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Abstract. With the advent of formal languages for modeling bio-molecu-
lar interaction systems, the design of automated reasoning tools to as-
sist the biologist becomes possible. The biochemical abstract machine
BIOCHAM software environment offers a rule-based language to model
bio-molecular interactions and an original temporal logic based language
to formalize the biological properties of the system. Building on these two
formal languages, machine learning techniques can be used to infer new
molecular interaction rules from temporal properties. In this context, the
aim is to semi-automatically correct or complete models from observed
biological properties of the system. Machine learning from temporal logic
formulae is quite new however, both from the machine learning perspec-
tive and from the Systems Biology perspective. In this paper we present
an ad hoc enumerative method for structural learning from temporal
properties and report on the evaluation of this method on formal biolog-
ical models of the literature.

1 Introduction

Recent progress in molecular biology and high-throughput data-production tech-
nologies have renewed the quest for a global understanding of molecular pro-
cesses at the system level. Systems Biology is a cross-disciplinary field involving
biologists, computer scientists, logicians, mathematicians, physicists, aiming at
breaking the complexity walls to reason about biological systems in their own
right.

The language approach to Systems Biology aims at designing formal lan-
guages for describing bio-molecular mechanisms, processes and systems at dif-
ferent levels of abstraction. This approach has developed rapidly since the pio-
neering use of the m-calculus process algebra for modeling biochemical processes
in [1]. Recently, formal languages have also been proposed to model the biological
properties of the system in temporal logics [2, 3]. In our work on the biochemical
abstract machine BIOCHAM [4], we propose a rule-based language to model
bio-molecular interactions, and an original temporal logic based language to for-
malize the biological properties of the system at hand. Our first experimental



results of temporal logic querying have been reported on a qualitative model
of the mammalian cell cycle control developed after Kohn’s map [5], involving
about 500 variables and 2700 reaction rules [6].

Turning the temporal logic query language into a specification language for
expressing the observed behavior of the system, opens the way to the use of ma-
chine learning techniques for completing or correcting such formal models semi-
automatically. There has been work on the use of machine learning techniques,
such as inductive logic programming [7], to infer gene functions [8], metabolic
pathway descriptions [9, 10] or gene interactions [11]. However structural learning
of bio-molecular interactions from temporal properties is quite new, both from
the machine learning perspective and from the Systems Biology perspective.

In this paper we present an ad-hoc machine learning algorithm to discover
bio-molecular interaction rules from a partial model and constraints on the sys-
tem behavior. These constraints are expressed in temporal logic with positive
formulae (expected properties) and negated formulae (properties to avoid). The
learning process can be guided by the user by providing interaction patterns for
limiting the types of sought reactions, such as complexation, phosphorylation.

In the next section, we briefly present the BIOCHAM syntax of bio-chemical
compounds, interaction rules, patterns, and temporal logic formulae for express-
ing biological properties. In Sect. 3, we present our ad-hoc enumerative learning
algorithm in the general framework of theory revision learning algorithms. In
Sect. 4, we evaluate this method on different examples! concerning the inference
of interaction rules in models of the cell cycle control, the refinement of models
of inhibition and activation, and the discovery of drug targets in the cell cycle.
Finally we conclude on the scalability of this approach and plans for future work.

2 The Biochemical Abstract Machine BIOCHAM

The Biochemical Abstract Machine BIOCHAM [12] provides precise semantics
to bio-molecular interaction maps at two abstraction levels: the quantitative
level of molecular concentrations, and the qualitative level of boolean values. In
this paper, we focus on the boolean abstraction level of BIOCHAM, and do not
consider kinetics and BIOCHAM numerical models.

Based on these formal semantics, BIOCHAM offers:

— a compositional rule-based language for modeling biochemical systems, al-
lowing patterns (and kinetic expressions when numerical data are available);

— a non-deterministic boolean simulator (and numerical simulator);

— a powerful query language based on temporal logic (CTL [13] for boolean
models and LTL with constraints for numerical models) for expressing bio-
logical queries such as reachability, checkpoints, oscillations or stability;

LAl data wused in this paper are available on the web at
http://contraintes.inria.fr/BiochamLearning. BIOCHAM is a free software
downloadable from http://contraintes.inria.fr/BIOCHAM



— a machine learning system to infer interaction rules from observed temporal
properties, that is the main subject of this article.

