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Abstract

The problem of inferring the value of unobservable model parameters given a set of observations 

is ubiquitous in glaciology, as are large measurement errors. Bayes’ theorem provides a unified 

framework for addressing such problems in a rigorous and robust way through Monte Carlo sampling 

of posterior distributions, which provides not only the optimal solution for a given inverse problem, 

but also the uncertainty. We apply these methods to three glaciological problems. First, we 

use Markov Chain Monte Carlo sampling to infer the importance of different glacier hydrological 

processes from observations o f terminus water flux and surface speed. We find that the opening 

of sub-glacial cavities due to sliding over asperities at the glacier bed is of a similar magnitude 

to the opening o f channels due to turbulent melt during periods of large input flux, but also that 

the processes o f turbulent melting is the greatest source o f uncertainty in hydrological modelling. 

Storage of water in both englacial void spaces and exchange of water between the englacial and 

subglacial systems are both necessary to explain observations. We next use Markov Chain Monte 

Carlo sampling to determine distributed glacier thickness from dense observations o f surface velocity 

and mass balance coupled with sparse direct observations o f thickness. These three variables are 

related through the principle o f mass conservation. We develop a new framework for modelling 

observational uncertainty, then apply the method to three test cases. We find a strong relationship 

between measurement uncertainty, measurement spacing, and the resulting uncertainty in thickness 

estimates. We also find that in order to minimize uncertainty, measurement spacing should be 1-2 

times the characteristic length scale of variations in subglacial topography. Finally, we apply the 

method o f particle filtering to compute robust estimates of ice surface velocity and uncertainty 

from oblique time-lapse photos for the rapidly retreating Columbia Glacier. The resulting velocity 

fields, when averaged over suitable time scales, agree well with velocity measurements derived 

from satellites. At higher temporal resolution, our results suggest that seasonal evolution o f the 

subglacial drainage system is responsible for observed changes in ice velocity at seasonal scales, and 

that this changing configuration produces varying degrees o f glacier flow sensitivity to changes in 

external water input.
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do not know. But there are also unknown unknowns the ones we don’t know we don’t 

know. And if one looks throughout the history o f our country and other free countries, 

it is the latter category that tend to be the difficult ones.”

— Donald Rumsfeld



C h a p te r  1 

In tr o d u ct io n

Observations rarely provide certainty. As a rule, mistakes are made in the process of making 

observations, or the model (conceptual or otherwise) that the observations are intended to inform 

may be inadequate to explain them. The best that we can hope for then is that an observation 

will provide evidence for or against a particular hypothesis, updating our degree of belief in it. 

This is not necessarily a problem: absolute certainty is not a requirement in many problems of 

practical importance (Should I board this airplane? How much are humans contributing to climate 

change?). Indeed, such a requirement would be paralyzing. Yet, even in the absence of certainty, 

whatever method is used to evaluate belief in a particular hypothesis needs to be both rigorous and 

consistent, else we risk a descent into nihilism.

Bayes’ theorem provides the means to quantitatively update belief in a hypothesis [Tarantola, 

2005]. Suppose we have some model o f the world which is governed by a number o f parameters m, 

and we wish to update our hypothesis o f m  based on some observations d. We use the notation 

P (m|d) to represent a conditional probability density function, which integrates to unity and 

quantifies proportional belief that a given model state m  is true given d. A  simple manipulation 

o f an identity gives Bayes’ Theorem

P  (m|d) =  P  ̂ d ) ^ . (1.1)

Each component has a distinct interpretation. The left hand side is known as the posterior distri

bution, which is the probability distribution o f model states after our belief has been updated with 

observations. It is the state o f knowledge about m  after all information has been considered. The 

first term in the numerator is known as the likelihood, which is the likelihood of having measured 

d, assuming a certain state m  to be true. This also encodes the entire process o f observation. 

Such a function can be very complicated when the effects of parameters m  are filtered through a 

complex model before being observed. The denominator P (d )  is the marginal probability of the 

observations, which simply acts as normalizing constant. Finally, the second term in the numerator 

is known as the prior probability, or simply the prior, which is the probability distribution o f model 

states before having considered observations. The prior can encode many presuppositions, such as 

positivity, smoothness, or regularity [Neal, 1997]. It may also enforce dynamical considerations, 

such as when the model at the next instant in time is random but depends strongly on the model 

at the current instant [Kalman , 1960]. Finally, the prior can be viewed recursively, such that when 

new information becomes available, the prior may be the posterior from having considered previous
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observation. Stated plainly, Bayes’ theorem says that belief in a hypothesis about the model state 

updated with observations is proportional to the probability o f having made those observations 

assuming the hypothesis to be true multiplied by a priori belief in the hypothesis. Either the like

lihood or the prior can dominate the update of belief. If prior belief in a hypothesis is very strong, 

then no amount o f evidence can change this belief. On the contrary, if little is already known about 

a hypothesis, then belief in it defers to observations even if they are error-prone.

Bayes’ theorem provides a means to make inferences about arbitrary unobservable quantities 

given observable ones, which is to say that it is a mechanism for solving inverse problems. This 

makes it a powerful tool in geophysics and particularly in understanding glacier dynamics, where 

a primary concern is using quantities that can be observed at the relatively accessible glacier 

surface to make inferences about governing processes that are mostly occurring in unobservable 

locations such as the glacier interior or bed. Such problems are ubiquitous in glaciology, but two 

examples have been o f particular interest in the literature. First is the problem of determining the 

thickness of a glacier given an estimate o f its distributed specific mass balance, its surface geometry 

and rate of change, and perhaps its surface velocity. Often, pointwise measurements of thickness 

supplement these distributed estimates, but these are usually sparse. A  variety of deterministic 

methods have been proposed to solve this problem, from artificial neural networks [Clarke et al., 

2009] to partial differential equation-constrained optimization [Morlighem et al., 2011; Huss and 

Farinotti, 2012]. However, a recent intercomparison showed a large spread in the solutions produced 

by these methods [Farinotti et al., 2017]. Unsurprisingly, the most consistent results were found for 

synthetic examples where the surface mass balance and surface velocity estimates could actually 

be error-free (an impossibility in real life). In general the sparser the measurements, the larger the 

discrepancy between individual methods. A  second common problem is to estimate the traction 

exerted by a glacier’s bed on the overlying ice, given a physical model o f ice flow and estimates of 

ice geometry and surface velocity [M acAyeal, 1993]. While most models are able to reproduce the 

data with arbitrary precision, the resulting estimates o f basal traction show extreme sensitivity to 

errors in prescribed ice thickness, choice o f physical model, and the spatial smoothness imposed 

[Morlighem et al., 2013; Habermann et al., 2013; Brinkerhoff and Johnson , 2013; Sergienko et al., 

2014]. This non-uniqueness has led to uncertainty regarding whether such inversions are even 

useful, particularly towards the goal o f prognostic glacier modelling at the continental scale.

A  reasonable question to ask when confronted with multiple answers to the same problem 

is: which one o f these is right? The only reasonable response is that none o f them are. W ith
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some exceptions [Petra et al., 2012; Raymond and Gudmundsson, 2009], glaciologists have been 

concerned with finding the most probable value o f m  given observations, because the problems are 

high dimensional and can be most efficiently solved with deterministic iterative methods. However, 

finding the most probable state only gives half the story, and without an estimate of the complete 

posterior distribution, we have no knowledge o f important factors such as uncertainty, correlation, 

and local versus global optima. In particular, considering only the maximum a posteriori solution 

provides little information on the degree of uniqueness for a particular inverse model solution: is a 

given solution clearly the best, or are there many other options that are just as good? It is easy 

to see how the sensitivity o f different methods for inferring ice thickness or basal traction could be 

the result o f such non-uniqueness. Finding the complete posterior distribution solves each of these 

problems. Parameter uncertainty and covariance are a fundamental part o f the posterior. Local and 

global maxima are evident because the entire distribution is computed. The posterior distribution 

gives all probable solutions, not just the most probable, which allows us to assess uniqueness. The 

advantages conferred by producing the complete posterior distribution come with a price, however: 

they are computationally expensive. Because of the curse o f dimensionality, the effort required to 

even enumerate the potential states o f a model increases exponentially in the number o f parameters. 

This onerous requirement can be partially circumvented by carefully constructed sampling schemes, 

so-called Monte Carlo methods that produce finite samples of the complete posterior distribution 

that converge asymptotically to the true distribution as the number o f samples grows large [Brooks 

et al., 2011]. Inferences are thus made from these samples, rather than an analytical expression 

for the posterior distribution. Still, the number o f samples necessary to adequately represent the 

underlying distribution may be large, and generating them most efficiently is an area o f active 

research.

As an example, consider the problem of inferring the (statistical) state o f a glacier’s hydrologic 

system (i.e. englacial and subglacial storage and transmissivity) from observations o f surface ve

locity. The hydrologic system, in conjunction with imperfect estimates of influx from the glacier 

surface and outflux through the glacier terminus, determines the water pressure at the glacier base, 

which in turn affects the amount o f drag exerted by the bed. This traction resists the driving and 

membrane stresses induced by glacier geometry, all/owing a certain amount o f slip between the 

two surfaces to occur, but the specific relationship between pressure, stress, and slip is imprecisely 

known. Basal velocity is translated up through the body of the ice, while being attenuated by 

temperature-dependent viscous flow. A  GPS receiver installed in the ice surface is then advected
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along with the resulting complex superposition o f basal velocity and internal deformation (with 

additional noise from small motions due to melting and wind), and while doing so records the 

position and transmission time o f a multitude o f satellites in orbit around the Earth. Thus the 

likelihood for this model is a function that tells us the probability o f the GPS receiver reading 

a certain set o f times from orbital satellites, were the subglacial drainage system organized in a 

hypothesized way. As a prior, we can specify that it is extremely improbable for water flux or basal 

shear stress to be inversely proportional to water pressure (among other things). At each step in 

this process errors accrue from imprecision in the measurement device, from random fluctuations, 

and from inadequacies in the physical models o f the atmosphere, ice flow, and basal physics. Given 

all o f this uncertainty, is it even possible to say something useful about a glacier’s hydrology? If so, 

how sure are we about our results? More broadly, what limits exist to the amount o f information 

that can be inferred about unobservable glacial processes from those that can be observed? The 

latter is the central question addressed by this dissertation.

In Chapter 2, we apply Monte Carlo sampling to the specific problem discussed in the previous 

paragraph, using Kennicott Glacier, AK as a test case. We borrow the observations and hydrologic 

model from Bartholomaus et al. [2011], who is a co-author on the paper, along with Colin Meyer, 

Ed Bueler, and Martin Truffer. The work appears in Annals o f Glaciology as ‘Inversion of a 

subglacial hydrology m odel.’ The mathematical underpinnings were mostly conceived just steps 

from the glacier in question, at U A F ’s Glaciology Summer School. We first make the problem 

tractable by performing formal non-dimensionalization, which isolates the true model parameters 

that control the relative magnitude o f a variety o f hydrologic processes such as melting by turbulent 

dissipation and the characteristic small-scale topography beneath Kennicott Glacier, before using 

the Metropolis-Hastings algorithm to find their probability distributions. We find that the opening 

of linked cavities due to sliding over a rough bed and turbulent melting o f cavity walls are of similar 

importance in determining the evolution o f the drainage system and that significant water is stored 

both subglacially and in englacial voids. The primary source o f uncertainty in the model results is 

driven by the system’s sensitivity to melting from turbulent dissipation.

Chapter 3 appears in Frontiers in Earth Science as ‘Bayesian inference of subglacial topogra

phy using mass conservation,’ and is co-authored by Andy Aschwanden and Martin Truffer. We 

again use Monte Carlo sampling to find the approximate posterior distribution o f an ice thickness 

field, given dense observations o f surface velocity and specific mass balance and sparse, pointwise 

measurements of ice thickness. We link these quantities through mass conservation: the glacier is
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constrained such that the divergence o f ice flux is equal to the surface mass balance, a requirement 

for the glacier to maintain a (quasi-)steady-state. For this situation (which is a common one in 

glaciology), we elucidate the various sources of uncertainty that must be considered, including that 

associated with non-contemporaneous measurements. We apply the method to three test cases: a 

synthetic glacier, a small Swedish mountain glacier, and Greenland’s largest outlet. In each case 

we provide evidence for the convergence o f the sampling procedure to the posterior distribution, 

and present the posterior distribution o f ice thickness for each o f the cases considered. We then 

explore the way in which uncertainty in both the velocity and surface mass balance propagate 

into uncertainty in the ice thickness. Finally, we examine the influence that the thickness corre

lation length (specified through the prior covariance) has on the resulting posterior distribution, 

and make a recommendation for the appropriate spacing between thickness measurements for the 

optimal trade-off between effort and return. Additionally, the method developed in this paper was 

applied to the ice thickness model intercomparison project [Farinotti et al., 2017], which compared 

solutions o f multiple methods for estimating ice thickness from surface observations.

In Chapter 4, we take a step back from the direct inference o f bed properties, and instead fo

cus on the observation o f glacier surface velocities from oblique time-lapse images. This is difficult 

problem for several reasons. First, glaciers tend to show up in places with bad weather, and so occlu

sions are common. Second, many characteristic features of a glacier surface, such as crevasses, are 

quasi-periodic, and differentiating between them is error-prone. Third, the procedure of projecting 

from two-dimensional image coordinates to three-dimensional spatial coordinates is ill-posed. We 

circumvent these issues by using a particle filter, a Bayesian sampling technique that sequentially 

culls and replicates samples from a large number o f potential solutions generated by a model of 

the underlying physics. We specify a likelihood function by matching characteristic glacier features 

between images while simultaneously correcting for small camera motions. Using this technique, 

we construct a daily-resolution estimate of glacier surface velocities for the terminus o f Columbia 

Glacier, a rapidly retreating and highly dynamic glacier in Alaska’s Chugach Mountains. We find 

significant seasonal changes in velocity in line with previous work, and also short-term fluctuations 

driven by periods o f intense melt and rainfall. This work was performed in collaboration with Shad 

O ’Neel o f the USGS, and is in preparation for submission to Journal o f Glaciology.

Finally, in Chapter 5, we take stock o f the primary conclusions o f this work, and discuss ways in 

which the techniques developed here can be used to further improve glaciological inverse modelling.
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C h a p te r  2 

In v ersion  o f  a g la c ier  h y d r o lo g y  m o d e l1

A b s tr a c t

The subglacial hydrologic system exerts strong controls on the dynamics of the overlying ice, yet 

the parameters which govern the evolution o f this system are not widely known or observable. To 

gain a better understanding o f these parameters, we invert a spatially-averaged model o f subglacial 

hydrology from observations o f ice surface velocity and outlet stream discharge at Kennicott Glacier, 

Wrangell Mountains, AK. To identify independent parameters, we formally non-dimensionalize the 

forward model. After specifying suitable prior distributions, we use a Markov Chain Monte Carlo 

algorithm to sample from the distribution o f parameter values conditioned on the available data. 

This procedure gives us not only the most probable parameter values, but also a rigorous estimate of 

their covariance structure. We find that the opening of cavities due to sliding over basal topography 

and turbulent melting are of a similar magnitude during periods o f large input flux, though turbulent 

melting also exhibits the greatest uncertainty. We also find that both the storage o f water in the 

englacial system and the exchange o f water between englacial and subglacial systems are necessary 

in order to explain both surface velocity observations and the relative attenuation in the amplitude 

o f diurnal signals between input and output flux observations.

2.1 In tro d u ct io n

The sub- and englacial hydrologic systems strongly influence the dynamics o f glaciers [e.g Iken et al.,

1983; Jansson, 1995; Fischer and Clarke, 1997]. Observations o f this linkage span a continuum

from small mountain glaciers [Flowers et al., 2002; Jansson, 1995; Harper et al., 2007], to much

larger valley glaciers [Bartholomaus et al., 2008; Truffer and Harrison , 2006], to the large polar

Isbrs and ice streams o f Greenland and Antarctica [Zwally et al., 2 0 0 2 ; Engelhardt and Kamb , 1998].

In particular, multiple studies have indicated that subglacial water pressure, particularly effective

pressure (the difference between ice overburden and water pressure), is dominant in explaining

glacier sliding velocities [Iken and Bindschadler, 1986; Willis et al., 1995; Iken and Truffer, 1997].

Theoretical analysis o f ice flow over bedrock asperities in the presence o f liquid water also suggest a

dependence between sliding velocity and effective pressure [Lliboutry, 1968; Fowler, 1986; S choof,

2005; Gagliardini et al., 2007]. This dependence is primarily due to the filling o f subglacial cavities

(and drowning o f bedrock asperities) with pressurized water, leading to a relative decrease in

1Published as Brinkerhoff, D. J., C. M. Meyer, E. Bueler, M. Truffer, and T. Bartholomaus (2016), Inversion of a 
glacier hydrology model, Journal of Glaciology, 57 (72), 84-95.
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frictional forces between the ice and bedrock.

Despite the available theoretical and observational conclusions, predictive models of sliding 

due to subglacial hydrology are difficult to formulate, and more difficult to validate. The specific 

relationship between effective pressure and sliding is not fully understood. Initial theoretical results 

postulated an inverse power law relationship [Fowler, 1986]. This type o f sliding law has been shown 

to produce good correspondence with observations, often with model parameters being remarkably 

consistent between locations [Jansson, 1995; Sugiyama and Gudmundsson, 2004]. However, such 

a model is singular at vanishing effective pressures, a state which is observed rather frequently 

[e.g Amundson et al., 2006; Harper et al., 2007]. Additional theoretical work by Schoof [2005] 

and Gagliardini et al. [2007] suggests a phenomenological sliding law which satisfies ‘Iken’s bound’ 

[Iken , 1981], which predicts a maximum finite shear stress in the limit o f vanishing effective pressure. 

Nonetheless, identifying the appropriate parameters for such a law, which generally depend upon 

the specifics o f small scale bed geometry, remains problematic.

Simultaneously, the estimation o f effective pressure presents difficulties. Far from being static 

in time, it is widely believed that the configuration of the subglacial drainage system can evolve 

rapidly and on sub-seasonal scales, often changing its qualitative configuration from an inefficient 

network o f linked cavities and perhaps sheet flow [Kamb, 1987; Hubbard and Sharp, 1995], to an 

efficient channelized system more analogous to fluvial systems [Nienow et al., 1998; Sugiyama and 

Gudmundsson, 2004]. The combination o f these interesting dynamics have inspired several models 

which have sought to capture the evolution o f the subglacial hydrologic system. Arnold et al. [1998] 

presented a semi-distributed subglacial hydrology model which explicitly allowed the evolution of 

the channelized drainage system. Flowers and Clarke [2002a] developed a model which accounted 

for exchanges between the surface, englacial, subglacial, and groundwater systems to Trapridge 

Glacier [Flowers and Clarke, 2002b], successfully capturing seasonal evolution o f subglacial routing 

efficiency, and also suggested the possible importance o f englacial storage. Schoof [2010] more 

recently modelled a spontaneously-generated channelized subglacial system, and showed that the 

transition between the dominant modes o f cavities and channels exhibits hysteresis. Importantly, 

he also showed that an increase in mean water supply does not necessarily translate into an increase 

in glacier flux and that the rate at which input flux changes is a more dominant control on glacier 

dynamics. More recently, Schoof et al. [2 0 1 2 ] addressed the issue o f bounds on water pressure, both 

above and below, by casting the problem as a variational inequality. Werder et al. [2013] extended 

the model o f Schoof [2010] by introducing a novel unstructured edge-based discretization scheme,
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which allowed for an unbiased simulation o f channel orientation.

Despite advances in hydrologic modelling, validation against observations o f hydrologic variables 

such as water pressure or subglacial drainage geometry remains difficult due both to a sparsity in 

observations o f sub- and englacial hydrology and also uncertainty in the many controlling model 

parameters which are generally unknown, ranging from englacial porosity and bedrock asperity 

size to factors controlling the semi-empirical relationships used to specify water fluxes. The lack 

o f in situ observations o f these controlling parameters is a limiting factor in the operational use of 

subglacial hydrology models in predicting water pressures and in predicting the influence o f water 

on glacial dynamics.

In this work, we take an inverse approach, and seek to quantify parameter values in a coupled 

subglacial hydrology and sliding model from observations o f surface velocity and terminal discharge. 

