Advance the sampled state by sampling X
N(i)
k ∼ qk(xNk |yk, X

N(i)
0:k−1) and set X

N(i)
0:k = (X

N(i)
0:k−1, X

N(i)
k );

(2) Update the weights to reflect the probabilistic and state update models as follows:

w
(i)
k = W

(i)
k−1

p(yMk |X
N(i)
k )p(X

N(i)
k |XN(i)

k−1 )

q(X
N(i)
k |XN(i)

k−1 ,y
M
k )

.

Normalize the weights W
(i)
k =

w
(i)
k∑Ns

i=1 w
(i)
k

The degeneracy problem and resampling

The SIS particle filter commonly suffers from a strong degeneracy problem – as the algorithm continues, many

– and eventually most – particles will develop a negligible weight, by iterating Equation (2.25) and (2.26).

This occurs because we are sampling in a high dimensional space, using a myopic proposal distribution [74].
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Thus, we follow many other implementations by seeking quantify the degree of degeneracy using the

effective sample size [74], so as to determine the acuteness of the problem. We estimate the degree of

degeneracy at time k using the following measure [6, 74, 84]:

Seff =
1∑Ns

i=1 (w
(i)
k )

2 (2.27)

Where a smaller Seff means a larger variance of the weights, hence more degeneracy. There are two

main solutions to the degeneracy problem: resampling and choosing a good proposal distribution. Below we

introduce resampling, which was used in this research.

The key idea underlying resampling is a form of “survival of the fittest”. To achieve this, the resampling

step will monitor the effective sample size. Then, whenever it drops below a threshold, we will create new

particles in which the ones with higher weight tend to reproduce, and those the particles with low weight

tend to die out. The new particles inherit their parent’s values but carry uniform and normalized weight.

Specifically, to perform resampling for Ns particles, we sample the new particles from the set of the old

particles, where the probability that a sample is drawn from the old particles occurs with a probability

proportional to the weight of that particle. Following sampling, the weight of each of the new particles is set

to 1
Ns

.

Finally, we can get the generic particle filter algorithm by combining algorithm 1 and resampling step as

follows:

Algorithm 2: Generic particle filter

1. At time k=0:

(1) Sample X
N(i)
0 from q0(xN0 );

(2) Compute a weight for each particle w
(i)
0 = 1

Ns
. It indicates that the weight at initial time step follows

uniform distribution.

2. At time k ≥ 1, perform a recursive update as follows:

(1) Advance the sampled state by sampling X
N(i)
k ∼ qk(xNk |yk, X

N(i)
0:k−1) and set X

N(i)
0:k = (X

N(i)
0:k−1, X

N(i)
k );

(2) Update the weights to reflect the probabilistic and state update models as follows:

w
(i)
k = W

(i)
k−1

p(yMk |X
N(i)
k )p(X

N(i)
k |XN(i)

k−1 )

q(X
N(i)
k |XN(i)

k−1 ,y
M
k )

.

Normalize the weights W
(i)
k =

w
(i)
k∑Ns

i=1 w
(i)
k

(3) Calculate the Seff : 1∑Ns
i=1 (w

(i)
k )

2

(4) If Seff < ST (ST is the minimum effective sample size – the threshold of resampling), perform resampling

to get a new set of X
N(i)
k . And set the weight of the new particles as 1

Ns
.
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2.2.2 The demographic model

The generic exponential growth demographic model

* The contents in this section primarily follow the derivation and exposition from the research work of Hethcote

(1997) [50]*

A widely used initial-boundary-value problem of the age-structured model [68, 50, 54] is employed in this

thesis. Suppose A(a, t) is the age distribution function, with variable a related to age, and variable t related

to time. Then, the partial differential equation for the population is as follows[54, 50]:

∂A(a, t)

∂a
+
∂A(a, t)

∂t
= −µ(a)A(a, t) (2.28)

where µ(a) is the death rate of age a. Suppose v(a) is the birth rate function of age a. It is notable that

the birth rate v(a) is not dependent on time t, that is, the birth rate of any age a is invariant over time.

Then, the birth population at time t is:

A(0, t) =

∫ ∞
0

v(a)A(a, t)da (2.29)

Equation (2.29) is the boundary condition of the partial equation (2.28). And the initial condition of

(2.28) can be given by A(a, 0) = N(a), where N(a) is the population distribution of age a at time t = 0.

The idea of building the age-structured demographic model is that we split the model via age into n

intervals [ai−1, ai), i ∈ [1, n], where a0 = 0, and an = ∞. Then, in each interval, we could get an ordinary

differential equation over time t by integrating A(a, t) at the age interval [ai−1, ai).

In this research, the population is assumed to be subject to exponential growth, with the equation of the

age distribution with time being given by:

A(a, t) = eqtN(a) (2.30)

Under these assumptions, the partial differential equation (2.28) could be transformed into n ordinary

differential equations in the age interval [ai−1, ai), i ∈ [1, n]:

Ni(t) =

∫ ai

ai−1

A(a, t)da =

∫ ai

ai−1

eqtN(a)da = eqtNi(0) (2.31)

where Ni(t) is the total population of each age group [ai−1, ai), i ∈ [1, n] at time t, while Ni(0) is the

initial value of Ni(t) at time t = 0. Similarly, we assume that the death rate µi =
∫ ai
ai−1

µ(a)da, and the birth

rate vi =
∫ ai
ai−1

v(a)da.

Via substitution of Equation (2.30) into (2.28), it can be recognized that:

dN(a)

da
= −(q + µ(a))N(a) (2.32)

Solving the ordinary differential Equation (2.32) in the interval of [ai−1, ai) and assuming as the initial

condition the population in age ai−1, which is N(ai−1) yields the following:

N(a) = N(ai−1)e−(q+ui)(a−ai−1) (2.33)
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Integrating Equation (2.33) in interval [ai−1, ai), the total population Ni(t) in the age interval [ai−1, ai)

can be demonstrated to be:

Ni(0) =

∫ ai

ai−1

N(a)da =

∫ ai

ai−1

A(a, t)da =
N(ai−1)(1− e−(q+µi)(ai−ai−1))

q + µi
(2.34)

Because there are n age groups in the model, we could define a constant variable of aging rate ci for each

age group i (i ∈ [1, n]), where N(ai) = ciNi(0). Then, according to Equation (2.33) and (2.34), it can be

recognized that:

ci =
N(ai)

Ni(0)
=

q + µi
e(q+µi)(ai−ai−1) − 1

(2.35)

Consider the Taylor expansion of e(q+µi)(ai−ai−1), which is e(q+µi)(ai−ai−1) = 1 + (q + µi)(ai − ai−1) +

(q+µi)(ai−ai−1)2

2! + .... When ai − ai−1 or q + µi is a small value, then we can calculate ci via the following

approximation:

ci ≈
1

ai − ai−1
(2.36)

It is notable that the rate constant for the final age group cn ≈ 1
an−an−1

= 1
∞−an−1

≈ 0.

Taking the above into account, if we integrate Equation (2.28) over the age interval of [ai−1, ai), we get:∫ ai

ai−1

∂A(a, t)

∂a
da+

∫ ai

ai−1

∂A(a, t)

∂t
da =

∫ ai

ai−1

(−µ(a)A(a, t))da (2.37)

according to Equation (2.30), the first term of (2.37) could be:∫ ai

ai−1

∂A(a, t)

∂a
da =

∫ ai

ai−1

∂eqtN(a)

∂a
da = eqt[N(ai)−N(ai − 1)] (2.38)

substituting N(ai) = ciNi(0) to Equation (2.30) yields:∫ ai

ai−1

∂A(a, t)

∂a
da = eqt[ciNi(0)− ciNi−1(0)] (2.39)

substituting Equation (2.31) to Equation (2.39), we obtain:∫ ai

ai−1

∂A(a, t)

∂a
da = ciNi(t)− ciNi−1(t) (2.40)

according to Equation (2.31), the second term of Equation (2.37) can be written as:

∫ ai

ai−1

∂A(a, t)

∂t
da =

∫ ai

ai−1

∂eqtN(a)

∂t
da =

deqt

dt

∫ ai

ai−1

N(a)da =
deqt

dt
Ni(0) =

dNi(t)

dt
(2.41)

Substituting Equation (2.40) and (2.41) into Equation (2.37), we obtain:

dNi(t)

dt
= ciNi−1(t)− (ci + µi)Ni(t) (2.42)

Recall that the boundary condition of Equation (2.42) is given by the total inflow of newborns:
∑n
j=1 vjNj(t).

Finally, the ordinary differential equations of the demographic model are as follows:

dN1(t)

dt
=

n∑
j=1

vjNj(t)− (c1 + µ1)N1(t)

dNi(t)

dt
= ci−1Ni−1(t)− (ci + µi)Ni(t), i ≥ 2

(2.43)
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The equilibrium demographic model

In this thesis, I assume that the population is in equilibrium because the empirical data of population (pop-

ulation in Saskatchewan from 1921 to 1956) does not change dramatically (Figure 2.3). This approximation

assumes that the total population Ni(t) of age group i will stay stable (remain invariant) with time t. Thus,

the rate constant q is 0. And according to Equation (2.43), for this simplified context, we obtain:

dN1(t)

dt
=

n∑
j=1

vjNj(t)− (c1 + µ1)N1(t) = 0

dNi(t)

dt
= ci−1Ni−1(t)− (ci + µi)Ni(t) = 0, i ≥ 2

(2.44)

Then, the death rate ui could be calculated as follows:

µ1 =

∑n
j=1 vjNj(t)− c1N1(t)

N1(t)

µi =
ci−1Ni−1(t)− ciNi(t)

Ni(t)
, i ≥ 2

(2.45)

2.3 Introduction of empirical data

2.3.1 The surveillance data

This thesis benefits from the fact that both pertussis and measles are formally classified as notifiable ill-

nesses for the province of Saskatchewan (Canada). In this thesis, measles and pertussis reporting data for

Saskatchewan are used as empirical data for the particle filtering models. These data were public aggregate

data obtained from the Government of Saskatcewan’s “Public Health Annual Report of Saskatchewan [21].

This thesis employs four datasets drawn from that report – for each of measles and pertussis, datasets are

used for monthly reported cases aggregated across the total population, and yearly reported cases in each age

group. In the yearly empirical datasets, the annual reported cases are split into different age groups. Within

this dataset, the age stratification is inconsistent. As a result, the splitting in some years fails to precisely

match the stratification of the age groups in the models. For these cases, I proportionally split the yearly

empirical reported cases into overlapping age groups within the model.

This study employs measles and pertussis reported cases in Saskatchewan specifically during the pre-

vaccination era. The time of the monthly empirical data extends from Jan. 1921 to Dec. 1956, with the

dataset offering a total of 432 records for each pathogen. The yearly age-specific data extend from 1925 to

1956, reflecting the fact that reporting of age-specific data was only started in 1925. Every record contains

four features – Date, reported cases and population size. To make them consistent with the population

size of the dynamic model – the average population from 1921 to 1956 (863,545) – the reported cases are

normalized to the same population size as the model, thus yielding estimated incidence rates rather than

incident case counts. The monthly reported cases of measles and pertussis are shown in Figure 2.1 and Figure
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2.2, relatively; it can be readily appreciated that the time series demonstrate the classic patterns of waxing

and waning incorporating both stochastic and regular features characteristic of many childhood infectious

diseases in the pre-vaccination era.

Figure 2.1: The monthly reported measles cases in Saskatchewan from 1921 to 1956
normalized by the population employed in the model (863,545)

2.3.2 The demographic data

In this thesis, the demographic parameters play a significant role in the models, and especially in the age

structured models used. The parameters related to the population are abstracted from the empirical pop-

ulation of Saskatchewan from 1921 to 1956 [16]. The empirical demographic data indicate that the total

population of Saskatchewan does not show drastic fluctuation [16] over the year range from 1921 to 1956.

During these years, the empirical population lie in the interval from 757,000 to 932,000 (2.3). For this thesis,

I let the model population constantly stay in 863,545, which is the average population among 1921 to 1956. It

is notable that I employ the equilibrium population model – the total population and population among each

age group (in the age-structured models) stay the same, rather than change. Similarly, the model retains as

invariant the value of the population in each age group, according to the average population among 1921 to

1956 in within the Saskatchewan age pyramid [16]. The population of Saskatchewan from 1921 to 1956 of

each age is depicted in Figure 2.3.
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Figure 2.2: The monthly reported pertussis cases in Saskatchewan from 1921 to 1956
normalized by the population employed in the model (863,545)

Figure 2.3: The total population in Saskatchewan from 1921 to 1956 of each age.
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Chapter 3

Measles aggregate population model of particle fil-

tering

3.1 Introduction

Measles is a highly contagious viral disease. It remains one of the leading causes of death among young children

globally, and has imposed a significant morbidity and mortality burden where vaccination coverage is low [80].

About 30% of all cases of measles have one or more complications including diarrhea, otitis media, pneumonia

or encephalitis. Measles mortality was estimated to be 0.2% in the United States between 1985 and 1992

[106]. Prior to widespread vaccination, measles caused an estimated 2.6 million deaths each year [80]. In 2016,

approximately 89,780 people died from measles - mostly children under the age of 5 [80]. The Americas has

become the first region in the world to have eliminated measles [103]. However, the importation of cases from

other regions leads to outbreaks in unimmunized and under-immunized populations. Understanding measles

outbreak patterns can aid in forecasting and help public health agencies to design intervention strategies to

prevent and control it, such as setting outbreak response measures, setting vaccination targets, and allocating

financial and human resources, etc.

Measles is a highly contagious virus. The virus of measles lives in the nose and throat mucus of an infected

person, which can spread to the other individuals through coughing and sneezing [36]. It can normally live

for up to two hours in the air or on objects and surfaces [106]. The measles transmission is primarily from

person to person by large respiratory droplets [106]. The CDC Reports that “if other people breathe the

contaminated air or touch the infected surface, then touch their eyes, noses, or mouths, they can become

infected. Measles is so contagious that if one person has it, 90% of the people close to that person who are

not immune will also become infected” [36]. After 7 to 14 days, the symptoms of measles generally appear

[35]. The symptoms of measles normally include high fever, cough, runny nose and red and watery eyes [35].

Three to five days after symptoms begin, a rash (flat red spots that appear on the face, neck, trunk, arms,

legs and feet) usually breaks out [35]. Then the infected individuals can spread measles to others from four

days before through four days after a characteristic rash appears [36]. In temperate areas, measles shows a

seasonal pattern that it occurs primarily in late winter and spring [106]. Finally, it is notable that measles is

a disease of humans and the virus of measles is not spread by any other animal species [36].
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Surveillance data and simulation models are two of the most prominent contemporary methods used to es-

timate and predict outbreak patterns of measles. However, both of these methods have notable shortcomings.

Surveillance data are normally very noisy. And it is difficult to secure quantitatively rigorous insights into the

future evolution of the outbreak pattern by only employing the surveillance data. Finally, surveillance data

can not be used to investigate counterfactuals. Although dynamic modeling is increasingly widely used, it

also exhibits notable disadvantages. Firstly, a calibration process for a dynamic model is typically undertaken

manually on a one-time basis. The laborious nature of this process renders it difficult for a dynamic model

to incorporate ongoing arriving data. Secondly, a dynamic model represents a simplified characterization of

processes in the real world. It is inevitable that a dynamic model often omits, simplifies and mis-estimates

some factors. As characterized in the introduction of particle filtering in previous chapters, particle filtering,

the machine learning algorithm based on the idea of Monte Carlo approximation and for recursive Bayesian

inference [74], can link the system dynamics models of measles and pertussis to the empirical datasets (noisy

surveillance data) to compensate for weaknesses of both.

This chapter seeks to support more accurate estimation and prediction of measles dynamics by applying a

computational statistics technique (particle filtering) that combines the best features of insights from ongoing

(although noisy) empirical data and dynamic models (although fraught by systematic errors, omissions, and

stochastic divergence over time) while mitigating important weaknesses of each. Specifically, this chapter

investigates the combination of particle filtering methods with a compartmental model (SEIR model) with

aggregate population of measles to recurrently estimate the latent states of the population with respect to

the natural history of infection with measles, to anticipate measles evolution and outbreak transitions in pre-

vaccination era. Finally, a particle filtering model supports the estimation of the entire state in the system

dynamics model across all the entire simulation time horizon by incorporating incoming empirical data. This

asset supports researchers by providing research insight related to the latent states (such as the historical

Susceptible, Infectious, Exposed, Recovered population, etc. in each time point during incorporating the

empirical data) in the dynamics system of measles.

3.2 The mathematical dynamic model

This project employs a measles SEIR model [30] as the disease transmission component of the state-equation

model in particle filtering. A time unit of months is used, so as to be consistent with the empirical data

[21]. This model, which can be found in [30], contains 4 state variables: (S-Susceptible, E-Exposed, I-

Infectious, R-Recovered). The original model [30] makes use of a formulation in which each state variable

is of unit dimension, representing a fraction of the entire population. However, for the sake of comparison

against empirical data, the model in this project is represented in a re-dimensionalized fashion, with the

state variables representing counts of persons. In the first step, I re-dimensionalized the original model. The
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resulting aggregate compartmental equations are as follows:

dS

dt
= Nv − (β

I

N
+ µ)S

dE

dt
= β

I

N
S − (σ + µ)E

dI

dt
= σE − (γ + µ) I

dR

dt
= γI − µR

(3.1)

The meaning of the states and parameters are as follows: S, E, I and R are the count of Susceptible,

Exposed, Infectious and Recovered people in the population, respectively. N is the total number of people,

and N=S+E+I+R. v is the birth rate (of unit 1/Month) and µ is the death rate (also of unit 1/Month). σ−1

and γ−1 are the mean incubation and infectious periods (in months) of the disease, respectively. β is the rate

of effective contact between individuals, and reflects both the contact rate and transmission probability (β =

contact rate × transmission probability), and is thus of unit 1/Month. The population size N was obtained

from Saskatchewan during the years from 1921 to 1956. I take the mean of the population across these years

to be the value of parameter N . This is associated with the empirical dataset [21]. As noted below, while β

was treated in [30] as a constant, I take advantage of particle filtering by allowing it to vary over the course

of the timeframe explored. The other values of parameters are obtained from [30].

3.3 Particle filter implementation

3.3.1 The state space model

The SEIR model is employed as the governing equations underlying the state space model (denoted as gk)

of particle filtering, which is introduced in Equation (3.1). Then each particle at time k, noted as X
N(i)
k ,

represents a complete copy of the system states at that point of time. Except for the basic states in the SEIR

model (S, E, I, R), models of infection transmission are often related to more complex dynamics – such as

parameters evolving according to stochastic processes.

In the aggregate model (i.e., the model not stratified by age), three essential stochastic processes are

considered. Firstly, I consider changes in the transmissible contact rate linking infectious and susceptible

persons, which is represented by the parameter β. A second area in which I consider parameter evolution

is with respect to the disease reporting process. Specifically, to simulate this process, a parameter – repre-

senting the probability that a given measles infectious case is reported Cr, and a state Im – calculating the

accumulative measles infectious cases per unit time (per Month in this project) – are implemented. Finally,

the model includes a stochastic process (specifically, a Poisson process) associated with incidence of infection.

This process reflects the small number of cases that occur over each small unit of time (∆t). The stochastics

associated with these factors represents a composite of two factors. Firstly, there is expected to both be

stochastic variability in the measles infection processes and some evolution in the underlying transmission
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dynamics in terms of changes in reporting rate, and changes in mixing. Secondly, such stochastic variability

allows characterization of uncertainty associated with respect to model dynamics – reflecting the fact that

both the observations and the model dynamics share a high degree of fallability. Given an otherwise de-

terministic simulation model such as that considered here, there is a particular need to incorporate added

stochastic variability in parameters and flows capture the uncertainty in simulation results.

To estimate the changing values of these two stochastic parameters (β and Cr) and to investigate the

capacity of the particle filter to adapt to parameters whose effective values evolve over simulation, the state

associated with each particle includes the contact transmission rate β and reported rate Cr. Thus, each

particle in this project is associated with a state vector x = [S,E, I,R, β, Cr, Im]
T

.

Reflecting the fact that the transmissible contact rate β varies over the entire range of positive real

numbers, I treat the natural logarithm of the transmissible contact rate (denoted by β) as undergoing a

random walk according to a Wiener Process (Brownian Motion) [56, 28]. The stochastic differential equation

of transmissible contact rate can thus be described according to Stratonovich notation as:

dln(β) = sβdWt (3.2)

where dWt is a standard Wiener process following the normal distribution with 0 of mean and unit rate

of variance. Then, dln(β) follows the normal distribution with 0 of mean and variance sβ
2. In this project,

I selected an initial value of β following a uniform distribution in the interval [40, 160) across all particles.

Unless otherwise noted, the constant value of the diffusion coefficient sβ used is 0.8.

Over the multi-decadal model time horizon, and particularly on account of shifting risk perception, there

can be notable evolution in the degree to which infected individuals or their guardians seek care. To capture

this evolution, I consider evolution in the fraction of underlying measles cases that are reported (denoted by

Cr). Reflective of the fact that Cr varies over the range [0,1], I characterize the logit of Cr as also undergoing

Brownian Motion according to Stratonovich notation as:

d(logit(Cr)) = d(ln(
Cr

1− Cr
)) = srdWt (3.3)

where the initial value of Cr among particles follows a uniform distribution in the interval [0.11, 0.15).

The diffusion coefficient (sr) associated with the perturbations to the logit of Cr over dt is selected to be a

constant 0.03 across all particles in this project.

To incorporate the empirical data, I further implement a convenience state Im with respect to the cumu-

lative count of infectious cases per unit time (Month). The state Im is different from the state I. Specifically,

the state of an cumulative count of infectious cases per unit time Im only considers all the inflows to the

infectious state and without all the outflows, to simulate the same process of reporting the measles cases in

the real world. The cumulative infectious cases Im of measles at time k is:

Imk =

∫ k

k−1

(σE)dt (3.4)
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Then, the reported cases at time k calculated by the model would be:

Irmk = ImkCr (3.5)

In total, the compartmental model without age stratification is the combination of the classic SEIR model

and these three stochastic processes:

dS

dt
= Nv −A1 − µS

dE

dt
= A1 − (σ + µ)E

dI

dt
= σE − (γ + µ) I

dR

dt
= γI − µR

d(lnβ) = sβdWt

d(ln(
Cr

1− Cr
) = srdWt

Imk =

∫ k

k−1

(σE)dt

Irmk = ImkCr

A1 =
Poisson(β I

N S∆t)

∆t

(3.6)

To solve the system above, I made use of Euler integration with a time step of 0.01 Month (i.e., ∆t= 0.01

Month in Equation (3.6)).

3.3.2 The measurement model

As introduced in particle filtering tutorials [6, 26], the measurement model characterizes the relationship

between the measured data and the model. In this project, I denote the measurement vector as yMk , where

M indicates the length of the measurement vector.

In the aggregate model, the measurement vector yMk is one-dimensional (representing empirical dataset

of monthly reported measles infected cases), that is, M equals 1. I denote the value of empirically reported

cases as Iem. Then, at time k, the measurement model can be represented as:

Iemk = Irmk + nmk (3.7)

where Irmk is calculated by the states of Im and Cr in the space transition model of Equation (3.6), and nmk

is the measurement noise related to the monthly reported cases.