BIOCHAM manipulates formal objects which represent chemical or biochem-
ical compounds, ranging from ions, to small molecules, macromolecules and
genes. BIOCHAM objects can be used also to represent control variables and
abstract biological processes. BIOCHAM reaction rules are used primarily to
represent biochemical reactions. They can also be used to represent state transi-
tions involving control variables or abstract processes, such as protein synthesis
by DNA transcription without introducing RNAs in the model.

Syntax:

object = molecule | abstract

molecule = name | molecule-molecule | molecule~{name,...,name}

| gene | ( molecule )

gene = #name

abstract = @Qname
reaction = name: reaction

| solution => solution | solution =[object]=> solution

| solution =[solution => solution]=> solution

| solution <=> solution | solution <=[object]=> solution
solution = _ | object | solution + solution | ( solution )
The following abbreviations can be used for reaction rules: A<=>B for the two
symmetrical rules, A=[C]1=>B for the rule A+C=>B+C with catalyst molecule C, and
A=[C=>D]=>B for the rule A+C=>D+B. For instance, RAF + RAFK => RAF-RAFK is a com-
plexation rule. MEK =[RAF~{p1}]=> MEK"{p1} is a phosphorylation rule with cata-
lyst RAF~{p1}. This rule is equivalent to MEK + RAF~{p1l} => MEK"{p1l} + RAF~{pi}.
Following an uniqueness assumption, objects marked as ”genes” with the ’#’
notation, or any compound built on such a molecule (such as DMP1-#p19ARF for
instance) are not multiplied. These objects remain unique and are deterministi-
cally consumed in the form in which they appear in the left-hand side of the rule.
The same goes for control variables, noted with a ’@’, which are deterministically
consumed. We refer to [12] for the precise semantics of these reaction rules at
the boolean abstraction level, which mainly reflects the capability of reasoning
about all possible behaviors of the system with unknown concentration values
and unknown kinetics parameters.

BIOCHAM has also a rich pattern language with constraints which is used
to specify molecules and sets of reaction rules in a concise manner. Patterns in-
troduce the special character 7 and variables noted with a name beginning with
a $ to denote unspecified parts of a molecule. These variables can be constrained
with simple set constraints. For instance, the command list_rules(RAF ?7-7 +
? => 7). contains a pattern matching all rules reacting with any form (phos-
phorylated or complexed) of RAF. The command list_rules(? =[RAFK]=> 7).
matches all rules involving the catalyst RAFK, i.e. having RAFK in their left
and right-hand sides, even if they were not written with the catalyst notation.
Patterns are also used to define sets of rules in a concise way and to provide a



guideline on the shape of rules to be considered during the learning process, as
explained in Sect. 3 and 4.

The most original feature of BIOCHAM however, is its use of the Com-
putation Tree Logic CTL [13] as a query language for the temporal proper-
ties of boolean models. This methodology introduced in [3,6] is implemented
in BIOCHAM with an interface to the state-of-the-art symbolic model checker
NuSMYV [14]. CTL basically extends propositional logic used for describing states,
with operators for reasoning on time (state transitions) and non-determinism.
Several temporal operators are introduced in CTL: X¢ meaning ¢ is true at
next transition, G¢ meaning ¢ is always true, F'¢ meaning finally true, and
oUv meaning ¢ is always true until 1) becomes true. Two path quantifiers are
introduced for reasoning about non-determinism: A¢ meaning ¢ is true on all
paths, and F'¢ meaning ¢ is true on some path. We refer to [4, 12] for the precise
semantics of CTL formulae in BIOCHAM models of bio-molecular interaction
networks. We recall here that CTL is expressive enough to express a wide range
of biological queries.

About reachability. Is there a pathway for synthesizing a protein P? This
query is formalized by the CTL formula EF(P). It can be abbreviated as
reachable (P) in BIOCHAM.