To simplify matters, we utilize the simplest possible model o f subglacial and englacial hydrology that 

can still be reasonably expected to capture observed dynamics. In particular, we adopt the ‘ lumped’ 

model of Bartholomaus et al. [2011], who proposed to treat both englacial storage and subglacial 

storage in a spatially-averaged sense, thus collapsing the model into a set of coupled ordinary 

differential equations. The relationship between the lumped model and a spatially distributed 

one was demonstrated by Bueler [2014]. The linkage between the spatially-averaged model used 

in this work and several other contemporary models which do not explicitly account for channel 

processes was demonstrated by Bueler and van Pelt [2015] We extend the model both by non- 

dimensionalization to identify the true parameter ratios controlling model dynamics, and also by 

introducing a Manning relation to predict output flux, a feature that the model previously lacked.

As a test case we adopt the Kennicott Glacier, Wrangell Mountains, AK, which is the same 

glacier for which the Bartholomaus et al. [2011] model was initially developed. Kennicott Glacier 

is approximately 43km long, and covers around 400km2. The maximum thickness is not precisely 

known, but is believed to be at least 450m. It experiences an annual flood due to the outburst 

o f a marginal lake, which reorganizes the subglacial hydrologic system. For summer of 2006, both 

discharge and surface velocity measurements are available, as well as a well-constrained estimate of 

input flux resulting from both surface melt and marginal lake drainage [Bartholomaus et al., 2008].

As an inversion strategy, we adopt a Bayesian perspective as a means to estimate distributions 

o f unknown model parameters [Tarantola, 2005]. In particular, we formulate a likelihood function 

by considering the misfit between modelled and observed surface velocities and output fluxes, 

subject to assumed observational and model uncertainties. Using explicit prior assumptions about
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Figure 2 .1 . Observed (red) and modelled (black) non-dimensionalized velocity, input flux, and out
put flux. Gray envelopes correspond to the 1a credibility interval. Blue line indicates approximate 
time at which marginal lake outburst flood occurred.

parameters, we can then draw samples from the posterior probability distribution of each model 

parameter. Not only does this procedure provides estimates o f the most probable set o f parameters, 

it also provides the covariance structure o f the joint distribution o f model parameters, which is 

necessary for assessing both the uncertainty and uniqueness of each parameter.

2.2 D a ta

The three data sets utilized in this work are shown in red in Figure 2.1. They span o f approximately 

75 days, beginning in mid-May 2006, and ending at the end o f July 2006. At Julian day 185 

(corresponding to non-dimensional time t =  32.5 in Fig. 1), a marginal lake 15km from the 

glacier terminus drained, producing both an outburst flood and a large speed-up event. Velocity 

data were derived from a differential GPS located near the glacier center line approximately 14km 

from the glacier terminus. Output flux was assessed with sonic ranger measurements o f stage on 

the Kennicott River, the primary outlet stream o f the glacier. Input flux was computed using a

0
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positive degree day model [e.g. H ock , 2005] calibrated using temperatures and specific mass balance 

measurements at five stake locations located near the glacier centerline at various elevations. See 

Bartholomaus et al. [2011] for further details regarding the specifics o f each o f these data sets.

2.3 M o d e l  D e scr ip t io n

The model o f the subglacial hydrologic system considered here treats the subglacial-englacial hy

drologic system as area-averaged quantities over the extent o f the glacier. It is fashioned after that 

proposed by Bartholomaus et al. [2011], with a few adaptations. Additionally, we have adopted 

the notation used by Bueler [2014]. It consists of two linked elements. First, storage o f water in 

the englacial system is parameterized by its proxy water pressure P (t) .  In particular, under the 

assumption o f an englacial drainage system that is macroporous and well-connected to the sub

glacial system, storage in the englacial system defines a water table which corresponds directly to 

subglacial water pressure. Thus, the water pressure in the englacial system is given by a simple 

mass budget

d P  9  < Q n rn  -  Q ^ t )  -  f- LLW  d M , (2 .1 )
dt L W 0 \ h dt

where L and W  are the glacier length and width, respectively, 0  the englacial porosity, h an average 

bedrock bump height, and f  a geometric factor related to the geometry o f bedrock bumps. The 

essential statement of this equation is that the change in water pressure is governed by the flux 

into the system from the surface minus the flux out the terminus, less the change in capacity o f the 

subglacial system.

Average cavity size A c(t) (a proxy for subglacial storage) is governed by the opening of cavities 

due to sliding, the melting of cavities due to turbulent heat generation, and creep closure [Nye, 

1976]

dAc
dt

=  Ub h

+  ( p f ) ( W q ~  (t>i v p
-  CcAc(Po -  P )n, (2 .2 )

where ub is the sliding velocity, Yr the Rothlisberger constant [Rothlisberger, 1972], Cc =  2/(B n)n 

an effective ice softness, and V P  the hydraulic gradient, which we henceforth approximate as 

V P  ~  p  where t  is a water pressure gradient length scale. Po denotes the ice overburden pressure. 

A c(t) is constrained to be positive, which reflects the fact that a cavity cannot possess negative 

cross-sectional area. P (t) is constrained to lie between zero and P0. The lower bound reflects that
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Table 2.1. Dimensional constants and their values as used by Bartholomaus et al. [2011].

Param. Value Units Description

pw 1 0 0 0 kg m - 3 Water density

pi 917 kg m - 3 Ice density

g 9.81 m s - 2 Gravitational acceleration

L 15 km Glacier length

W 4 km Glacier width

H 400 m Glacier thickness

£ - m Pressure gradient length scale

$ 2  x 1 0 - 3 Englacial porosity

f 0 .05 Bedrock form factor

h 2 Bedrock bump height

1 0 m Bedrock bump wavelength

Yr 0.303 Rothlisberger constant

L f 3.35 x 105

ifcuO
4*1l_5 Latent heat of fusion

n 3 Glen’s flow law exponent

Cc 1.77 x 10- 25 (Pa s)-n Creep parameter

a 5
4 Cavity flux exponent

P
3
2 Pressure flux exponent

r - Pa1-  ̂ s- 1 

mg+ 2 ( 1- a )

Flux constant

krn 8  x 1 0 - 4 m a - 1 PaY Scaled driving stress

Po 3.6 MPa Ice overburden pressure
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it is unlikely for a subglacial cavity to hold a vacuum [e.g Schoof et al., 2012]. Properly, the upper 

bound on pressure should be (pw/p i)P 0, where pw and pi are water and ice density, respectively. 

This bound is the limit at which the englacial water table would overtop the glacier itself, assum

ing a well-connected englacial cavity network, as is thought to be the case at Kennicott Glacier 

[Bartholomaus et al., 2011]. Nonetheless, our chosen sliding law becomes singular at pressures 

greater than overburden (which reflects the entire glacier reaching flotation), as it was developed 

without the consideration o f either well-connectedness or more exotic mechanisms by which over

burden pressure can be exceeded such as hydrofracturing [Tsai and R ice , 2010]. As such, we impose 

this more restrictive constraint.

The forcing function Q in(t) is specified by data. Bartholomaus et al. [2011] also consider Q out(t) 

as known, but this amounts to the specification of both an influx and outflux boundary condition. 

This is problematic from a physical perspective and amounts to the odd conceptual situation of 

a fixed volume pump being attached to both ends o f the hydrologic system. Such a configuration 

implies that the model is permanently sensitive to the initial pressure, as there is no mechanism for 

the self-correction o f over- and underpressure, which has serious implications for the interpretation 

o f recovered parameter values.

Here, we take an alternative approach: rather than specify the output flux, we use a generalized 

Manning relationship relating water pressure and channel size to output flux [e.g. W alder, 1986], 

namely
' p  \ d- 1

Qout(t) =  r A C ^  j j  , (2.3)

where the hydraulic gradient has again been approximated as proportional to water pressure over 

a gradient length scale £.

To close the model, we require a constitutive relationship for basal velocity. After Bartholomaus 

et al. [2 0 1 1 ], we adopt the commonly used sliding law

kT n

*  = ( P 0 - P ) Y  ■ <2 -4>

where k is a constant, and Tb is the basal shear stress [e.g Bindschadler, 1983; Jansson, 1995]. 

Despite notable limitations, this sliding law is simple and has been used extensively in the literature, 

allowing the specification o f reasonable prior information about the value o f its flow exponent.
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Table 2.2. Parameters computed using the constants defined in Table 1 (Column 2) and the maxi
mum a posteriori probability (M AP) parameter estimates determined using the methods described 
in this paper (Column 3). Parameters above the doubled line are parameters directly controlling 
model dynamics, while below parameters represent additional sources o f uncertainty in model input 
or output data.____________________________________________________________

Param. Bartholomaus (2011) M AP Description

k - 0 .44 Basal traction coef.

Y 0 .2 2 0 .4 Pressure sliding exp.

0 .018 0 .61 Channel melt coef.

r - 0 .0 2 Linear flux coef.

X 0 .11 3 .41 Englacial storage coef.

n 0 .09 0 .44 Sub-/englacial exchange coef.

a 5
4 1.98 Cavity/flux exp.

P 3
2 1.54 Pressure/flux exp.

Qr in - - Input flux

Ud - 0.281 Deformational velocity

Pro - 0 .2 Initial pressure

A 0 - 0.9 Initial cavity size
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2.3 .1  N o n -d im e n s io n a liz a tio n

The model described above has 23 parameters. Many of these are well constrained (e.g. physical 

constants like g). However, many are not. For example, the value of the geometric factor f , 

which describes the ratio of asperity size to spacing, is not practically observable. Simultaneously, 

it multiplies another underconstrained parameter 0, the englacial porosity. This is problematic: 

these two parameters could take on vastly different values, but so long as their product remained 

the same, the model would produce the same result. Stated another way, these parameters are not 

independent: the value o f one depends on the other. Many such dependent pairings o f parameters 

exist in models o f subglacial hydrology. Given that their behavior cannot be independently deduced, 

it makes sense to treat them as a single parameter.

A  formal process o f non-dimensionalization identifies independent parameters, while simultane

ously scaling the value of the state variables to be O (1). We denote non-dimensional parameters 

with a hat, and their associated scaling factor with a tilde. We introduce the following relations

Ac =  AA , P  =  P P , t =  H, Qi =  QQi,

ub =  UUb, k =  kk, r =  rk. (2.5)

Some scaling factors emerge naturally from data. We define P  =  Po, such that pressure scales from 

0 at atmospheric pressure to unity at overburden. We scale the flux terms by Q =  E [Q obs], where 

E [Q obs] is the mean of the available output flux data (and due to mass conservation, quite near the

mean o f the input flux data). Similarly, we scale basal velocity by choosing k  to be the mean o f the

observed surface velocities. W ith these scales fixed, we choose the remaining ones such that the 

number o f parameters remaining in the model is minimized. Although several parameterizations 

exist, we choose to use the following scaling

tr = 1

c cpn
Ar = tuh

rr = Q
A a ii p  r 1

kr = PY kTb~n .

Substituting these non-dimensional parameters and substituting the constitutive relationships for
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flux and velocity into the state equations produces the following non-dimensional model

dA
dk

 +  ^ k A aP 3 -  A ( 1  -  P )n
(1 -  P)Y  V 7

x(Q in (k k  -  r A aP 3-1 -  n d | j ,

(2.7)

d P
dt

(2 .8 )

where we have introduced the non-dimensional parameters

(2.9)

Pwg \ Qk (2 .1 0 )X LW <p) Po 

f L W  \ A

h J kQ
n (2 .1 1 )

Each o f these groups acts to scale a particular term: ^  serves to determine the relative importance 

o f turbulent heat generation on cavity opening, X gives the degree to which changes in englacial 

storage modulate fluxes, and n  governs the exchange rate between englacial and subglacial systems.

In addition to the parameters derived from non-dimensionalization, the model has two con

stitutive parameters k and k, which linearly scale the velocity and flux terms, respectively. k in 

particular can be thought of as a non-dimensional basal traction. Note that it would be possible 

to choose a scaling that eliminates k , and reduces the number o f parameters by one. However, in 

so doing we would lose the means to redimensionalize velocity, which is critical for inverse methods 

involving velocity data.

Finally, the model depends on three exponents. 7  is the non-linear dependence o f sliding speed 

on effective pressure, while a  and relate average cavity size and pressure to discharge via the 

Manning relation.

2 .4  In version

As discussed in 2.3, our chosen glacier hydrology model has eight parameters describing its dy

namical evolution, and we seek to estimate these parameters given the observations described in 

2.2. We approach the matter o f parameter estimation from the perspective o f Bayesian inference. 

Bayes’ theorem [e.g. Tarantola, 2005] provides a means to compute the distribution o f parame

ter values, given prior assumptions about parameter values coupled with data according to the 

following formula

P (m|d) a: P (d|m )P (m ), (2 .1 2 )
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where m  is the vector o f model parameters, d  is the vector o f observations, and P (■) denotes

a probability density. The first term on the right hand side is known as the likelihood. This 

quantifies the probability o f observing the data given a particular value o f m . The second term is 

a prior probability (or simply ‘prior’), or the pre-supposed distribution o f parameter values prior 

to consideration of the data. The left hand side o f Bayes’ theorem is referred to as the posterior 

probability, or the probability distribution of a given parameter after having considered the data. 

W ith this probability distribution in hand, it is trivial to determine the most likely parameters, 

and under certain assumptions this procedure is equivalent to minimizing a least squares misfit 

function. However, possessing the complete distribution also gives us a rigorous assessment of 

parameter covariance.

To specify a likelihood model, we assume that observations o f both discharge and surface velocity 

are independent and normally distributed around the true value at each data point with pointwise 

variances aQ i and aU j . Thus the likelihood is

where n and k are the number o f discharge and velocity measurements.

Selection o f the data variances is somewhat subjective. While the measurements themselves are 

sufficiently precise to be considered nearly error-free, we note that these measurements are neces

sarily point measurements, and that the model produces only area averaged quantities. As such, 

the specified variances should be interpreted as including the uncertainty induced by extrapolating 

from a point measurement to the area average over the glacier. We suppose uncertainties similar to 

the magnitude o f the diurnal fluctuations. For the velocity estimate this is approximately au =  0.4, 

and for discharge aQ =  0.6. We also note here that we do not consider the velocity data during the 

flood and the enhanced diurnal signals leading up to it, as we would not expect the assumed sliding 

law to remain valid during such an event, where pressures are likely at or exceeding overburden 

[Bartholomaus et al., 2011].

We also need to specify priors. For the non-dimensional groups T , x , and n , we adopt a 

positively constrained uniform distribution, which effectively contributes no prior information aside 

from positivity. We truncate the prior distribution at ten. Experimentation has shown that this 

choice of upper bound does not have an effect on the computed posterior distributions. We use the

P  (d|m) a

x (2.13)
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same prior for the velocity and flux scaling factors k and r .

Conversely, the value o f the constitutive exponent y  is fairly well constrained by previous studies 

[Jansson , 1995; Sugiyama and Gudmundsson, 2004]. We choose to model 7  as

. This distribution has a mean o f E[y] & 0.4 and variance Var(Y) & . a, and fi are similarly

constrained by theory, and we model these as Log-normally distributed as well

which have expected values o f E[a] & | and E[fi] & | respectively, corresponding to common 

literature values [e.g Fowler, 1986; Werder et al., 2013]. The variance for each o f these distributions 

is Var(a) & 4  and Var(fi) & |0. We note that while the means o f each o f these distributions was 

chosen to correspond to published values, the variances were specified heuristically; in an absence 

o f any rigorous empirical estimates o f variance, we chose values that seemed to provide a plausible 

estimate o f values that these parameters might assume.

In addition to the eight governing parameters, we must also include uncertainty in the input 

function Q in and in converting from basal velocity ub, which is modelled, to surface velocity us, 

which is observed, by estimating the deformational velocity ud. Effectively, this means that we must 

assign prior distributions to each of these quantities and include them as additional parameters in 

the inversion.

We model uncertainty in Q in(t) as a multivariate Normal distribution with a mean given by 

value from a positive degree day model and a Gaussian covariance with correlation time scale t =  1 

(i.e. random variations occur smoothly and over the characteristic time scale of the differential 

equation), which in dimensional time corresponds to t & 1.4d. We assume a standard deviation of

ain =  0 .2 .

Basal velocities produced by the forward model are not directly comparable to the surface 

velocity data, and we do not know a priori the proportion of the surface velocity accounted for by

Y ~  lnN (^  =  -0 .9 5 , a  =  0.3), (2.14)

where the Log-normal distribution is given by

(2.15)

a  ~  ln N (0.35, 0.32) 

fi -  1 ~  ln N (-0 .7 8 , 0.43)

(2.16)

(2.17)

(2.18)
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deformational velocity ud. To account for this, we assume that

u s(k) — ub(t) +  ud (2.19)

where ud is given by

ud ~  Unif(0, m in(uobs)). (2.20)

This implies that the surface velocity is the sum of a modelled time-varying basal velocity, and 

a constant but unknown deformational velocity. The deformational velocity may, as end-member 

cases, account for either none o f the surface velocity or all of the velocity signal minus the time- 

varying component. This is a more conservative assumption than modelling deformational veloci

ties; the shallow ice approximation would not yield an accurate result in this context, and we have 

insufficient geometric information to model higher order stresses.

Finally, we also specify Log-normally distributed priors for the initial conditions on P  and A c

P (k =  0) ~  ln N (-1 .1 2 , 0.64) (2.21)

Ac(k =  0) ~  ln N (0.49, 0.64), (2.22)

which enforce non-negativity, but otherwise provide relatively little information. Experimentation 

has shown that the choice of initial conditions has a very minimal effect on model results, and that 

after a short (& t =  1 ) equilibration period even extremely improbable initial conditions yield very 

similar solutions to more reasonable ones.

2 .4 .1  S am plin g

The posterior distribution cannot be computed directly, and must be characterized with samples

instead. W ith a large number o f these in hand, we can then evaluate the statistical properties of

the samples as a proxy for the joint posterior distribution o f the parameters.

There are many choices o f sampling algorithm, but we chose the Adaptive Metropolis Algorithm 

(A M A ) [Haario et al., 2001], which is a variant o f the classic Metropolis-Hastings (MH) algorithm 

[Hastings, 1970]. The MH algorithm works by travelling through parameter space, sequentially 

updating each parameter independently by randomly drawing a jum p from a proposal distribution. 

If the posterior probability is greater at the new location than at the present, the new parameter 

value is accepted. Otherwise, it is accepted with probability proportional to the ratio o f the current 

posterior probability and that o f the proposed value.
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Iteration x 1000

Figure 2.2. (Left) Sampling history of each state parameter. The fuzzy appearance is an indicator 
of the algorithm efficiently and fully exploring the feasible parameter space. (Right) Histograms 
of each parameter’s marginal distribution for three independently sampled parameter populations. 
The identical posterior distributions strongly indicate population convergence.

22



The A M A  functions identically, except that the proposal distribution is updated by iteratively 

constructing a covariance matrix from the previous samples, and proposing a new parameter set en 

masse, rather than individually. This variant is particularly suited for this problem, where parame

ters tend to be strongly correlated and the covariance matrix can help to identify suitable proposal 

steps. Simultaneously, by block updating the parameters, the number of forward model evaluations 

is reduced, increasing efficiency. We use the implementation o f these algorithms available in the 

PyM C package [Patil et al., 2010].

We drew 5 x 105 samples from the joint posterior distribution of the parameters given in Table 2, 

repeated three times in order to assess consistency between sample populations. In order to assess 

convergence, we relied upon a heuristic examination of the history o f each parameter as it was 

sampled; well-converged sample populations typically traverse the feasible parameter space many 

times, as shown in Figure 2.2a. Additionally, we compared sample histograms between populations 

to assess whether the posterior distribution was unique, which are shown in Figure 2.2b. As a 

numerical convergence test, we computed the Gelman-Rubin statistic [Gelman and Rubin, 1992], 

which compares the intra-population variance to the inter-population variance. In the limit as the 

sample size goes to infinity, the Gelman-Rubin statistic R  converges to unity. A  well converged 

sample set that exhibits limiting statistical behavior should also have an R  value near one. In our 

case, for each parameter tested R  ^  1.1, which is typically taken to indicate adequate convergence.

2.5 R esu lts  and  D iscu ss ion

2.5 .1  S ta te  variab les

Figure 2.1a shows the posterior distribution of velocity along with velocity observations. It is 

immediately evident that the model reproduces the long time scale variability in velocity observa

tions well. Additionally, we see that the model is also capable o f reproducing diurnal variability in 

both magnitude and duration. The good fidelity to diurnal timing should not be surprising: these 

features are forced by the input data, and the input data exhibits the same structure, as seen in 

Figure 2.1c. Adequately reproducing the magnitude o f velocity fluctuations is more difficult and 

more important, as this imposes strong constraints on pressure.

