88 research outputs found

    The Biochemical Abstract Machine {BIOCHAM}

    Get PDF
    http://www.springerlink.com/index/NVWWRAN9W4RUA03NIn this article we present the Biochemical Abstract Machine BIOCHAM and advocate its use as a formal modeling environment for networks biology. Biocham provides a precise semantics to biomolecular interaction maps. Based on this formal semantics, the Biocham system offers automated reasoning to ols for querying the temporal properties of the system under all its possible behavi ors. We present the main features of Biocham, provide details on a simple example of the MAPK signaling cascade and prove some results on the equivalence of model s w.r.t. their temporal properties

    A Machine Learning approach to Biochemical Reaction Rules Discovery

    Get PDF
    Beyond numerical simulation, the possibility of performing symbolic computation on bio-molecular interaction networks opens the way to the design of new automated reasoning tools for biologists/modelers. The Biochemical Abstract machine BIOCHAM provides a precise semantics to biomolecular interaction maps as concurrent transition systems. Based on this formal semantics, BIOCHAM offers a compositional rule-based language for modeling biochemical systems, and an original query language based on temporal logic for expressing biological queries about reachability, checkpoints, oscillations or stability. Turning the temporal logic query language into a specification language for expressing the observed behavior of the system (in wild-life and mutated organisms) makes it possible to use machine learning techniques for completing or correcting biological models semi-automatically. Machine learning from temporal logic formulae is quite new however, both from the machine learning perspective and from the Systems Biology perspective. In this paper, we report on the machine learning system of BIOCHAM which allows to discover, on the one hand, interaction rules from a partial model with constraints on the system behavior expressed in temporal logic, and on the other hand, kinetic parameter values from a temporal logic specification with constraints on numerical concentrations

    BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge

    Get PDF
    International audienceBIOCHAM (the BIOCHemical Abstract Machine) is a software environment for modeling biochemical systems. It is based on two aspects: (1) the analysis and simulation of boolean, kinetic and stoch-astic models and (2) the formalization of biological properties in temporal logic. BIOCHAM provides tools and languages for describing protein networks with a simple and straightforward syntax, and for integrating biological properties into the model. It then becomes possible to analyze, query, verify and maintain the model with respect to those properties. For kinetic models, BIOCHAM can search for appropriate parameter values in order to reproduce a specific behavior observed in experiments and formalized in temporal logic. Coupled with other methods such as bifurcation diagrams, this search assists the modeler/biologist in the modeling process

    Integrating heterogeneous knowledges for understanding biological behaviors: a probabilistic approach

    Get PDF
    Despite recent molecular technique improvements, biological knowledge remains incomplete. Reasoning on living systems hence implies to integrate heterogeneous and partial informations. Although current investigations successfully focus on qualitative behaviors of macromolecular networks, others approaches show partial quantitative informations like protein concentration variations over times. We consider that both informations, qualitative and quantitative, have to be combined into a modeling method to provide a better understanding of the biological system. We propose here such a method using a probabilistic-like approach. After its exhaustive description, we illustrate its advantages by modeling the carbon starvation response in Escherichia coli. In this purpose, we build an original qualitative model based on available observations. After the formal verification of its qualitative properties, the probabilistic model shows quantitative results corresponding to biological expectations which confirm the interest of our probabilistic approach.Comment: 10 page

    Types for BioAmbients

    Get PDF
    The BioAmbients calculus is a process algebra suitable for representing compartmentalization, molecular localization and movements between compartments. In this paper we enrich this calculus with a static type system classifying each ambient with group types specifying the kind of compartments in which the ambient can stay. The type system ensures that, in a well-typed process, ambients cannot be nested in a way that violates the type hierarchy. Exploiting the information given by the group types, we also extend the operational semantics of BioAmbients with rules signalling errors that may derive from undesired ambients' moves (i.e. merging incompatible tissues). Thus, the signal of errors can help the modeller to detect and locate unwanted situations that may arise in a biological system, and give practical hints on how to avoid the undesired behaviour