It is notable that the entire state ([S,E, I,R, β, Cr, Im]
T

) in the state transition model (Equation (3.6))

is latent. That is, such state variables are not directly observable in the real world. However, on the basis of

this hidden state, the particle filtering framework supports characterization of model analogues for quantities

in the empirical dataset. Finally, the particle filtering model can be grounded by the noisy observed data,
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while the entire state in the particle filtering model can be estimated across the whole time horizon in which

empirical data is incorporated.

Figure 3.1: The mathematical structure of the particle filtering aggregate model of
measles.

Figure 3.1 represents the mathematical structure of the measles particle filtering model with aggregate

population.

3.3.3 Parameters and initial values

The important fixed parameters in the models are γ−1, σ−1, v, µ. The values of birth rate is obtained from

the Annual Report of the Saskatchewan Department of Public Health [21]. To let the total population (N)

keep stable (un-changed) across the whole timeframe of the model, the value of the death rate (µ) is similar to

the birth rate. The values of parameters of γ−1 and σ−1 are as given by [30]. Finally, all the compartmental

parameters are specified at table 3.1. The initial value of all stocks in the particle filtering models are given

in table 3.2.

Table 3.1: Table showing the value of parameters in the measles aggregate particle filter-
ing model.

Parameter Value Units

γ−1 5 Day

v 0.03 1/Year

µ 0.03 1/Year

N 863,545 Person

σ−1 8 Day
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Table 3.2: Table showing initial values of the S, E, I, R stocks in the measles aggregate
particle filtering model. The units are all Person.

Parameter Value

S0 96354 - I0

E0 0

I0 Uniform[0, 9635)

R0 767191

3.3.4 The proposal distribution

The Condensation Algorithm [14, 74] is applied in this project to implement the particle filter model. It is

the simplest and most widely used proposal distribution, and consists simply of a proposal distribution that

is the same as the prior . If we suppose [74, 6]:

q(x
N(i)
k |xN(i)

k−1 , y
M
k ) = p(x

N(i)
k |xN(i)

k−1 ) (3.8)

Then the SIS recursively update Equations (2.25) and (2.26) reduce to:

x
N(i)
k ∼ p(xN(i)

k |xN(i)
k−1 ) (3.9)

w
(i)
k ∝ w

(i)
k−1p(y

M
k |x

N(i)
k ) (3.10)

It is notable that sampling from the term p(x
N(i)
k |xN(i)

k−1 ) in Equation (3.9) represents simply advancing the

model from time k-1 to time k, while the second term p(yMk |x
N(i)
k ) in Equation (3.10) is simply the likelihood

function. This strategy represents a “generate and test” approach: for a given particle holding the value

x
N(i)
k−1 in the posterior at the last observation point (at time k-1 ), we sample values by simply advancing that

particle in the dynamic model to the time of the next observation, with an induced probability of an outcome

x
N(i)
k of p(x

N(i)
k |xN(i)

k−1 ), and then evaluate how consistent the empirical evidence is with the predictions implied

by the resulting state of that particle by evaluating the likelihood function p(yMk |x
N(i)
k ) from the probabilistic

model, multiplying the value of the weight associated with that particle by the value of that likelihood

function. This has the effect of lowering the weight associated with particles that predict observations

inconsistent with the empirical observation (and thus have lower values of the likelihood function), and

elevating the weight for those that imply observations that are consistent with the empirical observation

(and thus are associated with higher values of that likelihood function).

3.3.5 Likelihood function

In this project, the observed data is the monthly reported incidence case count of measles. As previously

introduced, the measured data is the reported cases of measles in this project. The likelihood function
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p(yMk |xNk ) describes such a reporting process, and specifies the probability that a given measles case in the

dynamic model will be measured. One way of characterizing the reporting process of measles would be

analogous to a coin flip, with each case being subject to an independent distributed probability of reporting.

Such a treatment of reporting would imply a likelihood function characterized by the probability mass function

of a binomial distribution, with a count of trials equal to the count of underlying incident cases posited by a

particle.

However, if we choose a binomial distribution as the basis for a likelihood function in this project, it

imposes a high risk of causing a problem of singularity during weight re-normalization [84]. This can be

caused by situations where all particles in the model are associated with an infectious state smaller than the

empirical data observed. Because the number of trials for each such particles will be less than the value of

the empirical incident case count, the probability of a binomial draw yielding the observed data is 0 for each

particle and thus the weights of each particle would become zero.

Finally, I followed the past contributions [23, 84, 78, 95] in selecting the negative binomial distribution as

the basis for the likelihood function, which allows for greater robustness than the classic binomial distribution.

The equation associated with the likelihood function is thus as follows:

p(yk|xk) =

(
yk + r − 1

yk

)
pyk(1− p)r (3.11)

where yk is the empirical data (reported measles cases) at time k, p = xk

xk+r representing the probability

that a given measured reported case is in fact a true reported incident case, and xk is the (integer rounded)

incident cases resulting from the dynamic model at time k. r is the dispersion parameter associated with the

negative binomial distribution. In all scenarios reported in this project, the value of r is chosen to be 10.

In the aggregate model, the measured data is a one-dimensional vector consisting of the monthly reported

cases. It indicates that the weight update rule (likelihood function) of the aggregate model could simply

achieved by calculating the value of p(ymk|Irmk), where (ymk is the empirical data as given by the monthly

reported measles cases at time k, and Irmk is the reported cases calculated by the dynamic model.

3.3.6 Evaluating particle filter performance

To assess the accuracy of particle filtering for robust estimation of model states, it is essential to evaluate

the estimation and predictive capacity of the particle filtered models. In this project, I therefore sought to

calculate the discrepancy at each observation time (Month in this project) [84] between the model generated

data and empirical data, using a linear measure. Typically, there will be thousands of particles included in

each model run. To calculate the discrepancy of particle filter results by incorporating empirical data across

all time points, I sample n particles by importance sampling for each such time. The monthly discrepancy of

each time is simply the Root Mean Squared error (RMSE) between the monthly empirical data at that time

and the related data calculated by the particle filtering model [84, 107].

Moreover, to investigate the predictive capability and efficiency of particle filter model, I defined a variable
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“Prediction Start Time”, denoted by T ∗; it indicates the time 1 ≤ k < T ∗ up to which the weights of particles

are updated based on the observed data. When k ≥ T ∗, the particle filtering ceases – the weights of particles

are no longer updated and no further re-sampling occurs. During that period (i.e., following the Prediction

Start Time), particles simply continue to evolve according to the state space model shown in Equation (3.6).

For such a Prediction Start Time T ∗, the model calculated a prediction discrepancy using a simple variant of

the strategy of the discrepancy used in considering all the time frame, but limited to considering only times

T ∗ and larger.

Finally, in this project, the discrepancy of the particle filtering model is compared to the discrepancy of

the normal compartmental model and calibration model. The discrepancies of the normal compartmental

model and calibration model are calculated simply by the root mean across the whole timeframe between the

result of models and empirical dataset.

3.3.7 Model characterization

To research on the performance of incorporating particle filtering into the compartmental model, I have

built 3 models – the normal deterministic model, the calibration model and the aggregate particle filtering

model. In the particle filtering model, the number of particles in the particle filtering algorithm is 5000. The

description of each model is listed as follows:

(1) Pure. It is simply the deterministic SEIR model with aggregate population, see Equation (3.1). The

value of the initial infectious population is 90, the initial susceptible population is 89910, the initial

exposed population is 0, and the initial recovered population is 773545. The values of β and reporting

rate Cr are 50 and 0.11, respectively.

(2) Calibrated. It is the calibration model of the SEIR model with aggregate population. Then, the

relatively uncertain and stochastic parameters, including initial infectious population, initial susceptible

population, the parameter β and reporting rate Cr are obtained by calibration. Finally, they are

respectively 930, 89070, 49.598 and 0.119. The initial exposed population is 0, and the initial recovered

population is 773545.

(3) PF . The particle filtering model with homogeneous mixing of all population, see Equation (3.6).

By comparing the discrepancy of these models, we sought to identify the performance of the particle

filtering model. The model with the smallest discrepancy would be the most reliable in simulating the

measles outbreak pattern in the province of Saskatchewan during the pre-vaccination era from 1921 to 1956.

To assess model results, the stochastic model – particle filtering model is run for 5 realizations, each with

random seeds generated from the same set. I then calculate the average and 95% confidence intervals of the

mean discrepancy.
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3.4 Results

Table 3.3: Comparison of the average discrepancy of all models by incorporating empirical
data across all observation points.

Model Monthly Discrepancy

Pure 249.0

Calibrated 207.5

PF 104.6 (99.4, 109.9)

The five particle filtering model is run for 5 realizations, each with different random seeds. Shown here are

the average and 95% confidence intervals (in parentheses) of the mean discrepancy for each model variant.

Figure 3.2: Box plots of monthly discrepancy of all models by incorporating empirical
data across all observation points.

3.4.1 Results of incorporating the empirical dataset across all timeframe

To depict the particle filter results, 2D histograms of values calculated by the particles in the particle filtering

model are plotted. To let the 2D histogram plots characterize the model’s calculated data with proper

weighting in accordance with the principles of importance sampling, I plot the results of the particles sampled

by weights. The resulting plot thus represents an approximation to the probability distribution of the values

characterized by the particle filtering model. It is notable that the number of particles performed, the number

of particles sampled in 2D histograms and the number of particles sampled (also by weight) in calculating
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Figure 3.3: Comparison of the reported measles cases of the calibration model and the
empirical data (monthly).

the discrepancy in the particle filtering model in this chapter are all 5000.

Table 3.3 specifies the discrepancies of the models implemented in this chapter – the deterministic dynamic

model with parameters values obtained from literature and estimated (denoted as Pure), the deterministic

dynamic model with parameters obtained from a calibration process incorporating matching of the model

against empirical data (denoted as Calibrated) and the particle filtering model (denoted as PF ) of aggregate

population. It is notable that both the model of Pure and Calibrated are deterministic models. Thus, each

model can simply calculates a certain fixed discrepancy. By contrast, the particle filtering model PF includes

several stochastic processes. Thus, 5 runs of the particle filtering model have been calculated, with the average

(across realizations) value and the 95% confidence interval (in parentheses) of the mean discrepancy for each

model variant are listed. Table 3.3 demonstrates that the particle filtering model strongly decreases the

model discrepancy by approximately a factor of 2.0 compared with the calibrated model. And the particle

filtering model exhibits the highest accuracy among these three models, by virtue of the fact that it offers

the smallest discrepancy. This reduction in discrepancy proves the hypothesis in the thesis statement that

incorporating particle filtering algorithm could help to enhance model accuracy.

Figure 3.2 shows the box plot of the discrepancy among the three models, where each data point represents

one month. It is notable that the dataset providing the discrepancy of the box plot in the particle filtering

model is calculated by the average value among five runs for each month (the particle filtering model is run

for 5 realizations, each with different random seeds and then the average monthly discrepancy among these

five runs at each time point is plotted). Figure 3.2 also indicates that the particle filtering model has the

smallest median discrepancy. Moreover, the dataset of the discrepancy of the particle filtering model exhibits

narrower distribution between monthly discrepancies than the other two deterministic models. Thus, the

particle filtering model exhibits the greatest and most consistent accuracy.

Figure 3.3 displays the comparison of the empirical data (on the one hand) and the reported measles cases

generated by the deterministic model where the parameters are calibrated with reference to the empirical
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Figure 3.4: 2D histogram prior result of total timeframe of the particle filtering model
(monthly).

Figure 3.5: 2D histogram posterior result of total timeframe of the particle filtering
model (monthly).

Figure 3.6: Difference between the results of the calibrated model and the empirical data
for measles (monthly).
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Figure 3.7: 2D histogram plot of the difference between samples from the monthly pos-
terior distributions of the particle filtering model and the empirical data for measles
(monthly).

data (on the other). Figure 3.3 indicates that the deterministic model with calibrated parameters exhibits

difficulty in tracking the oscillations in the outbreaks of measles in the middle and later times. The reason

is that the deterministic model of measles employed in this chapter (SEIR model) approaches a stable

equilibrium.

Figure 3.4 displays samples from the monthly prior distributions of the particle filtering model for the

entire timeframe. For this case, the results of particle filtering model are sampled according to the weights

of all particles before the weights are updated by incorporating the empirical data of the current time point.

The values of empirical data points are shown in red, while the distribution of the sampled prior results of

particle filtering model is shown in green at each time.

Figure 3.5 presents the samples from the monthly posterior distributions of the particle filtering model

for the entire timeframe. For this case, the results of particle filtering model are sampled according to the

weights of all particles after the weights are updated by incorporating the empirical data of the current time

point. The values of empirical data points are shown in red, while the distribution of the sampled posterior

results of particle filtering model is shown in blue at each time.

Figure 3.6 shows the difference for each time point between the empirical data and the results of the

deterministic model with calibrated parameters.

Figure 3.7 represents the 2D histogram plot between the empirical data and samples from the monthly

posterior distributions of the particle filtering model by incorporating the empirical data across the whole

timeframe. It is notable that the particles sampled in figure 3.5 are the same as the particles samples in

figure 3.7.

Both figure 3.4 and figure 3.5 indicate that most of the empirical data are located at the range where the

particles exhibit high posterior probability. This reflects the fact that the particles could suitably track the

oscillation of the outbreak pattern of measles, given the combination of model prediction and observation-
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based updating that forms the basis for the particle filter. It bears emphasis that the results of the particle

filtering model sampled in figure 3.4 are before the weight update process in each step, while the results in

figure 3.5 are after the weight update process in each step. The value of sampled particles of figure 3.4 spread

in a wider range, compared with figure 3.5. This difference in dispersion indicates that the weight update

process of particle filtering algorithm has the capability to combine the empirical data to the particle filtering

model to constrain the particles in a tighter range as suggested by the empirical data.

From the results above, we can see that the particle filtering model not only can decrease the discrepancy

between the model results and the empirical data (see table 3.3 and the comparison between figure 3.6

and figure 3.7), but also can track the oscillation of the outbreaks. This contrast is particularly evident

when comparing the results of particle filtering model (figure 3.5) and deterministic model with calibrated

parameters (figure 3.3). All of these results indicate that incorporating particle filtering in the compartmental

model of measles could help to improve the simulation accuracy and track the outbreaks.

Figure 3.8: 2D histogram results for the latent S, E, I, R stocks estimated by the particle
filtering model.

Particle filtering models can contribute to the estimation of model states and aid in estimating dynamic

model parameters. It is notable that, as is widely the case in dynamic models, the states in the compartmental

models are latent (e.g., Susceptible (S), Exposed (E), Infectious (I) and Recovered (R) stocks in the SEIR

model in Equation (3.1) of measles). What can be empirically observed is the noisy reported measles cases

related to the Infectious (I) state. However, the methodology of particle filter provides an approach to estimate

(via sampling from) the distribution of values of these latent states. This ability to estimate the value of latent

states such as the reservoir of susceptible people can aid researchers and public health agencies to in terms
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Figure 3.9: 2D histogram results for the dynamic parameters estimated by the particle
filtering model.

of understanding the underlying epidemiological situation from multiple lines of evidence, as constrained by

understanding of the structure of the system, as characterized by a dynamic model. To illustrate this, I

employ a similar method to the above to plot the 2D histogram of the latent states of Susceptible, Infectious,

Exposed and Recovered sampled according to importance sampling principles. figure 3.8 shows the results of

the 2D histogram plots of the latent states. These plots indicate that most of the population are located in

the Recovered (R) stock. And there are clear relationship under the four stocks. After an outbreak and before

the next outbreak of measles, the population in the stock of Susceptible (S) is piled up, with the newborns

come in, who are all susceptible individuals. Then during the next outbreak, the population in stock of the

Susceptible (S) is consumed by the infectious, and eventually flows to the stock of Recovered (R). This lies

in accordance with the expectations for measles transmission in the real world and builds confidence in the

capacity of the model to meaningfully estimate latent state.

Figure 3.9 displays the estimation of the stochastic parameters of the particle filtering model. It is

notable that although the stochastic parameters – the infectious contact rate of measles in Saskatchewan

during the pre-vaccination era (denoted as β) and the report rate of measles (denoted as Cr) are simply

static parameters in the traditional deterministic SEIR model of measles, they are treated as latent states in

the particle filtering models. The particle filtering models are capable of estimate all the latent states of the

dynamic systems. In the project, the particle filtering model think that the infectious contact rate of measles

in Saskatchewan during the pre-vaccination era is around 50, and the report rate of measles is around 0.12

to 0.13.

3.4.2 Prediction results of the minimal discrepancy model

In this section, I assess the predictive capacity of the particle filtering model introduced in the previous

section. By changing different Prediction Start Time of T ∗, we have performed the prediction from different

archetypal situations. These situations are listed as follows:

(1) Prediction started from the first or second time points of an outbreak.
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(2) Prediction started before the next outbreak.

(3) Prediction started from the peak of an outbreak.

(4) Prediction started from the end of an outbreak.

(a)

(b)

Figure 3.10: 2D histogram of predicting from the first or second time points of an out-
break of the minimum discrepancy model. (a) predicted from the 121 months. (b) predicted
from the 190 months.

Figure 3.10 displays the prediction results of the particle filtering model in situations in which the predic-

tion started from the first or second time points of an outbreak. This is illustrated with two experiments from

where prediction started from month 121 (T ∗ = 121) – with β is 0.4, and the monthly prediction discrepancy

is 337.6 – and 190 (T ∗ = 190) – with β is 0.4, and the monthly prediction discrepancy is 367.7 – respectively.

In the prediction process of the particle filtering model, the weights of particles will stop being updated at

the time given by ”Prediction Started Time” (T ∗) by incorporating the empirical data. From that point

forward, all the particles run without new empirical data being considered. In this chapter, all the prediction

experiments are run 4 years from the time of ”Prediction Start Time”.In the 2D histogram plot of figure 3.10,

the empirical data considered in the particle filtering process (i.e., incorporated in training the models) are

shown in red, while the empirical data that was not considered in the particle filtering process (i.e., data

points only displayed to compared with the results of models) are shown in black. The vertical straight line

labels the ”Prediction Start Time” of T ∗ of each experiment.

Figure 3.11 displays the prediction results of the particle filtering model in situations in which the pre-

diction started from a peak of an outbreak. As above, this is illustrated with two experiments, one in which
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(a)

(b)

Figure 3.11: 2D histogram of predicting from the peak of an outbreak of the minimum
discrepancy model. (a) predicted from the 242 months. (b) predicted from the 312 months.

(a)

(b)

Figure 3.12: 2D histogram of predicting from the end of an outbreak of the minimum
discrepancy model. (a) predicted from the 138 months. (b) predicted from the 201 months.
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(a)

(b)

Figure 3.13: 2D histogram of predicting before the next outbreak of the minimum dis-
crepancy model. (a) predicted from the 51 months. (b) predicted from the 150 months.

prediction started from month 242 (T ∗ = 242) – with β is 0.4, and the monthly prediction discrepancy is

352.5 – and another from month 312 (T ∗ = 312) – with β is 0.4, and the monthly prediction discrepancy is

350.4 – respectively. The layout of the 2D histogram plot of figure 3.11 is the same as figure 3.10.

Figure 3.12 displays the predictive results of the particle filtering model in situations in which the predic-

tion initiated at the end of an outbreak with two experiments, prediction started from month 138 (T ∗ = 138)

– with β is 0.4, and the monthly prediction discrepancy is 347.7 – and month 201 (T ∗ = 201) – with β is

0.4, and the monthly prediction discrepancy is 300.8 – respectively. The layout of the 2D histogram plot of

figure 3.12 is the same as figure 3.10.

Figure 3.13 displays the predictive results of the particle filtering model in situations predicting before

the next outbreak with two experiments, prediction started from month 51 (T ∗ = 51) – with β is 0.2, and

the monthly prediction discrepancy is 356.2 – and month 150 (T ∗ = 150) – with β is 0.1, and the monthly

prediction discrepancy is 362.6 – respectively. The layout of the 2D histogram plot of figure 3.13 is the same

as for figure 3.10.

These prediction results suggest that the particle filter model offers the capacity to probabilistically

anticipate measles dynamics with a fair degree of accuracy. From the 2D histogram plots, empirical data

lying after Prediction Start Time – and thus not considered by the particle filtering machinery – mostly lie

within the high-density range of the particles. Notably, in such examples, the particle filter model appears

to be able to accurately anticipate a high likelihood of a coming outbreak and non-outbreak. Such an

ability could offers substantial value for informing the public health agencies with accurate predictions of the
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anticipated evolution of measles over coming months.

3.5 Discussion and conclusion

This chapter presents a new method for tracking the patterns of measles outbreaks in low vaccination regions

by applying particle filtering with measles transmission models, and incorporating time series of measles

incidence.

Particle filtering has mitigated significant weaknesses and simplifications associated with the aggregate

System Dynamics transmission model and noisy empirical data. By incorporating ongoing arriving empirical

data, the particle filter model has demonstrated the capacity to correct for the distortions that accompany

the System Dynamics model aggregation, such as assumptions of random mixing and homogeneity. In this

dataset, particle filter offered strong performance in estimating the population state underlying the outbreak

pattern of measles and predicting future trends.

It is to be emphasized that particle filtering samples estimates of the entire state of the dynamic model

(both latent or observable) for each point in time incorporated within the empirical dataset. In the particle

filtering model of measles with aggregate population in this chapter, the latent states related to the Susceptible

population, the Infectious population, the Exposed population, the Recovered population, the infectious

contact rate and the report rate of measles in each time point. The final of these supports calculation of a

derivative value that can be compared with the empirical data. This capacity to sample from the full state of

the system – both latent and observable – can help researchers to perform related research, including better

understanding historical circumstances.

It is notable that the impact of the stochastic processes added in the state space model has distinct con-

sequences during the estimation period and prediction period. In the estimation period where the empirical

datasets are incorporated in the particle filtering algorithm, if these stochastic processes are more noisy (e.g.,

the parameters of sβ and sr are larger), the particle filtering models generally benefit from an easier ability

to trace the empirical datasets if equipped with a sufficiently large particle count. This reflects the fact that,

given sufficiently large stochastics, some particles are likely to be consistent with empirical datapoints close

to that observed; such particles can then be favoured by the resulting weight updates, and allow for effective

adaptation to the new empirical datapoint. However, during the prediction period, it is particularly desirable

that the stochastic processes not be too noisy. This reflects the fact that, absent new empirical data, in

the presence of a noisy state space model, the particle filtering model will grow rapidly in its uncertainty

regarding the current state of the system. Thus, the noise of the stochastic processes in the state space model

should be controlled in a proper range – if the model is more confident (exhibits continued tight support in

the distribution of estimated current state as the time since the last data point increase), it is more helpful

during the prediction period, while it will make the estimation period more difficult, as the model will tend

to be less able to readily respond to new datapoints outside of the range of particle predictions. However,
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if the model is more noisy, it is more helpful during the estimation period by allowing for a greater overlap

between the particle distribution and the empirical data and henceforth a faster adaptation to incoming data;

by contrast, the presence of pronounced stochastics in the prediction period will lead the model to rapidly

exhibit broad uncertainty regarding system state as time increases since the last datapoint.