One case where the model does not reproduce the velocity observations well is during and before 

the flood that occurred at t & 32. Although it is not well shown in Figure 2.1a, the model predicts 

velocities o f approximately twice those observed, with a broader peak. Two observations seem 

relevant here. First, this misfit is likely due to inadequacies in the sliding law both in the sense
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that it is not well-equipped to handle pressures very near overburden, and also because it is unable 

to include effects which would serve to mitigate the velocity increase such as longitudinal and 

transverse stresses. Secondly, the large diurnal fluctuations evident before the main velocity peak 

indicate that processes occur which are either not captured by the input data or are not captured 

by the model physics. An example o f the former would be an additional pre-emptive lake drainage 

or other anomalous source o f extra water. This seems unlikely, as such an input would appear in 

the output flux data, which it does not. An example of the latter could be the inability o f the 

model to capture local hydraulic jacking effects due to the lake partially draining and subsequently 

refilling, without overcoming the necessary pressure barrier to route excess water into the greater 

subglacial drainage system.

Figure 2.1b show the posterior distribution of modelled output flux along with observations. 

Once again, the model effectively captures both the long term variability in output flux, as well as 

the frequency and magnitude of diurnal variability. However, as with the modelled velocity, some 

limitations are evident. First, the modelled output fluxes are offset by around half a diurnal period. 

This is a result o f the spatially averaged nature o f the model, particularly the fact that pressure is 

assumed to propagate instantaneously through the system, and output flux responds immediately 

to variations in input flux. In reality, pressure changes induced in the upper reaches o f the system 

would take some amount o f time to propagate down-gradient, and this propagation time would be 

dependent upon the state o f the hydrologic system.

Another notable instance where the model fails to reproduce observations occurs just prior to 

the flood event. Here, input and output fluxes are out o f phase with one another by around ten 

diurnal cycles. This too  could be a result o f the lack o f spatially heterogeneous storage. This misfit 

is less pronounced or non-existent following the flood. An explanation for this is that the drainage 

system has grown more efficient, causing the implicit assumption o f uniform spatial response times 

to become a better approximation to reality. This modelled increase in cavity size is evident in 

Figure 2.3c, which shows a marked increase in average cavity size following the flood. As cavities 

become larger (and presumably better connected), we would expect the lumped model to capture 

the temporal variability of the system with more fidelity.

The modelled englacial water pressure as a fraction o f overburden is shown in Figure 2.3a. While 

no direct observations o f water pressure are available, we observe that the model reproduces the 

expected diurnal fluctuations, and that under non-flood conditions, the glacier tends to oscillate 

between around 40% and 80% of overburden. The magnitude o f the modelled fluctuations are of
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a similar magnitude to observations in many mountain glaciers [Harper et al., 2007; Amundson 

et al., 2006], lending support to the reliability of predictions. During the flood event, the pressure 

increases to overburden (which it is constrained not to exceed), though the uncertainty during this 

event is high.

We can also examine the relative magnitude of each mechanism contributing to the evolution 

of the water pressure on a termwise basis. Figure 2.3b shows the individual contributions of the 

input flux, output flux, and subglacial exchange terms through time. For dynamic equilibrium 

to occur (i.e. no long term storage change), the three terms, on average, must sum to zero, 

which they do less the water moving out o f subglacial storage and into englacial storage. Input 

flux and output flux are both uniformly and respectively positive and negative (by definition). 

The more interesting contributor to the evolution o f the pressure state is the subglacial/englacial 

exchange term n , which acts as a buffer for the large swings in input flux while maintaining an 

approximately zero mean. This short term fluctuation in subglacial storage is responsible for the 

evident attenuation in flux magnitude between input and output. Note that in Figure 2.3b, a 

positive value o f the subglacial exchange term implies that water is moving into englacial storage 

from subglacial storage. Predictably, this state occurs when water pressure is low, and creep closure 

acts to drive water out o f cavities.

Figure 2.3b shows the non-dimensional cavity size. W hile we cannot compute the dimensional 

constant A  that would be necessary to re-dimensionalize the modelled cavity size, we note that the 

(known) time and velocity scales imply that it is o f the same order as the bedrock bump height. As 

such, A  is similar to A c so long as average bedrock asperities are on the order o f meters in height. 

We first note that the variance in cavity size distribution is higher than the other state variables. 

This implies that the parameters controlling it cannot be precisely determined given the available 

data. Alternatively, it would appear that the specifics o f cavity formation play a less critical role 

in explaining surface velocity and output flux than does the pressure, commensurately limiting 

the amount of information that can be used to constrain its governing parameters. Nonetheless, it 

remains possible to make a qualitative assessment o f cavity evolution over the modelled time period. 

At the beginning o f the simulation, cavities are relatively small. The cavities grow during pressure- 

driven speed-up events, but the increasingly well-developed cavities tend to damp this response 

as time goes on. During the lake drainage event, the average cavity size increases significantly. 

This increase in size decays over the course o f a few days, as the reduced water pressure following 

drainage is no longer capable o f sustaining large cavities and creep closure becomes the dominant
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mechanism of channel evolution.

Once again, it is useful to examine each modelled mechanism’s contribution to cavity evolution, 

as shown in Figure 2.3d. Near the beginning o f the simulation when cavities are small, sliding is 

the dominant mechanism of cavity opening. During this stage, there is insufficient flux through 

the cavities to support the production o f much turbulent heat. Simultaneously, creep closure has 

yet to act strongly, because the cavities are still relatively small and the closure rate scales linearly 

with cavity area. As the cavities grow, opening due to bedrock sliding remains relatively constant, 

while both turbulent dissipation and creep closure grow in magnitude. Creep closure in particular 

exhibits strong diurnal variations as the large variations in water pressure are amplified by the 

nonlinearity in ice rheology, with nearly no closure occurring when effective pressures are near zero. 

In particular, during the highly pressurized flood event, creep closure effectively shuts down for 

several days while both enhanced basal sliding and increased output flux rapidly enlarge subglacial 

cavities.

Evaluating the uncertainties associated with each term in Equation 2.7 gives us an under

standing o f the source o f the relatively large degree o f uncertainty associated with cavity size. In 

particular, we see that the cavity opening rate is subject to a much larger relative degree o f uncer

tainty than other terms in Figure 2.3d, and it is this uncertainty that generates the large spread 

evident in Figure 2.3c. The greater degree of uncertainty in the magnitude o f this term is to be 

expected; like opening due to sliding, dissipative heating is directly associated with one o f the ob

served quantities (namely output flux). However, unlike opening due to sliding, dissipative heating 

is associated with the additional free parameter ^  apart from the constitutive flux relation.

Finally, we can look at the posterior distribution of the deformation velocity and initial con

ditions, as shown in Figure 2.4. In the case of deformational velocities, the model has a slight 

tendency towards predicting deformational velocities near the center o f the admissible range. Due 

to the insensitivity o f model dynamics to initial conditions, the posterior distributions o f both 

initial conditions are very similar to their prior distributions. In general, the inversion procedure 

contributes little useful information towards these parameters, and in this context they should be 

viewed primarily as sources o f additional uncertainty with respect to the other model parameters.

2 .6  C o n fig u ra tio n  S ta b ility

Because we have in our model included turbulent heat generation as a mechanism for melting cavity 

walls, we must also assess whether or not our envisaged drainage configuration is compatible with
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the parameter values that we have recovered from a stability perspective. A  well known result 

from Kamb [1987] shows that for water pressures above a threshold value and a given hydraulic 

gradient, a linked cavity system undergoes runaway evolution towards a channelized system. We 

note these results, and the similar ones found in, for example, Schoof [2010] and Hewitt [2011] are 

based on linear stability analysis, and only strictly valid for autonomous systems o f equations. The 

inclusion o f a time-varying influx term clearly makes this system of equations non-autonomous, 

and the analysis of the stability of such systems is beyond the scope o f this paper. Nonetheless, we 

can find model steady states for a prescribed steady influx (i.e. a fixed Q in as a opposed to a time 

varying one) in order to assess the stable states o f the model.

In steady state, Equations 2.7 and 2.8 reduces to

the numerical solution o f which is straightforward to compute. Furthermore, we can compute the 

stability o f each o f these points by evaluating the eigenvalues o f the Jacobian matrix o f Equations 2.7 

and 2.8. Doing so for the parameters computed through inversion yields the interesting result that 

regardless o f the chosen flux, the system has a unique and stable steady state. This is held in 

contrast to the results o f Kamb [1987], Schoof [2010], and Hewitt [2011], which would predict 

runaway channelization due to the magnitude o f the turbulent melting terms included here. The 

reason that this model differs is that flux is fundamentally limited by the requirement o f global 

mass conservation; runaway channel growth is not possible because such growth efficiently evacuates 

the water necessary to maintain the low effective pressures that limit creep closure. This occurs 

because the lumped structure o f the model requires that this channelization occur everywhere 

simultaneously. In a spatially explicit model (and presumably in reality), spatial heterogeneity 

allows distinct channels to remain pressurized in a self-sustaining way by drawing upon local rather 

than global reservoirs. The suppression o f the channelizing instability by the model structure begs 

the question o f whether the dynamics induced by such effects can credibly be neglected. This 

remains an unresolved issue, and we do not claim to have the answer here. Our approach is 

qualitatively supported by observations at the terminus o f Kennicott Glacier, where there exist no 

obvious subglacial channels. The Kennicott terminus is characterized by a linked series o f terminal 

lakes, none of which have visible subglacial input. Nonetheless, we imagine that during the lake 

outburst flood, development o f large and efficient channels becomes dominant over a distributed
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system due to the high water pressures involved, and the suppression o f creep closure as seen in 

Figure 2.3b. During this period the model tends to overestimate the length o f the perturbation in 

velocity (and so probably water pressure as well) due to the flood. During the lake drainage, we 

speculate that a channel developed which evacuated water much more quickly than this model can 

account for without explicit channelization.
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2.6 .1  P a ra m eter  cov a ria n ce

In addition to assessing the feasible model states, possessing the joint posterior distribution allows 

us to examine the covariance structure o f the model parameters as well. Figure 2.5 shows the joint 

sample distribution of each parameter pair, as well as the histogram o f each.

The first set o f strongly correlated parameters are the two which govern the sliding speed k 

and 7 . This result is not surprising: given data uncertainty and the flexibility granted by their 

priors, there are a variety o f combinations that these two parameters can feasibly adopt due to 

the inversely correlated relationship built in to the sliding law. Nonetheless, it is worth noting 

that both parameters have smaller variance than their priors, indicating that the data provides 

information about both (recall for example that the prior on k is uniform). k and a, which control 

the magnitude and cavity size dependence o f the flux, are correlated in a similar fashion.

A  more interesting negative correlation exists between n , the parameter scaling the importance 

o f englacial-subglacial exchange, and ^ , the parameter controlling the rate o f turbulent melting. 

In particular, this correlation implies that decreases in the geometric capacity for the subglacial 

system to store water can be offset by increases in the rate at which turbulent melting can occur. 

Since the magnitude o f cavity opening due to bedrock sliding and closing due to creep are both 

constrained by the scaling of the problem, only n  and ^  can covary. These parameters are positively 

and negatively correlated with a , respectively. An increase in either has the tendency to produce 

a greater amount o f subglacial storage, but this correlation tells us that an increase in the flux 

dependence on A c is more easily offset by an increase in turbulent melt rates, than by an increase 

in the sub-/englacial transfer rate as a whole.

A  final observation is that the value o f x  is o f O (1). This parameter relates the size o f the 

flux terms on the right hand side o f Equation 2.8 to the rate o f change of the pressure, and is 

effectively a proxy for englacial porosity. Previous work has suggested that this term is limit

ingly large, which is to say that englacial porosity is close to zero. This effectively assumes that 

changes in englacial storage occur instantaneously [Schoof et al., 2 0 1 2 ], and that the time deriva

tive appearing in Equation 2.8 is zero. Other models have retained this term under the auspices 

o f a non-negligible englacial porosity as a means to regularize a distributed model o f subglacial 

cavity evolution [W erder et al., 2013; Bueler and van P elt , 2015]. Clarke [2003], though citing 

an alternative physical mechanism of compressibility, also included an analogous term to improve 

numerical stability. Our results suggest that despite the initial numerical motivation, retaining 

the time derivative in Equation 2.8 may also be physically correct, and also that the inclusion
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of significant englacial storage is required to simultaneously explain observed velocity and output 

fluxes. This additional storage could take the form of englacial void space [Fountain et al., 2005], 

basal crevasses [Harper et al., 2010], or a combination thereof. This further begs the question, 

what is the englacial macroporosity corresponding to a x  of O (1 )? Assuming the length and width 

scales o f Bartholomaus et al. [2011] (See Table 2), we find that porosity must be in the range 

k =  [10- 4 ,10 -3 ] . The scaling analysis o f Section 2.3.1 shows us that even this modest amount 

o f porosity provides a sufficient amount of storage to provide an englacial reservoir o f equivalent 

magnitude to the subglacial reservoir.

2 .7  C on clu s ion s

We have extended the subglacial hydrology model o f Bartholomaus et al. [2011] in a few ways, which 

is ‘ lumped’ in the sense that it treats the whole of the subglacial system using area averaged quan

tities. An advantage of this treatment is that it allows a simple numerical treatment, as the model 

consists of a pair of non-homogeneous, non-linear ordinary differential equations. Furthermore, the 

simplicity o f the model allows for the straightforward identification of the governing parameters.

First, we have discarded the simultaneous specification o f both input and output fluxes in favor 

o f a Manning flow relation which relates output flux to both average cavity size and water pres

sure. Second, we have formally non-dimensionalized the model to determine the specific parameter 

ratios that govern model dynamics. In so doing, we identified eight parameters. Three are non- 

dimensional groups controlling the relative importance of turbulent melting of cavity walls (^ ) , the 

exchange rate between the englacial and subglacial hydrologic systems (n ), and the rate at which 

the englacial water system can accommodate flux imbalances (x ). The remaining five parameters 

describe constitutive relationships describing both the relationship between effective pressure and 

basal ice velocity and the relationship between average cavity size, water pressure, and outflux.

The values o f these parameters are known a priori with varying degrees of certainty. We 

sought to improve these estimates through inverse modelling. Using flux and velocity observations 

from Bartholomaus et al. [2011] to construct a likelihood function, and in conjunction with prior 

parameter estimates, we used a Markov Chain Monte Carlo method to sample from the joint 

posterior probability distribution o f the model parameters, conditioned upon velocity and flux data 

from Kennicott Glacier. Not only did this allow us to determine the most probable parameter 

values, but also to characterize the covariance within and between parameters.

Despite the simplicity o f the lumped modelling approach, we were able to reproduce observations
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with a reasonable degree of fidelity. The model captures both the magnitude and timing of diur

nal variability in velocity and output flux, even passably capturing the dynamics of a lake-related 

flooding event. The model predicted diurnal water pressure variations between 40% and 80% of 

overburden, which corresponds well to prior observations o f borehole pressure records in similar 

systems. The model also produced reasonable estimates o f average cavity size. Nonetheless, the 

limitations due to the assumption o f spatial uniformity were also evident, as longer scale temporal 

variability, particularly in the less efficient pre-flood configuration, was not captured. It is possible 

that adding spatial dimensionality to the model could help to reduce some o f the remaining misfit, 

and the way forward in doing this is clear [Bueler, 2014]. However, this would drastically increase 

the computational cost of the forward model, making the rigorous estimation o f parameter covari

ance through Monte Carlo methods less practical. Nonetheless, it would be extremely valuable to 

determine whether the conclusions suggested by this work hold in the presence o f more advanced 

physics, and if not, the reason for the inconsistency.

The parameter estimates produced by the inverse modelling procedure suggested that all o f 

the mechanisms included in the model were important in explaining observations. Cavity opening 

due to basal sliding seems to dominate the evolution o f the subglacial system until cavities grow 

large enough to support turbulent heat generation, at which point the interplay between turbulent 

melting and creep closure become important as well. Our results also suggest that transfer of water 

into the subglacial hydrologic system from the englacial system acts to attenuate the input flux 

signal, leading to the observed relative reductions in magnitude in the diurnal variability of output 

flux.

Finally, we find that the assumption o f negligible englacial porosity is not compatible with 

observations under the assumptions of the model used here, and thus we suppose that englacial 

storage plays an important role in the hydrologic systems of glaciers similar to the one examined 

here, even for relatively low absolute values o f glacier macroporosity. Addressing this supposition 

further will require direct measurements o f englacial porosity and connectivity in more glaciers, as 

well as further numerical investigation through inverse modelling. If englacial porosity indeed has 

a ubiquitous influence on glacier dynamics, then further effort towards quantifying and predicting 

this value will be required in order to credibly model the effect o f hydrology on glacier dynamics.
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C h a p te r  3

B ayesian  in feren ce  o f  su b g la cia l t o p o g r a p h y  using  m ass c o n se rv a t io n 1 

A b s tr a c t

We develop a Bayesian model for estimating ice thickness given sparse observations coupled with 

estimates o f surface mass balance, surface elevation change, and surface velocity. These fields are 

related through mass conservation. We use the Metropolis-Hastings algorithm to sample from the 

posterior probability distribution o f ice thickness for three cases: a synthetic mountain glacier, Stor- 

glaciaren, and Jakobshavn Isbrs. Use o f continuity in interpolation improves thickness estimates 

where relative velocity and surface mass balance errors are small, a condition difficult to maintain 

in regions o f slow flow and surface mass balance near zero. Estimates o f thickness uncertainty 

depend sensitively on spatial correlation. W hen this structure is known, we suggest a thickness 

measurement spacing o f one to two times the correlation length to take best advantage o f continuity 

based interpolation techniques. To determine ideal measurement spacing, the structure o f spatial 

correlation must be better quantified.

3.1 In tro d u ct io n

Bed elevation is required to model glacier dynamics. Measurements are typically performed with 

spatially localized radar soundings [e.g. Allen et al., 2015] and tend to be precise and dense along a 

line. However, because modeling often requires a thickness field, reliable methods of interpolation 

between observations are valuable.

Many widely used digital elevation models (DEMs) o f subglacial topography are based upon 

classical geostatistical techniques such as Kriging [Bamber et al., 2013]. Such DEMs tend to induce 

immediate modeled surface elevation changes from dynamical models that are implausibly larger 

than observations o f surface elevation change [Seroussi et al., 2011; Bindschadler et al., 2013]. In 

an effort to minimize these spurious model transients, contemporary DEMs incorporate physical 

constraints on interpolated fields. The procedure is conceptually simple and fits neatly into the 

general framework o f geophysical inversion theory: formulate a cost functional that quantifies the 

misfit between the field of interest and observations, subject to the constraint that the field be 

compatible with a forward model.

Inverse methods are widely used in glaciology. MacAyeal [1993] presented a method for using 

the momentum conservation equations to invert for basal shear stress using an observed surface

■'"Published as Brinkerhoff, D. J., A. Aschwanden, M. Truffer (2016), Bayesian inference of subglacial topography 
using mass conservation, Frontiers in Earth Science, 4.
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velocity field. The same method has been used over the last twenty years mostly unchanged, 

though with advances in forward model sophistication and data availability [e.g. Brinkerhoff and 

Johnson , 2013; Morlighem et al., 2010; Sergienko et al., 2014]. Gudmundsson and Raymond [2008] 

developed a Bayesian approach that used surface elevation, surface elevation trend, and surface 

velocity, along with strong prior information about the bed elevation to compute the maximum 

a posteriori estimate o f basal shear stress and basal topography. Perego et al. [2014] solved for 

thickness and basal traction by simultaneously inverting the mass and momentum conservation 

relations. McNabb et al. [2012] and Morlighem et al. [2014a] used optimal control methods and 

mass conservation (without an associated momentum conservation model) to infer ice thickness. 

Brinkerhoff and Johnson [2015] used a similar approach to produce seamless velocity maps of 

Greenland, filling data gaps in satellite-based velocity estimates with balance velocities. Huss and 

Farinotti [2012] and Li et al. [2011] used surface geometry with mass conservation to estimate global 

glacier volume, even in the absence of velocity data. However, Bahr et al. [2014] suggests caution 

in using mass conservation unconstrained by observations since uncertainty grows exponentially as 

resolution increases unless short wavelength topography is suppressed.

An important limitation exists in all of the above studies: none rigorously quantify the error 

bounds o f their solutions in the sense that uncertainty estimates are linearized around the optimal 

solution or estimated empirically by comparison with independent data. Viewed in a Bayesian 

context, these methods report the maximum a posteriori probability, but not the associated prob

ability distribution. Uncertainty, when reported, is subject to the assumption o f a local Gaussian 

approximation based on an approximately computed Hessian [e.g. Tarantola, 2005, Chapter 3]. 