    Langages formels dans la machine abstraite biochimique BIOCHAM

    Get PDF
    International audienceLe développement de langages formels pour modéliser les systèmes biologiques ouvre la voie à la conception de nouveaux outils de raisonnement automatique destinés au biologiste modélisateur. La machine abstraite biochimique BIOCHAM est un environnement logiciel qui offre un langage simple de règles pour modéliser des interactions biomoléculaires, et un lan-gage puissant fondé sur la logique temporelle pour formaliser les propriétés biologiques du sys-tème. En s'appuyant sur ces deux langages formels, il devient possible d'utiliser des techniques d'apprentissage automatique pour inférer de nouvelles règles de réaction, estimer les valeurs des paramètres cinétiques, et corriger ou compléter les modèles semi-automatiquement. Dans cet article, nous décrivons les langages implantés dans BIOCHAM et illustrons l'utilisation du système d'apprentissage automatique sur un modèle simple du contrôle du cycle cellulaire. ABSTRACT. With the advent of formal languages for modeling biological systems, the design of automated reasoning tools to assist the biologist becomes possible. The biochemical abstract machine BIOCHAM software environment offers a rule-based language to model bio-molecular interactions and a powerful temporal logic based language to formalize the biological properties of the system. Building on these two formal languages, machine learning techniques can be used to infer new molecular interaction rules from temporal properties, or to estimate kinetic parameter values, in order to semi-automatically correct or complete models from observed biological properties of the system. In this article we describe the formal languages of BIOCHAM and illustrate, on a simple cell cycle control model, the use of the machine learning system

    Machine Learning Bio-molecular Interactions from Temporal Logic Properties

    Get PDF
    With the advent of formal languages for modeling bio-molecu\-lar interaction systems, the design of automated reasoning tools to assist the biologist becomes possible. The biochemical abstract machine BIOCHAM software environment offers a rule-based language to model bio-molecular interactions and an original temporal logic based language to formalize the biological properties of the system. Building on these two formal languages, machine learning techniques can be used to infer new molecular interaction rules from temporal properties. In this context, the aim is to semi-automatically correct or complete models from observed biological properties of the system. Machine learning from temporal logic formulae is quite new however, both from the machine learning perspective and from the Systems Biology perspective. In this paper we present an ad-hoc enumerative method for structural learning from temporal properties and report on the evaluation of this method on formal biological models of the literature

    Setting Parameters for Biological Models With ANIMO

    Get PDF
    ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions between biological entities in form of a graph, while the parameters determine the speed of occurrence of such interactions. When a mismatch is observed between the behavior of an ANIMO model and experimental data, we want to update the model so that it explains the new data. In general, the topology of a model can be expanded with new (known or hypothetical) nodes, and enables it to match experimental data. However, the unrestrained addition of new parts to a model causes two problems: models can become too complex too fast, to the point of being intractable, and too many parts marked as "hypothetical" or "not known" make a model unrealistic. Even if changing the topology is normally the easier task, these problems push us to try a better parameter fit as a first step, and resort to modifying the model topology only as a last resource. In this paper we show the support added in ANIMO to ease the task of expanding the knowledge on biological networks, concentrating in particular on the parameter settings

    Model Revision from Temporal Logic Properties in Computational Systems Biology

    Get PDF
    International audienceSystems biologists build models of bio-molecular processes from knowledge acquired both at the gene and protein levels, and at the phenotype level through experiments done in wildlife and mutated organisms. In this chapter, we present qualitative and quantitative logic learning tools, and illustrate how they can be useful to the modeler. We focus on biochemical reaction models written in the Systems Biology Markup Language SBML, and interpreted in the Biochemical Abstract Machine BIOCHAM. We first present a model revision algorithm for inferring reaction rules from biological properties expressed in temporal logic. Then we discuss the representations of kinetic models with ordinary differential equations (ODEs) and with stochastic logic programs (SLPs), and describe a parameter search algorithm for finding parameter values satisfying quantitative temporal properties. These methods are illustrated by a simple model of the cell cycle control, and by an application to the modelling of the conditions of synchronization in period of the cell cycle by the circadian cycle
    • …
    corecore