Another merit of the particle filtering model is that the particle filtering model could manage the estima-

tion of the initial values of each stocks easily. In traditional deterministic models, the initial values is difficult

to estimate. Normally, the models may need to be run in a long period of burn-in time to estimate the initial

values. However, in the particle filtering models, the initial values of the stocks could be assigned in a proper

range, such as following a uniform distribution in the particle filtering model introduced in this chapter.

Then, the initial values of each stock can be estimated by the particle filtering algorithm, by allowing for a

”survival of the fittest” that rewards particles positing an initial state of the model that is consistent with

the evidence. It is notable that the estimation of the initial state of the measles aggregate particle filtering

models in this chapter is calculated by the particle filtering algorithm automatically. Thus, no human time is

needed in estimating the initial values of the stocks in the particle filtering models with aggregate population

structure.

This chapter proves the hypotheses proposed in the thesis statements for measles. Firstly, comparing

the empirical data and the 2D histogram plots with the particle filtering models’ output data (the monthly

reported cases of measles) indicates that the high probability density region of the model’s posterior prediction

of incident cases lies near the empirical data, especially when compared with the results of the output of

the traditional calibration models. Secondly, the discrepancy between the measles particle filtering model’s

(posterior) predictions vs. observed data is reduced by a factor of 2.0. This indicates that the particle filtering

algorithm is capable of supporting greater measles model accuracy when compared with the traditional

calibration process. It is notable that with the deterministic model with calibrated parameters is difficult

to track the fluctuations of the outbreak pattern of measles, while the particle filtering model is capable of

tracking oscillations in the outbreak of measles.
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Chapter 4

Measles age-stratified model of particle filtering

4.1 Introduction

Measles has a severe impact on children’s health and is one of the leading causes of death among young children

globally. Measles transmission pattern may be different among different age groups [97]. For example, the age

composition of daily contacts may be different for different age groups; children may spend more time with

other children and their caregivers, rather than with other adults. Moreover, the rates of contacts sufficiently

close to transmitting infection can differ between age groups, such as due to hygienic disparities.

To capture such differences, beyond the aggregate model introduced in chapter 3, where the susceptible

individuals contact with the infectious individuals homogeneously, this chapter investigates the predictive

performance of particle filtering of age-structured measles models. Specifically, within such models, the total

population are split into two age groups – children and adults. The susceptible persons heterogeneously

contact with the infectious persons between different age groups, while the susceptible individuals contact

with the infectious individuals homogeneously in the same age group.

Moreover, I have investigated the performance of the particle filtering models by incorporating multiple

empirical datasets. There are two categories of measles empirical datasets – monthly measles reported cases

across all population in Saskatchewan from 1921 to 1956, and yearly measles reported cases of different age

groups from 1925 to 1956. Such datasets are introduced in detail in chapter 2. Two categories of measles

particle filtering age-structured models are built in this chapter – only incorporating a single empirical

dataset (the measles monthly reported cases) and (by contrast) incorporating 3 empirical datasets (the

measles monthly reported cases, and the yearly measles reported cases of the two age groups). Then, by

comparing the discrepancy of the aggregate particle filtering model and age-structured particle filtering

models, and between the age-structured particle filtering model incorporated with only one empirical dataset

and (separately) 3 empirical datasets, I have researched on the performance among these different measles

particle filtering models in this chapter.

Finally, this chapter explores the capability of particle filtering model simulating intervention experiments

simply by modifying parameters in the particle filtering models.
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4.2 The age-structured mathematical model

In this variant of the mathematical model, I use subscripts “c” and “a” for a quantity to denote the child-

and adult-specific values of that quantity, respectively. I further assume in the demographic model, that the

population of each age group (Nc, Na) does not change (whose formulation and derivation are introduced in

the chapter 2). Similar to the parameter of total population (N) in the aggregate model, the mean of the

population of each age group across the timeframe in the age pyramid of Saskatchewan [16] is employed as

the value of Nc and Na (where the sum of Nc and Na equals N). Before introduce the measles age-structured

mathematical models, I will introduced the general deduction of the age structured epidemiology model first.

4.2.1 The mathematical deduction of the age structured epidemiology model

Similar to the equilibrium demographic model introduced in chapter 2 [50], the initial-boundary-value problem

of the SEIR model with age structure could be listed as follows:

∂S

∂t
+
∂S

∂a
= −λ(a, t)S − µ(a)S

∂E

∂t
+
∂E

∂a
= λ(a, t)S − σE − µ(a)E

∂I

∂t
+
∂I

∂a
= σE − γI − µ(a)I

∂R

∂t
+
∂R

∂a
= γI − µ(a)R

λ(a, t) =

∫ ∞
0

β(a, a′)
I(a′, t)

N(a′, t)
da′

(4.1)

where β(a, a′) is the infectious contact rate between age group a and age group a′.

The boundary condition at age 0 are all 0, except all the birth population going to S(0, t):

S(0, t) =

∫ ∞
0

v(a)N(a, t)da (4.2)

The initial conditions are the total population of each age group at time 0.

Similarly to the demographic model, I split the total population to n age groups. Then, for each age

group i in the age interval [ai−1, ai), I could get four ordinary differential equations of Si, Ei, Ii, Ri. The

definition of Si, Ei, Ii, Ri are listed as follows:

Si(t) =

∫ ai

ai−1

S(a, t)da

Ei(t) =

∫ ai

ai−1

E(a, t)da

Ii(t) =

∫ ai

ai−1

I(a, t)da

Ri(t) =

∫ ai

ai−1

R(a, t)da

(4.3)
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And for each age group i, I have:

Ni(t) = Si(t) + Ei(t) + Ii(t) +Ri(t) (4.4)

Thus, I could get totally 4n ordinary differential equations. The infectious contact rate β(a, a′) between

any two age groups (a and a′) are also assumed to be constant. Then, I could have β(a, a′) = βij , where

age group i locates in the age interval [ai−1, ai), and age group j locates in the age interval [aj−1, aj).

Similarly to the demographic model in [50], I have S(ai, t) = ciSi(t), E(ai, t) = ciEi(t), I(ai, t) = ciIi(t),

R(ai, t) = ciRi(t). Finally, if I integrate the partial differential equations in the age interval [ai−1, ai), I could

get the final epidemiology model with 4n ordinary differential equations:

dS1

dt
=

n∑
j=1

vjNj(t)− λ1S1 − µ1S1 − c1S1

dE1

dt
= λ1S1 − σ1E1 − µ1E1 − c1E1

dI1
dt

= σ1E1 − γ1I1 − µ1I1 − c1I1
dR1

dt
= γ1I1 − µ1R1 − c1R1

dSi
dt

= ci−1Si−1 − λiSi − µiSi − ciSi i ≥ 2

dEi
dt

= λiSi + ci−1Ei−1 − σiEi − µiEi − ciEi i ≥ 2

dIi
dt

= σiEi + ci−1Ii−1 − γiIi − µiIi − ciIi i ≥ 2

dRi
dt

= γiIi + ci−1Ri−1 − µiRi − ciRi i ≥ 2

λi =

n∑
j=1

βij
Ij
Nj

(4.5)

Specifically, the contact matrix in this age structured epidemiology model is:


β11 β12 . . . β1n

β21 β22 . . . β2n

...
...

. . .
...

βn1 βn2 . . . βnn

.
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4.2.2 The re-dimensionalized age structured model

By applying the method of mathematical deduction of the age structured epidemiology model to the re-

dimensionalized mathematical structure of measles, the resulting age-structured SEIR model is as follows:

[
dSc

dt
dSa

dt

]
=

[
Nava

0

]
+

[
−ωSc
ωSc

]
−
[
βcSc
βaSa

]
◦

([
fcc
fac

fca
faa

]
×

[
Ic
Nc

Ia
Na

])
−
[
µcSc
µaSa

]
[
dEc

dt
dEa

dt

]
=

[
−ωEc
ωEc

]
+

[
βcSc
βaSa

]
◦

([
fcc
fac

fca
faa

]
×

[
Ic
Nc

Ia
Na

])
− σ

[
Ec
Ea

]
−
[
µcEc
µaEa

]
[
dIc
dt
dIa
dt

]
=

[
−ωIc
ωIc

]
+ σ

[
Ec
Ea

]
− γ

[
Ic
Ia

]
−
[
µcIc
µaIa

]
[
dRc

dt
dRa

dt

]
=

[
−ωRc
ωRc

]
+ γ

[
Ic
Ia

]
−
[
µcRc
µaRa

]
(4.6)

where ◦ indicates the Hadamard (element-wise) product; × indicates matrix multiplication;
[
βcfcc
βafac

βcfca
βafaa

]
is

the contact matrix: fcc indicates the fraction of children’s infectious contacts that occur with other children;

similarly fca indicates the fraction of children’s infectious contacts that occur with adults, and fca=1-fcc;

fac indicates the fraction of adult’s infectious contacts that occur with children; faa = 1− fac indicates the

fraction of adult’s infectious contacts that occur with other adults; ω is the aging rate out of the age group

of children (which carries the same meaning with c1 in the demographic model in [50]). va is the birth rate

for adults, for children, the birth rate is 0. The other parameters hold the same role and values as in the

age-aggregated model.

4.2.3 The contact matrix model

Among the age groups, the number of contacts from the child age group to the adult age group in a given

interval of time must equal the number of contacts from adults age group to the child age group in that same

interval of time. This leads to the following equalities:

NaCafac = NcCcf ca

fcc + fca = 1

fac + faa = 1

(4.7)

where Ca is the contact rate of the adults age group, while Cc is the contact rate of the child age group.

Suppose the transmission probability is βp, then I could have βc = Ccβp and βa = Caβp. It indicates that

Cc

Ca
= βc

βa
.
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Finally, by solving Equation (4.7), I arrive at Equation (4.8) below:

fca = 1− fcc

fac =


Ncβc

Naβa
(1− fcc) , if

[
Ncβc

Naβa
(1− fcc)

]
< 1.0

1.0, if
[
Ncβc

Naβa
(1− fcc)

]
≥ 1.0

faa = 1− fac

(4.8)

In the contact matrix
[
βcfcc
βafac

βcfca
βafaa

]
, as covered more fully in section below, the parameters βc, βa and

fcc are treated as varying across the model time horizon (like the parameter of β in the measles aggregate

particle filtering model – Equation (3.1) in chapter 3). Based upon their values, the other parameters in

contact matrix (fca, fac, faa) can be calculated as in Equation (4.8).

4.2.4 The equilibrium demographic model

The population model is listed as follows, introduced in chapter 2 [50]:

dNc
dt

= Nava − µcNc − ωNc
dNa
dt

= ωNc − µaNa
(4.9)

Where Nc is the population of the child age group; Na is the population of the adult age group; va is the

birth rate (applying only to adults); µc is the death rate of child age group; µa is the death rate of the adult

age group.

While measles infection can be lethal, for simplicity, the death rates of all states in the models of this

paper are the same. The death rate of the ”infectious (I)” state should, in theory, be higher than the other

states in the pre-vaccination era. According to measles history in CDC (Centers for Disease Control and

Prevention) [34], there were 400 to 500 deaths reported among 3-4 million measles annually before 1963 (the

vaccination starting year) in the United States. Thus, the measles causes death rate of the infectious state is

about 0.125% to 0.167% yearly among the total population. Moreover, measles infection was nearly universal

during childhood [34]. Thus, the measles attributable death rate of children should be higher than for adults.

At the same time, the death rate among the total population of Saskatchewan during 1914 to 1921 is around

0.5% to 1.4%, for example, the death rate in 1921 of Saskatchewan is 0.81% [21]. However, the death rates

of all states in the models of this paper are the same, to make the models simpler to be implemented.

As a result of the assumption of an invariant population size, it follows that death rates for children and

adults are as follows: the detailed mathematical derivation is introduced in chapter 2 in Equation (2.44) and

Equation (2.45).

µc =
Na
Nc

va − ω

µa =
Nc
Na

ω

(4.10)
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4.3 Particle filter implementation

4.3.1 The state space model

In the age stratified model, four stochastic parameters and two extra states are considered dynamically,

compared with the mathematical model (Equations (4.6)–(4.10)). The stochastic process related to incidence

of infection is also considered in the age structured state space model, as in the aggregated model in chapter 3

(Equation (3.6)). The first stochastic parameter is the same as in the aggregate group model: the disease

reporting process parameter (Cr), whose dynamics are characterized according to Equation (3.3). The second

is the rate of transmissible contacts between infectious persons and susceptible persons of child age group,

which is represented by the parameter (βc) in the age structured model – Equation (4.6). The equation and

chosen values of (βc) are the same with Equation (3.2). The third stochastic parameter (Ma) represents the

ratio of the adult age group’s transmissible contact rate (βa) to that of the child age group (βc). And I have

βa = Maβc. Reflecting the fact that this parameter represents a non-negative real number, similar to the

rate of transmissible contacts (β) in the aggregate state space model, I treat the natural logarithm of Ma as

undergoing a random walk according to a Brownian motion:

d(lnMa) = sMa
dWt (4.11)

It is a widespread perception that because of limited hygienic awareness and other factors, children

are subject to higher rates of transmissible contact than adults. This would suggest that the value of the

multiplier Ma normally less than 1.0. Thus, I elected to impose an initial value of Ma across all particles as

drawn from a uniform distribution with support [0.2, 1). And, the diffusion coefficient (sMa) associated with

the evolution of d(lnMa) is chosen to be a constant value of 0.5 among all particles.

The fourth stochastic parameter in the stratified model is the fraction of the contact of children that

occurs with other children, denoted as fcc. This parameter appears in the contact matrix, and varies over

the range from 0 to 1. As a result, the dynamic process for fcc is similar to the disease report rating Cr with

the Equation (3.3), specifically:

d(ln(
fcc

1− fcc
)) = sccdWt (4.12)

The initial value of fcc I employed follows a uniform distribution in the interval [0.2, 1.0). I assumed a

constant value of 0.2 as the diffusion coefficient (scc) associated with the logit of fcc.

Finally, the new state of cumulative infectious count per unit time is implemented similar to aggregate

model (Equation (3.4)), except for its division into two distinct states according to stratification into two age

groups (Imc and Ima). The discrete time equations of Imc and Ima and reported infectious count per unit

time in model Irmc and Irma at time k are as follows:
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Imck =

∫ k

k−1

(σEc)dt

Imak =

∫ k

k−1

(σEa)dt[
Irmck
Irmak

]
= Cr

[
Imck
Imak

] (4.13)

The state vector xN is [Sc, Sa, Ec, Ea, Ic, Ia, Rc, Ra, βc,Ma, fcc, Cr, Imc, Ima]
T

in the age stratified model,

and N equals 14. The complete set of state equation for the age-stratified model is given in Equation (4.14):

[
dSc

dt
dSa

dt

]
=

[
Nava

0

]
+

[
−ωSc
ωSc

]
−
[
µcSc
µaSa

]
−A2[

dEc

dt
dEa

dt

]
=

[
−ωEc
ωEc

]
− σ

[
Ec
Ea

]
−
[
µcEc
µaEa

]
+A2[

dIc
dt
dIa
dt

]
=

[
−ωIc
ωIc

]
+ σ

[
Ec
Ea

]
− γ

[
Ic
Ia

]
−
[
µcIc
µaIa

]
[
dRc

dt
dRa

dt

]
=

[
−ωRc
ωRc

]
+ γ

[
Ic
Ia

]
−
[
µcRc
µaRa

]
d(lnβc) = sβc

dWt

d(ln(
fcc

1− fcc
)) = sccdWt

d(lnMa) = sMadWt

βa = Maβc

d(ln(
Cr

1− Cr
)) = srdWt

fca = 1− fcc

fac =


Ncβc

Naβa
(1− fcc) , if

[
Ncβc

Naβa
(1− fcc)

]
< 1.0

1.0, if
[
Ncβc

Naβa
(1− fcc)

]
≥ 1.0

(4.14)

faa = 1− fac

µc =
Na
Nc

va − ω

µa =
Nc
Na

ω

Imck =

∫ k

k−1

(σEc)dt

Imak =

∫ k

k−1

(σEa)dt[
Irmck
Irmak

]
= Cr

[
Imck
Imak

]
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A2 =

Poisson

([
βcSc∆t
βaSa∆t

]
◦
([

fcc
fac

fca
faa

]
×
[

Ic
Nc
Ia
Na

]))
∆t

Reflective of the structure of the age group stratification in available data, it is notable that I have

considered two different age group configurations in this paper: one where the child age group includes those

up to 5 years old (Mage 5) and another where it includes those up to 15 years old (Mage 15).

Figure 4.1: The mathematical structure of the particle filtering age stratified model of
measles.

4.3.2 Parameters and initial values

The important fixed parameters in the age structured models are γ−1, σ−1, va, N , Nc15, Na15, Nc5, Na5. The

values of birth rate were also obtained from the Annual Report of the Saskatchewan Department of Public

Health [21]. The values of parameters of γ−1 and σ−1 are as given by [30]. Moreover, to compare the results,

I have built two types of age structured models – one where the lower age group consists of children below 5

years of age (with population in child age group denoted as Nc5, and population of adult age group denoted

as Na5), and another in which children consist of individuals below 15 years of age (population of age groups

denoted as Nc15 and Na15, respectively). Thus, the birth rates are different among these two types of models

(denoted as va5 and va15 respectively), to let all the models have a similar birth population per unit time.

Finally, all the compartmental parameters and initial values are specified at Table 4.1 and Table 4.2.

4.3.3 The measurement model

Model only incorporating with the monthly empirical dataset

In the age-structured particle filtering models only incorporating with the monthly empirical dataset, the

measurement model is similar with the aggregate particle filering model, which is introduced in chapter 3
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Table 4.1: Table showing the value of parameters of the measles age-structured particle
filtering models.

Parameter Value Units

γ−1 5 Day

σ−1 8 Day

va15 0.045 1/Year

va5 0.034 1/Year

Nc5 98,743 Person

Na5 764,802 Person

Nc15 286,537 Person

Na15 577,008 Person

Table 4.2: Table showing initial values of the stocks in the measles age-structured particle
filtering models. The units are all person.

Parameter Value

S0c5 43177 - I0c5

E0c5 0

I0c5 Uniform[0, 4318)

R0c5 55566

S0a5 43177 - I0a5

E0a5 0

I0a5 Uniform[0, 4318)

R0a5 721625

S0c15 67454 - I0c15

E0c15 0

I0c15 Uniform[0, 6745)

R0c15 219083

S0a15 28900 - I0a15

E0a15 0

I0a15 Uniform[0, 2890)

R0a15 548108
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of Equation (3.7). The measurement model of age stratified model only incorporating with the monthly

empirical dataset is:

Iemk = (Irmak + Irmck) + nmk (4.15)

where Iemk is monthly measles reported cases, the same as in the aggregate model in Equation (3.7);

Irmak and Irmck are calculated in the state space model of the age stratified model in Equation (4.14); nmk

is the measurement noise associated with the montly empirical dataset.

Model incorporating with both of the monthly and yearly empirical datasets

In the age stratified particle filtering model incorporating with both of the monthly and yearly empirical

datasets, empirical observations include three components. Thus, in the measurement vector yMk , M is 3 in

age stratified model. In addition to the empirical data associated with monthly reported cases, empirical data

further include annual reported cases for each of the two age groups (children and adults). The measurement

model of age stratified model incorporating with both of the monthly and yearly empirical datasets can thus

be represented as:

Iemk = (Irmak + Irmck) + nmk

Ieycky = Iycky + nycky

Ieyaky = Iyaky + nyaky

(4.16)

where the parameters Iemk, nmk, Irmak and Irmck are the same as in Equation (4.15); Ieycky consists of the

annual measured cases of child age group, while Ieyaky represents the annual measured cases of adult age

group; Iycky and Iyaky are the annual reported cases calculated by the state space model of Equation (4.14)

of children and adult age group, respectively; nycky and nyaky are the measurement noise associated with

these two age groups.

It is notable that the subscript ky indicates annual time points, while the unit of time in the models in

this paper is month. Thus Iycky and Iyaky could be obtained by the sum of Irmak and Irmck in the model

each year.

4.3.4 The proposal distribution

The Condensation Algorithm [14, 74] is also applied in this project to implement the age-structured particle

filter model, same as the aggregate particle filtering model introduced in the chapter 3.
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4.3.5 Likelihood function

Model only incorporating with the monthly empirical dataset

In the particle filtering age strucutred model only incorporating with the monthly empirical dataset, because

the model lacks the capacity to distinguish between individuals within different age groups as necessary to

compare to the yearly age-stratified reported values, the measured data is a one-dimensional vector consisting

of the monthly reported cases. The likelihood function is similar to the measles aggregate particle filtering

model introduced in chapter 3 in Equation (3.11), by using the negative binomial distribution. Thus, the

weight update rule (likelihood function) of the age structured model only incorporating with the monthly

empirical dataset could also be achieved by calculating the value of p(ymk|(Irmak+Irmck)), where (ymk is the

empirical data as given by the monthly reported measles cases at time k, and (Irmak + Irmck) is the monthly

reported cases across the total population calculated by the dynamic model.

Model incorporating with both of the monthly and yearly empirical datasets

In the age stratified model incorporating with both of the monthly and yearly empirical datasets, the weight

update rule is similar to the model only incorporating with the monthly empirical dataset, except for the

update associated with the close of each year. Specifically, the weights of particles associated with the age

stratified model from January to November are only updated by the monthly empirical data – monthly

measles reported cases at each time (using the likelihood function given in Equation (3.11)). However, the

weight at the end of the last month (December) of each year is updated by the combination of three parts.

The likelihood formulation of age stratified model is listed as follows:

LAgeStructuredModel = Lmonth ∗ LyearlyChild ∗ LyearlyAdult

Lmonth = p(ymk|Irmk)

LyearlyChild =

1, if (k mod 12) 6= 0

p(yyck|Iryck), if (k mod 12) = 0

LyearlyAdult =

1, if (k mod 12) 6= 0

p(yyak|Iryak), if (k mod 12) = 0

(4.17)

where Lmonth is the likelihood function based on the monthly empirical data for the total population.

The other two likelihood functions reflect the fact that annual totals are available on an age-specific basis at

year end. LyearlyChild is the likelihood function based on the yearly empirical data for the child age group.

LyearlyAdult is the likelihood function based on the yearly empirical data of the adult age group.
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4.3.6 Evaluating particle filter performance

The monthly discrepancy of each time is simply the Root Mean Squared error (RMSE) between the monthly

empirical data at that time and the related data calculated by the particle filtering model [84, 107]. To

get the yearly discrepancy of each time (here, successive Months), the RMSE was calculated for each age

group of each year (similary to monthly discrepancy). Then the yearly discrepancy is the sum across all age

groups of the yearly RMSE over 12 (to convert the unit to Month). For the discrepancy calculated in the

prediction models, with a Prediction Start Time T ∗, the model calculated a prediction discrepancy using

a simple variant of the strategy of the discrepancy used in considering all the time frame, but limited to

considering only times T ∗ and larger.

4.3.7 Empirical dataset

In the yearly empirical dataset, these yearly reported cases are split into different age groups. In a small

minority of years (from 1926 to 1941), the age categories present in the reported data do not correspond

neatly to the age group categories in the models (considering children as being those within their first 5 years

or first 15 years). For these cases, I split them into the age categories of the models proportionally.