However the posterior distribution of an unknown variable often displays richer behavior due to 

nonlinearities in the governing physics and associated covariance structure. If we are to use fields 

inferred from model inversion to predict glacier evolution, then we must know whether two equally 

likely instances o f these fields can produce qualitatively different conclusions.

Monte Carlo sampling techniques can provide distributions o f model parameters. Several ex

amples o f the application o f Monte Carlo techniques to glaciological problems exist. Petra et al. 

[2013] developed a Markov Chain Monte Carlo method that generated samples from the posterior 

basal traction distribution using an efficiently computed approximation to the true Hessian to steer 

the sampling algorithm. Chandler et al. [2006] randomly perturbed measured surface velocities of 

Glacier de Tsanfleuron and repeatedly inverted for the associated basal properties. Colgan et al. 

[2 0 1 2 ] used a Monte Carlo technique to characterize the retreat regime o f Columbia Glacier over
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a wide range o f unknown model input parameters, using a heuristic filter to eliminate improba

ble simulations. All o f these cases produced samples from probability distributions of unobserved 

glaciological variables without the assumption o f linearization around a fixed point.

In this paper, we use the Metropolis-Hastings (MH) algorithm [Hastings, 1970] to construct 

probability distributions o f ice thickness (and hence bed elevation when surface elevation is know), 

subject to observations and prior estimates o f surface velocity, specific surface mass balance rates 

(hereafter referred to simply as mass balance), and surface elevation change, as well as sparse point- 

wise observations o f thickness. This situation is common with the recent availability o f spatially dis

tributed climate model output and satellite-derived velocity fields. We assume that depth-averaged 

velocity, thickness, and apparent mass balance (defined here as mass balance minus surface rate 

o f change, Farinotti et al. [2009]) are related through mass conservation, and that depth averaged 

velocities relate to surface velocities in a known albeit unobserved fashion. Each dataset is sub

ject to an assumed covariance structure. This is an analogous problem as that o f Brinkerhoff and 

Johnson [2015], McNabb et al. [2012], and Morlighem et al. [2014a], using mass conservation to in

terpolate ice thickness estimates while satisfying observational and physical constraints. Contrary 

to those works, we view the problem from a Bayesian perspective, which allows construction o f the 

full posterior probability density for each model variable. It also serves as an example o f how to 

propagate uncertainty through non-linear glaciological models.

We apply our method to three cases. We begin by considering a synthetically generated glacier, 

where the simulated velocity, mass balance, and thickness measurements (or prior estimates) are 

corrupted with noise, and the thickness field is recovered under several assumptions regarding 

covariance and measurement spacing. We then examine the degree o f uncertainty induced by 

the choice o f error structure and physical properties o f the glacier. Next, we apply the method 

to Storglaciaren, a ~3  km long alpine glacier where dense measurements o f thickness, velocity, 

and mass balance are available. This provides an interesting test case with which to gauge the 

uncertainties induced in topographic estimates due to real-world uncertainties. Finally, we apply 

the method to Jakobshavn Isbrs, the largest outlet glacier on the Greenland Ice Sheet, and assess 

resulting uncertainty estimates in the context of making a recommendation for flightline spacing 

during future airborne radar campaigns.
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3.2 M e th o d s

Bayes’ theorem states that

P(m |d) «  P (d  |m )P(m ), (3.1)

where m  e  R m is a vector o f unobserved model parameters, and d  e  R n is a vector o f observed 

model outputs [e.g. Tarantola, 2005]. P (■) is the probability density function, a quantification of 

possible parameter values. Bayes’ theorem provides a means to formulate the posterior distribution 

P(m |d) by considering new data, and it is from this distribution we may draw conclusions.

Construction o f the posterior requires two components. First, the likelihood P(d|m ) charac

terizes the probability of observing a realization of d  given m . Evaluation o f this term requires a 

solution to the forward model. Second, the prior model P (m ) is the supposed distribution o f model 

parameters prior to consideration o f data, including assumptions about the mean, covariance, and 

bounds.

All inverse problems incorporate prior information in one form or another (smoothness for ex

ample), which is necessary because o f the ill-posedness o f such problems. One particular advantage 

o f Bayesian methods is that these prior assumptions, which are often vacuously defined in other 

inverse methodologies, are defined precisely here and are subject to scrutiny. Another is that 

changes in assumptions and the addition of new information are easily incorporated by changing 

the definitions o f likelihood and prior without any structural changes in the inference procedure.

3 .2 .1  O b serv a tion  P ro ce ss

We define data to be observed quantities that have not been considered when forming the prior 

distribution. We denote data with a hat. Data may include observations o f surface speed U s, 

specific surface mass balance b  , thickness H , surface elevation rate o f change A , and (map plane) 

flow direction N  . These components form the data vector

(3.2)

Us

b

H

N
AS 
.At.

Bold indicates a vector: each observation may be available at any number o f locations any number of 

times. We assume that each entry in d  is a random variable drawn from a distribution about a true
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mean value. The realization o f such a variable is called the observation process. The observation 

process takes the form

d ~  F (m , Ed), (3.3)

where m  is the vector of model parameters upon which the observation process F  operates and Ed is 

a parameterization o f observational uncertainty induced by the observation process. It includes but 

is not limited to measurement error. It may be the case that some of the subvectors in d  are empty, 

and in this case the distribution o f that function is determined by the prior and its relationship to 

other parameters through the forward model. This is not to say that no observations have been 

involved; sometimes they have already been used in a different model to formulate a better prior.

3 .2 .2  F orw ard  M o d e l

While we assume that the uncertainties Ed induced by the observation process are approximately 

independent (i.e. observational errors at neighboring locations are uncorrelated), the model pa

rameters are not. Thickness H (x ), mass balance b(x), and flow direction N (x )  specify the depth- 

averaged speed U (x ) through the continuity equation

dtH (x ) ^  dtS (x ) =  —V  ■ [U 7(x)H (x)N (x)] +  b(x), (3.4)

where V- refers to the map plane divergence. We assume that basal melt is negligible. Also, we 

have used the approximation that thickness rate o f change dtH  is well approximated by the surface 

rate of change dtS , which makes the assumption that bed elevations are stationary. This is often a 

good assumption, though not in regions experiencing rapid subglacial erosion [Motyka et al., 2006].

Eq. (3.4) is valid only at an instant in time. On the contrary, data are observed over finite 

time intervals. The length of these intervals may vary between observables, and are often not 

aligned with one another (e.g. velocity may have been observed over the entire winter of 2008, 

while thickness observations have been taken almost instantaneously during the summer of 2005). 

Observations may thus be far from the cotemporal and instantaneous values required to make 

Eq. (3.4) valid. This incongruity in and between the characteristic time scales o f the observation 

and model processes is responsible for an additional source of error that must be accounted for.

One way o f constructing a valid mass conservation relationship over the entire observation period 

is to time integrate the forward model over the range t e  [to, ti], where t0 and t 1 are the starting 

and ending times over which an estimate o f time-averaged quantities are available. Integrating and
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dividing Eq. (3.4) by the interval A t =  t 1 — t0 yields

A S  1 f tl / -  -\
A  +  A i  j0( V [ U  N H  ] — b) di =  °- (3-5)

the time average over the observation period. Replacing each term with its average yields an 

equation similar to Eq. (3.4), but with a reinterpretation o f observational uncertainty: not only 

imprecision in direct measurement and processing, but also the departure of the observation from 

the time average. We write this as

Ed =  Eobs +  Et , (3 .6)

where Eobs is uncertainty due to measurement, and Et is the uncertainty due to measurements not 

being those o f direct relevance to the forward model. s Velocity observations are only available at 

the surface, while the forward model Eq. (3.4) requires depth-averaged quantities. We assume that 

surface flow directions N  are a good approximation o f flow direction at depth. However, this is not 

always true for magnitudes and we introduce a spatially variable multiplicative factor s(x ) that 

serves to transfer between depth-averaged speed and surface speed

Us(x)  =  s (x )7 (x ). (3.7)

3 .2 .3  M o d e l  S im p lifica tion

Monte Carlo methods such as the MH algorithm are computationally expensive because the likeli

hood (and thus the forward model) must be evaluated many times. Fortunately, as long as N (x ) 

is constant with depth, the mass conservation model is purely advective and we can exploit the 

independence of flow bands [McNabb et al., 2012]. If we select two streamlines from the velocity 

field, the domain contained between them is independent o f any other non-overlapping domain. If 

they are close, we can approximate the parameter variability transverse to flow with the transverse 

average, and the problem reduces from two dimensions to one. Neglecting curvature effects, the 

continuity equation becomes

dr [w(r) U (r) H (r)] =  w(r)  ^b(r) — , (3.8)

where r is the along-flow coordinate, and w (r) is the width o f the streamline taken normal to 

the centerline. Parameters should again be viewed as averages over the temporal footprint of 

the observations. Note that the flow direction N (x ) no longer enters the equation, since it has 

been subsumed by the width, which has its own observational uncertainty and prior. The model
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parameter vector is

U (r; H (r) ,b(r) ,  ^ ) 

H (r ) 

b(r)
(3.9)m AS(r)

s(r)

w (r )

This one dimensional formulation is efficient because it can be solved by integration:

(3.10)

which we evaluate with trapezoidal quadrature [e.g. Atkinson , 1978].

Non-dimensionalization of Eq. (3.10) produces an interesting result: the model depends on only 

a single non-dimensional parameter,

where b, U , and H  respectively refer to characteristic mass balance, velocity, and thickness, and 

L the length o f the glacier, and thus it should be understood that results here apply similarly to 

differently scaled glaciers so long as y  remains constant.

3 .2 .4  P r io rs

The specification o f prior distributions on model parameters depends on the variable and the prob

lem being considered. However a universal requirement is that priors be chosen before considering 

any o f the observations contained in d  .

We assume no prior knowledge o f the ice thickness H (r ) besides non-negativity and that it 

possesses some smoothness, and its prior should reflect these properties. This implies some knowl

edge o f the covariance structure o f ice thickness. A  useful and general representation o f H (r ) is as 

a Gaussian process (G P) [Rasmussen, 2006] with arbitrary mean and large variance, but with a 

specified covariance structure

where ( r , r r) is a spatial covariance function. The placeholder ■ indicates that the mean value

should be arbitrary; the prior is sufficiently vague that the value of the mean does not affect the 

posterior distribution. We modify the Gaussian process so that negative values o f H  have zero

H (r) ~  G P (-,v h (r,r' )) , (3.12)
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probability. We use either the following Gaussian covariance function

vG (r, r ') =  o f  exp
(r — r ' ) 2

(3.13)

or exponential covariance function

v E (r, r') =  o f  exp
|r — r'|

(3.14)

for the remainder o f this paper, where o f  is the prior variance, r — r ' is the pointwise distance 

between any two points, and k is the correlation length scale. Note that for |r — r'| >  3^, values 

no longer exhibit significant correlation [Rasmussen, 2006].

It is often preferable to specify a mass balance distribution in which the data have already been 

reanalyzed with a separate climate model or interpolated with some other method since these are 

more advanced than one we could include. Here we consider the estimated posterior distribution 

of a climate model to be the prior on mass balance, since observations have already been included. 

We assume that the mass balance prior is also a Gaussian process

We assume that the width function is a Gaussian process with a mean value given by the computed 

width,

The use o f a Gaussian process as a prior is the same key assumption as used in Kriging [ Williams, 

1998], and this technique should be seen as Kriging with additional information introduced to the 

likelihood function by continuity. Where no observations exist, the algorithm reverts to ordinary 

Kriging.

Once again, surface velocities and depth-averaged velocities are only equal when sliding accounts 

for all glacier movement. The other end-member, pure deformation, bounds the value of surface 

velocity at Us(r) =  n+1 U7(r), where n =  3 is Glen’s flow law exponent [Glen , 1955]. This usually 

holds in polythermal glaciers, where the more complex rheological structure concentrates strain at 

the glacier base, and makes the depth averaged velocity closer to the surface velocity. We typically 

have no other a priori information about the sliding proportion s, and thus model it as a uniform 

distribution with the bounds given by the above argument

b(r) ~  GP(bprior(r), vG (r , r ') ) . (3.15)

w(r)  ~  GP(wprior(r), vW (r,r')). (3.16)

(3.17)

46



Figure 3.1. Pseudocode describing the Metropolis-Hastings algorithm. Note that q (j-)  is the 
proposal distribution, and P(-|d) is the product o f the likelihood and the prior evaluated at a 
point. Evaluation of the likelihood requires solution of the forward model.

Choose initial parameter values mo 

fo r  i =  0 , . . . ,  N  — 1 d o

Draw proposal sample m ' ~  q(m'|mj)
■ C P(m' IdWmJm') 1ai ^  min 1 , — l-)t/( jl )L P(m; |d)q(m'|mi)_

Sample u ~  U n if(0 ,1) 

i f  u <  a i th en  

Set m i+ i =  m ' 

else

Set m i+1 =  m i 

en d  i f  

en d  for

3 .2 .5  M e tro p o lis -H a s t in g s  a lg o r ith m

The posterior distribution has no closed form and must be characterized by sampling. W ith 

samples in hand we can evaluate their statistical properties as a proxy for the posterior distribu

tion. Our method o f choice for this procedure is the Adaptive Step Metropolis-Hastings algorithm 

[Hastings, 1970]. Pseudocode for the algorithm is given in Algorithm 1.

The MH algorithm operates by travelling through parameter space according to steps drawn 

from a proposal distribution, in this simple case an independent multivariate normal centered 

around the current point. If the posterior probability is greater at the proposed point than at the 

current point, then the proposed step is accepted, and the algorithm continues from the new point. 

If the likelihood is lower at the proposed point, then a step is taken with probability equal to the 

ratio o f the current and proposed points. In the adaptive step variant o f the MH algorithm, the 

width o f the proposal distribution is adjusted such that an optimal proportion of proposals are 

accepted. The algorithm is ergodic [Hastings, 1970], and after a sufficient number of steps, the 

samples converge to a set drawn from the posterior distribution. MH sampling is performed using 

the python package PyM C [Patil et al., 2010].
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T ab le  1 .Table o f relevant constants for the experiment outlined in Sections 3.3.1 and 3.3.2.

Parameter Value Units Description

L 15 km Domain length

zmin 0 m Minimum elevation

zmax 1500 m Maximum linear elevation

As 2 0 0 m Sinusoidal topography amplitude

Ae 500 m Headwall amplitude

Le 700 m Headwall decay length

JT 50 m Random variability amplitude

It 250 m Topographic correlation length

b min -80 ma 1 Minimum specific balance

b max 1 0
—  1 ma 1 Maximum specific balance

c 3 Shape factor

Ih 250 m Thickness correlation length

lb 1500 m Mass balance correlation length

PH 0 .0 1 Relative thickness uncertainty factor

PU 0 .1 Relative speed uncertainty factor

Jb 2
—  1 ma 1 Specific balance uncertainty

Ju,min 1 0
1ma 1 Minimum velocity uncertainty

nd {11,6,3} Number o f data points

Uc 1 0 0 Number o f grid cells

3.3 S y n th e tic  g la cier

3.3 .1  S y n th e tic  g la c ier  g en era tion

We used the finite element ice sheet model VarGlaS [Brinkerhoff and Johnson , 2013] to generate a 

synthetic steady state glacier in vertical profile. We neglect effects due to changing width and side 

drag. The glacier does not slide. The basal topography is given by

r./ \ zmin zmax A . 2nrB (r )  = --------------------r — A s sin ——
L L

r +  L
+  Ae e x p   ---  G (r), (3.18)

Le

where zmin and zmax are minimum and maximum elevations, L is the domain length scale, A s is 

the amplitude of a sinusoidal variability, A e is the amplitude of an exponential term (simulating a
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steep headwall), Le the decay rate o f the exponential perturbation centered about the bergschrund, 

and G (r) is a random topographic perturbation given by

(q.v. Section 3.2.3), we performed the computations in dimensional form because it was easier 

to define reasonable parameter values that way. The parameters used are shown in Table 1, and 

correspond to a moderate-size maritime mountain glacier. The model was discretized over nc =  100 

equally spaced grid cells and time integrated until reaching a steady state. We assumed that surface 

elevation was stationary and known exactly.

3 .3 .2  R e co v e ry  o f  sy n th e tic  to p o g ra p h y

As a first experiment, we used the MH algorithm to sample m  under assumptions o f uncertainty and 

data spacing that might correspond to a typical mountain glacier. First, we simulated observations 

o f surface velocity by corrupting modeled velocity with uncorrelated Gaussian random noise with 

standard deviation aUyi =  max(puUTO;i, au,min). Thickness measurements were assumed available at 

A d  =  L/nd increments. Uncertainties in thickness measurements were assumed to be aH)i =  pHHi . 

The above values were chosen not only to account for hypothetical instrument error, but also to 

simulate the deviation o f measurements from the average required by Eq. 3.5. As discussed above, 

we assumed that mass balance observations had already been used to update the prior model.

We assumed that the error structure was known, and that the likelihood model was given by

where N (d , Ed) is a multivariate normal distribution with mean d  and covariance Ed. The vector 

d  contains model variables evaluated at observation points. We take Ed to be a diagonal matrix 

with entries given by the corresponding observational uncertainties stated above.

G (r) ~  G P (0 ,v G (r ,r ')) . (3.19)

Mass balance is an exponential function o f surface elevation.

b (S (r)) =  bmin +
1 — exp (—c)

(3.20)

where bmin and bmax are the mass balance minimum and maximum respectively, and c is a shape 

parameter. While the scale o f the geometry will not be relevant to the results contained herein

d ~ N ( d ,  Ed), (3.21)
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We assumed no prior knowledge o f the actual thickness values but that the thickness length 

scale was known, or that Ih =  It , and that an informative prior model o f mass balance with known 

covariance was available. Covariance amplitude was given by 0^ =  r^max(b) and vG was Gaussian 

with correlation length l^.

Using the MH algorithm, we drew ni =  106 iterations from the posterior distribution o f m, 

discarding the first 105 samples to eliminate transient behavior. We performed this procedure three 

times, using different (random) initial conditions for each sample. Evidence for the convergence of 

the samples to a stationary and correct posterior distribution will be demonstrated in Section 3.3.3.

Figure 3.2 shows the pointwise posterior distributions o f the model parameters in m . The 

most notable immediate result is that the algorithm produces correct credibility intervals: the 2 0 - 

credibility interval does indeed contain the true bed elevation at 95% of grid points, which pro

vides confidence that the posterior distribution produced by the algorithm can recover meaningful 

information about the bed elevation.

Nonetheless, the maximum a posteriori prediction o f bed elevations is not the true value. This 

is not a surprising result, since we assume a single measurement o f velocity for a given location 

with which to constrain the mean of the velocity distribution there (though multiple observations 

at a point can be included naturally, see Section 3.4.1). The mean velocity is thus free to assume 

values in the space around the observation, but the most probable value of the velocity mean given 

one observation per grid point and in the absence o f feedbacks from additional constraints on the 

velocity is the data point itself.

An interesting feature of the posterior distributions o f both mass balance and surface velocity is 

that the posterior distribution is more specific than the prior. This implies that not only are these 

fields contributing information to the estimation o f thickness, but data and smoothness constraints 

on the thickness also feed back.

3 .3 .3  C o n v erg en ce

There are several mechanisms for assessing whether a distribution has become stationary, some 

heuristic and some quantitative. For a good approximation to the posterior distribution to be 

achieved, a) the sampler must traverse the support o f the sampled function many times, b) the 

sampler must visit the entire support, and c) the region traversed by the sampler should be insen

sitive to initial conditions.

Examining traces (i.e. the history o f parameter values at each sampler iteration) gives a heuris-
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for thickness H , mass balance b, and speed Us. For example, samples for thickness H  become 
uncorrelated after approximately 8000 iterations.
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tic means to assess convergence. Figure 3.3a shows the traces of the model vector m  at the location 

indicated by the vertical dashed line in Figure 3.2. These plots are similar at any location. The 

‘fuzzy’ pattern is an indication that the samples are well-mixed, which is to say that both criteria

a) and c) are satisfied. While it is difficult to state definitively that there is not a distant proba

bility maximum that is not being captured, this is unlikely due to physical intuition and the wide 

dispersion o f initial conditions between samplers.

Figure 3.3b shows the posterior probability for several model variables. The densities associated 

with each sampler exhibit a high degree o f similarity, which is further evidence that the samples 

produced by the MH algorithm have converged to the stationary posterior distribution.