About pathway. Can the cell reach a state s while passing by another state
s2?7 This is expressed in CTL by EF(sy A EF(s)). Is state s a necessary
checkpoint for reaching state s? —E((—s2) U s). This formula is abbreviated
as checkpoint(s2,s). Can the cell reach a state s without violating certain con-
straints ¢? F(c U s). Is it possible to synthesize a protein P without creating
nor using protein Q? E(-Q U P).

About stability and oscillations. Is a certain (partially described) state s
of the cell a steady state? s = FEG(s); a permanent state? s = AG(s). Can
the cell reach a given permanent state s? EF(AGs). Must the cell reach a given
permanent state s? AF(AGs). Can the system exhibit a cyclic behavior w.r.t. the
presence of a product P? This query can be formalized by the CTL formula
EG((P = EF —-P) A (P = EF P)). It will be abbreviated as loop(P) in
the following. That formula expresses that there exists a path where at all time
points whenever P is present it becomes eventually absent, and whenever it is
absent it becomes eventually present.

3 Machine Learning from Temporal Logic Properties

Systems biologists build models of bio-molecular interactions from experiments
in wild-life and mutated organisms. These experiments tell them the properties
that their model have to check, concerning the behaviour of the system under
various conditions. In BIOCHAM, we have shown that most of these biological



properties can be formalized in temporal logic CTL [4, 3]. When a model does not
satisfy all these properties, the machine learning system of BIOCHAM proposes
rules to be added or removed, in order to improve the model.

3.1 An Ad hoc Enumerative Algorithm

The intended behavior of the model can thus be described through a set of CTL
properties providing a specification, with positive and negative examples. A rule
pattern (the bias) describing the plausible rules to add to the system can be given
to guide the search of new rules, eliminating in advance rules having no biological
meaning, and we want the system to come up with corrections/completions of
the initial model.

After unfruitful experiments with state-of-the-art Inductive Logic Program-
ming tools, we developed an ad-hoc exhaustive enumeration method: from the
rule pattern, we generate all its ground instances, order them by size and try
them one by one, adding them to the model and checking the specification with
the model-checker. Those rules which check all the specifications (positive ex-
amples and no negative examples) are returned as answers and proposed to the
user. This approach is somewhat limited, since it currently handles only the
addition of a single rule to the model, however Sect. 4 shows that it already
provides interesting results for a certain number of examples.

3.2 Theory Revision

The Theory Revision framework [15] , of which the above method is an extremely
simple instance, should provide more efficient methods for structural learning:

— in order to limit the number of candidate rules according to the CTL speci-
fication, in addition to the bias pattern;
— to learn, delete or modify more than one rule.

With respect to this framework, a CTL formula can be either seen as:

— positive, i.e. if it is false, it will remain false when removing a rule (like EF'(¢)
or EG(¢) where ¢ is state description formula containing no CTL operator);

— negative, i.e. if it is false, it will remain false when adding a rule (like AG(¢)
where ¢ is a state description formula);

— or unclassified, for the other formulae.

This classification is important in order to anticipate whether one has to
add or remove rules when trying to make a positive example true (or a negative
example false). For instance, if EF(a) is in the specification and is not true in
the current model, one needs to add a rule in order to make it true. If AG(b)
is in the specification and is not satisfied, one needs to remove a rule to make
it true. With this respect, it is important to note that the model-checker does
not only provide a yes/no answer but can, in certain cases, provide counter-
examples for unsatisfied properties. In the above example, typing the command



why in BIOCHAM after noticing that AG(b) is false, will come up with a path
leading to a state where b is absent. Only rules used in this path need to be tried
for removal.

It is also possible to convert unclassified properties into classified ones. In the
case of “E(—aUb), the translation of “a is a checkpoint for the production of b”,
we have for example an unclassified property. However, if this property is false
but b is reachable (i.e. EF (b)), we get a negative property, since we know that
the counter-example will be a path leading to b without going through a and that
to make the checkpoint property true, one needs to remove one of the rules of
this path. Properties about cyclicity remain nevertheless among the unclassified
properties and can hardly take advantage of theory revision techniques.