The yearly empirical data related to multiple age categories are available from year 1925 to 1956. During

the process in preparing the yearly empirical data match the two age groups in the two age group particle

filtering models (children age group is for those people up to 5 or up to 15 years), I need to split some age

categories due to two reasons. The first reason is because the division of the age group in empirical dataset

does not match the two age groups in particle filtering models. Specifically, from year 1926 to 1941, I need to

split the counts of reported measles cases in age category ”1-6 years” in age 5 proportionally (four fifths goes

to the child age group, and one fifth goes to adult age group). This problem only related to the age group

model of child group up to 5 years old. The second reason is because there is a category in the empirical yearly

dataset of ”age not stated”. Thus, I need to split the counts in this category to corresponding age groups

with the two age group models – the persons in the child age group up to 5 or 15 years old proportionally

(based on the proportion calculated by the age categories has labeled age clearly).

4.3.8 Model characterization

To research on the performance of incorporating particle filtering into the age structured compartmental

model, I have built 4 age-structured particle filtering models. In the particle filtering models, the number of

particles in the particle filtering algorithm is 5000. These models respectively listed as follows:

(1) PFage 5 monthly. The age structure model where the child age group includes those less than 5 years

old, and only incorporated with the monthly reported empirical data.

(2) PFage 5 both. The age structure model where the child age group includes those less than 5 years old,
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and incorporated with both the monthly reported and yearly reported age group empirical data.

(3) PFage 15 monthly. The age structure model where the child age group includes those less than 15 years

old, and only incorporated with the monthly reported empirical data.

(4) PFage 15 both. The age structure model where the child age group includes those less than 15 years old,

and incorporated with both the monthly reported and yearly reported age group empirical data.

To compare the age structured particle filtering model with the aggregate particle filtering model, the

result of the aggregate particle filtering model introduced in chapter 3 is also included in this chapter, denoted

as PFaggregate.

4.4 Results

4.4.1 Results of models incorporating empirical datasets across all timeframe

Table 4.3: Comparison of the average discrepancy of all seven models by incorporating
empirical data across all observation points.

Model Monthly Yearly in Month Total

PFaggregate 104.6 (99.4, 109.9) NONE NONE

PFage 5 monthly 96.1 (91.5, 100.7) 179.5 (160.6, 198.3) 275.5 (260.2, 290.9)

PFage 5 both 97.8 (94.1, 101.5) 144.8 (112.5, 177.1) 242.6 (210.2, 275.1)

PFage 15 monthly 95.7 (89.8, 101.6) 45.9 (39.9, 51.9) 141.6 (133.8, 149.4)

PFage 15 both 96.1 (91.6, 100.5) 39.9 (34.3, 45.6) 136.0 (127.6, 144.5)

Each of the particle filtering models is run for 5 realizations (each with a distinct random seed drawn from

the same set). Shown here are the average and 95% confidence intervals (in parentheses) of the mean

discrepancy for each model variant.

Table 4.3 lists the discrepancies of the measles particle filtering models, including the model with an ag-

gregate population (denoted as PFaggregate) and the other four models featuring age structured populations.

Each particle filtering model is run for 5 realizations, and the average (across realizations) value and the

95% confidence interval (in parentheses) of the mean discrepancy for each model variant are listed. It is

notable that among the four age structured particle filtering models, two situations are considered. Firstly,

the population is divided according to an age threshold (either age 5 and age 15). Secondly, for each age

structured models divided in age 5 and age 15, I further compared the impact of incorporating only the

monthly empirical dataset with the whole population and (by contrast) incorporating both the monthly em-

pirical dataset with the whole population and the yearly empirical datasets for each age group, respectively.

It is notable that the yearly discrepancy is not available for the aggregated population model, in light of
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Figure 4.2: Box plots of monthly and yearly discrepancy of all measles models by incor-
porating empirical data across all observation points.

Figure 4.3: Running time of the measles particle filtering models.
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the absence of age-specific population categories against which the age-specific incident case counts can be

compared. The results of Table 4.3 suggests that the age-structured particle filtering models perform better

(as measured by discrepancy) than the aggregated population model, because the monthly discrepancy of all

the four stratified age group models are smaller than that for the aggregated population model. Secondly,

results indicate that an appropriate splitting of the age groups is also important in improving the simulation

results of the models. Table 4.3 indicate that the discrepancy of the stratified age group models splitting the

age group at age 15 years are consistently smaller than the models splitting the age group at age 5 years.

Finally, results suggest that incorporating both the monthly empirical reported cases and yearly empirical

data of each age group may be also helpful in improving the simulation accuracy of the models (when com-

pared to only considering the monthly results), but further realizations are required to confirm these results.

Finally, the results suggest that the model PFage 15 both offers the minimum discrepancy. It is notable that

while aggregate population models cannot be compared directly against the other models in terms of total

discrepancy, such models suffer from the least favorable score in terms of the metric by which comparisons

can be made (the monthly discrepancy).

Figure 4.2 shows the box plot of the discrepancy among the five particle filtering models, in which each

of the data points being summarized represents the discrepancy for a single month. It is notable that the

dataset of the discrepancy of the box plot in the particle filtering model is calculated by the average value

among five realizations at each time point. Both the monthly and yearly distribution of the discrepancies of

each age structured models are plotted in figure 4.2. This box plot also indicates that the model PFage 15 both

has the smallest median discrepancy. Moreover, the datasets of the discrepancy of the model PFage 15 both

has a narrow distribution, especially for the dataset of the yearly discrepancy.

Figure 4.3 shows the running time of the measles particle filtering models with three categories – the

aggregate model, the two-age-group model only incorporating monthly empirical data, and the two-age-group

model incorporating both monthly and yearly empirical data. It is notable that all of the models are built

using Anylogic 8.1.0 software, a Java-based simulation platform whose flexibility facilitates incorporation of

the particle filtering mechanisms. Figure 4.3 indicates that the running time grows linearly with an increase

in the number of particles. However, the running time scales superlinearly (rather than linearly) with the

number of the age groups in the model. The author suspects that the reason is that compared with the

aggregate model (only one age group), the two-age-group model requires additional calculation of the contact

matrix between these two age groups. And the two-age-group model incorporated both monthly and yearly

data requires added running time compared with the two-age-group model only incorporating the monthly

data. It is notable that the running time of the deterministic model with aggregate population structure

– and lacking any particle filtering machinery – is only 0.056 minutes, which is far faster than the particle

filtering models. Finally, all the measles particle filtering models were run on the author’s personal computer,

with an Intel i7 2.7 GHZ processor, and memory size of 8GB DRAM).

According to the results shown by table 4.3 and figure 4.2, in the models examined here, the choice of
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whether to divide the population in age 5 or 15 influences the discrepancies of the age structured models to a

greater degree than does the choice of whether to incorporate the monthly empirical dataset or incorporating

both the monthly and yearly empirical datasets. Thus, the 2D histograms sampled monthly posterior dis-

tributions of the monthly reported measles cases across all population and yearly reported cases of measles

of each age groups of the age structured particle filtering models are plotted, taking the two filtering models

incorporating both the monthly and yearly empirical datasets as an example (see figure 4.4 and figure 4.5).

Figure 4.4 displays 2D histogram plots of sampled monthly posterior distributions from both the monthly

reported measles cases of all population and the yearly reported measles cases of each age group of the measles

particle filtering model by dividing the population at the age of 5 and incorporating both the monthly and

yearly empirical datasets (denoted as PFage 5 both). The empirical data are also shown in the 2D histogram

by the red dash present for each month. Figure 4.4 indicates that although the monthly empirical data are

mostly located in the high density range of the results of model, the yearly empirical data of both age groups

are mostly located out the range of the results of the model.

Figure 4.5 displays the 2D histogram plots of sampled monthly posterior distributions from both the

monthly reported measles cases of all population and the yearly reported measles cases of each age group

of the measles particle filtering model by dividing the population at the age of 15 and incorporating both

the monthly and yearly empirical datasets (denoted as PFage 15 both). The empirical data are also shown in

the 2D histogram by the red line in each time. Figure 4.5 indicates that both the monthly empirical data

and yearly empirical data with each age group are mostly located in the high density range of the results of

model.

By comparing figure 4.4 and figure 4.5, we can see that for the models examined here, the particle

filtering models where the individuals in the child age group are up to 15 years of age can estimate the yearly

reported measles cases of each age group more accurately than the models particle filtering models where the

individuals in the child age group are up to year 5.

Particle filtering models can contribute to the estimation of model states. Although there are more latent

states in the age structured particle filtering models with two age groups compared than for the aggregate

population particle filtering model discussed in chapter 3, the age structured particle filtering models in this

chapter can also estimate the model states effectively. Similar to the measles particle filtering model with

an aggregate population discussed in chapter 3, the states in the age-structured models are latent. What

can be empirically observed is the noisy reported measles cases related to the Infectious states of both age

groups (Ia and Ic). However, the methodology of particle filtering provides an approach to estimate (via

sampling from) the distribution of values of these latent states. This ability to estimate the value of latent

states such as the reservoir of susceptible people can aid researchers and public health agencies to in terms

of understanding the underlying epidemiological situation from multiple lines of evidence, as constrained by

understanding of the dynamics emerging from the structure of the underlying system, as characterized by a

dynamic model. Figure 4.6 shows the 2D histogram plots of the latent stocks in the age structured model
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(a)

(b)

Figure 4.4: 2D histogram posterior result of total timeframe of the model incorporating
both monthly and yearly empirical datasets split at year 5. (a) the monthly particle filtering
result across all population. (b) the yearly particle filtering result of the children and adult age groups.
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(a)

(b)

Figure 4.5: 2D histogram posterior result of total timeframe of the model incorporating
both monthly and yearly empirical datasets split at year 15. (a) the monthly particle filtering
result across all population. (b) the yearly particle filtering result of the children and adult age groups.
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(a)

(b)

(c)

Figure 4.6: 2D histogram results for the S, E, I, R stocks with different age groups of the
minimum discrepancy model incorporating the empirical data across all timeframe. (a)
across all population. (b) the child age group (those within their first 15 years of life). (c) the adult
age group (years 15 and up). 66



with the minimum discrepancy (the child age group up to age 15 and incorporating both the monthly and

yearly empirical datasets across all timeframe). Figure 4.6 indicates that most of the susceptible, exposed

and infectious people are located in the child (less than 15 years) age group, while most of the recovered

population are located in the adult (equal and greater than 15 years) age group. This lies in accordance

with the expectations for measles transmission in the real world, and builds confidence in the capacity of the

model to meaningfully estimate latent state. As noted below, estimation of latent state can be an important

enabler for understanding of the effects of interventions.

4.4.2 Prediction results of the minimal discrepancy model

In this section, I assess the predictive capacity of the minimal discrepancy model identified in the previous

section. This minimal discrepancy model is still the strongest performing one among the group of models

PFage 15 both. By changing different Prediction Start Time of T ∗, I have performed prediction from different

archetypal situations, the same situations as the ones introduced in the chapter 3:

(a)

(b)

Figure 4.7: 2D histogram of predicting from the first or second time points of an outbreak
of the minimum discrepancy model (a) predicted from the month 121. (b) predicted from the
month 190.

Figure 4.7 displays the prediction results for the minimum discrepancy model in situations in which the

prediction started from the first or second time points of an outbreak. It does so with two experiments which

are prediction started from month 121 (T ∗ = 121) – with monthly prediction discrepancy 306.0, the sum

of yearly prediction discrepancy of all age groups per month is 246.7 – and month 190 (T ∗ = 190) – with

monthly prediction discrepancy 320.4, the sum of yearly prediction discrepancy of all age groups per month

is 237.2 – respectively. In the prediction process for the particle filtering model, the weights of particles will
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(a)

(b)

Figure 4.8: 2D histogram of predicting from the peak of an outbreak of the minimum
discrepancy model. (a) predicted from the month 242. (b) predicted from the month 312.

(a)

(b)

Figure 4.9: 2D histogram of predicting from the end of an outbreak of the minimum
discrepancy model. (a) predicted from the month 138. (b) predicted from the month 201.

68



(a)

(b)

Figure 4.10: 2D histogram of predicting before the next outbreak of the minimum dis-
crepancy model. (a) predicted from the month 51. (b) predicted from the month 150.

cease updating (as a result of incorporating the empirical data) at the ”Prediction Started Time”. From that

point forwards, all the particles run without new empirical data being considered. In this chapter, all the

prediction experiments are run for 4 years following the ”Prediction Start Time” time. In the 2D histogram

plot of figure 4.7, the empirical data considered in the particle filtering process (i.e., incorporated in training

the models) are shown in red, while the empirical data that was not considered in the particle filtering process

(i.e., data points only displayed to compared with the results of models) are shown in black. The vertical

straight line labels the ”Prediction Start Time” of T ∗ of each experiment.

Figure 4.8 displays the prediction results of the particle filtering model in the situation in which the

prediction started from the peak of an outbreak. As above, it also does so with two experiments, prediction

started from month 242 (T ∗ = 242) – with monthly prediction discrepancy 305.7, the sum of yearly prediction

discrepancy of all age groups per month is 205.2 – and month 312 (T ∗ = 312) – with monthly prediction

discrepancy 306.9, the sum of yearly prediction discrepancy of all age groups per month is 201.6 – respectively.

The layout of the 2D histogram plot of figure 4.8 is the same as that for figure 4.7.

Figure 4.9 displays the prediction results of the particle filtering model in the situations in which the

prediction started from the end of an outbreak. As above, it accomplishes this with two experiments ,

prediction started from month 138 (T ∗ = 138) – with monthly prediction discrepancy 302.6, the sum of

yearly prediction discrepancy of all age groups per month is 248.0 – and month 201 (T ∗ = 201) – with

monthly prediction discrepancy 316.7, the sum of yearly prediction discrepancy of all age groups per month

is 217.3 – respectively. The layout of the 2D histogram plot of figure 4.9 is the same as that for figure 4.7.

Figure 4.10 displays the prediction results of the particle filtering model in situations in which we predict
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the next outbreak using two experiments, prediction started from month 51 (T ∗ = 51) – with monthly

prediction discrepancy 324.9, the sum of yearly prediction discrepancy of all age groups per month is 198.8

– and month 150 (T ∗ = 150) – with monthly prediction discrepancy 353.0, the sum of yearly prediction

discrepancy of all age groups per month is 268.5 – respectively. The layout of the 2D histogram plot of

figure 4.10 is the same as that for figure 4.7.

These prediction results display the prediction results of these situations with the monthly 2D histogram

of minimum discrepancy particle filtering model with age structure. During several prediction time points

following the ”Prediction Start Time” of the experiments shown in figures 4.7 – 4.10, the measles minimum

discrepancy model offers the capacity to probabilistically anticipate measles dynamics with a fair degree of

accuracy. Moreover, by comparing with the prediction discrepancy of figures 4.7 – 4.10 to figures 3.10–3.13

in chapter 3 of the aggregate model, the age structured particle filtering model (the one with the minimum

discrepancy) offers higher accuracy with smaller prediction discrepancy.

4.4.3 Intervention with the minimum discrepancy model

Figure 4.11: 2D histogram of simulating an outbreak-response quarantine intervention.
This is realized by decreasing the contact rate to be 20% less than the value before intervention

Figure 4.12: 2D histogram of simulating an outbreak-response quarantine intervention.
This is realized by decreasing the contact rate to be 50% less than the value before intervention

Based on the minimum discrepancy particle filtering pertussis model discussed in the previous section,

I have implemented several intervention experiments to simulate in a stylized fashion public health inter-

vention policies to control pertussis outbreaks. Specifically, two intervention policies have been explored –

quarantining infected individuals and vaccinating the susceptible population.

Within this investigation, the intervention strategies are normally performed before or at the very be-
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Figure 4.13: 2D histogram of simulating an outbreak-response vaccination intervention.
This is realized by setting the value of the vaccination parameter to 0.2.

Figure 4.14: 2D histogram of simulating an outbreak-response vaccination intervention.
This is realized by setting the value of the vaccination parameter to 0.5.

ginning of an outbreak. Moreover, to support ready comparing with the baseline prediction result of the

minimum discrepancy model absent any interventions, all of the intervention strategies are simulated as ini-

tiating at the start month of an outbreak (month 121) in this project. The normal prediction result of the

minimum discrepancy model absent any interventions is shown in figure 4.7 (a).

Figure 4.11 and figure 4.12 display the simulation results of the quarantine intervention strategies by

decreasing the contact rate parameter to be 20% and 50% less than the value before intervention, respectively.

The 2D histogram plot of the prediction result absent any intervention shown in figure 4.7 (a). The red dots

represent the empirical data incorporated in the particle filtering model, while the black dots represent the

empirical data not incorporated in the model, but included for comparison. It is notable that the empirical

data shown in black correspond to a situation of without any intervention (in contrast to the counter-factual

character of the intervention scenario). By comparing the quarantine intervention results (see figure 4.11

and figure 4.12) with the model result without intervention shown in figure 4.7 (a) and the empirical data

during the intervention period (not incorporated in the particle filtering model), we can see that, although

the interventions are implemented in a stylized fashion, by virtue of its ability to estimate the underlying

epidemiological state, the measles particle filtering model is capable of evaluating public health intervention

policies to reduce or even avoid the outbreak of measles.

To simulate an outbreak-response intervention of vaccination (immunization), a vaccination parameter

was added to the model to move a fraction of the population from the Susceptible stock (prior to vaccination)

to the Recovered stock (following vaccination). Figure 4.13 and figure 4.14 show the results of the vaccination

intervention. The layout of the 2D histogram plots of the vaccination intervention shown in figure 4.13 and
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figure 4.14 are similar those for the plots of quarantine interventions shown in figure 4.11 and figure 4.12.

While the interventions are implemented in a stylized fashion, these results of interventions demonstrate that,

by virtue of its ability to estimate the underlying epidemiological state, the measles particle filtering model

is capable of evaluating public health intervention policies to reduce or even avoid the outbreak of measles.

4.5 Discussion and conclusion

This chapter explores the age-structured particle filtering models by dividing the population into two age

groups – children and adults – to capture the transmission difference between those groups. Moreover, four

variants of age-structured measles particle filtering models are implemented by considering all combinations

of two distinct and dichotomous choices – dividing the population at the year 5 or 15, and incorporating

only the monthly empirical dataset or incorporating both the monthly and yearly empirical datasets into the

age-structured particle filtering models, respectively. Then, by comparing the results (including the result of

the aggregate particle filtering model introduced in chapter 3), the strongest predictive performance emerged

from the age stratified model whose child age group is defined as including those up to 15 years old, and

considering both monthly empirical data regarding the total population and yearly reported cases of each

age group. However, testing the models over additional realizations is required in order to validate these

results. As discussed in chapter 3, the particle filtering algorithm can mitigate significant weaknesses and

simplifications associated with aggregate compartmental models and noisy empirical data. It is notable that

while age-structured compartmental models capture heterogeneous mixing among the different age groups,

the individuals within the same age group are engaged in homogeneous mixing.

Although the total number of the states in the age-structured particle filtering model is higher than for

the aggregate population model, the particle filtering supports estimation of the entire state of the dynamic

model with a relatively higher dimensional state space (both latent or observable) for each point in time, by

virtue of incorporating with the empirical dataset. In the age-structured particle filtering model of measles

with two age groups in this chapter, the latent states related to the Susceptible population, the Infectious

population, the Exposed population, the Recovered population of each age group, the infectious contact rate

of each age group, and also the fraction of total contacts of the children age group with the infected individuals

in the children age group. The latter of those supports derivation of a quantity that can be compared to the

reported rate of measles incidence in each time point within the empirical data. This capacity to estimate the

complete state of the system can help provide insight into the current epidemiological context, and support

researchers in performing related research.

Similar to the measles particle filtering model with aggregate population structure introduced in the

chapter 3, noise in the stochastic processes in the state space model impacts the particle filtering model

differently during the estimation and prediction periods. As a result, the noise in the particle filtering

models in this chapter should also be controlled within a proper range, by tuning the parameters of diffusion
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coefficients in the stochastic processes related to Brownian motion.

Although particle filtering models with age-structured population also benefit from the ability to estimate

the initial values of the stocks in the system dynamics models, estimation of the initial values in the age-

structured population models are more complex than for the aggregate population particle filtering models

introduced in chapter 3. The reason is that, in the age-structured population particle filtering models, the

population distribution both among different stocks with each age group and between different age groups

need to be considered. In this project, the population distribution among the different age groups are tuned

manually, while the population distribution among different stocks within an age group is estimated by the

particle filtering algorithm, by imposing initial distributions of values across different particles, and allowing

the distribution of particles to then evolve according to the particle filtering algorithm.

For the age-structured measles models considered here, the hypotheses proposed in the thesis statements

are proven. Firstly, the 2D histogram plots with the particle filtering models’ output data (as sampled

from the posterior distribution of the monthly and yearly reported cases of measles) and the empirical

data indicate that the high probability density region of the model’s prediction of empirical data lies near

those data. Secondly, the discrepancy of the age-structured particle filtering model is even smaller than the

aggregate population particle filtering model. And chapter 3 has demonstrated how the aggregate population

particle filtering model has been proven to be significantly higher accuracy prediction of such case counts

than are supported within a traditional calibrated model.

Finally, the experiments regarding interventions indicate that measles particle filtering models are capable

of evaluating interventions by examining the outcome of potential intervention strategies using model results

via exogenously altering the value of model parameters at pre-specified points in time, such as the contact

rate and the total number of individuals in each stocks.
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Chapter 5

Pertussis models of particle filtering

5.1 Introduction

Pertussis is another common childhood epidemiology disease, which is a highly contagious disease of the

respiratory tract that caused by the bacteria – Bordetella pertussis [79]. It is most dangerous for infants. In

the infants, the paroxysms maybe followed by a period of apnoea [79]. It could also cause severe complications.

And the most relatively common complication is pneumonia, while seizures and encephalopathy occur more

rarely [79].

In the pre-vaccination era, pertussis was one of the most common childhood infectious diseases and a

major cause of the childhood mortality. In 1860, the mortality rate of all-age pertussis in Demark is 0.015%

[19]. Moreover, pertussis is a childhood epidemiology disease which is more prevalent among infants and

children. The researches of historical mortality rate from pertussis indicate that the death rate in infancy is

higher than other groups [19].

Like measles, pertussis is also a very contagious disease only found in humans, and spreading from person

to person [31]. It is a highly communicable disease, and evidence show a secondary attack rate of 80% among

susceptible household contacts [32]. Pertussis can spread from one person to another person by coughing,

sneezing, and spending a lot of time together [31]. In contrast to measles – in which natural exposure confers

life-long immunity – immunity to pertussis is widely believed to wane relatively rapidly, leading to significant

risks of infection even in adults who have been previously infected. It is notable that babies can be infected by

adults, such as parents, older siblings, and caregivers who might not even know they have already contracted

this disease [31]. Also in contrast to measles, pertussis shows no distinct seasonal pattern. However, it may

increase in the summer and fall [32].