The Gelman-Rubin statistic [Gelman and Rubin, 1992] provides a quantitative convergence 

statistic. This statistic compares the ratio between the interchain variance

B  =  j — m )^  (3.22)
j=1

and the within-chain variance

m 1m
w  =  - V

m
3 = 1

n — 1 i= 1
J 2 (m ij — m 3) (3.23)

where we have m chains each o f length n, m j is the mean o f chain j ,  and m  is the mean o f all 

chains. The marginal posterior estimate of the variance o f m  can be estimated by

n 1 1
Var(m|d) =  W  +  -  B . (3.24)

n n

This quantity always overestimates the true value o f the marginal variance. Simultaneously, W  

underestimates the within-chain variance for an underconverged chain. Thus, in the limit as n ^  rc>, 

the ratio o f these two quantities

r  =  Var m a  (3 .2 5 )

converges to one. Thus, for a fully converged distribution (i.e. one that exhibits behavior similar 

to the limiting case), R  «  1. In practice, R  <  1.1 is acceptable [Gelman and Rubin , 1992]. We find 

that for each component in m , R  ^  1.1, providing evidence that the samples are drawn from the 

stationary distribution.

Figure 3.3c addresses a final numerical consideration. The MH algorithm produces samples that 

are autocorrelated, which can persist when parameters covary (as is usually the case with spatial 

processes). While this auto-correlation is not fatal to the algorithm’s performance, it provides an 

important reminder to run each chain long enough to obtain unbiased sample statistics [Christensen

2
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Figure 3.4. Relationship between average thickness uncertainty and velocity uncertainty (a) and 
mass balance uncertainty (b). Solid lines reflect the case where the other variable is being held 
constant at a low level o f uncertainty (e.g. mass balance held fixed while velocity is varied), while 
dashed lines represent the case where the other variable is held constant at a high uncertainty. 
These curves are computed for three different data densities.

et al., 2011; Link and Eaton , 2012]. The Gelman-Rubin statistic suggests that the MH algorithm 

has been run long enough to overcome the difficulties due to autocorrelation.

3 .3 .4  U n certa in ty  P ro p a g a tio n

The relative uncertainty with which the ice thickness can be recovered using mass conservation 

methods is a function o f the relative uncertainties and covariance structures o f surface velocity 

measurements, mass balance measurements (or assimilated model output), ice thickness measure

ments, and ice thickness measurement density. It is reasonable to suspect that an improvement in 

any o f these factors would lead to a commensurate improvement in posterior predictive capabilities 

with respect to thickness. Nonetheless, it is not clear which o f these factors contributes the lion's 

share o f posterior variance. This information is key in forming plans of additional data acquisi

tion; we would like to know which data improvements (and at what densities) will most improve 

thickness estimates.

Here we examine the influence that surface velocity uncertainty, mass balance uncertainty, and 

measurement density have on the relative thickness uncertainty (quantified here as (aH)/H ). We 

neglect to consider sensitivity to uncertainty in thickness measurements. However, these uncertain

ties may well be important in many cases, particularly if the assumption o f on-nadir bed returns 

is flawed or if these exhibit systematic errors. The assumption o f a normally distributed error
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structure may also be inappropriate. Nonetheless, we proceed without a detailed quantification of 

these effects because a) the quantification o f radar uncertainty is not the focus o f this paper and

b) we do not know the most appropriate way to proceed. However, it would be straightforward to 

include such a detailed uncertainty estimate within the framework presented here.

In order to assess the functional relationship between these uncertainties, we performed simu

lations over an array of 1 0  equally spaced relative velocity uncertainties between 0  and 2 0 % of the 

true maximum surface velocity, 10 relative mass balance uncertainties between 0 and 50% of the 

true maximum mass balance, and the number o f data points nd £ {1 1 ,6 ,3 } . Note that the last of 

these data spacings nd =  3 corresponds to a thickness measurement at the midpoint o f the glacier, 

along with the constraints o f zero thickness at the glacier head and terminus. This corresponds to 

300 simulations, each o f which was run to convergence.

Figure 3.4a shows the mean standard deviation in thickness (normalized by max thickness) 

as a function o f the mean velocity standard deviation (normalized by maximum velocity). Solid 

lines correspond to the case where the mass balance is known very precisely (a^ =  0 ), while the 

dashed lines represent an intermediate uncertainty in mass balance ((a^)/b =  0.25). Thickness and 

velocity uncertainties exhibit a linear relationship. The proportionality depends weakly on data 

density because o f the lack o f a smoothness constraint directly imposed on velocity; it is strictly 

a function of thickness and mass balance and only indirectly sees the locations at which thickness 

is known. Where mass balance is known precisely, the nd =  3 and nd =  6  solutions are similar. 

This is because the variance in velocities admissible with respect to forward model constraints 

when only a single measurement o f thickness exists is less than the variance in velocity due to 

measurement uncertainty. W hen mass balance has large uncertainty, the forward model imposes 

a weaker constraint and the distribution o f velocities becomes progressively wider as observational 

uncertainty increases.

Thickness precision as a function of mass balance uncertainty (Figure 3.4b) is also linear. How

ever, this relationship depends more on data density due to the long correlation length imposed 

upon mass balance. While it can assume many values between thickness measurements, the local 

constraint imposed by mass conservation at thickness measurement locations forces it to a unique 

value there. If the measurement spacing is shorter than the mass balance correlation length, it 

cannot vary much between these two pinned points, regardless of its variance. This constraint 

becomes less active as measurement spacing increases, allowing the uncertainty in mass balance to 

more strongly influence uncertainty in the thickness.
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3.4  S torg la c ia ren

3.4 .1  C h a ra cte r iza tio n  and  data .

Storglaciaren is a ~ 3  km long polythermal glacier in northwestern Sweden. It possesses the longest 

spatially distributed surface mass balance record of any glacier [Holmlund et al., 2005]. The relative 

simplicity of its geometry along with the density o f mass balance data make it a useful test case. 

Also, the basal topography o f Storglaciaren is well known and thus this experiment provides a 

means to assess whether the algorithm correctly produces error bounds on a ‘known’ bed.

Thickness and surface observations were adapted from Herzfeld et al. [1993]. Surface velocities 

were derived from stake measurements [Hooke et al., 1989; Jansson , 1997; Kuriger , 2002]. These 

observations are discrete rather than fields. However, this distinction from the previous synthetic 

example provides no particular difficulty from a technical standpoint.

We estimated the flowline width by using a first order glacier flow model [Brinkerhoff and 

Johnson , 2013] in the full map-plane domain to invert point measurements of surface speed for basal 

traction. We used the resulting velocity field to compute a flowband with centerline coordinates 

that passed approximately through the velocity observation points. We did not use this modeled 

velocity field as an observation. Instead, to reduce circularity, we used the original measurements.

A  prior distribution on mass balance was generated from the measured annual net balance for 

Storglaciaren between years 2000 and 2013 [Jansson, 1999]. The availability o f multiple years of 

data allowed the computation o f both the sample mean and the estimated covariance o f the mean 

as a function o f surface elevation. A  spatial covariance function vG (S (r ) ,S (r ') )  was computed 

by fitting the sample mean covariance matrix with a Gaussian covariance function, similar to 

Equation (3.14). This covariance function was parameterized as a function o f surface elevation.

Thickness measurement uncertainty was assumed to be aH =  10 m, and the thickness field 

was assigned a vague prior as in the synthetic case. We assumed a correlation length of lH =  250 

m, a velocity standard deviation of au =  5 ma- 1 , and a width uncertainty o f aw =  0.1. The 

Storglaciaren flowline was discretized with a horizontal resolution of approximately 35 m. Despite 

profile data being given as continuous, we artificially sampled the thickness every 350 m.

3 .4 .2  R e co v e ry  o f  k n ow n  to p o g ra p h y .

We ran the Metropolis-Hastings algorithm three times for 106 iterations each, discarding the first 

105 samples. Each instance was given different initial values drawn from the prior distribution. We 

assessed the convergence of the samples using the same methods as discussed in Section 3.3.3. This
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Figure 3.5. Recovered pointwise probability densities for Storglaciaren. Dark and light gray shaded 
regions indicate the a and 2 a posterior credibility interval, respectively.
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analysis produced similar results to those o f the synthetic case (not shown).

Figure 3.5 shows the computed posterior distributions and priors. The credibility intervals pro

vide a correct if conservative estimate o f the true value. However, it is not clear that in the presence 

o f a large number o f data points and a smooth bed (as for Storglaciaren), that much is to be gained 

by using a mass conservation based interpolant. Rather, ordinary Kriging or some variant thereof 

would be equally useful in establishing a bed elevation model for dynamic modeling. This is less 

an indictment o f mass conservation methods and more a reflection o f the fact that Storglaaciaren’s 

simple topography, smooth bed, and high data density make for an ideal case for Kriging. Despite 

the fact that Storglaciaaren has a well constrained mass balance, we have already shown that the 

mass conservation method is insensitive to this quantity in cases where thickness measurements are 

closely spaced, and this dataset cannot be fully utilized. Simultaneously, surface velocities are dis

crete, and mass conservation cannot contribute much between observation locations. Nonetheless, 

the mass conservation technique produces a distribution that would be useful in forcing ensemble 

runs with dynamic models. Furthermore, it produces an estimate o f unobserved surface velocities 

and a corresponding uncertainty estimate.

3.5 J a k ob sh a v n  I s b r *

3.5 .1  C h a ra cte r iza tio n  and  data .

Jakobshavn Isbrm is the largest basin (as ranked by discharge) on the Greenland ice sheet and is 

the fastest glacier on earth [Rignot and Kanagaratnam , 2006]. It drains 7% of the Greenland ice 

sheet by area. Due to these factors it is comparatively well studied. However, because of the large 

areal extent the absolute data density compared to Storglaciaren (for example) is low.

Absolute mass balance rates over the ice sheet are small compared to a mountain glacier, with 

a maximum accumulation o f around half a meter per year, an order o f magnitude lower than a 

typical mountain glacier. Relative measurement errors are large given identical methods, and the 

distances over which measurements must be extrapolated are longer. Surface velocities range over 

four orders o f magnitude and relative errors are high in the low velocity interior o f the ice sheet 

and low in the fast flowing outlet regions. Soundings o f ice thickness are made by airborne radar 

in the form o f discrete radar flightlines, mostly running normal to the dominant ice flow direction. 

These can have high observational uncertainty in topographically complex regions [Gogineni et al., 

2014].

We consider the time domain t e  [2003,2014] since it overlaps observations of ice thickness
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Figure 3.6. Centerline o f the flowband considered for Jakobshavn Isbra(Blue). Also shown are log- 
scaled velocity vectors from Rignot and Mouginot (2 0 1 2 ), and bedrock elevations along Operation 
IceBridge flightlines derived from M CoRDS ice penetrating radar [Allen et al., 2015].
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Figure 3.7. Recovered pointwise probability densities for a flowband over Jakobshavn Isbrm. Dark 
and light gray shaded regions indicate the a  and 2 a posterior credibility interval, respectively. Also 
included are the digital elevation models o f Bamber et al. [2013] and Morlighem et al. [2014b], as 
well as pre-Icebridge radar observations that were not included in the solution procedure [Allen 
et al., 2015].
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Figure 3.8. Posterior standard deviations o f Jakobshavn Isbrrn flowband under different assump
tions about the correlation length. Flightline locations are denoted by a vertical black line.
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[2011-2014, Allen et al., 2015], surface velocity [2008, Rignot and M ouginot, 2 0 1 2 ], surface rate of 

change [2003-2007, Csatho et al., 2014], and mass balance [1958-2007, Ettema et al., 2009]. We will 

describe each o f these data sets and our estimate o f their uncertainties in this application below.

We extracted a flowband from Jakobshavn Isbrrn flowline by generating two streamlines from 

the InSAR derived velocity dataset o f Rignot and Mouginot [2012]. The streamlines were spaced 

approximately 100 m apart at a location approximately 50 km upstream of the 2008 terminus 

location. The flowline used in this section is the centerline between these two flowlines, and all 

data are assumed to be width-averaged values contained therein. The width itself is the distance 

between the two flowlines along a line segment normal to the centerline. We assume a uniform 5% 

standard deviation in flowline width (i.e. aw =  0.05).

Velocity magnitudes were also derived from Rignot and Mouginot [2012]. Reported velocity 

uncertainties are approximately 10 ma - 1  due to instrument and processing error. The velocity 

field spans the single winter o f 2008, and as such can account for neither interannual nor intra

annual variability, yet there is a considerable amount o f spatial and temporal variability in the 

basin’s velocity field. For example, Joughin et al. [2012] showed that in the nearest 40 km to the 

Jakobshavn Isbrrn terminus, velocities could vary by as much as 40% over the course of a year. 

Additionally, they show a long term trend in velocity over the period between 2004 and 2011. In 

each case, the degree o f temporal variability was spatially heterogeneous, but roughly corresponded 

to the magnitude o f the velocity. Observations did not always demonstrate a consistent seasonal 

signal and we cannot assume that the winter observation represents an annual velocity minimum.

A simple uncertainty estimate that can account for the factors given above assumes that obser

vations have an uncertainty of ajj =  max(U7spU, au,min). We take aj ,min =  10 ma - 1  as a reflection 

o f the instrument uncertainty, a lower bound on the true uncertainty in annual average. We assume 

p j  =  0.1, which would correspond to a 2a bound capturing the 40% intra-annual variability seen 

at some locations. While we believe that these uncertainties are roughly representative, we also 

acknowledge that there are more precise ways to parameterize this uncertainty, for example com 

puting sample covariance between different velocity datasets and using a non-normal uncertainty 

distribution to reflect the fact that using solely a winter velocity skews the estimate o f the mean 

velocity downwards.

Mass balance was drawn from the regional climate model R A C M O 2/G R  [Ettema et al., 2009], 

averaged over a period between 1958 and 2007, which is the longest temporal footprint o f the data 

sets considered here. It lacks a covariance estimate, so we assume an uncertainty o f a  ̂ =  0.2 ma - 1
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that reflects the fundamental uncertainty o f the model output due to the long distances between 

controlling data points, systematic uncertainty in the reanalysis process, and processes such as basal 

melt and surface refreezing that might not be captured. It also accounts for uncertainty induced 

as a result o f using this 49 year average as a proxy for the 11 year average we consider here. We 

assume a correlation length o f ly =  50 km.

The Greenland ice sheet is not in steady state [Csatho et al., 2014; Joughin et al., 2012; Motyka 

et al., 2010]. To account for this, we specify a thickness change field from Csatho et al. [2014]. This 

field is derived from repeat surface altimetry measurements taken between 2003 and 2009. Surface 

laser altimetry is precise and we thus assume measurement uncertainty in thickness change to be 

negligible compared to the uncertainty in mass balance estimates. Nonetheless, because the period 

o f record is not contemporaneous with the specified averaging period, we assume that uncertainty 

in the average thickness rate of change contributes an additional au t = 0 .1  ma- 1  to uncertainty in 

apparent mass balance.

We utilize ice thickness data obtained by aerial radar using the Multichannel Coherent Radar 

Depth Sounder (M CoRDS) [Allen et al., 2015], collected as part o f Operation IceBridge, wherever 

it intersects the flowline. Note that we did not include pre-IceBridge observations with the same 

instrument, instead saving these for validation purposes. However, if we intended to produce a bed 

elevation field for further modeling use, we would include these observations when computing the 

posterior distribution. We assume a nominal standard deviation along the flightlines of 12.5 m, 

as specified in the data documentation. Furthermore, we keep only measurements that are rated 

as being o f ‘high quality.’ This latter filter has the effect of eliminating most radar returns in the 

deep trough near Jakobshavn Isbrm’s terminus, where off-nadir reflections make interpretation of 

radargrams uncertain. We neglect the small uncertainty resulting from thickness changes over the 

averaging period.

Variograms computed for IceBridge and pre-IceBridge data have placed the average range (the 

distance at which samples become uncorrelated) for Greenland between 58 km [Morlighem et al., 

2013] and 80 km [Bamber et al., 2001] (erroneously referred to as the sill in both). Both o f the above 

studies fit an exponential covariance model [Rasmussen, 2006]. We computed spatially explicit 

variograms over a moving 120 km footprint for all of Greenland. In the Jakobshavn Isbrm basin, 

we echo previous work in finding that the exponential model provides the best fit, with an average 

correlation length o f approximately 10 km (the correlation length scale is 1 /3  the range). In 

contrast, the average value over the ice sheet is approximately 25 km. These values are not precise
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because the assumption o f independent samples in the computation o f an empirical variogram is 

violated: nearby samples tend to be oriented parallel or perpendicular to flow. Therefore, we use 

these values as a guide for specifying the test length scales lH £ [10,25, 40] km.

3 .5 .2  R e co v e ry  o f  basal t o p o g r a p h y  fo r  th ree  c o rre la t io n  len gth s.

We again ran the Metropolis-Hastings algorithm three times for 106 iterations each, discarding 

the first 1 0 5 samples, and each instance was given different initial values drawn from the prior 

distribution. We assessed the convergence o f the samples using the same methods as discussed 

in Section 3.3.3, and consideration o f traces, histograms drawn from different samplers, and the 

Gelman-Rubin statistic all indicated sampler convergence.

Figure 3.7 shows the pointwise posterior distributions produced by the MH algorithm for the 

flowline described above using lH =  10 km. It is readily apparent that the bed elevation m od

els of both Bamber et al. [2013] and Morlighem et al. [2014b] are admissible under the posterior 

distribution produced here, and neither is more probable than the other. The pre-IceBridge obser

vations that were held back are also distributed according to the bounds produced by the posterior 

distribution, providing evidence for the predictive capabilities o f the Bayesian approach.

The algorithm makes significant adjustments to the mass balance and width functions in order 

to accommodate velocity observations, particularly in the ice sheet interior. The requirement that 

the algorithm finds a posterior mass balance distribution that is improbable with respect to the 

prior distribution implies that at least one o f the data sets considered herein may have a mean that 

is far from the true value. One hypothesis is that the surface mass balance model is underestimating 

aeolian snow redistribution.

Figure 3.8 shows the influence o f correlation length on uncertainty estimates. Also included 

are the results o f the method with the mass conservation relationship ignored, which is equivalent 

to ordinary Kriging. In regions o f slow flow and relatively high uncertainty in velocity and mass 

balance rates, the uncertainty in derived thicknesses away from observations is large, and this is 

insensitive to correlation length. This is the case where mass continuity errors produce a similar 

amount o f uncertainty to Kriging because it contains little useful information. Conversely, in 

regions o f high data density, the covariance structure on thickness dominates. The smoothness 

constraint tends to dominate mass conservation, and considering the latter provides no advantage 

over Kriging in terms of precision. In the intermediate case, where thickness observations are sparse, 

but relative errors in the other constituents o f the mass conservation model are low, the mass
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conserving interpolation scheme shines, producing uncertainties o f less than half the Kriged case. 

The influence of correlation length on uncertainty estimates is also apparent: longer correlation 

lengths (i.e. smoother topography) produce lower uncertainties for a given data density.

3 .6  D iscu ss ion

3.6 .1  A p p lic a t io n  to  th e  m a p -p la n e

The method presented herein was limited to the flowline case, and we argue that this context is 

useful for assessing the uncertainty that we expect from using mass conservation methods. However, 

many modeling applications require fields over the map plane. Because Monte Carlo methods 

require the solution o f a forward model many times, the transition from solving the balance velocity 

equation on a flowline, which requires only quadrature, to the map plane, which requires the solution 

of a linear system o f equations (not to mention an inherently greater number of degrees o f freedom) 

is inherently expensive. However, this is not to say that the problem is intractable; because the 

Metropolis-Hastings algorithm is subject to the Ergodic Theorem, it is efficiently parallelizable in 

the sense that rather than running a single instance o f the algorithm for many iterations, we can run 

many (independent) instances o f the algorithm, and concatenate the resulting samples [Murray, 

2 0 1 0 ]. Aside from this numerical concern, the framework for utilizing the method in the map plane 

is given in Section 3.2.2 but without the simplifying assumptions o f Section 3.2.3.

3 .6 .2  S e le ction  o f  cov a ria n ce  m od e ls

The application o f a geostatistical interpolation technique requires the selection of a model for the 

spatial covariance of the field in question, in this case ice thickness. In Bayesian methods this 

involves the a priori assumption of a correlation function with the specific form thereof derived 

from an empirical variogram or some other source [Bamber et al., 2001; Herzfeld et al., 1993]. 