3.3 Evaluation

For the purpose of evaluating the machine learning system, we start from a
given BIOCHAM model, a set of temporal properties that the model satisfies
is written down (in temporal logic, the formula can be negated, providing thus
positive and negative examples), one reaction rule is erased and the purpose of
the learning process is to let it recover that rule or discover other rules which
permit to satisfy the temporal properties. In this paper, we report mainly the
results of the ad-hoc enumerative algorithm, and give in Sect. 4.2 an example of
a simplified use of the Theory Revision approach.

4 Examples and performances

We have collected pathway data from different sources in order to try out and
evaluate pathway correction/completion based on a temporal logic specification.
The first evaluations are based on well-known models, taken from the literature
or imported from the Web using the standard SBML format [16], from which
one interaction rule is erased. Different specifications, given in temporal logic,
have been proposed for the models (more or less complete). The result is not
only whether the system recovers the expected rule or not, but also if it produces
other rules satisfying the property, and if the biases expressed as interaction rule
patterns are expressive enough.

4.1 Rule inference in cell cycle control

The model . This model is a BIOCHAM boolean model imported from an
SBML model? which itself was taken from the literature [17]. It provides a very
basic (6 variables) model of the cell cycle control. The input of the machine
learning system is in three parts:

1. A set of interaction rules:

% http://www-aig.jpl.nasa.gov/public/mls/cellerator /notebooks/Tyson6.html



_ => cyclin.

cdc2”{p} + cyclin => cdc2”{p}-cyclin~{p}.
cdc2”{p}-cyclin~{p} => cdc2-cyclin~{p}.
cdc2-cyclin™{p} => cdc2 + cyclin~{p}.
cyclin™{p} => _.

cdc2 => cdc27{p}.

cdc2”{p} => cdc2.

2. An initial state. Only the kinase cdc2 is present, the other molecules are
absent.

3. A set of specifications in temporal logic CTL, verified by the biological model,
like the reachability of the activated complex kinase-cyclin (also called MPF),
or the oscillation of the cycle’s phase, plus some other simple properties.

reachable(cdc2-cyclin™{p}).
loop((cyclin & cyclin™{p}) & !(cdc2-cyclin~{p})).

Finding a missing rule. For the first test we delete one rule, the activa-
tion rule of MPF (cdc2-cyclin)by dephosphorylation: cdc2”{p}-cyclin~{p} =>
cdc2-cyclin™{p} The model does not verify all CTL specifications any more.
The purpose is to let the system learn few but biologically correct rules to com-
plete the model. When asking to find a rule which is a transformation of a
molecule into another, or a degradation or a synthesis, the system tests 45 rules,
in 4 seconds, and returns only 3 as possible answers:

? learn([$Q=> $P where $P in complexes and $Q in complexes]).
_=>cdc2-cyclin~{p}

cyclin=>cdc2-cyclin™{p}

cdc2”{p}r-cyclin~{p}=>cdc2-cyclin~{p}

From this point, the biologist can look at each rule and notice that they all
produce active MPF. This is already a clue about what is missing in the model.

One can also ask more to the system, by making the rule pattern more
precise to force the learning of a rule with a stronger biological meaning, like
a phosphorylation. In that case, fewer rules (11) are tested and, in less than 1
second, the missing rule is found.

? learn([$gp=> $q where $q in complexes and $qp modif $q]).
cdc2”{p}r-cyclin~{p}=>cdc2-cyclin~{p}

A third possibility is to add a specification like the fact that the presence of
phosphorylated cdc2 is necessary to activate MPF
checkpoint (cdc2”{p},cdc2-cyclin~{p}). The same set of rules (45) as the
first query is tested but only one rule (the missing rule) then verifies all the
specifications.

? learn([$Q=> $P where $P in complexes and $Q in complexes]).
cdc2”{p}-cyclin~{p} => cdc2-cyclin~{p}

Table 1 summarizes the results of this process. To show the scalability of the
method we used it on some bigger examples, results are reported in table 2.