In recent years, there are an estimated 24.1 million cases of pertussis and about 160,700 deaths per year

[37]. Since the 1980s, there is an increased trend in the reported cases of pertussis in the United States

[37]. The most recent peak year of the reported cases of pertussis in the United States is 2012, when the

Centers for Disease Control and Prevention (CDC) reported 48,277 cases, but many more go undiagnosed

and unreported [37]. Thus, researches aimed at estimating and predicting the transmission dynamics of

pertussis could help the public agencies to control it, such as performing intervention before the predicted

next outbreak.
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In this chapter, I will explore the performance of combining the machine learning algorithm – particle

filtering, with a widely used compartmental model [50] and empirical datasets of reported pertussis cases in

Saskatchewan during the pre-vaccination era (from 1921 to 1956). Moreover, pertussis is a high contagious

childhood epidemiology disease and most serious for babies. To capture the heterogeneous characteristics

of contacts between the infectious individuals and the other individuals, age-structured models are also

performed. Specifically, I have performed two categories of age-structured particle filtering models – with 2

age groups and with 32 age groups. Moreover, I have explored and deduced three methods in calculating

the contact matrix, to reduce the freedom (unknown) variables related to the calculating of the contact

matrix. Finally, I compare the results get from all the particle filtering models by incorporating the empirical

data across the whole timeframe and conduct research on prediction and interventions with the minimum

discrepancy particle filtering model.

5.2 The mathematical models

The infectious dynamics of pertussis is more complex than the infectious disease of measles. The infection

of measles – an infectious disease caused by Rubeola virus, confers lifelong immunity [40]. However, the

pertussis is transmitted by the bacteria of Bordetella pertussis. The immunity acquired by the infection of

pertussis is temporary. And, after the most recent pertussis infection increases, the immunity of a person

decreases [48]. Thus, people with lower immunity have higher infectivity, and the individuals have fully

susceptible are generally have the highest probability to get infected when they have exposed to the pertussis

infections.

In this research, I have employed the structure of the pertussis mathematical model in [50]. To capture

the characteristics of pertussis in immunity waning and the different level of infectious and recovered, the

compartmental model in [50] further divided the infectious population into three groups: weak infectious

(Iw), medium infectious (Im), and fully infectious (I), and divided the recovered population into four groups:

R1, R2, R3 and R4. The immunity of these recovered persons is increased from R1 to R4. Moreover, to

correspondence with the empirical data (pertussis reported cases in Saskatchewan from 1921 to 1956 in the

pre-vaccination era), the stocks related to vaccination (V1, V2, V3 and V4) in the original compartmental

model [50] are not included in this research.

Figure 5.1 shows the mathematical structure [50] of the compartmental pertussis model. In this compart-

mental model of pertussis in the pre-vaccination era (without considering vaccination), the total population

is divided into 8 distinct epidemiological classes. The newborns enter directly to the class S of the susceptible

individuals. If a susceptible individual contact with an infective individual and is infected with pertussis

successfully, this previous susceptible person becomes infectious and enters the class I of the full infective.

Individuals in class I of infective have full cases of pertussis with all the usual symptoms. When individuals

recovered from the class I of infective, they have the immunity and enter the class of R4.
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Figure 5.1: The transfer diagram for the pertussis model without vaccination. re-produced
from [50]

Individuals in the class of R4 have the strongest immunity. Thus, they are protected and can not be

infected by pertussis. However, as time goes by, their immunity fades and they enter to a less strong

immunity class of R3. When individuals in class R3 expose to an infective, they move back to the highest

immunity class of R4. If they are not re-exposed to an infective again, their immunity keeps fading and they

enter to the relatively lower immunity class of R2. When a person in the class of R2 re-exposed to an infective

sufficiently for transmission to occur, this person enters the class of Iw with weak infectivity. Individuals

in the class of Iw have the weakest infective capability to infect a susceptible. After they recovered, the

individuals in class of Iw get the highest immunity and enter the class of R4 again. If people in the class

of R2 are not re-exposed to the infectives, they keep losing immunity and enter the lowest immunity class

of R1. Similarly, if a person in class of R1 re-exposed to an infective, this person gets infected with mild

infectivity and enters the class of Im. Individuals in the class of Im have a higher infectious capability,

compared with those in the class of the weak infective (Iw), and have a lower infectious capability, compared

with the individuals in the class of the full infective (I). When recovered, the individuals in the class of Im

enter the class of R4 again. If the individuals in the class of R1 are not re-exposed, they eventually lose all

of their immunity and move back to the class of S with susceptible, finally.

It is notable that the model in the paper of Hethcote (1997) [50] makes use of a formulation in which

each state variable is of unit dimension, representing a fraction of the population in different age groups

of the same class. However, for the sake of comparison against empirical data, the model in this thesis is

represented in a re-dimensionalized fashion, with the state variables representing counts of persons. Based on

this structure in figure 5.1, four models are considered in this research (suppose n is the total number of age
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groups in the models) – aggregate population (n = 1), two-age-groups model (n = 2), 32-age-groups model

with the contact matrix introduced in the paper of Hethcote (1997) [50] and 32-age-groups model with the

re-balanced contact matrix. These models are introduced as follows, respectively.

5.2.1 The aggregate model

In the aggregate model, the contacts of the individuals between the infectious (including the persons in stocks

of I, Im and Iw) and the others (including the persons in the other stocks – S, R1, R2, R3 and R4) are mixed

homogeneously. Based on the mathematical structure referred to Hethcote (1997) [50], the equations of the

aggregate compartmental model of pertussis are listed as follows:

dS

dt
= Nv − (λ+ µ)S + ιR1

dI

dt
= λS − (γ + µ) I

dIm
dt

= λR1 − (γ + µ) Im

dIw
dt

= λR2 − (γ + µ) Iw

dR1

dt
= αR2 − (λ+ µ+ ι)R1

dR2

dt
= αR3 − (λ+ µ+ α)R2

dR3

dt
= αR4 − (λ+ µ+ α)R3

dR4

dt
= γ(I + Im + Iw) + λR3 − (α+ µ)R4

λ =
β(I + ρmIm + ρwIw)

N

N = S + I + Im + Iw +R1 +R2 +R3 +R4

(5.1)

where N is the number of the total population; v is the birth rate of the total population, while µ is the

death rate. It is notable that the value of death rate (µ) across all stocks are the same, to let the model

to be simpler to be implemented, although the death rates in the stocks of the infectives (I, Im, Iw) are

theoretically a little higher than the other stocks, because of the extra deaths caused by the pertussis. The

mean period of the immunity lose from the stock of R1 to S is 1
ι ; The mean period of the infectives (I, Im,

Iw) recovered is 1
γ ; the mean period of the temporary immunity for losing in the stocks of R1, R2 and R3 is

1
α ; ρm and ρw are the relative infectivities of the individuals in the mild-disease and weak-disease infectivity

stocks Im and Iw.

5.2.2 The age-structured model of 2 age groups

Similar to the two-age-groups age-structured model of measles introduced in chapter 4, where the total

population is divided into two age groups – child and adult (denoted as “c” and “a”). The methods of

77



calculating the contact matrix and the death rates are also the same with the two-age-groups particle filtering

model of measles. The age-structured model with two age groups of pertussis is listed as follows:

[
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]
◦
[
R2c

R2a

]
− ι
[
R2c

R2a

]
−
[
µcR2c

µaR2a

]
[
dR3c

dt
dR3a

dt

]
=

[
−ωR3c

ωR3c

]
+ α

[
R4c

R4a

]
−
[
λc
λa

]
◦
[
R3c

R3a

]
− ι
[
R3c

R3a

]
−
[
µcR3c

µaR3a

]
[
dR4c

dt
dR4a

dt

]
=

[
−ωR4c

ωR4c

]
+ γ

[
Ic + Imc + Iwc
Ia + Ima + Iwa

]
+

[
λc
λa

]
◦
[
R3c

R3a

]
− α

[
R4c

R4a

]
−
[
µcR4c

µaR4a

]
[
λc
λa

]
=

[
βcfcc
βafac

βcfca
βafaa

]
×

[
Ic+ρmImc+ρwIwc

Nc

Ia+ρmIma+ρwIwa

Na

]
[
Nc
Na

]
=

[
Sc
Sa

]
+

[
Ic
Ia

]
+

[
Imc
Ima

]
+

[
Iwc
Iwa

]
+

[
R1c

R1a

]
+

[
R2c

R2a

]
+

[
R3c

R3a

]
+

[
R4c

R4a

]
µc =

Na
Nc

va − ω

µa =
Nc
Na

ω

(5.2)

The meaning of the parameters in this model is the same as the ones in the pertussis aggregate model –

Equations (5.1) and in the two-age-groups particle filtering model of measles in chapter 4.

It is notable that according to Equation (2.36), the more number of age groups divided in the age-

structured model, the more accurate of the estimation of the value of the aging parameter ci, which is

denoted as ω in this model – Equations (5.2). Another advantage of considering more age groups in the

age-structured model is that the model could capture the heterogeneous mixing between the individuals in

the infective stocks (I, Im and Iw) and the individuals in the other stocks (S, R1, R2, R3 and R4) more

precisely. Thus, I have explored other two pertussis age-structured models with 32 age groups.

The key part needs to be studied in expanding the age-structured model from 2 age groups to 32 age

groups is the calculation of the contact matrix. The advantage of the method in calculating the contact

matrix in the age-structured model with 2 age groups in this thesis is that the contacts between any two age

groups (e.g. i and j) is balanced – the number of total contacts of an age group i to group j equals to the
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number of total contacts of the age group j to group i. However, this method has a notable disadvantage

that the unknown parameters in calculating the contact matrix grow super-linearly (n-squared) with the

total number of age groups (denoted as n) in the model. This disadvantage makes the model difficult to be

expanded to a large number of age groups. Thus I have explored two other methods to calculate the contact

matrix sub-linearly or linearly with the total number of age groups – the method of obtaining an un-balanced

contact matrix in the research of Hethcote (1997) with a constant number of unknown parameters [50] and

the method could calculate a re-balanced contact matrix with the number of unknown parameters grows

linearly with the total number of age groups.

The prove of the super-linearly grows of the total numbers of unknown parameters in the contact matrix

with the total number of age groups is shown in Appendix A.

5.2.3 The general age-structured model with more than two age groups

The basic mathematical model of the general age-structured model with more than two age groups is listed

as follows. It is similar to Equation (5.2). However, the following equations are written in multiple equations,

instead of matrix. It is notable that in this thesis, I considered the total population of each age group remains

stable (constant). Thus, the death rate of each age group µi could be calculated by Equation (2.45), which

is introduced in chapter 2. And the calculation of the parameters ci are also introduced in Equation (2.36)

in chapter 2.

dS1

dt
=

n∑
j=1

vjNj + ιR11 − (c1 + λ1 + µ1)S1

dSi
dt

= ci−1Si−1 + ιR1i − (ci + λi + µi)Si 2 ≤ i ≤ n

dI1
dt

= λ1S1 − (c1 + γ + µ1)I1

dIi
dt

= ci−1Ii−1 + λiSi − (ci + γ + µi)Ii 2 ≤ i ≤ n

dIm1

dt
= λ1R11 − (c1 + γ + µ1)Im1

dImi
dt

= ci−1Im,i−1 + λiR1i − (ci + γ + µi)Imi 2 ≤ i ≤ n

dIw1

dt
= λ1R21 − (c1 + γ + µ1)Iw1

dIwi
dt

= ci−1Iw,i−1 + λiR2i − (ci + γ + µi)Iwi 2 ≤ i ≤ n

dR11

dt
= αR21 − (λ1 + ι+ c1 + µ1)R11

dR1i

dt
= ci−1R1,i−1 + αR2i − (λi + ι+ ci + µi)R1i 2 ≤ i ≤ n

dR21

dt
= αR31 − (λ1 + ι+ c1 + µ1)R21 (5.3)

dR2i

dt
= ci−1R2,i−1 + αR3i − (λi + ι+ ci + µi)R2i 2 ≤ i ≤ n

dR31

dt
= αR41 − (λ1 + ι+ c1 + µ1)R31
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dR3i

dt
= ci−1R3,i−1 + αR4i − (λi + ι+ ci + µi)R3i 2 ≤ i ≤ n

dR41

dt
= γ(I1 + Im1 + Iw1) + λ1R31 − (α+ c1 + µ1)R41

dR4i

dt
= ci−1R4,i−1 + γ(Ii + Imi + Iwi) + λiR3i − (α+ ci + µi)R4i 2 ≤ i ≤ n

Ni = Si + Ii + Imi + Iwi +R1i +R2i +R3i +R4i 1 ≤ i ≤ n

µ1 =

∑n
j=1 vjNj − c1N1

N1

µi =
ci−1Ni−1 − ciNi

Ni
2 ≤ i ≤ n

It is notable that the index of the age group in the model is denoted by i. Two methods of calculating the

contact matrix with the number of unknown parameters grow less than or equal linearly with the number of

the total age groups are introduced as follows.

The un-balanced contact matrix

This method is introduced in the research of Hethcote (1997) [50]. In this method, there are no unknown

parameters. Suppose lk is the contact rate – the average number of persons contacted by a person of age

group k per unit time. And only adequate contacts are sufficient to transmit the disease. This method based

on a simple proportionate mixing assumption that the number of total persons contacted by one person in

the age group k (lk) is distributed among the population in the age group j in proportion to the fractions

lj/D of all contacts per unit time received by people in the age group j, where D =
∑n
k=1 lkNk/

∑n
k=1Nk.

Thus, the element in the contact matrix is lj lk/D.

Finally, the force of infection (λ) used in Equation (5.3) in [50] by re-dimensionalization could be calculated

as follows:

λj =

n∑
k=1

lklj
D

Ik + ρmImk + ρwIwk∑n
k=1Nk

(5.4)

The advantage of this method is that there are no unknown parameters in calculating the contact matrix.

And it is straightforward in calculating the contact matrix as long as the parameters of the contact rate of

each age groups are known. However, this method of calculating the contact has a notable disadvantage,

which is the value of the total contacts of the age group i to the age group j is not equal to the value of the

total contacts of the age group j to the age group i.

The unbalance of the contact matrix in the paper of Hethcote (1997) [50] could be proved. The number

of total contacts of the age group j to age group k is Nj lj lk/D, while the number of total contacts of the age

group k to age group j is Nklj lk/D. Generally, the value of Nj lj lk/D is not equal to the value of Nklj lk/D.

Thus this contact matrix is unbalanced.

Then, I explored another method to calculate the contact matrix with the balanced feature and the total

number of the unknown parameters grows linearly with the number of the age groups.
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The re-balanced contact matrix

To calculate the balanced contact matrix, I have employed the method introduced in the research by Garnett

and Bowden (2000) [39].

In the beginning, I introduce the method of calculating the basic contact matrix which is balanced already

and with one unknown parameters. Before introduced, I import a mixing parameter, denoted as ε. The mixing

parameter ε determines where mixing occurs on a scale from fully associative – persons only contact with the

individuals in the same age group (e.g. ε = 0) and random mixing – the contact among the total population

is homogeneous (e.g. ε = 1.0). Then, the fraction of the average persons that an individual in age group i

that contact with the persons in the age group of j, which is the parameters of fij in the contact matrix are

calculated as follows:

fij = (1.0− ε)δij + ε

(
Nj lj∑n
j=1Nj lj

)
(5.5)

where δij is the identity matrix. And the elements in the contact matrix is lifij .

The total contacts of age group i to age group j (Nilifij) equal the total contacts of age group j to age

group i (Nj ljfji), in this basic contact matrix. And the only unknown parameter is ε. However, in general,

the mixing parameter related to each age group should be different. For example, the mixing parameter of ε

of young children in school age maybe lower than the ε of the little baby, because the children in the school

age contacts more to their peers in the school than the other groups, while the little baby contacts more with

their parents or care-taker than the other babies. Thus, in the next step, I expend the mixing parameter ε

to a vector, where each element represents the mixing parameter of each related age group εi.

Then, in this method of calculating the contact matrix with a vector of mixing parameters, the equation

of fij is listed as follows:

fij = (1.0− εi)δij + εi

(
Nj lj∑n
j=1Nj lj

)
(5.6)

Similarly, the elements in this contact matrix with a vector of mixing parameters are lifij . It is notable

that the total contacts between any two age groups calculated based on this contact matrix are unbalanced.

Specifically, the number of total contacts of age group i to age group j is Nili

[
(1.0− ε)δij + εi

(
Nj lj∑n

j=1Nj lj

)]
,

while the number of the total contact of age group j to age group i is Nj lj

[
(1.0− ε)δji + εj

(
Nili∑n

j=1Nj lj

)]
. In

general, the mixing parameters of any two age groups are not the same. Thus, the total numbers of contacts

calculated by this contact matrix between any two age groups are not always the same.

To make the contact matrix balanced, I have employed the method introduced in [39] to re-balance the

contact matrix. A parameter, denoted as ∆ij , is imported to represent the ratio of the number of total

contacts between any two different age groups (i 6= j) (for the same age group, the total number of contacts

are always the same). Then, the equation of ∆ij is:

∆ij =
Nilifij
Nj ljfji

=
εiNiliNj lj
εjNiliNj lj

=
εi
εj
, i 6= j (5.7)
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Then, the main idea of re-balancing the contact matrix is to extend the vector of contact rates (the

elements of the contact rates are denoted as li) to a new matrix of contact rates lij . The elements in the

matrix of contact rates lij represent the number of persons in the age groups j that a person in the age group

i could contact in average. Then, according to [39], the equations of lij and lji could be defined separately:

lij = li∆
θ
ij = li

(
εj
εi

)θ
lji = lj∆

−(1−θ)
ij = lj

(
εj
εi

)−(1−θ) (5.8)

where θ is the re-balanced parameter.

Because both lij and lji represent the same matrix, a relationship could be generated, which is lij = lji.

Then, I could get the value of the parameter of θ (θ = 0.5). Substitute the value of θ (θ = 0.5) to Equation

(5.8), the matrix of contact rate – lij could be generated as follows:

lij = li

(
εj
εi

)0.5

(5.9)

Finally, the element of contact matrix lijfij and force of infection λi are:

lijfij = li

(
εj
εi

)0.5
[

(1.0− εi)δij + εi

(
Nj lj∑n
j=1Nj lj

)]

λi = pi

n∑
j=1

lijfij(Ij + ρmImj + ρwIwj)

Nj

(5.10)

where pi is the transmission probability of age group i.

Finally, except the aggregate and age–structured model with two age groups, another two age-structured

models with 32 age groups – the model introduced in the [50] and the model with re-balanced contact matrix

are also employed as the base model to build the state-space models of the particle filtering algorithm. It is

notable that the division of the 32 age groups is the same in the paper of Hethcote (1997) [50]. These age

groups are 0–1 month, 2–3 month, 4–5 month, 6–11 month, 1 year, 2 year, 3 year, 4 year, 5 year, 6 year, 7

year, 8 year, 9 year, 10 year, 11 year, 12 year, 13 year, 14 year, 15 year, 16 year, 17 year, 18 year, 19 year,

20–24 year, 25–29 year, 30–39 year, 40–49 year, 50–59 year, 60–69 year, 70–79 year, 80–89 year, 90 year and

plus. And the two age groups in the age structured model with two age groups are 0–4 year and 5 years and

plus.

5.3 Particle filter implementation

The implementation of the particle filtering models of pertussis is similar to the implementation of the particle

filtering models of measles, which have been introduced in the previous chapters, except for the difference of

the state space models and the total number of the age groups. Specifically, the condensation algorithm is

employed as the proposal distribution. The distribution employed in the likelihood function is the negative
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binomial distribution, with the dispersion parameter r is 10. The measurement model is also similar to the

particle filtering models of measles. However, in the age-structured models with 32 age groups of pertussis,

the yearly empirical data are divided into 6 age groups, to training the particle filtering models. This fine

division can influence the implementation of the likelihood function and calculation of discrepancy. Finally, I

have built four pertussis particle filtering models, which are the aggregate model, age-structured model of 2

age groups, age-structured models of 32 age groups with the calculation method of contact matrix introduced

in the paper of Hethcote (1997) [50], and age-structured model of 32 age groups with the re-balanced contact

matrix – introduced in the paper of Garnett and Bowden (2000) [39]. I will discuss the implementation of

the particle filtering algorithm with pertussis models as follows.

5.3.1 The state space model

The method of implementation of the state space models of pertussis is similar to the particle filtering of

measles – considering several dynamic processes in the state space model, based on the compartmental models

– pure Ordinary Differential Equations (ODEs). The state space models employed in this thesis to build the

pertussis particle filtering models are discussed as follows.

The aggregate model (n = 1)

In the aggregate model, the individuals contact with the infectious (in the stocks of Iw, Im and I) homo-

geneously. The pure ODEs model is introduced in Equations (5.1). Similar to the implementation of the

aggregate particle filtering model of measles in chapter 3, three stochastic processes are considered. The first

is the changes in the transmissible contact rate linking infectious and susceptible persons, which is repre-

sented by the parameter β. The second is also with respect to the disease reporting process. Specifically,

a parameter – representing the probability that a given pertussis infectious case is reported Cr, and a state

Ik – calculating the accumulative pertussis infectious cases per unit time (per Month in this project) – are

implemented. The final part is the Poisson process associated with the incidence of infection. This process

reflects the small number of cases that occur over each small unit of time – ∆t (0.01 in this model). I also

treat the natural logarithm of the transmissible contact rate (denoted by β) and the logit of Cr as undergoing

a random walk according to a Wiener Process (Brownian Motion) [56, 28]. It is notable that in this project,

it is assumed that the individuals under the medium infectious (Im) and weak infectious (Iw) also have the

probability to be confirmed and reported. The rates of the medium infectious (Im) and weak infectious

(Iw) that have symptoms are also considered as ρm and ρw. Finally, the state space model of the aggregate

pertussis particle filtering model is listed as follows:

dS

dt
= Nv −AI − µS + ιR1

dI

dt
= AI − (γ + µ) I

dIm
dt

= AIm − (γ + µ) Im
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dIw
dt

= AIw − (γ + µ) Iw

dR1

dt
= αR2 −AIm − (µ+ ι)R1

dR2

dt
= αR3 −AIw − (µ+ α)R2

dR3

dt
= αR4 − (λ+ µ+ α)R3

dR4

dt
= γ(I + Im + Iw) + λR3 − (α+ µ)R4 (5.11)

λ =
β(I + ρmIm + ρwIw)

N

N = S + I + Im + Iw +R1 +R2 +R3 +R4

dln(β) = sβdWt

d(logit(Cr)) = d(ln(
Cr

1− Cr
)) = srdWt

Ik =

∫ k

k−1

(AI + ρmAIm + ρwAIw) dt

Irk = IkCr

AI =
Poisson(λS∆t)

∆t

AIm =
Poisson(λR1∆t)

∆t

AIw =
Poisson(λR2∆t)

∆t

The parameters related to the transmission of pertussis in this model are referred from the research of

Hethcote (1997) [50]. Similar to the aggregate model of measles introduced in chapter 3, the demographic

parameters of this model are got from the Annual Report of the Saskatchewan Department of Public Health

[21] and the age pyramid of Saskatchewan [16]. Then, the parameters of the pertussis aggregate state space

model – Equations (5.11) are specified in Table 5.1, while the initial values of the stocks are listed in Table 5.2.

The age-structured model of 2 age groups (n = 2)

Equations (5.2) is employed as the base model of the state space model of the age-structured model with

2 age groups. Then, the pure ODEs model – Equations (5.2) is extended by several stochastic processes.

Except for the similar three stochastic processes considered in the aggregate state space model – the infectious

contact rate of the child age group (denoted as βc), the report rate of pertussis cases (denoted as Cr), and the

Poisson process related to the incidence of the infectious – two other stochastic processed are also considered.