Algorithms that cast the interpolation problem as one o f PDE-constrained optimization impose an 

equivalent smoothness requirement through regularization [Morlighem et al., 2011]. In either case, 

this choice introduces an influence on the pointwise posterior distribution o f ice thickness o f similar 

order to that o f the mass conservation relationship.

These two processes (covariance function definition and regularization) are equivalent: regu

larizing on the square of the gradient is the same as using a Gaussian covariance function. The 

regularization parameter thus has physical relevance in that it is proportional to correlation length, 

and care must be taken in the selection o f a smoothness parameter. It is not appropriate to
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regularize away the non-uniqueness o f the problem with L-curve analysis because this selects the 

smoothest solution for which the data retains a good fit. However, this level o f smoothness may not 

be physically mandated, and would tend to reduce the feasible range of solutions. Furthermore, 

the selection o f a particular norm on the thickness gradient to minimize has the effect o f choosing a 

covariance function. Experimental variograms suggest that the appropriate model for Greenland is 

usually exponential, yet the 2 -norm regularization commonly used in basal topography inversions 

implies a Gaussian covariance. This may be desirable if a large scale volume estimate is the goal 

[Bahr et al., 2014], but for local scale topographic estimation, it produces the wrong result. Instead, 

the degree o f regularization or the covariance structure should be informed by independent analysis 

o f bed covariance, and this must be incorporated into uncertainty estimates.

Nonetheless, deducing the appropriate covariance model and associated parameters is a difficult 

task, due to the sparsity o f bedrock elevation measurements. This is compounded by the fact that 

glacier flow tends to produce landscapes with anisotropic topographic variability. This variability 

is spatially heterogeneous, and ice sheet interiors may have different geomorphic properties than 

the ice sheet margin or heavily glaciated mountain regions. The problem should be addressed by 

detailed radar soundings of ice thicknesses over regions deemed geomorphically representative of 

large scale conditions, as well as through analysis of recently deglaciated terrain. For ice sheets, this 

includes understanding the topographic variability in the heretofore less observed interior regions.

3 .6 .3  F lig h tlin e  sp a cin g

The selection o f bed elevation measurement spacing is o f great importance for future data ac

quisition campaigns, both in mountain and ice sheet environments. Considering Figure 3.8, and 

to a lesser extent Figure 3.4, there is an intermediate spacing regime over which mass conserva

tion techniques can improve thickness uncertainty estimates. For long measurement spacing (i.e. 

greater than 20 ice thicknesses), mass conservation techniques may or may not outperform Krig- 

ing, depending on observational uncertainty. In either case, knowledge of the covariance structure 

does not improve uncertainty estimates, and errors may be large. For densely spaced flightlines, 

mass conservation does not offer an advantage over Kriging, because the smoothness imposed by 

the covariance model overrides any additional information due to continuity. Between these, mass 

conservation offers improvements in precision. We estimate this efficiency window to be one to two 

times the correlation length.

For Jakobshavn Isbrm, if we take the available ice-sheet wide empirical variograms computed
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from collected flightlines as guidance, then an isotropically oriented measurement spacing o f ap

proximately 10-20 km is appropriate. A  more detailed look at existing measurements, particularly 

with an eye for discerning anisotropy in topographic covariance could improve estimates o f uncer

tainty. This analysis could be improved further by collection o f high density radar measurements 

over patches in order to better understand the short range topographic correlation structure that 

governs smoothness. For accurate assessment o f the covariance structure, these patches would 

need to be at least 3 times the correlation length to a side. Regardless of topographic correlation 

structure, the admissible measurement spacing for a desired accuracy increases given more precise 

mass balance measurements (above a certain measurement spacing) and more precise velocities (to 

a point).

3 .7  C on clu s ion s

We have developed a Bayesian statistical model for inferring the posterior probability distribution 

of ice thickness given sparse observations thereof, coupled with observations o f mass balance and 

surface velocity. Model variables are represented with Gaussian processes, which allow the specifi

cation o f a covariance structure and prior information. These three parameters are linked through 

mass continuity. Our work advances upon previous methods in a few primary ways.

The continuity equation must be reformulated from acting instantaneously to over a finite time 

period. This point is subtle, because the resulting equation is similar to the original. However, the 

interpretation o f the variables involved as time averages induces an additional step in the obser

vation process, and we hence include an additional source of uncertainty (on top o f measurement 

uncertainty) representing the deviation o f observed quantities from their averages over the cho

sen averaging period of the continuity equation. Further constraining the form and magnitude of 

this uncertainty will be an important advance towards improving continuity-based interpolation 

schemes.

The Bayesian perspective allows the critical assumptions made in this model process to be 

elucidated. W hen assumptions o f normality are used, they must be used explicitly. However, 

the method is general and assumptions o f normality are not required. For example, this generality 

allows us to use a uniform distribution to model the relationship between surface and depth-averaged 

velocity.

Using Gaussian processes to represent fields such as thickness and mass balance allows for 

a straightforward and general way to impose smoothness constraints. We reiterate that there
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is a strong relationship between spatial covariance structure and regularization, and an accurate 

assessment o f this value is critical in accurate modeling o f basal topography as well as in determining 

the precision o f those estimates.

For uncertainty estimates typical of velocities, mass balance, thickness, and data density in 

a mountain glacier, the algorithm reconstructed the basal topography, the distribution o f which 

showed a relative uncertainty (as quantified by the normalized standard deviation) o f around 1 0 % 

at locations far from thickness measurement locations. Thickness uncertainty varies almost linearly 

with velocity uncertainty, due to the lack of an imposed covariance structure on velocity. On the 

contrary, the propagation o f mass balance uncertainties is also influenced by the length scale of 

permissible variability in thickness and mass balance itself, as well as by data densities.

Application of the method to Storglaciaren, a 3.1 km mountain glacier in the mountains of 

Sweden was successful, though the resulting uncertainties were relatively large. This is a result 

o f the sparse nature o f velocity measurements there, as well as the relatively large uncertainties 

in long-term average mass balance due to the high degree o f interannual variability evident in the 

mass balance record.

At Jakobshavn Isbrm, the algorithm produced bed estimates with uncertainties varying greatly 

as a result of data density and relative uncertainty in different regions of the ice sheet. Consid

eration o f mass conservation can improve thickness estimates in regions o f low relative velocity 

and mass balance error, but tends to produce large uncertainties in regions o f slow flow and small 

mass balance. We found that estimates of thickness uncertainty also depended strongly on correla

tion structure, which is equivalent to regularization in the PDE-constrained optimization context. 

Obtaining a better estimate o f covariance structure would facilitate further application o f mass 

conserving algorithms to ice sheets.

Based on our analysis, we suggest a flightline spacing of one to two times the topographic 

correlation length in order to best leverage mass conservation based interpolation techniques. For 

the Jakobshavn Isbrm region, we estimate this spacing to be between 10 and 20 km, but more 

work is necessary to determine the ideal value for the remainder o f the ice sheet.
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V e lo c ity  v a ria tion s at C o lu m b ia  G la c ie r  ca p tu re d  b y  p a rtic le  filterin g  o f  ob liq u e

tim e -la p se  im a g e s 1

A b s tr a c t

We develop a probabilistic method for tracking glacier surface motion based on time-lapse imagery, 

which works by sequentially resampling a stochastic state-space model according to a likelihood 

determined through correlation between reference and test images. The method is robust due to 

its natural handling of periodic occlusion and its capacity to follow multiple hypothesis displace

ments between images, and can improve estimates o f velocity magnitude and direction through the 

inclusion o f observations from an arbitrary number o f cameras. We apply the method to an annual 

record o f images from two cameras near the terminus o f Columbia Glacier. While the method 

produces velocities at daily resolution, we verify our results by comparing eleven-day means to 

TerraSar-X. We find that Columbia Glacier transitions between a winter state characterized by 

moderate velocities and little temporal variability, to an early summer speed-up in which veloci

ties are sensitive to increases in melt- and rainwater, to a fall slowdown, where velocities drop to 

below their winter mean and become insensitive to external forcing, a pattern consistent with the 

development and collapse o f efficient and inefficient subglacial hydrologic networks throughout the 

year.

4.1 In tro d u ct io n

Motion is what defines a glacier, and measuring this motion is a principal concern for understanding 

changing ice dynamics. Observed over multiple years, ice velocity and acceleration inform the 

dynamic component o f glacial contributions to sea level rise. [e.g. Burgess et al., 2013; Joughin 

et al., 2010]. In the very short term (e.g. hourly measurement intervals), velocity measurements can 

elucidate the physics o f glacial response to diurnal or tidal forcing [Dietrich et al., 2007; M eier et al., 

1994]. At intermediate scales, velocity changes provide information on the sensitivity o f glacier flow 

to changes in liquid input (i.e. from storms or hot days) and on the configuration o f the subglacial 

drainage system that determines this sensitivity [Harper et al., 2007]. Analysis o f image sequences 

captured by ground-based cameras provides a compelling mechanism for evaluating glacier velocity 

variations at short and intermediate time scales because o f the low cost and ubiquity o f the necessary 

equipment. While many photogrammetric techniques are applicable to both orthogonal and oblique

1Prepared for submission in Journal of Glaciology with S. O ’Neel.

Chapter 4
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imagery, we confine our review to the latter. At the most basic level, methods o f capturing the 

velocity consist o f two elements: first, a means of tracking persistent features in image coordinates. 

Second, a relation between image and spatial coordinates.

The first quantitative application o f time-lapse imagery to glaciers in was by Flotron  [1973], who 

resolved both the seasonal signal o f horizontal velocity, but also a small signal o f vertical motion. 

In Alaska, Harrison et al. [1986] used automatic 35mm cameras to document daily speedups on 

Variegated Glacier during the three summers prior to its surge in 1982. Krimmel and Rasmussen 

[1986] used a similar system at the terminus to Columbia Glacier during the early stages o f its 

retreat, manually tracking 30 points through a sequence o f 3 frames per day of the summer of 

1983. Harrison et al. [1992] describe an approach to tackling one o f the more significant difficulties 

associated with tracking slow moving fluid: the camera also has a tendency to move and that 

control points are not always available. Despite the lack of surveyed ground control points or a 

stable camera position, they were able to document the surge o f West Fork Susitna Glacier.

Since the advent o f digital cameras, a handful o f methods have emerged by which to perform 

automatic measurements with oblique cameras, in contrast to the manual methods used previously. 

Evans [2000] used a probabilistic metric to track multiple potential flow pathways. However, 

he stopped short of converting solutions from image coordinates to spatial coordinates, and so 

the utility o f this tool for practical glaciology is limited. Dietrich et al. [2007] used automated 

tracking o f features on the surface o f Jakobshavn Isbrs, in conjunction with a photogrammetrically- 

derived DEM , resolving both horizontal and vertical motion of the Jakobshavn terminus under an a 

priori assumption o f flow direction from a remotely-sensed velocity field. Cameras were calibrated 

and corrected with surveyed fiduciary points, and were oriented such that they were orthogonal 

to the primary flow direction. Their work represents best practices in camera installation, but 

these were usually not considered for cameras where feature tracking was not the initial intent. 

Rosenau et al. [2013] expanded this experiment over several more years, localizing the grounding 

line position at Jakobshavn based on presence or absence o f tidal motion. At Helheim Glacier, 

feature tracking was similarly used to quantify tidal flexure near the glacier terminus [Murray et al., 

2015; James et al., 2014]. Ahn and B ox  [2010] demonstrated a robust method for tracking flow 

fields utilizing multiple image pre-processing techniques simultaneously to reduce the incidence of 

incorrect matches between image pairs from several cameras in Greenland. The resulting velocities 

agree well with those derived from remote sensing. Finally, Messerli and Grinsted [2014] and 

James et al. [2016] provided software libraries that distill many o f the essential methods required
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for oblique time-lapse velocity measurements into accessible and open-source packages.

In this paper, we address the problem of determining glacier velocities from an unstable camera 

under changing lighting conditions without precise ground control. In contrast to previous work, 

we apply a probabilistic approach that allows us to address some o f the key difficulties o f other 

methods while producing robust estimates of uncertainty under unfavorable conditions that are 

still ubiquitous 25 years after Harrison et al. [1992]. We apply a method called particle filtering, 

which sequentially updates the probability distribution of the state o f a moving glacier surface, 

namely its position and velocity by considering a likelihood derived from matching characteristic 

features between images. Besides robust error accounting, this method immediately generalizes 

to multiple cameras, is robust to partial occlusion due to the use o f predictions by an underlying 

physical model, and does not require the ill-posed step o f projecting values in image coordinates 

onto the landscape. We apply the method to images collected by a pair o f (non-stereo) cameras 

at Columbia Glacier, AK, that are subject to all of the potential uncertainty sources typical of 

time-lapse image analysis. We process images over nearly a full year, for the first time providing 

speeds over all seasons at daily temporal resolution, providing new insight into the evolution of 

basal processes near the terminus o f a large tidewater glacier.

4 .2  C o lu m b ia  G la c ie r

Columbia Glacier (Fig. 4.1a) is a 52 km long tidewater glacier that drains the high central Chugach 

Mountains in southcentral Alaska. Its climate is strongly maritime with annual precipitation rates 

o f near 3m at the terminus. The terminus itself is characterized by high speeds and vigorous calving 

[M eier and P ost , 1987]. Winter temperatures are moderate, while early summers see strong melt. 

large rainstorms are common in the late summer and fall [Bieniek et al., 2012].

Columbia Glacier is currently in the retreat phase o f the tidewater glacier cycle [M eier and 

P ost , 1987], and has retreated more than 25 km from its maximum in 1980. The specific mech

anism for initiating the retreat is debatable [Sikonia and P ost , 1980; Carlson et al., 2017], as the 

glacier geometry at Columbia Glacier’s maximum length was highly unstable due to the significant 

overdeepening in what is now Columbia’s fjord. In any case, the current retreat is driven by glacial 

dynamics and bed topography, with climate assuming an ancillary role [P feffer , 2007].

The velocity o f Columbia Glacier, particularly near the terminus, has varied greatly since the 

beginning o f the retreat and these variations have been documented over a variety o f temporal and 

spatial scales since the 1980s. Vaughn et al. [1985] used an automated laser rangefinder and a small
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Figure 4.1. Columbia Bay and the Columbia Glacier terminus c. July 2013. Cameras used in 
this study are denoted by red bullseyes, and their field o f view by red lines. Additional time- 
lapse cameras that were not included are given by cyan circles. We compute velocity fields in the 
glacierized region that falls within the field of view o f both cameras. The colored surface is the 
glacier speed on 2013.07.15 (see Fig. 4.2 for colorbar). The temperature data shown in Fig. 4.5 is 
recorded at a station 2 km out o f frame to the northeast. Base image courtesy Polar Geospatial 
Center.
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Figure 4.2. Representative images for AK01 (top) and AK10 (bottom ), the two cameras used in 
this study. The location o f the other camera is denoted by a bullseye. The colors represent glacier 
speed on 2013.07.15, with vectors indicating flow speed and direction in image coordinates. Note 
the presence of a strong shear margin which is well captured by the algorithm, as well as the very 
low image aspect ratios.
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set o f reflectors installed in the ice near the terminus to measure pointwise velocities at 15 minute 

intervals. Despite the excellent temporal resolution, this method was only applied to a handful of 

points, and the record only lasts for approximately 30 days during the summers of 1984-1986. M eier  

et al. [1994] performed similar measurements in 1987. Krimmel and Rasmussen [1986] performed 

one o f the first examples o f using oblique time-lapse photography to measure glacier velocities at 

daily resolution over both winter and summer. The camera, situated over 5 km from the study site 

was able to produce daily offsets with a nominal precision o f 1 m d - 1 .

These temporally detailed results are supplemented with distributed velocity fields determined 

from repeat georectified aerial photographs with intervals o f around two months [Krimmel, 2001], in 

which characteristic surface features such as crevasses were manually identified in image pairs. Since 

that time, major improvements in the availability o f satellite imagery have allowed the automated 

generation o f velocity fields with full coverage and enhanced temporal resolution. Fahnestock et al. 

[2016], used optical imagery from Landsat8  to produce velocity fields for each 15-day offset image 

pair in the satellite’s brief record, excluding periods when the landscape was obscured by clouds. 

Circumventing the occlusion issues o f optical imagery, Burgess et al. [2013] used synthetic aperture 

radar (SAR) to generate velocity fields at Columbia Glacier (and elsewhere) with a temporal res

olution o f 46 days at irregular intervals between 2007 and 2009. Joughin et al. [2010] and Vijay 

and Braun [2017] independently used SAR observations with a higher return frequency to produce 

1 1 -day average velocities between 2 0 1 0  and 2016, with approximately monthly frequency. As a side 

note, Vijay and Braun [2017] produced commensurate digital elevation models that coincide with 

their velocity fields which are publicly available.

Taken in aggregate, a consistent story about the spatial and temporal variations in Columbia’s 

flow has emerged, superimposed on tidewater retreat. At seasonal time scales, Columbia has a 

velocity minimum in October or November, before a slow ramping up to more consistent values 

through mid-winter into early spring. In late spring, the glacier rapidly accelerates, reaching a 

velocity maximum in May or June, before a decline back to the minimum state in the fall, a pattern 

that has persisted from when it was first enumerated [M eier and P ost , 1987] through present [Vijay 

and Braun , 2017], albeit with a drift towards respective maxima and minima occurring later in the 

season. The magnitude of these variations have changed throughout the course o f the retreat. In 

the early 1980s, maximum velocities were less than 10m d - 1 , increased to 30 m d - 1  during the 

periods o f most vigorous retreat in the mid 1990s to 2000s [O ’Neel et al., 2005], and have been on 

the order o f 15 m d - 1  since 2010 [Vijay and Braun, 2017].
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Since ice geometry changes relatively slowly, and these velocities are an order o f magnitude 

higher than could be explained by deformation, seasonal evolution o f subglacial pressure is com 

monly thought to drive these variations due to the ability o f water pressure to partially offset the 

normal stress exerted by ice on the bed and thus reducing friction. Pressure variations are induced 

by changes in the availability o f surface water (either melt or rainfall) or changes in the character 

o f the subglacial drainage system [e.g. Iken and Truffer, 1997; W erder et al., 2013]. Based on water 

pressure observations from terrestrial glaciers, it is hypothesized that during winter the lack of 

surface inputs lead to a weakly-connected drainage system with moderate pressure that produce 

moderate velocities [Iken and Truffer, 1997; Truffer and Harrison , 2006]. At the onset o f the melt 

season in spring, the additional water overloads this system, leading to high pressures and velocities, 

but also causing an efficient drainage network to form. In the fall, as water input decreases, water 

pressure drops below the annual average before the drainage system can once again equilibrate to 

winter conditions.

The multiple field campaigns of the 1980s reported velocity fluctuations superimposed on these 

longer term signals during summer. Signals o f acceleration were observed at both diurnal and tidal 

periods, presumably associated with short term changes in water pressure. Additionally, stochastic 

events such as foehn winds or large rainstorms were also observed to cause complex increases in 

velocity, often (but not always) followed by a decrease to below pre-event speeds. Interestingly, 

contemporaneous measurements o f pressure and speed did not reveal a clear relationship between 

the two [Kamb et al., 1994]. However, these velocity changes were well (but not perfectly) correlated 

with changes in water storage as inferred from proxies for influx and outflux [Fahnestock, 1991]. 

The observed mismatch in the direct pressure signal was ascribed to heterogeneity in the local 

subglacial drainage system relative to the area-averaged value relevant to glacier dynamics and 

aliased by total water storage.

Since the observations described above, few direct observations o f Columbia Glacier’s velocity 

have been collected. While remote sensing is extremely useful for describing synoptic features, it 

lacks the temporal resolution necessary for assessing glaciological response to short term changes 

in geometry (i.e. calving) or hydrology. Given the remarkable changes that have occurred over the 

last 30 years, it is not clear whether Columbia Glacier’s dynamics resemble those observed c. 1987. 

Fortunately, Columbia Glacier has been the focus of an intense campaign of oblique time-lapse 

photography since 2007 as part o f an Extreme Ice Survey and USGS monitoring program. Since 

2007, cameras at seven sites have been active, generally taking images of the glacier terminus at
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sub-hourly intervals (Fig. 4.1b). Here we apply the method described below to these images to 

fill this data gap and to determine the degree to which short term velocity variability has changed 

since observations were last taken at such resolutions. Our method provides velocity fields at spatial 

resolutions o f 1 0 0  m with daily estimates o f the three-day average over 1 1  months.

