6 research outputs found

    Private and Secure Public-Key Distance Bounding: Application to NFC Payment

    Get PDF
    Distance-Bounding is used to defeat relay attacks. For wireless payment systems, the payment terminal is not always online. So, the protocol must rely on a public key for the prover (payer). We propose a generic transformation of a (weakly secure) symmetric distance bounding protocol which has no post-verification into wide-strong-private and secure public-key distance bounding

    Secure & Lightweight Distance-Bounding

    Get PDF
    Distance-bounding is a practical solution to be used in security-sensitive contexts, mainly to prevent relay attacks. The main challenge when designing such protocols is maintaining their inexpensive cryptographic nature, whilst being able to protect against as many, if not all, of the classical threats posed in their context. Moreover, in distance-bounding, some subtle security shortcomings related to the PRF (pseudorandom function) assumption and ingenious attack techniques based on observing verifiers' outputs have recently been put forward. Also, the recent terrorist-fraud by Hancke somehow recalls once more the need to account for noisy communications in the security analysis of distance-bounding. In this paper, we attempt to incorporate the lessons taught by these new developments in our distance-bounding protocol design. The result is a new class of protocols, with increasing levels of security, accommodating the latest advances; at the same time, we preserve the lightweight nature of the design throughout the whole class

    Optimal Proximity Proofs

    Get PDF
    Provably secure distance-bounding is a rising subject, yet an unsettled one; indeed, very few distance-bounding protocols, with formal security proofs, have been proposed. In fact, so far only two protocols, namely SKI (by Boureanu et al.) and FO (by Fischlin and Onete), offer all-encompassing security guaranties, i.e., resistance to distance-fraud, mafia-fraud, and terrorist-fraud. Matters like security, alongside with soundness, or added tolerance to noise do not always coexist in the (new) distance-bounding designs. Moreover, as we will show in this paper, efficiency and simultaneous protection against all frauds seem to be rather conflicting matters, leading to proposed solutions which were/are sub-optimal. In fact, in this recent quest for provable security, efficiency has been left in the shadow. Notably, the tradeoffs between the security and efficiency have not been studied. In this paper, we will address these limitations, setting the "security vs. efficiency" record straight. Concretely, by combining ideas from SKI and FO, we propose symmetric protocols that are efficient, noise-tolerant and-at the same time-provably secure against all known frauds. Indeed, our new distance-bounding solutions outperform the two aforementioned provably secure distance-bounding protocols. For instance, with a noise level of 5%, we obtain the same level of security as those of the pre-existent protocols, but we reduce the number of rounds needed from 181 to 54

    Sound Proof of Proximity of Knowledge

    Get PDF
    Public-key distance bounding schemes are needed to defeat relay attacks in payment systems. So far, only five such schemes exist, but fail to fully protect against malicious provers. In this paper, we solve this problem. We provide a full formalism to define the proof of proximity of knowledge (PoPoK). Protocols should succeed if and only if a prover holding a secret is within the proximity of the verifier. Like proofs of knowledge, these protocols must satisfy completeness, soundness (protection for the honest verifier), and security (protection for the honest prover). We construct ProProx, the very first sound PoPoK

    Practical and Provably Secure Distance-Bounding

    Get PDF
    From contactless payments to remote car unlocking, many applications are vulnerable to relay attacks. Distance bounding protocols are the main practical countermeasure against these attacks. In this paper, we present a formal analysis of SKI, which recently emerged as the first family of lightweight and provably secure distance bounding protocols. More precisely, we explicate a general formalism for distance-bounding protocols, which lead to this practical and provably secure class of protocols (and it could lead to others). We prove that SKI and its variants are provably secure, even under the real-life setting of noisy communications, against the main types of relay attacks: distance-fraud and generalised versions of mafia- and terrorist-fraud. To attain resistance to terrorist-fraud, we reinforce the idea of using secret sharing, combined with the new notion of a leakage scheme. In view of resistance to generalised mafia-frauds (and terrorist-frauds), we present the notion of circular-keying for pseudorandom functions (PRFs); this notion models the employment of a PRF, with possible linear reuse of the key. We also identify the need of PRF masking to fix common mistakes in existing security proofs/claims. Finally, we enhance our design to guarantee resistance to terrorist-fraud in the presence of noise

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license
    corecore