These two stochastic processes are related to the parameter of the multiplier of the adult age group model

(Ma) of the infectious contact rate and the fraction of children’s infectious contacts that occur with other

children (fcc). Specifically, the natural logarithm of the multiplier of the infectious contact rate of the adult

age group (Ma) and the logit of fcc are treated as undergoing a random walk according to a Wiener Process

(Brownian Motion) [56, 28], similar to the age-structured model of 2 age groups of measles introduced in
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Table 5.1: Table showing the value of parameters in the pertussis aggregate particle
filtering model.

Parameter Description Value Units

γ−1 mean time for infectives to recover from pertussis 21 Day

v birth rate of the total population 0.03 1/Year

µ death rate of the total population 0.03 1/Year

N total population 863,545 Person

ι−1 mean time to lose immunity from the stock of R1 to S 10 Year

α−1 mean time to lose immunity from Ri down to Ri−1 5 Year

ρm the relative infectivities of the individuals in the stock Im 0.5 Dimensionless

ρw the relative infectivities of the individuals in the stock Iw 0.25 Dimensionless

sβ the diffusion parameter of ln(β) 0.5 Dimensionless

sr the diffusion parameter of ln( Cr

1−Cr
) 0.05 Dimensionless

Table 5.2: Table showing initial values of the stocks in the pertussis aggregate particle
filtering model.

Parameter Value Unit

S0 Uniform[5000, 30000) Person

I0 Uniform[500, 5000) Person

Im0 1000 Person

Iw0 2500 Person

R10 Uniform[10, 10000) Person

R20 10000 Person

R30 20000 Person

R40 N − S0 − I0 − Im0 − Iw0 −R10 −R20 −R30 Person

β Uniform[5,100) Person/Month

Cr Uniform[0,0.2) Dimensionless
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chapter 4. Finally, the state space model of the pertussis age-structured model of 2 age groups is listed as

follows:

[
dSc

dt
dSa

dt

]
=

[
Nava

0

]
+

[
−ωSc
ωSc

]
−
[
AIc
AIa

]
−
[
µcSc
µaSa

]
+

[
ιcR1c

ιaR1a

]
[
dIc
dt
dIa
dt

]
=

[
−ωIc
ωIc

]
+

[
AIc
AIa

]
− γ

[
Ic
Ia

]
−
[
µcIc
µaIa

]
[
dImc

dt
dIma

dt

]
=

[
−ωImc
ωImc

]
+

[
AImc

AIma

]
− γ

[
Imc
Ima

]
−
[
µcImc
µaIma

]
[
dIwc

dt
dIwa

dt

]
=

[
−ωIwc
ωIwc

]
+

[
AIwc

AIwa

]
− γ

[
Iwc
Iwa

]
−
[
µcIwc
µaIwa

]
[
dR1c

dt
dR1a

dt

]
=

[
−ωR1c

ωR1c

]
+ α

[
R2c

R2a

]
−
[
AImc

AIma

]
− ι
[
R1c

R1a

]
−
[
µcR1c

µaR1a

]
[
dR2c

dt
dR2a

dt

]
=

[
−ωR2c

ωR2c

]
+ α

[
R3c

R3a

]
−
[
AIwc

AIwa

]
− ι
[
R2c

R2a

]
−
[
µcR2c

µaR2a

]
[
dR3c

dt
dR3a

dt

]
=

[
−ωR3c

ωR3c

]
+ α

[
R4c

R4a

]
−
[
λc
λa

]
◦
[
R3c

R3a

]
− ι
[
R3c

R3a

]
−
[
µcR3c

µaR3a

]
[
dR4c

dt
dR4a

dt

]
=

[
−ωR4c

ωR4c

]
+ γ

[
Ic + Imc + Iwc
Ia + Ima + Iwa

]
+

[
λc
λa

]
◦
[
R3c

R3a

]
− α

[
R4c

R4a

]
−
[
µcR4c

µaR4a

]
[
λc
λa

]
=

[
βcfcc
βafac

βcfca
βafaa

]
×

[
Ic+ρmImc+ρwIwc

Nc

Ia+ρmIma+ρwIwa

Na

]
[
Nc
Na

]
=

[
Sc
Sa

]
+

[
Ic
Ia

]
+

[
Imc
Ima

]
+

[
Iwc
Iwa

]
+

[
R1c

R1a

]
+

[
R2c

R2a

]
+

[
R3c

R3a

]
+

[
R4c

R4a

]
(5.12)

d(lnβc) = sβcdWt

d(ln(
fcc

1− fcc
)) = sccdWt

d(lnMa) = sMa
dWt

βa = Maβc

d(ln(
Cr

1− Cr
)) = srdWt

fca = 1− fcc

fac =


Ncβc

Naβa
(1− fcc) , if

[
Ncβc

Naβa
(1− fcc)

]
< 1.0

1.0, if
[
Ncβc

Naβa
(1− fcc)

]
≥ 1.0

faa = 1− fac

µc =
Na
Nc

va − ω

µa =
Nc
Na

ω
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Ick =

∫ k

k−1

(AIc + ρmAImc
+ ρwAIwc

) dt

Iak =

∫ k

k−1

(AIa + ρmAIma
+ ρwAIwa

) dt[
Irck
Irak

]
= Cr

[
Ick
Iak

]
AIc =

Poisson(λcSc∆t)

∆t

AIa =
Poisson(λaSa∆t)

∆t

AImc
=
Poisson(λcR1c∆t)

∆t

AIma
=
Poisson(λaR1a∆t)

∆t

AIwc
=
Poisson(λcR2c∆t)

∆t

AIwa
=
Poisson(λaR2a∆t)

∆t

In this project, I have built one two-age-group particle filtering model, where the individuals in the age

group of “child” are from newborn up to the end of 4 years. The parameters with constant values related

to the pure compartmental model (γ, ι, α, ρm and ρ2) in the two-age-group pertussis model are the same as

the aggregate model. All these parameters and the parameters related to the demographic model and the

stochastic processes of the two-age-group particle filtering model are listed in Table 5.3. The initial values of

each stocks in this two-age-group particle filtering model are listed in Table B.1 of Appendix B.

Table 5.3: Table showing the value of parameters (only related to the demographic model
and stochastic processes) in pertussis two-age-groups particle filtering model.

Parameter Description Value Units

va birth rate of the adult age group 0.034 1/Year

Nc the population of the child age group 98743 Person

Na the population of the adult age group 764802 Person

ω the aging rate from child to adult age group 0.2 Dimensionless

sβ the diffusion parameter of ln(β) 0.5 Dimensionless

sr the diffusion parameter of ln( Cr

1−Cr
) 0.05 Dimensionless

sMa the diffusion parameter of ln(Ma) 0.2 Dimensionless

scc the diffusion parameter of ln( fcc
1−fcc ) 0.15 Dimensionless

The age-structured model of 32 age groups (n = 32) with the Hethcote contact matrix

I employ the pure ODEs model – the age-structured model of 32 age groups introduced in the paper of

Hethcote (1997) [50] as the base model. This mathematical model is also introduced in the previous part
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in this chapter. Similarly, three stochastic processes are added to the base model as the state space model.

These three stochastic processes are related to the Poisson process related to the incidence of infectious, the

contact rate of the first age group and the reporting process of the pertussis cases. Similarly, the natural

logarithm of the contact rate of the first age group (denoted as l1) and the logit of the report rate (denoted

as Cr) are treated as undergoing a random walk according to a Wiener Process (Brownian Motion) [56, 28].

Then, a vector represents the fraction of the contact rate of each age group compared with the first age

group is imported to calculate the contact rate of each age group (denoted as fli). fli is calculated from the

value of contact rate of all age groups in the paper of Hethcote (1997) [50]. The value of fli is (1, 6.03, 8.03,

10.03, 12.04, 15.06, 20.08, 28.10, 47.18, 47.18, 47.18, 47.18, 47.18, 25.09, 25.09, 25.09, 25.09, 25.09, 15.06,

15.06, 15.06, 15.06, 15.06, 15.06, 15.06, 15.06, 10.03, 10.03, 5.02, 5.02, 5.02, 5.02). Moreover, another vector

pi is imported to represent the change rate of the transmission probability of pertussis of each age group in

the state space model. The parameter of transmission probability is not used in the original mathematical

model in [50]. However, normally the transmission probability is different among different age groups. For

example, the transmission probability of the young children is usually higher than the adults, such as due to

hygienic disparities. Thus, the parameters of pi are imported to represent the difference of the transmission

probability of each age group. The value of pi is (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5,

0.5, 0.5, 0.5, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05) in the 32-age-group models of pertussis in this

project. And the population in each age group, referred from the age pyramid of Saskatchewan [16] is (3349,

3330, 3320, 9950, 19843, 19733, 19647, 19571, 19486, 19394, 19289, 19161, 19002, 18809, 18577, 18318, 18033,

17724, 17386, 17021, 16629, 16218, 15802, 73256, 65935, 117771, 97621, 70964, 44313, 19332, 4377, 387). To

let the numbers of newborns of each pertussis particle filtering models per unit time (Month in this project)

similar to the other models – the pertussis particle filtering models with aggregate population structure and

with two-age-groups population structure, the yearly birth rate of the 32-age-group models are estimated as

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03, 0.03, 0.03, 0.03, 0.03, 0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0).

Finally, the state space model of the the age-structured pertussis particle filtering model of 32 age groups

with contact matrix in the paper of Hethcote (1997) [50] is listed as follows:

dS1

dt
=

n∑
j=1

vjNj + ιR11 −AI1 − (c1 + µ1)S1

dSi
dt

= ci−1Si−1 + ιR1i −AIi − (ci + µi)Si 2 ≤ i ≤ n

dI1
dt

= AI1 − (c1 + γ + µ1)I1

dIi
dt

= ci−1Ii−1 +AIi − (ci + γ + µi)Ii 2 ≤ i ≤ n

dIm1

dt
= AIm1

− (c1 + γ + µ1)Im1

dImi
dt

= ci−1Im,i−1 +AImi
− (ci + γ + µi)Imi 2 ≤ i ≤ n
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dIw1

dt
= AIw1

− (c1 + γ + µ1)Iw1

dIwi
dt

= ci−1Iw,i−1 +AIwi
− (ci + γ + µi)Iwi 2 ≤ i ≤ n

dR11

dt
= αR21 −AIm1

− (ι+ c1 + µ1)R11

dR1i

dt
= ci−1R1,i−1 + αR2i −AImi

− (ι+ ci + µi)R1i 2 ≤ i ≤ n

dR21

dt
= αR31 −AIw1

− (ι+ c1 + µ1)R21

dR2i

dt
= ci−1R2,i−1 + αR3i −AIwi

− (ι+ ci + µi)R2i 2 ≤ i ≤ n

dR31

dt
= αR41 − (λ1 + ι+ c1 + µ1)R31

dR3i

dt
= ci−1R3,i−1 + αR4i − (λi + ι+ ci + µi)R3i 2 ≤ i ≤ n

dR41

dt
= γ(I1 + Im1 + Iw1) + λ1R31 − (α+ c1 + µ1)R41

dR4i

dt
= ci−1R4,i−1 + γ(Ii + Imi + Iwi) + λiR3i − (α+ ci + µi)R4i 2 ≤ i ≤ n (5.13)

Ni = Si + Ii + Imi + Iwi +R1i +R2i +R3i +R4i 1 ≤ i ≤ n

µ1 =

∑n
j=1 vjNj − c1N1

N1

µi =
ci−1Ni−1 − ciNi

Ni
2 ≤ i ≤ n

λj = pj

n∑
k=1

lklj
D

Ik + ρmImk + ρwIwk∑n
k=1Nk

1 ≤ j ≤ n

D =

n∑
k=1

lkNk/

n∑
k=1

Nk

d(lnl1) = sl1dWt

li = l1 ∗ fli 2 ≤ i ≤ n

d(logit(Cr)) = d(ln(
Cr

1− Cr
)) = srdWt

Iki =

∫ k

k−1

(AIi + ρmAImi
+ ρwAIwi

) dt 1 ≤ i ≤ n

Irki = IkiCr 1 ≤ i ≤ n

AIi =
Poisson(λiSi∆t)

∆t
1 ≤ i ≤ n

AImi
=
Poisson(λiR1i∆t)

∆t
1 ≤ i ≤ n

AIwi
=
Poisson(λiR2i∆t)

∆t
1 ≤ i ≤ n

The values of the parameters are the same as the ones listed in the aggregate particle filtering models

and two-age-group particle filtering model, and the initial values of the stocks in this particle filtering model

are listed in the Table B.2 of Appendix B.
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The age-structured model of 32 age groups (n = 32) with re-balanced contact matrix

The age-structured model (introduced in Equations (5.3)) of 32 age groups with re-balanced contact matrix

(introduced in Equations (5.10)) are employed as the base model of the state space model of the age-structured

particle filtering model of 32 age groups with re-balanced contact matrix. Except for the three stochastic

processes – the same as the state space model of age-structured model of 32 age groups with Hethcote contact

matrix (introduced in Equations (5.13)), the logit of the six mixing parameters (εi, 1 ≤ i ≤ 6) are treated

as undergoing a random walk according to a Wiener Process (Brownian Motion) [56, 28]. The reason the

total number of mixing parameters is 6, instead of 32 (a mixing parameter related to an age group each),

is because the yearly empirical datasets could only be split to 6 age groups – less than 1 year, 1 to 4 year,

5 to 9 year, 10 to 14 year, 15 to 19 year and 20 year and plus, which will be introduced in next part in

detail. Moreover, two parameters of fli and pi are also employed, same as the model in Equation (5.13).

Finally, the state space model of the the age structured pertussis particle filtering model of 32 age groups

with re-balanced contact matrix is listed as follows:

dS1

dt
=

n∑
j=1

vjNj + ιR11 −AI1 − (c1 + µ1)S1

dSi
dt

= ci−1Si−1 + ιR1i −AIi − (ci + µi)Si 2 ≤ i ≤ n

dI1
dt

= AI1 − (c1 + γ + µ1)I1

dIi
dt

= ci−1Ii−1 +AIi − (ci + γ + µi)Ii 2 ≤ i ≤ n

dIm1

dt
= AIm1

− (c1 + γ + µ1)Im1

dImi
dt

= ci−1Im,i−1 +AImi
− (ci + γ + µi)Imi 2 ≤ i ≤ n

dIw1

dt
= AIw1

− (c1 + γ + µ1)Iw1

dIwi
dt

= ci−1Iw,i−1 +AIwi
− (ci + γ + µi)Iwi 2 ≤ i ≤ n

dR11

dt
= αR21 −AIm1

− (ι+ c1 + µ1)R11

dR1i

dt
= ci−1R1,i−1 + αR2i −AImi

− (ι+ ci + µi)R1i 2 ≤ i ≤ n

dR21

dt
= αR31 −AIw1

− (ι+ c1 + µ1)R21

dR2i

dt
= ci−1R2,i−1 + αR3i −AIwi

− (ι+ ci + µi)R2i 2 ≤ i ≤ n

dR31

dt
= αR41 − (λ+ ι+ c1 + µ1)R31

dR3i

dt
= ci−1R3,i−1 + αR4i − (λ+ ι+ ci + µi)R3i 2 ≤ i ≤ n

dR41

dt
= γ(I1 + Im1 + Iw1) + λR31 − (α+ c1 + µ1)R41
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dR4i

dt
= ci−1R4,i−1 + γ(Ii + Imi + Iwi) + λR3i − (α+ ci + µi)R4i 2 ≤ i ≤ n (5.14)

Ni = Si + Ii + Imi + Iwi +R1i +R2i +R3i +R4i 1 ≤ i ≤ n

µ1 =

∑n
j=1 vjNj − c1N1

N1

µi =
ci−1Ni−1 − ciNi

Ni
2 ≤ i ≤ n

lijfij = li

(
εj
εi

)0.5
[

(1.0− εi)δij + εi

(
Nj lj∑n
j=1Nj lj

)]
1 ≤ i ≤ n, 1 ≤ j ≤ n

λi = pi

n∑
j=1

lijfij(Ij + ρmImj + ρwIwj)

Nj
1 ≤ i ≤ n

d(lnl1) = sl1dWt

li = l1 ∗ fli 2 ≤ i ≤ n

d(logit(εi)) = d(ln(
εi

1− εi
)) = sεidWt 1 ≤ i ≤ 6

d(logit(Cr)) = d(ln(
Cr

1− Cr
)) = srdWt

Iki =

∫ k

k−1

(AIi + ρmAImi
+ ρwAIwi

)dt 1 ≤ i ≤ n

Irki = IkiCr 1 ≤ i ≤ n

AIi =
Poisson(λiSi∆t)

∆t
1 ≤ i ≤ n

AImi
=
Poisson(λiR1i∆t)

∆t
1 ≤ i ≤ n

AIwi
=
Poisson(λiR2i∆t)

∆t
1 ≤ i ≤ n

The values of the parameters are the same as the ones listed in the aggregate particle filtering models

and two-age-group particle filtering model, and the initial values of the stocks in this particle filtering model

are also listed in the Table B.2 of Appendix B.

5.3.2 The measurement model, likelihood function, empirical datasets and eval-

uating particle filtering performance

The implementation of the measurement model, likelihood function, empirical datasets and evaluating particle

filtering performance of the pertussis particle filtering models are similar as the particle filtering models of

measles (introduced in chapter 3 and chapter 4). The Condensation Algorithm [14, 57, 74] is also used as

the method of choosing the proposal distribution of the particle filtering algorithm.

Specifically, in the aggregate particle filtering model of pertussis, only one empirical dataset – monthly

pertussis reported cases of the province of Saskatchewan from the year 1921 to 1956 is employed [21]. The

RMSE between the monthly empirical data and the related data in the particle filtering model is calculated

as the discrepancy among the sampled particles by importance sampling. The negative binomial distribution
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is employed as the likelihood function, with the value of the dispersion parameter of r is 10. In the age-

structured particle filtering model of pertussis of 2 age groups, three empirical datasets are used – monthly

pertussis reported cases among the total population, the yearly pertussis reported cases of the child age group

and the yearly pertussis reported cases of the adult age group. The weight update rule (likelihood function)

is the same as the aggregate model, except for the close of each year – same as the Equations (4.17) in the

measles two-age-groups models. The discrepancy is the sum of the monthly RMSE and the yearly RMSE

between each age group over 12 (to convert the unit to Month).

In the pertussis age-structured particle filtering models of 32 age groups, 7 empirical datasets are empoyed

– monthly pertussis reported cases among all population, and yearly pertussis reported cases of six age groups,

including less than 1 year, from 1 to 4 year, from 5 to 9 year, from 10 to 14 year, from 15 to 19 year and 20

year and plus. The update weight rule is similar to the age structured pertussis model of two age groups,

except for the close of each year that it is the multiplication among the 7 empirical datasets. The discrepancy

is also the sum of the monthly RMSE and the yearly RMSE between each age group over 12 (to convert the

unit to Month).

5.4 Results

5.4.1 Results of models incorporating empirical datasets across all timeframe

To explore the performance of different compartmental pertussis models incorporating with the particle

filtering algorithm, four particle filtering models have been built in this research – the aggregate particle

filtering pertussis model (denoted as PFaggregate), the age-structured particle filtering model of 2 age groups

(denoted as PFage 2), the age-structured particle filtering model of 32 age groups with the Hethcote contact

matrix (denoted as PFage 32 Hethcote), and the age-structured particle filtering model of 32 age groups with

the re-balanced contact matrix (denoted as PFage 32 rebalance). Specifically, in the age-structured model of

2 age groups (child and adult), the child age group including the individuals from newborn to the end of 4

years old, while the adult age group including the individuals from the beginning of 5 years old. In all the

four particle filtering models, the total number of particles in the particle filtering algorithm, in the plots of

the 2D histogram and in the sampling process of calculating the discrepancy are all 3000. To explore the

accuracy improvement of the particle filtering models of pertussis, I have also built a calibrated model with

aggregate population. In this calibrated model, the values of the parameters got from calibration with the

empirical dataset are listed as follows. The initial value in class S, I and R1 are relatively 19420, 500, 9960.

The value of the infectious contact rate (β) is 56.692, and the report rate of pertussis is 0.01. Finally, this

calibration model is denoted by Calibrated.

By comparing the discrepancy of these models, I sought to identify the model offering the greatest

predictive validity. I then used the most favorable model to perform prediction analysis. To assess model

results, each of the four particle filtering models was run 5 times with random seeds generated from the
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Table 5.4: Comparison of the average discrepancy of all four pertussis models by incor-
porating empirical data across all observation points.

Model Monthly Yearly in Month Total

Calibrated 34.2 NONE NONE

PFaggregate 20.9 (20.0, 21.9) NONE NONE

PFage 2 19.9 (18.8, 21.0) 21.0 (19.2, 22.7) 40.9 (38.1, 43.6)

PFage 32 Hethcote 20.6 (20.1, 21.2) 25.8 (23.0, 28.6) 46.4 (43.1, 49.7)

PFage 32 rebalance 19.8 (19.5, 20.1) 28.1 (24.2, 31.9) 47.9 (43.9, 51.9)

Each of the five particle filtering models was run 5 times (the random seed generated from the same set).

Shown here are the average and 95% confidence intervals (in parentheses) of the mean discrepancy for each

model variant.

Figure 5.2: Box plots of monthly and yearly discrepancy of all models by incorporating
empirical data across all observation points.
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same set. I then calculated the average and 95% confidence intervals of the mean discrepancy. Table 5.4

displays the average discrepancies of the four pertussis particle filtering models and the deterministic pertussis

compartmental model with calibrated parameters across all timeframe. The results of table 5.4 suggests

that the particle filtering models have improved the accuracy compared with the traditional deterministic

compartmental model with calibrated parameters. It is notable that both the deterministic model with

calibrated parameters and the particle filtering model with aggregate population only offer monthly average

discrepancy, because the age structures are not implemented in these two models. Table 5.4 indicates that

the accuracy of the particle filtering models are increased significantly when compared with the calibration

model – the average discrepancies of the particle filtering models are decreased markedly compared to the

average discrepancy of the deterministic model with parameters derived via calibration. Moreover, although

the monthly average discrepancies among the four particle filtering model with different population structure

and contact matrix structure are quite close, the particle filtering models of PFage 2 and PFage 32 rebalance

exhibit smaller average discrepancies. With respect to the yearly average discrepancies, table 5.4 shows that

the age-structured model with two age groups offers better predictive performance than the models with 32

age groups. (In this regard, it bears emphasis that the particle filtering model with aggregate population does

not support calculation of the yearly average discrepancy, due to the inability to compare against age-specific

empirical data). It is notable that the total number of the yearly empirical datasets is different compared

with the age-structured model with 2 age groups (with 2 yearly empirical datasets) and the age-structured

models with 32 age groups (with 6 empirical yearly datasets). The yearly average discrepancies listed in

table 5.4 are the sum of the average discrepancy with each empirical dataset. Thus, this difference may

contribute to the result that the yearly average discrepancies of the model with 32 age groups are greater

than the model with 2 age groups. However, I also employ the particle filtering model with 2 age groups as

the minimum average discrepancy model to explore the performance of the outbreak prediction of pertussis

below.