Finding a process. During the building of a biological model, it is often
a whole process that remains to be modeled, and not just a single rule. In
order to simulate this problem, we delete the set of rules of the formation
of the MPF complex and its activation: delete_rules({cdc2”{p} + cyclin
=> cdc2”{p}-cyclin{p}, cdc2”{p}r-cyclin"{p} => cdc2-cyclin"{p}}).

The inactive form of the MPF complex is now unknown by the model, and we
try to find a rule which completes the model and gives some directions for bi-
ological experiments. We first try to find a complexation or a phosphorylation
but no rule is found to complete the model from 23 rules tested in 1.7 seconds.

? learn([$gp=>$q where $q in complexes and $qp modif $q,
$p + $9=>$p-$q where $q in complexes and $p in complexes]).
No rule

The pattern can be generalized to a “synthesis”, but not necessarily with a
strict biological meaning. This can be interpreted like the simple presence of a
molecule in the system. Once again, no rule is found to complete the model, and
we can deduce that the “hole” in the model is not a only the production of a
molecule.

If the pattern is further generalized to a consumption and a production.
Three rules are proposed by the system (from 32 rules in 2.3 seconds), each
producing active MPF and consuming the cdc2 kinase or the cyclin.

? learn([$R=> $P where $P in complexes and $R in complexes]).
cdc2=>cdc2-cyclin~{p}

cyclin=>cdc2-cyclin™{p}

cdc2”{p}=>cdc2-cyclin~{p}

The production of active MPF being apparently crucial, one queries for a rule
which would produce MPF by complexation and/or phosphorylation and/or de-
phosphorylation. In 4 seconds, 51 rules are tested and 2 are proposed to complete
the model. And if we make the presence of phosphorylated cdc2 compulsory to
produce active MPF (checkpoint property), only one rule is proposed:

7 learn([$R+$Q=>$Rp-$Qp where $Q in complexes and $R in complexes
and $Rp modif $R and $Qp modif $Q1).
cdc2”{p}r+cyclin=>cdc2-cyclin~{p}

This rule is a shortcut for the process which we had removed. See table 3
for a summary of the results and table 4 for reports of other experiments on a
bigger example.

4.2 Model Refinement by Theory Revision
The enumeration method described up to now can be embedded in a slightly

more complex interactive model refinement method based on Theory Revision.

A simple model. Let us consider a small hypothetical system composed
of three proteins, MA, MB and MC, in which oscillations are experimentally



observed. The exact interactions among proteins are unknown and the modeler
seeks for diverse possibilities. In absence of other knowledge, one can start from
the simplest boolean model: _<=>MA. _<=>MB. _<=>MC.

Temporal properties are specified, defining both oscillations and reachability
for each protein. So far, the model does not take into account protein interac-
tions. These will be discovered, one by one, based on experimental observations
formalized with CTL formulae, checking that the previous properties imposed
on the system still hold (i.e. oscillation, and reachability of each protein).

The first refinement of the model comes from the observation that MC is
needed for the disappearance of MB. The specification is written in temporal
logic in the form of a checkpoint: checkpoint (MC, !MB). However, the current
model does not verify this new property. In other words, there exists a path where
MB can disappear even though MC has already been degraded. A rule is chosen
and deleted from the path given by BIOCHAM. At this point, the new model can
either verify the checkpoint specifications or they are not verified, we ask to infer
a rule that would account for the interaction between MB and MC. Three rules
are proposed by the system: MB+MC=>MB~{p}+MC. MB+MC=>MC. MB+MC=>MB-MC. One
of the rules is chosen, the first one, and added to the model. The model then ver-
ifies all the properties, i.e. oscillations, reachability and checkpoint (MC, !MB) .

The second refinement of the model comes from the fact that MA is needed for
the disappearance of MC which is formalized as follows: checkpoint (MA, !'MC) .
New rules are proposed to verify the new specifications of the model and added
until all the observations are included.

It might happen that a rule chosen in the first step of refinement leads to a
dead end when a second step of refinement is proposed and for which no rule can
be found. In this case, it is possible to go back to the previous step and choose
a more appropriate rule.