4 .3  A  B ayesian  m e th o d  fo r  tra ck in g  g la c ier  su rfa ce  fea tu res

The problem we seek to solve is as follows: given a set o f sequential images of a glacier surface taken 

from an approximately identical vantage point, find the motion o f the glacier and an associated 

estimate o f uncertainty in a spatial (rather than image) frame o f reference (See Fig. 4.3). While 

methods for tracking features between images are ubiquitous in computer vision, the particular 

problem of tracking glaciers presents a few notable challenges and requirements. First, since the 

images are oblique and we are interested in motion in a spatial frame o f reference, the method 

must be amenable to the use o f a projective transformation in some way. Projection from spatial 

coordinates to image coordinates is straightforward. However, the inverse operation of projecting an 

image onto a landscape that varies in the vertical coordinate is ill-posed because o f discontinuities 

induced by partial occlusion o f background elements by foreground elements, particularly as the 

angle between the camera direction and the surface becomes small. As such we, wish to avoid this 

inverse transformation. Second, glaciers occur outside and in bed weather, so the method must be 

robust to occasional occlusion and also to changes in lighting. Third, the method must be able 

to handle the considerable clutter present on a natural glacier surface. As a means to address all 

o f these problems, we have developed a method that combines so-called template matching with 

particle tracking.

Template matching works by finding the mismatch between a reference sub-image and a larger 

test sub-image as a function of pixel displacement. For example, if a test sub-image were con

structed by rigidly translating a reference sub-image by one pixel up and to the right, then the 

error surface computed by template matching would be minimal for a displacement o f one pixel up 

and to the right. For natural images, this error surface likely contains multiple minima o f various 

degrees, representing several feasible image offsets o f varying certainty. To improve robustness 

to changing lighting conditions, we apply local image processing to both reference and test sub

images. Template matching utilizes large neighborhoods o f data and so is robust to clutter and 

mismatching compared to similar methods that compare local features [e.g. Lowe, 1999], but it 

cannot handle large deformation and is somewhat computationally expensive. Fortunately, neither
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Figure 4.3. Graphical depiction o f the steps of the hybrid template matching-particle filtering 
developed in this paper.
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of these restrictions are too  onerous in the context o f glaciology, where motion is slow and real-time 

processing is not required.

Particle tracking is a method for sequentially updating the probability distribution of the state 

(primarily position and velocity) o f a dynamical model based on a stream o f observations (in this 

case images from a time-lapse camera). Relevant statistics (such as the mean or maximum likelihood 

estimator) can then be extracted from the distribution. The dynamical model that we consider 

essentially says that a point on the glacier surface moves with nearly constant velocity, subject to 

small random accelerations typical of glacial velocity variations. The probability distribution of the 

state is approximated by a large number of ‘particles,’ each representing a potential state, which are 

evolved through time based on the stochastic dynamical model. W hen observations are available, 

particles that are unlikely with respect to these observations are culled, while observations that 

are likely are replicated. The dynamical model exists entirely in the spatial reference frame. To 

determine which particles are likely, they are projected into image space according to a numerical 

model o f the camera, and deemed likely or unlikely with respect to the error surface computed 

with template matching. Note that this allows the algorithm to explore multiple hypotheses, since 

template matching may produce more than one likely offset. While many particles are required 

to fully sample the space o f possible velocities, the projection o f image offsets back into spatial 

coordinates is never required. Additionally, in the absence o f observations (or if observations are 

o f low quality due to bad weather), the state evolves according to the dynamical model only.

We can repeat the above steps for any location desired on the glacier surface. By applying this 

method to a grid of points and applying interpolation to the resulting solutions, we thus produce 

velocity fields.

4 .3 .1  G la c ie r  m o t io n  m o d e l

We use a Lagrangian state-space model (i.e. a set of input variables m k, a set o f output variables 

m k+i and a set of first order discrete transfer functions) to represent the motion o f trackable 

features along the surface o f a glacier. The model state variables are the map-plane coordinates 

x, the map-plane velocities v , the elevation z, and a systematic elevation offset from a datum SS, 

which form the state vector at the k-th time step m k =  [xk, v k, zk, SSk]. We assume that a specified 

point of interest moves tangent to an imprecisely known glacier surface with its velocity subject to
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random accelerations, which yields the discrete difference equations

A t2
x fc+i =  Xk +  A t v k +  ~y ~ a fc (4.1)

vfc+i =  v fc +  A t afc (4.2)

zk+i =  S (x fc+i) +  ^Sk+i (4 .3)

6Sk+ i =  5Sk +  o z ||vfc|| At. (4.4)

afc are normally distributed random accelerations in both horizontal directions

afc ~ N (0, Sv,fc), (4.5)

where Ev,k is a diagonal covariance matrix with entries given by an assumed characteristic variance 

in glacier velocities. S (x k+i) is a reference surface elevation field, for example an interpolant to a 

DEM. Since errors in this reference surface are likely to be systematic, we assume that uncertainty 

in the glacier surface evolves as a random walk that depends on how far the particle moves over 

the DEM, and a characteristic slope of small scale features az . We neglect the evolution of the 

surface elevation due to melting, assuming that this is at least partially accounted for by emergence 

velocity. In regions where the ice is flowing quickly the error between the true surface elevation 

and the reference elevation can evolve quickly, while in regions that are not moving at all, the error 

should remain approximately constant.

The initial state mo is specified as

x o ~ N ( x ' ,  Ex ), (4.6)

v o ~ N ( v ' ,  Ev), (4.7)

Zo =  S ( x o )+  £So, (4.8)

£So ~  N (0 , E s ), (4.9)

where x ' is the nominal location to be tracked, v ' is an initial guess of the velocity, and the various 

E are covariance matrices associated with these initial distributions. A  stochastic state-space model 

can also be written as a random vector drawn from a distribution conditioned on the previous state, 

or

P (m fc|mfc- i )  =  N (F (m k -i) ,  E fc- i ) ,  (4.10)

where F  is the deterministic component of Eqs. 1-4, and Ek is the covariance matrix associated 

with the noise.
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4 .3 .2  A p p ly in g  B a y es ’ T h e o r e m

The distribution o f potential solutions produced by the model described above when used with 

reasonable estimates o f initial distributions and process noise is large. We wish to determine which 

o f these solutions are likely with respect to a sequence o f error-prone observations, in this case the 

displacement o f a characteristic pattern o f surface features associated with the the nominal tracked 

location x ' between oblique images. Stated more rigorously, we seek the probability distribution 

of a current state mk as constrained by all images up to and including that at the current time 

D k =  (d ,  : i £  1 , . . . ,  k }, where d , is an image at time i. We restrict our consideration to the case 

that two assumptions hold, both o f which are true in this context. First, the transition between 

states must be a Markov process, which is to say that mk is independent o f all states except the 

previous one m k - i , or

P (m k | m k -i, . . . ,  mo) =  P (m fc|mk-i). (4.11)

This means that the transition between states has no memory. Second, observations must de

pend only on the contemporaneous state, and are independent o f all other observations and non- 

contemporaneous states: n
P  (D|mk, . . . ,  mo) =  ^  P  (di, m ,). (4.12)

i=i
Using these assumptions combined with Bayes’ Rule [Tarantola, 2005] allows us to sequentially 

update our belief in the state distribution as additional measurements are added:

P(mk|Dk) P(dk|mk) P (m k|D k-i), (4.13)

where P (d k|mk) is the likelihood, which describes how likely it is to observe the current measurement 

d k assuming a state m k, and P (m k|Dk - i ) is a prior  distribution that describes how feasible a state 

is given all previous images but before considering the present image. Multiplying the likelihood 

and the prior together yields the posterior  distribution (to a normalizing constant), which is the 

probability distribution o f states after having considered all available observations. Note that the 

posterior distribution (the probability density function o f position and velocity of a given point 

after considering a set o f images) can be dominated by either the likelihood or the prior. In the 

former case, if an observation is equally likely given any state m  (for example, in the case of 

complete occlusion of the image by, say, a cloud), then the likelihood is constant and the posterior 

distribution is only proportional to the prior: the observation has added no new information and 

reverts to the prior. Conversely, if observations are very certain and the prior relatively vague, then 

the posterior distribution will be governed by observations.
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The prior distribution is constructed by propagating the posterior distribution at k — 1 through 

the state model, which is to  say that the best guess for the current state is the fully-constrained 

previous state updated with the model dynamics. This turns out to be true, which can be seen by 

factoring the expression for the prior as

P (m fc|Dfc_ i )  =  J  P (m fc|mfc_ i )P (m fc_i|Dfc_ i )d m fc_ i , (4.14)

which is a form of the Chapman-Kolmogorov forward equation [Doucet and Johansen, 2009]. In 

this equation, the first term is the probability distribution o f the new state given the old state (or 

the forward model), and the second term is the posterior distribution from the previous time step. 

This equation forms a new distribution by applying the system dynamics to  the posterior at the 

previous time step. In the case that all distributions are Gaussian and the system dynamics are 

linear, Eq. 4.14 can be solved analytically (leading to the well-known Kalman Filter). However, in 

this case neither assumption is true due to  the non-linear constraint o f surface tangent motion, and 

also due to non-linearity in the process o f making observations, described below.

4 .3 .3  M ea su rem en t

The likelihood can be interpreted as follows: given a known state, what is the probability o f a camera 

recording a given (sub-)image. The process we adopt here can be summarized as a) project the 

mean state position into image coordinates, b) extract a sub-image in the neighborhood around the 

projected point and perform local image processing, and c) compute the sum of squared differences 

between the sub-image and all other sub-images in the neighborhood, which is interpreted as the 

scaled logarithm of the likelihood.

S p e c ifica tio n  o f  a ca m era  m o d e l

Our method relies on possessing an accurate function for projecting coordinates in physical space to 

coordinates in image space. We adopt the model of Claus and Fitzgibbon [2005], which is specified 

by camera position, camera orientation, focal length, camera sensor size, and radial and tangential 

lens distortion. A priori, only the camera location is known, and that with limited precision in 

this case (namely the precision o f a hand-held GPS). We solve for the remaining parameters by 

minimizing the misfit between a set o f points that are uniquely identifiable in both a digital elevation 

model and in a reference image (mostly prominent features such as mountain peaks and shoreline 

outcrops) using Powell’s algorithm [Powell, 1964].
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R e fe re n ce  an d  search  su b -im a g es

We begin by projecting the nominal location o f the point we wish to track into image coordinates. 

We then find the nearest integer pixel and extract a m r x  nr sub-image T , which becomes the 

reference sub-image that we track throughout the period of interest. As a preprocessing step, 

we perform a whitened principal components transform to convert the image from RGB to a Z- 

normalized intensity [Smith et al., 2 0 0 2 ]. We then apply a highpass median filter to highlight edges 

and partially remove the effect o f shadows.

Each time an image becomes available, we compute the weighted mean from P(mk|Dk- i ) (i.e. 

the prediction step) and project it into image space. We then extract a test sub-image I  with 

size m t x nt,m t >  m r , nt >  nr . The sub-image sizes are found through trial and error, with a 

tradeoff between feature uniqueness and clutter as sub-image size increases. We apply the same 

preprocessing steps with the addition o f histogram matching step for each band of the test sub

image, such that the color profile matches that o f the reference template. This helps to ameliorate 

some o f the effects o f changing illumination.

C o m p u ta t io n  o f  th e  lik e lih ood

W ith preprocessed reference and test sub-images in hand, we compute the area-averaged sum of 

squared differences between the reference template and test template for all possible pixel offsets 

u, v for which the reference template falls entirely within the test template

where o  is the measurement uncertainty due to illumination changes and deformation, and o m is the 

uncertainty due to camera motion in pixels [Nakhmani and Tannenbaum , 2008]. The deterministic 

procedure would be to find argmaxu v L(u, v) (often with a sub-grid parameterization to increase 

precision) as the (single) measurement. However, because o f the quasi-periodic nature of trackable 

glacier surface features (namely crevasses) as well as changes in illumination, there are often several 

peaks in the likelihood, often of comparable magnitude. Here, we do not try to find this peak, 

instead retaining the complete likelihood for the update o f the posterior distribution. This allows 

particles to explore multiple hypotheses for each new image. Because spurious offsets tend to be

(4.15)

We then define the likelihood as

(4.16)
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inconsistent between images, while the ” true” peak is persistent (even if it is not the most probable 

solution for a given scene), incorrect hypotheses tend to  be ephemeral, while good solutions remain 

probable over multiple images.

C a m era  m o d e l c o r r e c t io n

In practice, cameras are not perfectly stable due to  changes in temperature, wind, and other 

unknown factors which conspire to produce small offsets between image pairs [e.g. Harrison et al., 

1992]. To determine this offset, we track a set o f points { ug,vg}  that are on land (as opposed to ice 

or water), and thus assumed to be stationary. We then compute the maximum likelihood solution 

with subgrid precision for each control point, and fit a 3 parameter rigid rotation-translation model 

for each image using the RAN SAC algorithm [Fischler and B olles , 1981] to eliminate outliers 

induced by occlusions from clouds, errors in choosing the correct motion, etc. The residual of 

this fit divided by the number of control points (and penalized for excluding data points) is used 

as am, the measurement uncertainty due to camera motion. W hen computing the likelihood for 

non-stationary points, we then add the offset predicted by the rotation-translation model to the 

projected image coordinates, which minimizes the influence o f camera motion.

M u lt ip le  cam eras

Assuming nc cameras, the above steps can be performed for each, and due to independence, the 

resulting probabilities can be multiplied. Because an accounting o f observational uncertainty is 

inherent in the system, the information derived from each camera is properly weighted: cameras 

far from a given point or with unfavorable geometry are weighted less because likelihood maxima 

are more diffuse.

Even cameras that do very little in terms o f specifying flow speed on their own can dramatically 

increase the accuracy o f other cameras. A  schematic justification for this is given in Fig. 4.4. In the 

figure, Camera a successfully captures the component o f the flow vector parallel to the image plane. 

Unfortunately, there are multiple vectors that can appear identically to the camera. Though in the 

real world, this is somewhat offset by the camera being elevated above the surface, this advantage 

is partially offset by uncertainty in the location o f the surface (i.e. DEM  errors). Camera b has 

a different problem: because the flow vector is normal to the image plane, the camera cannot 

determine anything about the magnitude o f the flow. However, it does have the advantage of 

having full knowledge o f the flow direction. Individually, neither o f these measurements is very

89



Figure 4.4. Schematic illustrating the utility of multiple cameras in oblique flow tracking. Even 
if both cameras are insufficient to fully resolve flow direction and magnitude on their own, two 
cameras operating in tandem typically provide strong constraints on one another.
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satisfying. In tandem however, the information from camera b specifies which vector camera a has 

measured, producing the correct measurement of both magnitude and direction o f the offset vector. 

As shown in Fig. 4.1, the situation at Columbia Glacier is similar to the hypothetical scenario of 

Fig. 4.4.

4 .3 .4  P a rtic le  F ilte r in g

Given that our problem precludes analytical solution, we must instead find an approximate nu

merical solution. An effective method for dealing with problems o f this type is known variously as 

sequential Monte Carlo [Doucet and Johansen, 2009], sequential importance (re-)sampling, boot

strap filtering [Gordon et al., 1993], particle filtering, or the Condensation Algorithm[Blake and 

Isard, 1997]. We will refer to the method as particle filtering for the remainder o f this work. As the 

name implies, we rely upon a random sample o f feasible states ( ‘particles’) that are sequentially 

updated as new observations become available. The central assumption is that a probability dis

tribution P (m ) can be represented as a weighted set ( (m ',  w‘ ) : i £ 1 , . . . ,  N }  of random samples, 

forming a new probability mass function

N
P (m ) ~  ^  w ' 5(m  — m ') , (4.17)w

i=i

where £(•) is the Dirac delta function, and N  is the number o f random samples. As N  increases, 

the quality of the approximation increases. The random samples are drawn from a proposal density 

q(mk|mk_i , d k), and the weights are computed as

i i P (d k|mk)P (m k|mk - i ) (418)
wk «  wk - i ------- 1 i----------------- , (418)

q(m k |mk - l , d k)

which are subsequently normalized. The proposal distribution is arbitrary, but some choices are 

better than others with respect to capturing the posterior distribution with a minimum number of 

samples. The practical and intuitive choice is that the proposal distribution should be the prior 

distribution at time k

q(m k |mk - i , z k) =  P  (m k |mk - i ) . (4 .19)

While this method ostensibly captures the posterior distribution given enough particles, the 

diffusive nature of the state equations means that eventually very few particles will be probable 

with respect to observations. We overcome this by resampling at each time step from the samples 

m* with probability given by w ' using a systematic resampling method [Carpenter et al., 1999].
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Resampling produces the same distribution with particles now distributed proportional to  the

weights, which are then reset to 1/N . Weights are now simply proportional to the likelihood

wk «  P (d fc|mk) . (4 .20)

The resulting distribution converges to  the true posterior probability

N
P (mfc|Dfc) =  lim V w\J(m fc — m£.), (4.21)

N i=i

proof o f which can be found in Blake and Isard [1997].

4 .4  A p p lic a t io n  to  C o lu m b ia  G la c ie r

We apply the above algorithm to two cameras, dubbed AK01 and AK10 (Fig. 4.1) from 2013.06.10 

through 2013.09.25 and from 2013.11.06 through 2014.4.30, during which both cameras operated 

continuously at 20 minute intervals. AK01, a Nikon D200, recorded 5.8 megapixel images in JPEG 

format at quality level 99. AK10, a newer D200, recorded 10 megapixel images at quality level 92. 

The break between camera epochs naturally leads to a ‘summer’ and ‘winter’ record, and we divide 

our analysis along those lines.

To specify the surface elevation S (x , t), we linearly interpolate (in time) between the nearest two 

members of a set o f 10m-resolution digital elevation models derived from the TanDEM -X satellite 

[Vijay and Braun , 2017], to which we fit a 3rd order spline for sub-pixel interpolation. DEMs 

at this level of precision capture transient crevasse features. To account for this, we sequentially 

apply a maximum filter followed by a Gaussian smoother over the glacierized area, each with a 

30m kernel, which has the practical effect o f ‘ filling’ crevasses. More complex approaches to  surface 

processing are possible [Messerli and Grinsted , 2014], but experimentation has shown the results 

to be relatively insensitive to the smoothing method.

We specify initial locations o f points to track as the vertices of a grid with 100m spacing in both 

map-plane coordinates, so long as those points are within the field of view o f both cameras, and the 

elevation is more than 20 m above sea level (Vectors in Fig. 4.7 correspond to these points). We 

start the algorithm for each day in the record period at noon local time (20:00 U TC ), and track for 

3 days. The algorithm works equally well running backwards in time, so we also track the point 

backwards starting at the final image o f the forward run. We take the mean o f the two resulting 

velocities weighted by the inverse o f the Frobenius norm of the sample covariance (i.e. cases in 

which the last or first image has bad weather has high covariance so contributes little to  the mean).
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We must make a few choices regarding process noise, and these are mostly informed by heuristics. 

We assume that random accelerations have a standard deviation o f approximately 2 m d - 2  in both 

directions. This is based on the characteristic velocity variations observed from high resolution 

surveys [M eier et al., 1994; Krimmel and Rasmussen, 1986], and also so that the model has the 

potential to capture the abrupt slowdowns sometimes observed at Columbia Glacier in the fall 

(O ’Neel, unpublished data). We specify the standard deviation o f local slope as =  0.1.

We use a square reference image with size m r =  nr =  15 pixels, and a test image size of 

m t =  n t =  25 pixels, which assumes a maximum search distance o f 10 pixels. Note that this is 

a form of prior information that we are explicitly introducing into the results: we assume that 

the probability that a particle moves more than 10 pixels in image space is zero. In practice, 

this turns out to be a reasonable assumption, and serves to limit spurious correlations and relieve 

computational effort. We assume =  0.25, which implies that a correlation peak is localized to 

within a 1 pixel range with 2o credibility. Values o f vary between images, but when matching 

two images in good weather under similar illumination, the value is close to zero, while unfavorable 

conditions where many points are occluded will produce uncertainties o f greater than =  5 pixels, 

which effectively means that the likelihood is uniform across the test image.

We approximate the probability distribution at each point we wish to track with N  =  3000 

samples. This is probably overkill; however, since our application does not need to be run in 

real time, the improved convergence associated with using many particles is worth the increased 

computational costs. Since each sample point is independent, the code is naively parallelizable. The 

lion’s share o f memory is taken up by storing many high-resolution images. We utilize a shared 

read-only memory structure, so that computation for each point in the grid can draw upon the 

same location in memory. Otherwise each grid point is independent. On a laptop with 8  cores, 

processing each scene requires around 150 s, depending on the time o f year (with maximum and 

minimum computational times falling on the solstice due to the abundance or dearth of usable 

images). The processing time would decrease linearly with more cores.