Figure 5.2 shows the box plot of the distribution of the datasets of discrepancies among the calibrated

model and the four particle filtering models, where the boxplot summarizes monthly discrepancy estimates

for a given model at different times. Each of the five particle filtering models was run 5 times (the random

seed generated from same set). Then the average monthly and yearly discrepancy among these five runs at

each time between the particle filtering models and the empirical data were plotted. It is notable that the

datasets of the discrepancies of the box plot in the particle filtering model are calculated by the average value

among five realization at each time point. Both the monthly and yearly distribution of the discrepancies of

each age structured models are plotted in figure 5.2. This box plot also indicates that the discrepancies of

all the particle faltering models are smaller than for the calibrated model. This indicates that the particle

filtering models have improved the estimation accuracy compared to the traditional deterministic model

with calibrated parameters. Moreover, the datasets of the discrepancy of the model PFage 2 has a narrow

distribution, especially for the dataset of the yearly discrepancy.
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Figure 5.3: Running time of the pertussis particle filtering models.

Figure 5.3 shows the running time of the pertussis particle filtering models with three population structures

– aggregate population, with two age groups and with 32 age groups (taking the one using an unbalanced

contact matrix as an example). All of the models are built using Anylogic 8.1.0 software, a Java-based

simulation platform. Similar to figure 4.3, figure 5.3 indicates that the running time grows linearly with an

increase in the number of particles. The running time of the deterministic model with aggregate population

structure – and without particle filtering mechanisms – is only 0.028 minutes, which is far fast than the

particle filtering models. It is notable that the running time of the pertussis models and the measles models

are not comparable, because the running time calculated in this thesis also includes the time of plotting

all the results of the models for analysis, and the figures of the plots of the measles and pertussis models

are different. Finally, all the pertussis particle filtering models are run on the author’s another personal

computer, with a processor type is intel i7 3.5 GHZ, and a memory size of 16GB DRAM.

Figure 5.4: Reported pertussis cases of the calibration model (monthly).

Figure 5.4 compares the output of the calibration model and the empirical data. Similar to the situation
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Figure 5.5: 2D histogram posterior result over the total timeframe of the aggregate
particle filtering model of pertussis.

Figure 5.6: Difference between the results of the calibration model and the empirical
data of pertussis (monthly).

Figure 5.7: 2D histogram plot of the difference between the posterior result of the particle
filtering model and the empirical data of pertussis (monthly).
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with the measles model, figure 5.4 indicates that the deterministic model with calibrated parameters encoun-

ters difficulties in tracking the oscillation of the outbreak of pertussis almost across the entire model time

horizon, because the deterministic model of pertussis would approaches a stable equilibrium.

Figure 5.5 presents the posterior results of the pertussis particle filtering model with aggregate population

structure for the entire timeframe. For this diagram, the results of the particle filtering model are sampled

according to the weight of all particles after the weights are updated by incorporating the empirical data of

the current time point. The values of empirical data points are shown in red, while the sampled posterior

distribution of particle filtering model is shown in blue at each time. Figure 5.5 demonstrates that most

of the empirical data points are located in or near the high density location of the results of the particle

filtering model. It further indicates that the particle filtering model has the capability to track the outbreak

of pertussis, especially compared with the calibrated model whose results are shown in figure 5.4.

Figure 5.6 shows the difference between the results of the deterministic model with calibrated parameters

and the empirical data of pertussis in each time point.

Figure 5.7 represents the 2D histogram plot between the empirical data and the sampled posterior dis-

tributions of the pertussis particle filtering model with aggregate population structure by incorporating the

empirical data over the whole model time horizon. It is notable that the particles sampled in figure 5.5 are

the same as the particles samples in figure 5.7.

The previous results indicate that the particle filtering models considered here can not only decrease the

discrepancy between the model results and the empirical data (see table 5.4, figure 5.2 and the comparison

between figure 5.6 and figure 5.7), but can further track the oscillation of the outbreaks of pertussis –

by comparing the results of particle filtering model (figure 5.5) and deterministic model with calibrated

parameters (figure 5.4). All of these results suggest that incorporating particle filtering in the compartmental

model of pertussis could enhance the simulation accuracy and support more accurate outbreak tracking.

Figure 5.8 displays the 2D histogram plots comparing both the monthly and yearly empirical datasets

(on the one hand) with the distributions of samples from the posterior distribution of incident cases from

the pertussis age structured pertussis particle filtering model with 2 age groups and where the individuals

in the children age group are those in the first 5 years of life (denoted as PFage 2) (on the other). This

figure demonstrates that the model PFage 2 is capable to tracking and simulating the outbreaks of pertussis,

considered here because most of the monthly and yearly empirical data (shown in the red dashes) in each

month are located in or near the high density area of the sampled distribution of the particle filtering model

(shown in blue in the 2D histogram plots).

Similarly, figure 5.9 displays the 2D histogram plots comparing both the monthly and yearly empirical

datasets (on the one hand) with the sampled posterior distribution of incident cases from the pertussis age

structured pertussis particle filtering model with 32 age groups and the Hethcote contact matrix (denoted

as PFage 32 Hethcote) (on the other). It is notable that the total number of the yearly empirical datasets

employed is 6. This figure also demonstrates that the model PFage 32 Hethcote is capable of tracking and
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(a)

(b)

Figure 5.8: 2D histogram posterior result over the total timeframe of the age structured
model of 2 age groups. (a) the monthly particle filtering result across all population. (b) the yearly
particle filtering result of the children and adult age groups.
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(a)

(b)

Figure 5.9: 2D histogram posterior result over the total timeframe of the age structured
model of 32 age groups with the Hethcote contact matrix. (a) the monthly particle filtering
result across all population. (b) the yearly particle filtering results of each age group of empirical
datasets. 99



simulating the outbreaks of pertussis, because most of the monthly and yearly empirical data in each time

are located in or near the high density area of the results of the particle filtering model.

Figure 5.5, figure 5.8 and figure 5.9 represent the 2D histogram posterior result of all the particle filtering

models, except for the age-structured model of 32 age groups with re-balanced contact matrix. The reason

I do not plot the result of this model is that it is quite similar to the 32-age-group model with Hethcote

contact matrix, which is shown in figure 5.9. These 2D histogram plots indicate that both the age-structured

particle filtering models and the aggregate population particle filtering model have the capability to simulate

the outbreak pattern of pertussis. The results of the models could match the empirical datasets quite well,

including both monthly empirical dataset and yearly empirical datasets. Compared with the result of the

calibration model which is shown in figure 5.4, the particle filtering models are capable of localizing the

model’s prediction of empirical data lies near those data. Incorporating the discrepancy of each model shown

in the table 5.4 and figure 5.2, although all these four pertussis particle filtering models are capable of tracking

and estimating the pertussis outbreaks, I still employ this minimum discrepancy model – the age-structured

particle filtering pertussis model of 2 age groups, divided at the age of 5 – to perform the prediction and

intervention analysis.

Similar to what was discussed in chapter 3 and chapter 4, the pertussis particle filtering models can

contribute to the estimation of entire state – including the latent and observable state of the dynamic models

during the period of incorporating the empirical datasets. In the investigation of pertussis considered here,

the empirical data – monthly pertussis reported cases across all population and yearly reported pertussis

cases of different age groups, are only related to an aggregation of the latent states of weakly infectious

(Iw), medium infectious (Im), and fully infectious (I). However, by applying particle filtering to the system

dynamics models of pertussis and the empirical data, the pertussis particle filtering models are capable of

estimating the entire state across the whole model time horizon during which empirical datasets are available

by incorporation of multiple lines of empirical data. Figure 5.10 shows the 2D histogram plots of samples

from the distributions of latent stocks with the minimum discrepancy model (the age structured model with

2 age groups where the child age group consists of children in their first 5 years and incorporating both the

monthly and yearly empirical datasets) as an example. Figure 5.10 indicates that most of the fully infectious

individuals are estimated to be located amongst the children (less than 5 years of age) age group, while most

of the weak infectious and medium infectious individuals are located in the “adult” (equal and greater than

5 years) age group. Most of the recovered individuals are also located in the adult age group. This lies in

accordance with the expectations for pertussis transmission in the real world and builds confidence in the

capacity of the model to meaningfully estimate the latent state. As noted below, estimation of latent state

can also be an important enabler for understanding of the effects of interventions, for understanding the

current epidemiological context, as well as for providing insights into historical circumstances.
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(a)

(b)

Figure 5.10: 2D histogram results for the latent states in the dynamic models with the
two age groups of the pertussis age structured particle filtering model with 2 age groups.
(a) the child age group (those within their first 5 years of life). (b) the adult age group (years 5 and
up).
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5.4.2 Prediction with the minimum discrepancy model

Similar to the analysis of the measles particles filtering model introduced in chapter 4, to assess the outbreak

predictive capacity of the pertussis particle filtering models, I have performed the prediction experiments, by

changing different Prediction Start Time of T ∗, with the same different archetypal situations list as follows.

It is notable that the minimum discrepancy model – the age structured model with 2 age groups where the

child age group is up to 5 year and incorporating both the monthly and yearly empirical datasets, which is

identified in the previous section is employed to perform these experiments.

(1) Prediction started from the first or second time points of an outbreak.

(2) Prediction started before the next outbreak.

(3) Prediction started from the peak of an outbreak.

(4) Prediction started from the end of an outbreak.

(a)

(b)

Figure 5.11: 2D histogram depicting prediction from the first or second time points of an
outbreak of the minimum discrepancy model. (a) predicted from the month 190. (b) predicted
from the month 269.

Figure 5.11 displays the prediction results of the minimum discrepancy model in situations in which the

prediction started from the first or second time points of an outbreak. It does so with two experiments, one

in which prediction started from month 190 (T ∗ = 190) – with sβc
is 0.6, and monthly prediction discrepancy

72.6, the sum of yearly prediction discrepancy of all age groups per month is 53.3 – and one in which such

prediction initiated at month 269 (T ∗ = 269) – with sβc
is 0.6, and monthly prediction discrepancy 87.4, the
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(a)

(b)

Figure 5.12: 2D histogram depicting prediction from the peak of an outbreak of the
minimum discrepancy model. (a) predicted from the month 176. (b) predicted from the month
233.

(a)

(b)

Figure 5.13: 2D histogram depicting prediction from the end of an outbreak of the
minimum discrepancy model. (a) predicted from the month 209. (b) predicted from the month
296.
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(a)

(b)

Figure 5.14: 2D histogram depicting prediction before the next outbreak of the minimum
discrepancy model. (a) predicted from the month 99. (b) predicted from the month 216.

sum of yearly prediction discrepancy of all age groups per month is 63.6 – respectively. In the prediction

process of the particle filtering model, the weights of particles will stop updating at the “Prediction Started

Time” (T ∗) by incorporating the empirical data. Following that point, all of the particles run without new

empirical data coming. In this chapter, all of the prediction experiments are run 4 years after the “Prediction

Start Time” T ∗. In the 2D histogram plot of figure 5.11, the empirical data having been considered in the

particle filtering process are shown in red (incorporated in training the models), while the empirical data not

having been considered in the particle filtering process (and only displayed to compare with model results)

are shown in black. The vertical straight line labels the ”Prediction Start Time” of T ∗ of each experiment.

Figure 5.12 displays the prediction results of the particle filtering model in situations in which the predic-

tion started from the peak of an outbreak. As above, it examines two experiments, one in which prediction

started from month 176 (T ∗ = 176) – with sβc is 0.5, and monthly prediction discrepancy 54.9, the sum of

yearly prediction discrepancy of all age groups per month is 55.4 – and another in which prediction initiates

at month 233 (T ∗ = 233) – with sβc
is 0.5, and monthly prediction discrepancy 56.8, the sum of yearly pre-

diction discrepancy of all age groups per month is also 56.8 – respectively. The layout of the 2D histogram

plot of figure 5.12 is the same as for figure 5.11.

Figure 5.13 displays the prediction results of the particle filtering model in situations in which prediction

started from the end of an outbreak. As above, it investigates this with two experiments, one in which

prediction starts from month 209 (T ∗ = 209) – with sβc
is 0.6, and monthly prediction discrepancy 79.6,

the sum of yearly prediction discrepancy of all age groups per month is 56.7 – and month 296 (T ∗ = 296) –

with sβc
is 0.6, and monthly prediction discrepancy 99.5, the sum of yearly prediction discrepancy of all age
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groups per month is 70.3 – respectively. The layout of the 2D histogram plot of figure 5.13 is the same as in

figure 5.11.

Figure 5.14 displays the prediction results of the particle filtering model in situations in which it initiates

predictions before the next outbreak. As above, this is investigated with two experiments. In the first,

prediction starts from month 99 (T ∗ = 99) – with sβc
is 0.4, and monthly prediction discrepancy is 75.3,

the sum of yearly prediction discrepancy of all age groups per month is 56.9 – and month 216 (T ∗ = 216) –

with sβc is 0.6, and monthly prediction discrepancy 79.2, the sum of yearly prediction discrepancy of all age

groups per month is 55.3 – respectively. The layout of the 2D histogram plot of figure 5.14 is the same as for

figure 5.11.

Figures 5.11–5.14 display the prediction results of these situations with the monthly 2D histogram of

reported cases of the total population. These prediction results suggest that the pertussis particle filter

model offers the capacity to probabilistically anticipate pertussis dynamics with a fair degree of accuracy.

From the 2D histogram plots, empirical data lying after Prediction Start Time – and thus not considered by

the particle filtering machinery – mostly lie within the high-density range of the particles. Notably, in such

examples, the particle filter model appears to be able to accurately anticipate a high likelihood of a coming

outbreak and non-outbreak. Such an ability could offer substantial value for informing the public health

agencies with accurate predictions of the anticipated evolution of pertussis over the coming months.

5.4.3 Intervention with the minimum discrepancy model

Based on the previous discussion, particle filtering models examined here are capable of estimating the entire

latent state and projecting outbreak progression. These features also support particle filtering models in

simulating intervention strategies.

In this section, I have implemented several intervention experiments to simulate public health interven-

tion policies, based on the minimum discrepancy particle filtering pertussis model discussed above. The

intervention strategies are normally performed before or at the very beginning of an outbreak. Moreover,

to support easy comparison with the baseline prediction result of the minimum discrepancy model absent

any interventions, all of the intervention strategies are simulated starting at the start month of an outbreak

(month 269) in this project. The baseline prediction result of the minimum discrepancy model without any

interventions are shown in figure 5.11 (b). We examine below the impact of two stylized intervention policies

discussed in the context of the chapters on measles models – quarantine and vaccinating.

Figure 5.15 and figure 5.16 display simulation results of quarantine intervention strategies by decreasing

the contact rate parameter to be 20% and 50% less than the value before intervention, respectively. Similarly

to the 2D histogram plot of the prediction result without any intervention shown in figure 5.11 (b), the red

dots represent the empirical data incorporated in the particle filtering model, while the black dots represent

the empirical data not incorporated in the model, but presented for comparison purposes. It is notable that

the empirical data shown in black are under the situation of absent any intervention (that is, in a baseline
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Figure 5.15: 2D histogram of simulating quarantine during a pertussis outbreak.. This is
realized by decreasing the contact rate by 20%.

Figure 5.16: 2D histogram of simulating quarantine during a pertussis outbreak. This is
realized by decreasing the contact rate by 50%.

context that lacked an intervention of the sort simulated here). By comparing the quarantine intervention

results (see figure 5.15 and figure 5.16) with the model result without intervention shown in figure 5.11 (b)

and the empirical data during the intervention period (not incorporated in the particle filtering model), we

can see that, although the interventions are implemented in a stylized fashion, by virtue of its ability to

estimate the underlying epidemiological state, the pertussis particle filtering model is capable of evaluating

public health intervention policies to reduce or even avoid the outbreak of pertussis.

To simulate a immunization intervention during a pertussis outbreak, a vaccination parameter is incorpo-

rated to represent the fraction of the population moved with respect to their immunity status. Specifically,

recall that the pertussis model characterizes a chain of successively higher levels of vaccine-induced protec-

tion; this parameter moves a certain fraction of the population from the previous stock (before vaccination)

to the stock representing the next higher level of vaccination (following vaccination). Normally, there are 4

doses of pertussis vaccination in total. Thus, in the simulation of vaccination, I just simply move the fraction

of individuals specified by the vaccination parameter from the stock of S to R1 to simulate the first dose;

I similarly move an identical fraction of the population from the stock of R1 to R2 to simulate the second

dose; I further move an identical fraction of individuals from the stock of R2 to R3 to simulate the third

106



Figure 5.17: 2D histogram of simulating an immunization campaign during an outbreak..
This is realized by increasing the vaccine-induced protection level among 20% of the population.

Figure 5.18: 2D histogram of simulating an immunization campaign during an outbreak.
This is realized by increasing the vaccine-induced protection level among 50% of the population.

dose; finally, I move an identical fraction of individuals from the stock of R3 to R4 to simulate the fourth

dose. Figure 5.17 and figure 5.18 show the results of the vaccination intervention. The layout of the 2D

histogram plots of the vaccination interventions with figure 5.17 and figure 5.18 is same as the quarantine

plots of figure 5.15 and figure 5.16. Similar to the intervention results of the measles particle filtering model,

these results of pertussis interventions demonstrate that by virtue of its ability to estimate the underlying

epidemiological state, the use of particle filtering with pertussis models supports evaluating public health

intervention policies to reduce or even avoid the outbreak of pertussis, etc.

5.5 Discussion and conclusion

This chapter presents a new method of tracking pertussis outbreak patterns by integrating a particle filtering

algorithm with a pertussis compartmental model and empirical incidence data. Specifically, four particle

filtering models have been researched, including an aggregate population model, a two-age-groups population

model, and a 32-age-group population models with both a contact matrix derived from Hethcote (1997) [50]

and a re-balanced contact matrix. Although the results of all these four particle filtering models could match
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the empirical data quite well, the minimum discrepancy model emerged from the 2-age-group age-structured

particle filtering model, where the individuals in the child age group represent children in the first 4 years of

life, and incorporating with both monthly and yearly empirical datasets.

It is notable that according to Equation (2.36), with more age groups considered in the age-structured

model, the model could simulate the aging rate (ci) more accurately. However, in this project, the dis-

crepancies associated with both of the 32-age-groups particle filtering models do not show evident decrease

compared with the two-age-group particle filtered models. I think that the possible reasons are listed as

follows. Firstly, the stochastic processes considered in both the 32-age-groups age-structured models and

the two-age-groups age-structured model are different, especially in characterizing the stochastic evolution

of contact rate. Secondly, the likelihood functions employed in this project – the multiplication across all

empirical datasets based on the negative binomial distribution with dispersion parameters set to a uniform

value – may be too naive to capture the difference between the age groups within the empirical datasets.

Thirdly, as the number of age groups increases, the dimensions of the particle filtering models increase dra-

matically. As introduced in the section of literature review in chapter 2, the particle filtering algorithm has

several limitations. An important one is that the particle filtering method with naive condensation algorithm

may encounter problems in high-dimensional systems. In high-dimensional systems, the probability density

functions would be more complex. Then, the variance of the density functions may be high, because it is

difficult to be represented by simple probability density functions. Finally, the relationship between the

number of particles and the dimensions of the models may merit additional research.

Then, the prediction experiments have been calculated based on the minimum discrepancy model – the

age-structured model using two age groups. The results suggest that particle filtering approaches offer notable

strengths in predicting occurrence of the pertussis outbreak in the subsequent months.

Moreover, it is notable that the pertussis particle filtering models could support effective estimation of

the entire state of the dynamics models during the time incorporating the empirical datasets. Combined with

the capability to perform outbreak projections, the particle filtering models can support effective evaluation

of intervention strategies.

Similar to the measles particle filtering models introduced in the chapter 3 and chapter 4, the noise in the

stochastic processes in the state space models could impact the particle filtering model differently during the

estimation and prediction period. Thus, the noise in the particle filtering models in this chapter should also

be controlled in a proper range, by tuning the parameters of diffusion coefficients in the stochastic processes

related to the Brownian motion.

Also similar to the measles particle filtering models introduced in the chapter 3 and chapter 4, the initial

values of the age-structured population models are estimated both manually and by the particle filtering

algorithm. Specifically, the population distribution among the different age groups are tuned manually, while

the population distribution among different stocks within a given age group is estimated by the particle

filtering algorithm by setting the initial values of stocks in a proper range following a uniform distribution,
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but maintaining a total number of individuals for that age group across the stocks. Especially in building the

32-age-groups particle filtering models, much time and efforts was been used in estimating the population

distribution among the different age groups.

Finally, the hypotheses proposed in the thesis statements are demonstrated for pertussis models. Firstly,

the 2D histogram plots comparing the empirical data and samples from the posterior distributions of the

particle filtering models’ output data (the monthly and yearly reported cases of pertussis) indicates that

the high probability density region of the model’s prediction of empirical data encompasses or lies near

those data. Secondly, the discrepancy of the pertussis particle filtering model’s predictions vs. observed

data is reduced with a factor of 1.6 when compared with the traditional calibration model. This reduction

indicates that the particle filtering algorithm is capable of enhancing model predictions when compared with

predictions resulting from the traditional calibration process. Additionally, it is notable that the deterministic

model with calibrated parameters encounters difficulties in tracking the fluctuation of the outbreak pattern

of measles, while the particle filtering model is capable to tracking the oscillation of the outbreak of pertussis,

and moreover, could predict the outbreak projections and simulate intervention strategies.
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Chapter 6

Classifying outbreak occurrence with the predic-

tion results of the particle filtering models

6.1 Introduction

The previous three chapters have explored how particle filtering models of measles and pertussis offer the

capability to probabilistically anticipate measles and pertussis dynamics with a fair degree of accuracy.

Specifically, the particle filtering models appear to be able to accurately anticipate a high likelihood of a

coming outbreak and non-outbreak over the following months. In this chapter, I investigate the effectiveness

of using the particle filtering models in predicting the outbreak of measles in the next time unit (Month in

the models in this thesis).

6.2 Methodology

The goal of the classification task investigated here is to map from the cases counts of measles or pertussis

predicted by particle filtering models in the next month to the class of outbreak or non-outbreak. This

mapping can be represented by the following equation [74]:

zk = f(I
(i)
rpk) (6.1)

where

{{
I

(i)
rpk

}Ns

i=1

}Tf

k=1

indicates the matrix of the reported cases of measles or pertussis predicted by the

particle filtering models of particle i (1 ≤ i ≤ Ns) (sampled by importance sampling) at time k (1 ≤ k ≤ Tf ).

Tf is the total running time of the model, and Ns is the total number of particles in the particle filtering

models. {zk}
Tf

k=1 is the vector of the predicted classes. Within this project, zk ∈ {0, 1}, where 0 indicates

non-outbreak, and 1 indicates the outbreak. The value Irpk used here is generated by the particle filtering,

which is the total reported cases of measles or pertussis across all subpopulations in the particle filtering

models.

The method employed to address this binary classification problem is as follows: At time step k-1, we

only calculate the state space model from time k-1 to k, without the weight of particles being updated by

incorporating yk. As a result, the weight of each particle is the one calculated in time step k-1. Hence, the
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state vector x
N(i)
k with the weight wk−1

(i) represents the prediction results for time step k, on the basis only

of data available until time k-1. As a result, I could get the predicted reported cases of particles generated

by importance sampling of the particles – that is, sampling those particles according to weight. Following

this, all the I
(i)
rpk will make up a matrix. One dimension is the time steps (k). The other dimension is the

particles (i).

To perform the classification analysis, two processes need to be conducted. In the first process, I define

the threshold of a particle i at time step k above which to consider that particle as positing an outbreak (θik).

In this project, I impose a reported count threshold above which I consider there as being an outbreak is

“mean plus 1.5 times the standard deviation of the empirical monthly reported cases”. As given by Equation

(6.2) and (6.3), if for a particle i where I
(i)
rpk ≥ θik, I label this data I

(i)
rpk as indicative of an “outbreak”.

Otherwise, it is considered to not be indicative of an outbreak. In the second process, I define a threshold

of fraction (θk) of particles required as positing an outbreak at time k for us to consider there as being an

outbreak at time k. The equations for classification are then listed as follows:

zik =

1, I
(i)
rpk ≥ µE + 1.5σE

0, I
(i)
rpk < µE + 1.5σE

(6.2)

zk =

1,
∑Ns

i=1 zik ≥ θk ∗Ns
0,
∑Ns

i=1 zik < θk ∗Ns
(0 ≤ θk ≤ 1) (6.3)

where µE is the mean of empirical data, σE is the standard deviation of the empirical data, and Ns is the

total number of particles.

I could get the predicted classification vector {zk}
Tf

k=1 by conducting the particle filtering algorithm and

applying equation (6.2) and (6.3). I further denote {yk}
Tf

k=1 as the empirical vector of whether a measles (or

pertussis) outbreak indeed obtained at time k, yk ∈ {0, 1}. The calculation method of yk is similar to that

of zik:

yk =

1, yMk ≥ µE + 1.5σE

0, yMk < µE + 1.5σE
(6.4)

where yMk is the empirical data of measles or pertussis reported cases. Finally, to summarize the performance

of the classifier, I employ metrics such as the area under the Receiver Operating Characteristic (ROC) curve,

etc.

6.2.1 The algorithm of particle filtering with the next month prediction output

With the previous introduction of particle filtering, the generic particle filter algorithm considering the output

of the reported cases for the next month employed in this paper is given as follows [26, 6, 84]:

1. At time k=0:

(1) Sample X
N(i)
0 from q0(xN0 );
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(2) Compute a weight for each particle w
(i)
0 = 1

Ns
. This indicates that the weight at initial time step follows

uniform distribution.

2. At time k ≥ 1, perform a recursive update as follows:

(1) Advance the sampled state by sampling X
N(i)
k ∼ qk(xNk |yk, X

N(i)
0:k−1) and set X

N(i)
0:k = (X

N(i)
0:k−1, X

N(i)
k );

(2) To support classification, output I
(i)
rpk by importance sampling, where I

(i)
rpk is the sum of all the age

groups in the age structured model;

(3) Update the weights to reflect the probabilistic and state update models as follows:

w
(i)
k = W

(i)
k−1

p(yMk |X
N(i)
k )p(X

N(i)
k |XN(i)

k−1 )

q(X
N(i)
k |XN(i)

k−1 ,y
M
k )

.

Normalize the weights W
(i)
k =

w
(i)
k∑Ns

i=1 w
(i)
k

(3) Calculate the Seff : 1∑Ns
i=1 (w

(i)
k )

2

(4) If Seff < ST (ST is the minimum effective sample size – the threshold of resampling), perform resampling

to get a new set of X
N(i)
k . And set the weight of the new particles as 1

Ns
.

6.3 Prediction results of next month breakout classification of the

minimal discrepancy model

6.3.1 Results of measles

By incorporating the prediction results of the lowest discrepancy particle filter measles model PFage 15 both,

I could perform a classification-based prediction of whether measles will break out or not in the next month.

Figure 6.1 displays the ROC curve showing the prediction results. The Area Under the Curve (AUC) of the

ROC curve is 0.89, indicating a favourable classification ability.

Figure 6.2 displays the scatter plot between the monthly empirical data and the mean and median of

the model predicted next month results over all sampled particles. The figure further displays the results of

a linear regression result ( the regression result is: y mean=0.80x+84.80, y median=0.78x+72.31, where x

indicates the monthly the empirical data, and the ymean and ymedian specify values from the model ). The

slopes of these two regression lines are 0.80 and 0.78. Theoretically, the best slope is 1.0 – that is, one would

hope for the model predictions of case count in the next month to very closely match the empirically reported

case count for that month.
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Figure 6.1: ROC curve of the prediction classification result of the minimum discrepancy
model of measles. AUC is 0.893.

Figure 6.2: Scatter plot and regression result of the empirical data vs. mean and median
data of the model calculated results of the minimum discrepancy model of measles.
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6.3.2 Results of pertussis

Similar to the analysis of outbreak prediction for the particle filtering model of measles above, I perform a

classification-based prediction of whether a pertussis outbreak will break out or not in the next month, by

incorporating the prediction results of the lowest discrepancy particle filter pertussis model, previously noted

to be PFage 2. Figure 6.3 displays the ROC curve showing the prediction results. The Area Under the Curve

(AUC) of the ROC curve is 0.913.

Figure 6.4 displays the scatter plot between the monthly empirical data and the mean and median of the

model predicted next month results over all sampled particles ( the regression result is: y mean=0.52x+27.2,

y median=0.51x+25.0). The slopes of these two regression line are 0.52 (mean) and 0.51 (median), which

are far smaller than the best value – 1.0. I think there are two reasons. Firstly, there are two outliers in the

monthly empirical data of pertussis – at time-point (month) 8 and 165. Thus, the predicted results at these

two time are far smaller than the empirical data. Secondly, the particle filtering model is under-estimated at

several points especially where the empirical data are greater than 200. However, Figure 6.4 shows that the

mean and median values across all the sampled particles at the time where the empirical data are less than

200 are located at a better range – close to the the value of the empirical data at the same time-point.

Figure 6.3: ROC curve of the prediction classification Result of the minimum discrepancy
model of pertussis. AUC is 0.913

6.4 Discussion and conclusion

In this chapter, I have performed prediction and prospective outbreak classification analysis, based on the

most competitive models as evaluated by predictive accuracy of measles and pertussis, which have been

introduced in the previous chapters (from chapter 3 to chapter 5). The prediction results demonstrated that

the particle filtering models could predict the transmission patterns and classify whether there will be an

outbreak or not in the next month to considerable degree of accuracy (area under the ROC Curve is 0.89 for

measles, and 0.91 for pertussis). I conclude that anticipating the outbreak dynamics of measles and pertussis

114



Figure 6.4: Scatter plot and regression result of the empirical data vs. mean and median
data of the model calculated results of the minimum discrepancy model of pertussis.

in low vaccination regions by applying particle filtering with simple transmission models, and incorporating

time series of reported case counts, is a valuable technique to assist public health authorities in estimating

risk and magnitude of outbreaks.

It is notable that while the classification method I employed here is quite naive – only employing a single

thresholding approach to classify the category of outbreak and non-outbreak, the results of the classification

are acceptable both for the measles and pertussis outbreak classification prediction. However, the strong

results demonstrated for even such a simple model suggest that it is worth investigating more sophisticated

machine learning classification methods to perform the outbreak classification prediction – a priority consti-

tuting an important element of my future work related to this chapter.

Moreover, while the classification results of the next month prediction have demonstrated high accuracy,

it indicates that it is possible to perform the research of the classification of the outbreak prediction related

to a longer prediction period, such as next three months, half year, even one year. Such longer-range

predictions can further contribute to priorities for future work in classification research with regards to

outbreak prediction results of both measles and pertussis particle filtering models.
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Chapter 7

Conclusion

7.1 Discussion and conclusion

In this thesis, a new method for tracking patterns of measles and pertussis outbreaks in low vaccination

regions is presented by applying particle filtering with measles and pertussis compartmental transmission

models, and incorporating empirical data on case reports. Particle filtering offers many attractive features

for epidemiological models. Firstly, it relaxes the stiff assumptions of normality with respect to the process

and observation noise required by the older statistical filtering techniques of Kalman Filtering and its variants;

such assumptions are often particularly problematic in epidemiological contexts with small sample counts.

Secondly, particle filtering is especially well suited to non-linear models such as that used here, because

it foregoes a focus on a single Maximum Likelihood Estimate seen in the Kalman Filter – which can be

particularly problematic in the context of state uncertainty that can span multiple basins of attraction – and

instead samples from a distribution of possible states for a given time-point.

In this study, the particle filtering algorithm has mitigated significant weaknesses and simplifications as-

sociated with aggregate compartmental models and noisy empirical data. By incorporating ongoing arriving

empirical data, the particle filter model has the capability to correct for distortions that accompany com-

partmental model aggregation, such as assumptions of random mixing and homogeneity. It is notable that

while age-structured compartmental models capture heterogeneous mixing among the different age groups,

the individuals within the same age group are engaged in homogeneous mixing. In the datasets examined

here, the particle filter offered strong performance in estimating the outbreak pattern of measles and pertussis

and predicting future trends.

A key benefit of particle filtering lies in its capacity to estimate the latent state of the system – the state

that cannot be directly measured, but which is jointly implied by the combination of empirical time series and

the hypothesized structure of the system, as captured in the mathematical model. It is important to stress

that a key motivation for conducting particle filtering to infer latent state in this way lies in the fact that

reliable understanding of such latent state is important for estimating the impact of interventions enacted at

that point. By estimating the latent state of the system using particle filtering, we can then conduct “what if”

scenarios forward from that point, each of which characterize the effects of distinct interventions. Accurate

estimation of the state of the system prior to initiation of different intervention strategies will frequently be
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an important enabler for accurately assessing the differential effects of those interventions.

The particle filtering algorithm in general also has important limitations, such as information loss and

particle collapse [27] during the evolutionary process of the particles. These limitations are also inherited

in the algorithm applying in this paper that combines particle filtering with a compartmental transmission

model. Moreover, the treatment here further suffers from some additional challenges. For simplicity, the

condensation algorithm is employed in calculating the proposal distribution. However, this algorithm may

contribute to a loss of the diversity of particles. These limitations could be relieved by employing more

particles during the calculation, or restricting particle dispersion by selecting the values of parameters in

more tightly informed ranges. Moreover, in high-dimensional systems with complex patterns of probability

density functions, the variance of the density functions may be high, because it is difficult to be represent

by simple probability density functions. Thus, the particle filtering method with the condensation algorithm

in this thesis maybe difficult in simulating a high-dimensional systems. Finally, a key limitation in terms of

practical implications for the findings in the context of the developed world reflects the fact that we have

focused on prediction in a non-vaccine context; there remains an important uncertainty as to the degree to

which the approach proposed here will offer high predictive capacity in the context of sporadic, low attack rate

outbreaks characteristic of measles and pertussis epidemiology in developed countries within the vaccination

era.

It is notable that there are distinctive different consequences of the stochastic processes added in the

state space model during the estimation period and prediction period. In the estimation period in which

successive elements of the empirical datasets are incorporated by the particle filtering algorithm, if these

stochastic processes are more noisy (i.e., exhibit larger stochastic fluctuations), particle filtering models find

it easier to trace the empirical datasets, given a sufficient particle count. This reflects the fact that when

a new datapoint arrives, the support of the distribution of particle values is sufficiently broad that there

are likely to be particles closer in value to the observed particle, allowing the distribution of particles to

shift towards consistency with the new datapoint. However, during the prediction period, if the stochastic

processes are too noisy, the support of the distribution of particle values within the particle filtering model

will grow very rapidly with increasing time since the last observation was reserved. This can allow the

model to rapidly become highly uncertain about the values of coming empirical data points. For a properly

performing particle filter to be produced, it is thus particularly important that the stochastic processes in

the state space model should be controlled in a proper range. Achieving that balance is likely to require some

tuning.

When estimation of the initial values of each stock in the system dynamic models, the initial values in

the age-structured population models are estimated both manually and by the particle filtering algorithm.

Specifically, the population distribution among the different age groups are tuned manually, while the popu-

lation distribution among different stocks within an age group is estimated by the particle filtering algorithm

by setting the initial values of stocks in a proper range following a uniform distribution. As is the case for
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the rates of stochastic variations seen in the model, the design of the initial state of the types of particle

filtering models examined in this thesis can also require considerable manual tuning.

The work of the thesis establishes that the hypothesis advanced in the thesis statement has been success-

fully tested, and that it does hold. Firstly, the 2D histogram plots with the particle filtering models’ output

data (the monthly or yearly reported cases of measles or pertussis) and the empirical data indicates that the

high probability density region of the model’s prediction of empirical data lies near those data, especially

compared with the results of the output of the traditional calibration models. Secondly, the discrepancy of

the measles particle filtering model’s predictions vs. observed data is reduced with a factor of 2.0, while the

discrepancy of the pertussis particle filtering model’s predictions vs. observed data is reduced with a factor

of 1.6. This proved that the incorporating particle filtering algorithm could build better models compared

with the traditional calibration methods.

I conclude that anticipating the outbreak pattern of measles and pertussis in low vaccination regions

by applying particle filtering with simple measles and pertussis transmission models so as to recurrently

incorporate successive elements of time series of reported case counts is a valuable technique to assist public

health authorities in estimating risk and magnitude of measles and pertussis outbreaks. Such approaches

offer a particularly strong value proposition for other pathogens with little-known dynamics, latent drivers,

and in the context of the growing emergence of high-velocity electronic data sources. While it remains to be

evaluated, we anticipate that additional strong benefits will be realized by extending the application of this

technique to highly vaccinated populations.

Finally, it is notable that all the models in this thesis are built using Anylogic 8.1.0 software, a Java-based

simulation platform. When compared to their non-particle filtered analogue, particle filtering models are much

more resource and time consuming, especially for the models with high-dimensional states. Normally, the

running time grows linearly with the increasing of the number of particles. By contrast, the corresponding

run time of deterministic models with both measles and pertussis would complete less than a minute.

7.2 Future work

Much work remains to be undertaken. While particle filtering techniques investigated in this thesis have

immediate application in populations with low vaccine coverage (including isolated pockets of population or

individuals who refuse vaccination in jurisdictions with otherwise high vaccination coverage), in the future, I

will consider vaccination state in the measles and pertussis particle filter model, so as to support simulation

of the outbreak patterns in high vaccination regions in the vaccination era1. Such a model could be helpful

for predicting outbreaks of measles and pertussis in regions suffering from borderline or waning vaccination

rates due to vaccine hesitancy, health disparities or other causes. I further plan to apply more powerful

techniques, such as Particle Markov Chain Monte Carlo methods that can allow for jointly estimating (via

sampling) the latent state of the model and static parameter values whose values are poorly known.
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Moreover, I also plan to investigate more sophisticated means of predicting outbreak occurrence based

on particle filtering results. It appears likely that such refinements will further enhance the already strong

advantages conferred by particle filtering methods and variants in measles and pertussis transmission mod-

eling.

Finally, I think it would be helpful in the estimation of the contact matrix to build a single particle filtering

model for both measles and pertussis that uses a common mixing matrix and demographic structure, while

matching empirical data for both pertussis and measles. Compared with the particle filtering models of

measles and pertussis that have been built already, this model would support using twice the amount of data

to be used in support of estimation of the contact matrix.

7.3 Contributions

The first contribution of this thesis lies in conducting the first known experiments with particle filtering

on both measles and pertussis transmission models to enhance the accuracy of the prediction of measles

or pertussis in the context of incoming epidemiological data. Moreover, both aggregate and age-structured

population particle filtering models of measles and pertussis have been researched.

Secondly, this thesis provides the first known application of particle filtering algorithm to state space

models corresponding to age-structured population models with a relatively large number of age groups.

Although Dureau et al. (2013) [28] implemented the particle filtering algorithm with a state space model

with 2 age groups, this research applies particle filtering in a complex age-structured model with 32 age

groups.

Thirdly, several different mathematical methods to calculate the contact matrix of the age-structured

compartmental measles and pertussis models have been presented in this thesis. It is particularly notable

that a new method which could decrease the number of free parameters in calculating the contact matrix

with a relatively large number of age groups is explored in this thesis. For a number of age groups n, this

method reduces the count of such parameters from O(n2) to O(n).

Fourthly, particle filtering supports estimation via sampling from the entire state of the corresponding

dynamic model – including both latent and observable states – for each time point, incorporating the empirical

datasets as they occur. This advantage can help the researchers to perform researches related to those latent

states, including so as to better understand the current epidemiological context, and to better understand

historical epidemiological situations.

Fifthly, the thesis constitutes the first time that the particle filtering has been used to simulate the inter-

vention strategies for health models. The intervention experiments investigated here indicate that particle

filtered measles and pertussis models are capable of evaluating interventions by examining the outcome of

potential intervention strategies using model results. In the current investigations, such interventions were

characterized naively by alternation of model parameters – such as the contact rate and the total number of
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individuals in each stocks – but the same kinds of investigations could be undertaken with respect to more

sophisticated intervention investigations.

The last but not the least contribution is that this thesis proposes, applies and evaluates the performance

of a binary classification method of predicting whether there will be an outbreak in the next time (Month

in this research), with the data generated from the particle filtering models. It is notable that although the

evaluation suggests positive performance, the generality of the approach further suggests ready extension.

7.4 Publications of this thesis

Till the date of the submission of this thesis, an article has been published in the Journal of PLoS ONE,

based on the content of chapter 3, chapter 4 and the measles part of chapter 6 in 2nd November, 2018. The

information of this article is listed as follows:

Li X, Doroshenko A, Osgood ND (2018) Applying particle filtering in both aggregated and age-structured

population compartmental models of pre-vaccination measles. PLoS ONE 13(11): e0206529.

https://doi.org/10.1371/journal.pone.0206529
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Appendix A

Proof of the n-square grows of the unknown param-

eters

In this part, I prove that the unknown parameters grows with n-squared with the total number of age
groups in the model.

The contact matrix has been introduced in chapter 2 , which is
β11 β12 . . . β1n

β21 β22 . . . β2n

...
...

. . .
...

βn1 βn2 . . . βnn

 =


l1
l2
...
ln

 ◦

f11 f12 . . . f1n

f21 f22 . . . f2n

...
...

. . .
...

fn1 fn2 . . . fnn

 (A.1)

where ◦ indicates the Hadamard (element-wise) product; the parameter of li (1 ≤ i ≤ n) is the contact
rate of age group i. In this research, the li is known variables; the parameter of fij (1 ≤ i ≤ n, 1 ≤ j ≤ n)
indicates the fraction of the age group j of the contact rate of the age group i.

The fij are normally unknown. And the total number of fij is n2. However, there are two relationships
under this method. One relationship is that the sum of the fraction to all the age groups of the age group
(e.g. i) is 1.0. The other relationship, related to the characteristics of balance of the contact matrix, is that
the total contacts of the age group i to the age group j should be equal to the total contacts of the age group
j to the age group i. Based on these two relationships, two equations could be generated as follows:

n∑
j=1

fij = 1

Nilifij = Nj ljfji

(A.2)

the total number of equations in Equation (A.2) is n+

(
2
n

)
= n+ n(n−1)

2 = n2+n
2 . Finally, in this method

of calculating the contact matrix, the number of unknown parameters is n2−n
2 . It indicates that the number

of the unknown parameters grows in n-squared with the total number of age groups (n) in the model.
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Appendix B

Initial values of stocks in the particle filtering mod-

els of pertussis

Table B.1: Table showing initial values of the stocks in the pertussis two-age-groups
particle filtering model.

Parameter Value Unit
Sc0 Uniform[500, 35000) Person
Sa0 Uniform[10, 10000) Person
Ic0 Uniform[30, 2500) Person
Ia0 Uniform[0, 500) Person
Imc0 50 Person
Ima0 50 Person
Iwc0 100 Person
Iwa0 100 Person
R1c0 Uniform[5, 10000) Person
R1a0 Uniform[0, 10000) Person
R2c0 10000 Person
R2a0 10000 Person
R3c0 10000 Person
R3a0 10000 Person
R4c0 Nc − Sc0 − Ic0 − Imc0 − Iwc0 −R1c0 −R2c0 −R3c0 Person
R4a0 Na − Sa0 − Ia0 − Ima0 − Iwa0 −R1a0 −R2a0 −R3a0 Person
βc Uniform[5,100) Person/Month
Ma Uniform[5,100) Dimensionless
Cr Uniform[0,0.2) Dimensionless
fcc Uniform[0,0.2) Dimensionless
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Table B.2: Table showing initial values of the stocks in the pertussis 32-age-groups particle
filtering models.

Parameter Value Unit
Si0 1 ≤ i ≤ 32 Uniform[1000, 3000), Uniform[1000, 3000), Uniform[1000, 3000),

Uniform[1000, 9000), Uniform[1000, 10000), Uniform[1000,
10000), Uniform[1000, 10000), Uniform[100, 5000), Uniform[100,
2000), Uniform[100, 2000), Uniform[100, 2000), Uniform[100,
2000), Uniform[100, 2000), Uniform[10, 500), Uniform[10, 500),
Uniform[10, 500), Uniform[10, 500), Uniform[10, 500), Uni-
form[10, 500), Uniform[10, 500), Uniform[10, 500), Uniform[10,
500), Uniform[10, 500), Uniform[100, 2000), Uniform[100, 2000),
Uniform[100, 2000), Uniform[100, 5000), Uniform[100, 5000), Uni-
form[0, 2000), Uniform[0, 1000), Uniform[0, 500), Uniform[0, 100)

Person

Ii0 1 ≤ i ≤ 32 Uniform[0, 10), Uniform[0, 10), Uniform[0, 10), Uniform[0, 10),
Uniform[0, 20), Uniform[0, 20), Uniform[0, 20), Uniform[0, 20),
Uniform[0, 20), Uniform[0, 20), Uniform[0, 20), Uniform[0, 20),
Uniform[0, 20), Uniform[0, 10), Uniform[0, 10), Uniform[0, 10),
Uniform[0, 10), Uniform[0, 10), Uniform[0, 10), 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0

Person

Imi0 1 ≤ i ≤ 32 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0

Person

Iwi0 1 ≤ i ≤ 32 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Person

R1i0 1 ≤ i ≤ 32 0, 0, 0, 0, Uniform[0, 2000), Uniform[0, 2000), Uniform[0, 2000),
Uniform[0, 2000), Uniform[0, 2000), Uniform[0, 2000), Uniform[0,
2000), Uniform[0, 2000), Uniform[0, 2000), Uniform[0, 2000), Uni-
form[0, 2000), Uniform[0, 2000), Uniform[0, 2000), Uniform[0,
2000), Uniform[0, 2000), Uniform[0, 2000), Uniform[0, 2000), Uni-
form[0, 2000), Uniform[0, 2000), Uniform[0, 20000), Uniform[0,
20000), Uniform[0, 20000), Uniform[0, 20000), Uniform[0, 20000),
Uniform[0, 20000), Uniform[0, 2000), Uniform[0, 2000), Uni-
form[0, 100)

Person

R2i0 1 ≤ i ≤ 32 0, 0, 0, 0, 100, 100, 100, 100, 100, 100, 100, 100, 1000, 1000, 1000,
1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 10000, 10000,
10000, 10000, 10000, 10000, 5000, 500, 50

Person

R3i0 1 ≤ i ≤ 32 0, 0, 0, 0, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000,
6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 10000,
10000, 10000, 10000, 6000, 5000, 0, 0, 0

Person

R4i0 1 ≤ i ≤ 32 Ni − Si0 − Ii0 − Imi0 − Iwi0 −R1i0 −R2i0 −R3i0 Person
l1 Uniform[0.001, 0.5) Person/Day
Cr Uniform[0, 0.15) Dimensionless
εi 1 ≤ i ≤ 6 Uniform[0, 1) Dimensionless
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