The result is a three-day running average for each initial point at daily resolution, encoded in 

the form of a collection o f sample from which we can draw statistics. While the converged velocity 

distributions are not normal, they are sufficiently close that they can be described by a mean 

and covariance matrix. To eliminate outliers and to smooth the resulting fields, we replace each 

velocity and covariance component at each point with the medians of neighboring points within 

150m. Henceforth, when we refer to velocities (and uncertainties), unless otherwise specified, we
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refer to the distribution mean (and covariance) smoothed in this way.

4 .5  R esu lts

4 .5 .1  P o in tw ise  v e lo c ity  e v o lu tio n

The velocity o f the near-terminus shows strong temporal variability over seasonal and sub-seasonal 

time scales (Fig. 4.5). A  point near the terminus attains a velocity maximum of nearly 15 m 

d - i  on 2013.06.12, near the start of the record, before decreasing to a minimum of 3 m d - i  in 

late September. During the summer, the glacier also shows a variety o f distinct speed-ups. These 

speed-ups are correlated with warm periods during June, but this correlation is only weakly evident 

by later in the season. Large rainstorms in August and September produce speedups as well, each 

lasting around three days. Due to the tendency for the glacier to be occluded during these weather 

events, they are also the most uncertain.

Following the fall velocity minimum, Columbia Glacier begins to accelerate in mid-November. 

The speed then remains relatively consistent throughout the winter, with a maximum velocity of 

around 12 m d — in February before falling to 10 m d -  throughout March and April. During 

the winter, the glacier is non-responsive to  variations in precipitation in temperature, presumably 

because temperatures are too  cold for liquid water to  be present at the glacier surface in large 

volumes (though plotted temperatures are recorded at 1 0 0 0  m and are usually several degrees 

lower than those at the elevation o f the glacier terminus). Note that during the winter months, the 

general level o f uncertainty in speed is higher. This is because fewer usable images exist at this 

time due to less daylight: less data means the flow is less precisely resolved.

4 .5 .2  S patia l p a tte rn s  o f  v e lo c ity  ch an ge

In the nearest 2.5 km from the terminus along the centerline, Columbia Glacier shows relatively 

small spatial variability in speed (Fig. 4.6a). Nonetheless, because the baseline speed at Columbia 

Glacier is so fast, these small variations are still sufficient to produce large strains and the evident 

extensive crevassing. A  slight acceleration in the lowest 500 m seems to  be transient, and we could 

detect no specific reason for why this occurs. Changes in the stress regime due to individual calving 

events could be a factor, but previous work indicating velocity changes over this scale have been for 

a floating terminus [Murray et al., 2015; Ahn and B ox , 2010], whereas Columbia Glacier’s terminus 

is grounded over the period in question.

Looking at the glacier in cross-section, a migrating shear margin is evident. Ice near the edge
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D ate

Figure 4.5. Time series o f ice speed at points corresponding to line color in Fig. 4.7 in summer 
2013 (top) and winter 2013-2014 (bottom ). Black barbells are T SX  speeds over the time periods 
indicated by the line endpoints. The black line in the upper portion o f the plot is air temperature 
at a weather station approximately 5 km upstream from the Columbia Glacier terminus and at an 
elevation o f 1000 m, while the purple line is precipitation rate recorded in the village of Tatitlek, 
near the mouth o f Columbia Bay.
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Figure 4.6. Along-flow (left) and across-flow (right) speed profiles during summer 2013, with 
colored lines representing the location at which the time-series in Fig. 4.5 were extracted. Note the 
relative homogeneity o f speeds in the along-flow direction, which are mostly constant except for a 
ephemeral acceleration within 500 m o f the terminus. In the cross-sections, note the activation and 
deactivation o f marginal ice between 0 and 500 m.
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Figure 4.7. Comparison of a TSX-derived velocity field covering 2013.06.10 through 2013.06.21 
(left) to ones produced using this method averaged over the same period (right). The colored dots 
are the locations at which the lines in Fig. 4.5 are extracted, and the white lines correspond to the 
long profile and cross-section o f Fig. 4.6. The distinct shear margin in the northern part o f the field 
corresponds to the one visible in Fig. 4.2.

o f the glacier is activated or deactivated based on fast flow in the center. Extrapolating from the 

edge o f the data, at its fastest rate in mid-June, the entire glacier width is in motion. Later in 

the year, when centerline speeds have dropped to 2 0 % of maximum, a nearly 1 0 0 0  m wide strip of 

marginal ice become stagnant.

4 .5 .3  V a lid a tion

It is necessary to confirm that the method is producing results at least consistent with other 

contemporaneous observations, if not with reality. To this end, we compare the time average o f the 

daily velocity computed with the particle filtering method over the same epoch as a velocity field 

derived from the radar interferometer TerraSAR-X (TSX ) [Joughin et al., 2010]. Fig. 4.7 shows a 

TSX  velocity field taken for 2013.06.10 through 2013.06.21 and the stacked velocity field derived 

for time-lapse for the same period. The qualitative agreement between the two fields is excellent, 

with the shear margin in the northeast corner captured in both, as well as the locations of fast flow.

The correspondence between speeds produced by both methods is shown in Fig. 4.8. A  robust 

linear regression gives a slope o f nearly unity, r 2 =  0.97, and a bias of 0.7 m d - 1 , with our particle
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Figure 4.8. The correspondence between the speeds o f Fig. 4.7. The black dashed line is 1:1. The 
blue line is the best fit line from a robust regression, with slope close to 1 and a bias o f 0.7 m d - *. 
Other epochs show a similar level o f agreement.
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filtering method producing the faster speeds. The average standard deviation in the time-lapse 

speed over the averaging period is av  =  1.7m d - : i , and computed standard deviations encompass 

the TSX  velocities in nearly all cases. Reported uncertainties for TSX  range between 1-10m d - : i , 

and similarly encompass the time-lapse speeds. Results are similar for all epochs for which optical 

conditions allow for good velocity solutions. The good fidelity between datasets lends confidence 

to the method for subsequent interpretation.

It is also interesting to examine the differences between the two velocity fields. The particle 

filtering method shows a patch o f fast ice in the ~200 m upstream from the terminus. Given the high 

velocities in this region, it would make sense that this speedup is not captured by SAR: trackable 

surface features would be calved off in the eleven-day interval between satellite images, while the 

higher temporal resolution offered by time-lapse can track features much nearer the calving front.

As an additional validation measure, TSX  velocities, when they exist, are overlain in Fig. 4.5. In 

general, there is excellent agreement, but with our method showing considerably more variance than 

can be captured in the 11-day averages of TSX. This variance is due to the additional resolution 

granted by analyzing time-lapse imagery, which allows us to capture speed changes associated with 

short term changes in water input or perhaps individual calving events [Ahn and B o x , 2010].

4 .6  D iscu ss ion

4 .6 .1  Im p lica tion s  fo r  th e  su b g la cia l h y d ro lo g ic  sy stem

Our results strongly support the conclusions o f previous studies that suggest that annual and sub

annual velocity variations are driven by the evolution of the subglacial hydrologic system in response 

to changes in external input in the form of either melt or rain [Kamb et al., 1994; Fahnestock, 1991; 

Vijay and Braun , 2017]. The seasonality evident in our results is consistent with observations 

throughout Columbia’s retreat history, and we support the following explanation for it.

During mid-winter, external water input to  the glacier base is likely small, particularly given 

the availability o f copious surface snow to absorb moisture, even in the few cases where winter 

temperatures climb above freezing. The hydrologic system at this time is in a dormant state 

where basal water pressures are governed only by basal melt, and the ocean, although remnant 

water from the ongoing drainage o f firn may also contribute. The tidewater influence is important: 

baseline hydraulic head is still a significant fraction o f flotation, and this allows the glacier to 

maintain a minimum flow speed an order o f magnitude greater than the maximum speeds o f most 

land-terminating glaciers. Nonetheless, because there is little water flux, efficient drainage elements
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such as Rothlisberger channels [Rothlisberger, 1972] likely cannot persist because there is insufficient 

turbulent heat dissipation to maintain them. Thus we echo Kamb et al. [1994] and hypothesize 

that the winter state is characterized by an inefficient drainage system that lead to  moderately 

high water pressure and flow speed. We would anticipate that velocities during winter would be 

sensitive to the odd winter water pulse (e.g. a so-called pineapple express where sub-tropical air 

and moisture are transported to northerly latitudes). However, such events in 2013-2014 were 

invariably accompanied by severe camera occlusion, and we could not discern velocities during 

this time period with any certainty. Nonetheless, there is some evidence o f short lived slow-downs 

following large precipitation events in January and March.

At the onset o f melting in the spring, the subglacial drainage system is overwhelmed by the 

availability o f water. Since the drainage system is still inefficient, additional input must be accom

modated by an increase in water pressure, which leads to fast flow. This sensitivity is shown clearly 

during June o f 2013 (See Fig. 4.5a), during which the velocity and air temperature (a proxy for 

melt) are highly correlated. This strong correlation is short-lived, however. We propose that as the 

subglacial drainage system develops, more water is required to maintain high velocities. The excess 

water from subsequent warm spells loses its impact come July, with speeds decreasing throughout 

the summer. Interestingly, this slowdown does not appear to  occur gradually; rather it decreases 

in discrete steps, the most distinct o f which is seen around 2013.07.24. This event is particularly 

interesting because there seems to  be no discernible external forcing, although it is worth noting 

that changes in melt rates may be independent o f temperature [Sicart et al., 2008]. Temperatures 

had been high but not anomalous, and precipitation was minimal. It seems possible that this could 

be triggered by a sudden change in the transmissivity of the subglacial hydrologic system, such as 

the confluence o f two large Rothlisberger channels, but this is purely speculative.

Throughout late summer, major rainfall events drive short-lived (~  3 day) speed peaks, though 

it is difficult to  be sure o f the magnitude of these peaks due to  occlusion of the camera by the 

same precipitation that produced the speed-up. However, two events in August were observed with 

reasonable precision. A  simple calculation o f melt using a temperature index model [Hock, 2003] 

implies that meltwater and rainwater flux during these large rain events were both around 40 mm 

o f water equivalent per day, though this likely underestimates melt due to  latent heat transfer from 

precipitation. This combined influx produced speed-ups that were slightly lower in magnitude to 

the purely melt-induced speed-ups o f the early season. The modest speedups relative to  enhanced 

influx indicates that the subglacial drainage system has evolved to  efficiently transmit the extra
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water. In the long term, rain events may enhance the process o f seasonal slowdown. After the 

rain event of 2013.08.08-2013.08.12, velocities dropped by 30% compared to the pre-storm average, 

though as discussed above, such a drop is not necessarily associated with external forcing. In any 

case, these slowdowns are consistent between tidewater glacier systems, but not typically evident in 

terrestrially terminating glaciers. This may be caused by the lower limit on water pressure imposed 

by the marine margin, which keeps conduit pressure high enough to resist fast closure [Podrasky 

et al., 2 0 1 2 ].

In early fall, the situation is opposite to  that o f mid-winter. The drainage system is well- 

developed, but as temperatures drop and rain transitions to  snow, influx becomes small. W hat little 

water is available is drained through an efficient hydrologic system kept open by the background 

water pressure imposed by sea level. Eventually, as creep closure destroys this efficient drainage 

system and slow flow keeps subglacial storage capacity to a minimum [Bartholomaus et al., 2011], 

water pressure and speeds recovers to  winter levels, which seems to be complete by approximately 

January.

4 .6 .2  Im p rov em en ts  and  ex ten sion s

As with all numerical methods, there are a number o f ways in which the algorithm’s performance 

can be improved. First, the problem o f image registration and co-registration yields a source of 

systematic uncertainty that is difficult to quantify. Cameras tend to be placed such that glaciers 

take up most of the field o f view. Unfortunately, glaciers are useless for the purpose of establishing 

ground control for the calibration o f camera models. Instead, ground control is established by 

attempting to match features in error-prone DEMs to  recognizable features in images that are 

typically very far (e.g. mountain peaks) or very near. Variable atmospheric distortion compounds 

these errors. Additionally, manual digitization o f ground control points is labor-intensive and 

subject to picking errors.

A  potential method for circumventing these difficulties is to  utilize automated detection of 

horizons and other strong image edges, and minimize the difference between these and horizons 

computed from a digital elevation model. Such a method could be used simultaneously to  find 

static camera parameters such as focal length and lens distortion and also time-varying camera 

orientation [Baboud et al., 2011], without any human intervention.

Second, an adaptive procedure for selecting reference images could be included. As it stands, 

we track a sub-image extracted from the first image in a sequence, irrespective o f the fact that it
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could be occluded, which obviously leads to failure (fortunately this failure is reflected in uncertainty 

estimates). Instead, we could compare the statistical properties o f each image in a sequence in order 

to  find one that is o f good quality for tracking. The method would still fail if too  many images 

in a sequence were occluded, but it may help fill some of the gaps evident in Fig. 4.5. However, 

we would also not know the location o f the selected sub-image at the beginning of the sequence, 

and a more carefully selected prior would be needed to  ensure that the image correlation procedure 

does not become lost. One potential choice is to use the posterior from the last epoch in which 

the velocity fell below a certain error threshold, or to  initialize the algorithm with SAR-derived 

velocities.

Finally, while the results presented here rely on the use o f two cameras in order to  properly 

specify flow directions, those directions deviated little throughout the observation period despite 

large changes in speed. This suggests that we could extend the observational record to include 

epochs in which only one camera was active by specifying mean flow direction as a strong prior on 

the computed velocities. While flow directions are likely to change substantially in the long term, 

this could be extremely useful for filling gaps, such as the one between 2013.09.25 and 2013.11.06 

that exists in the data presented here, wherein AK10 failed while the other camera continued to 

take images uninterrupted.

4 .6 .3  C on clu s ion s

We developed a probabilistic method for tracking glacier surface motion based on time-lapse im

agery. The method operates by evolving a set o f particles according to a stochastic dynamical 

model, while culling particles that are improbable and reproducing probable ones, with the likeli

hood determined by computing the sum of squared differences between a reference image and test 

image. The resulting set o f solutions converges to the true posterior distribution o f glacier velocity 

at a given point. The method is robust to occlusion and false matching, provides rigorous uncer

tainty, and easily accommodates the refinement o f velocity measurements with the use o f multiple 

cameras.

We apply the developed method to just under a year’s worth o f images collected by two cameras 

near the terminus o f Columbia Glacier between 2013.06 and 2014.05. Based on image geometry 

and distances, the method was able to  extract three day running-average velocities over all time 

periods during which the glacier surface was visible. To ensure that the resulting velocity fields 

were valid, we compared TerraSar-X derived velocities to quantities computed with this method
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and averaged over the same temporal footprint, finding excellent agreement over the entire record.

At seasonal time scales, our findings mirror those of previous workers in showing that Columbia 

Glacier transitions between a winter state characterized by moderate velocities, to an early summer 

speed-up, to a fall slowdown, in which velocities drop to well below their winter state before 

eventually recovering in early winter. Our method resolves velocity correlations with melt and 

rainfall events, though the glacier’s sensitivity to these events appears seasonal: during the spring, 

before an efficient drainage network has developed the glacier sees strong melt- and rainwater 

induced variability, while in the fall the system responds very little to these forcings. The velocity 

fields produced here may help to constrain future simulations o f tidewater glacier hydrology and 

the resulting changes in ice dynamics.
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C h a p te r  5 

C on clu s ion s

Bayesian sampling offers a powerful technique for inferring the unknown parameters that control 

glacier dynamics from surface observations. Such techniques offer an advantage over other inverse 

methods by producing the complete probability distribution o f model configurations. This informa

tion can be used to estimate uncertainty, estimate covariance between parameters, and to ensure 

uniqueness. The Bayesian methodology also allows for the specification o f complex and intuitive 

error structures that have no meaningful analog in deterministic inversion, as well as for a wide 

variety o f prior constraints, including smoothness, positivity, and dynamical constraints based on 

physical principles. The cost for these advantages is increased computational complexity as we try 

to  recover a high-dimensional function from a finite number o f samples.

In Chapter 2, we applied the Metropolis-Hastings algorithm to the problem of inferring prop

erties o f the glacial hydrologic system from observations o f surface speed and terminal water flux. 

We found that the mechanical opening o f linked cavities due to glacier sliding over a rough bed is 

similar in magnitude to  the thermal opening due to the turbulent dissipation o f heat by flowing 

water. Contrary to previous work, we found it to be highly likely that significant amounts of water 

are stored englacially, buffering changes in pressure due to  changes in water storage. The majority 

o f uncertainty in model results was attributed to  model sensitivity to the parameters that control 

the rate o f turbulent dissipation. Observations o f the parameters controlling this process like the 

hydraulic gradient and subglacial cavity size would go a long way towards constraining glacier 

hydrology models.

In Chapter 3, we again used the Metropolis-Hastings algorithm, this time sampling from the 

probability distribution o f ice thickness for several test cases. For the first time, we presented a 

consistent framework for understanding the problem of so-called mass conserving interpolation, 

in particular addressing the heretofore issue of implicit time averaging. This averaging produces 

additional uncertainty that must be included in any error budget. We found that the relative 

uncertainty in ice thickness depends almost linearly on the relative uncertainty in both surface 

velocity and surface mass balance observations. The presence of local observations o f the ice 

thickness reduces the strength o f this dependency, particular when observation spacing becomes 

less than the characteristic length o f topographic variability. W ith this information in mind, we 

were able to suggest an optimal measurement spacing for future radar campaigns such as N A SA ’s 

Operation IceBridge.
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In Chapter 4, we used particle filtering to find estimates of glacier surface velocity from oblique 

time-lapse photography. The method worked by proposing a large number of potential solutions for 

the motion and position o f a certain location on the glacier surface, and then filtering solutions that 

were unlikely. The likelihood was specified by extracting a sub-image around the initial position 

o f the solution ensemble projected into image coordinates, and searching for that sub-image in 

subsequent images. By design, our method was robust to temporary occlusion o f the glacier surface 

by bad weather and to bad matches between images. We applied the method to Columbia Glacier 

over a year’s worth o f images collected at half-hourly resolution, and were able to extract velocities 

with daily resolution. We found that Columbia Glacier exhibits strong seasonal variability, upon 

which is superimposed shorter-term responses to individual melt and rainfall events. These velocity 

variations were consistent with the seasonal growth and collapse o f an efficient subglacial drainage 

system.

O u tlo o k

The methods presented in this thesis offer a blueprint for how to  apply Bayesian methods to 

glaciological models. The easiest way that this work might be extended is to apply identical methods 

and models to new glaciers and observational datasets. This more operational context would help 

us to understand the degree to  which the results demonstrated in this thesis, particularly Chapters 

2 and 3, might be widely applicable. This would also help to identify shortcomings in choices of 

physical and statistical models: we can learn about important processes by recognizing that their 

absence makes matching a model to  observations impossible. The next possibility for applying 

Bayesian methods to  glaciology is to extend the methods here to  more complicated instances of 

the same model problem. For example, we have already extended the methods o f Chapter 3 to 

the two-dimensional case. It seems similarly plausible to  apply the methods o f Chapter 2 to more 

complex glacier hydrology models that are spatially distributed and operate over varying spatial 

scales. The methods o f Chapter 4 could also be used to constrain more complicated models of 

surface velocity. For example, rather than the simple pointwise constant-velocity model featured 

in this thesis, we could use time-lapse photography to  constrain a distributed ice flow model.

The three problems presented here are by no means the only application of Bayesian methods 

in glaciology or in geophysics at large. Indeed, they have utility in any case where we need to  make 

an inference about an observable quantity given imperfect observations, and in particular where the 

uniqueness and uncertainty in the inference might have qualitative importance. As data about the
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natural world becomes available at an ever faster rate, efforts to use these data to inform unobserved 

(and perhaps unobservable) processes will also increase. Modern satellite observations are already 

being used to  automatically generate solutions to  variants o f two of the problems addressed in 

this thesis. Glaciological inversion has gone beyond being commonplace; it now operational. Such 

extensive capabilities have the potential to be transformative. However, we must be careful not 

to let abundance overwhelm caution. These inverse problems are still ill-posed and error-prone, 

and likely come with a high degree o f uncertainty, and we need to  be ensure that this is correctly 

quantified. Bayes’ theorem offers a consistent methodology for doing this.
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