Scenario of refinement by simplified theory revision. The following al-
gorithm summarizes the method:

1. If the model is satisfactory, stop, else add a new specification and go to 2.

2. Check if the model verifies all the specifications, if it does go to 1, else go to 3.

3. Ask BIOCHAM why the properties aren’t verified with the command why. Choose
a rule from the proposed pathway and delete it.

4. Check if the model is now valid , if it is go to 1, else go to 5.

5. Learn rules to complete the model with the command learn. If at least one is
found, then choose one of them and add it to the model and go to 1, else go back
to the previous choice (in 3).

4.3 Results

Assuming that the proteins can appear under two forms, active (unphosphory-
lated) and inactive (phosphorylated), 40 seconds and 2 backtracks (steps back
from 5 to 3) were needed to find the final model:

_=>MA. MA=[MB]l=>_. _=>MB. MB=[MC]=>MB~{p}. _=>MC. MC=[MA]=>MC~{p}.



This model is an example of a three-component negative feedback loop where
MA inhibits MC, MC inhibits MB and in turn, MB inhibits MA. This model is
an example of a minimal system for an oscillatory behavior in numerical models
assuming that an appropriate parameter set is chosen.

4.4 Scenario of drug target discovery in cell cycle control

The machine learning method described in this paper can be applied to concrete
matters found in pharmaceutical research. Even though the example given here
concerns a small model, the impact of such methods seems quite promising for
the future in finding and testing medicines.

To illustrate the learning method, we use a modified version of a cell cycle
model (Qu et al. [18]) involving 6 proteins. In this model, a kinase, Cdk, binds to
a cyclin, CycB, to form a complex, Cdk+CycB<=>Cdk-CycB, which plays a central
role in the cycle. When Cdk-CycB is active, the cell enters into mitosis and exits
mitosis when Cdk-CycB is inactivated. Around this complex, many pathways
and networks of proteins are organized to ensure that it is active at the right
moment of the cycle. Cdk-CycB can be transformed into its inactive form by a ki-
nase Weel, Cdk-CycB=[Weel1]=>Cdk-CycB~{p1}. The reverse reaction is done by
a phosphatase Cdc25 (noted C25): Cdk-CycB~{p1}=[C25~{p1,p2}]1=>Cdk-CycB.
The complex Cdk-CycB and the two proteins interact into a positive feedback
loop, Cdk-CycB activating Cdc25 in two steps, C25=[Cdk-CycB]=>C25"{p1} and
C257{p1}=[Cdk-CycB]l=>C25"{p1,p2}, and inactivating Weel :

Weel=[Cdk-CycB]l=>Weel~{p1}.
Moreover, antagonist proteins interfere to keep the complex off: the inhibitors
CKI that bind to Cdk-CycB to form an inactive complex, CKI-Cdk-CycB,
CKI+Cdk-CycB<=>CKI-Cdk-CycB, and the proteases (called APC) that degrade
the cyclin part of Cdk-CycB, CycB=[APC]=>_.

Adding a molecule to block the cycle. The cell cycle described above ex-
hibits oscillations. In this example, the purpose is to find a protein capable of
blocking the cycle. The method consists in introducing an unknown and hy-
pothetical molecule to the model and determining what kind of interactions
between this new molecule and other components of the model lead to an arrest
of the cell cycle. For this purpose, a specification is added such that the introduc-
tion of this new molecule, NewMol, to the model stops the oscillations observed
in normal conditions. BIOCHAM proposes 11 rules that will arrest the cycle out
of the 81 tested in 365 seconds. Only five rules seem to have a biological meaning
and the other six ones are dismissed. The remaining rules are the following:

Cdk-CycB+New_mol=>Cdk-CycB-New_mol. (1)
C25=[New_mol]=>C25~{p1,p2}. (2)
Cdk-CycB=[New_mol]=>Cdk-CycB~{p1}. (3
Cdk-CycB~{p1}=[New_mol]=>Cdk-CycB. (4)
Cdk-CycB=[New_mol]=>_. (5)

All of them show direct or indirect interactions with Cdk-CycB: either the
complex is kept active (the activation of MPF or Cdc25 is forced by rules 2,



4), or the complex is inhibited (rules 1, 3) or degraded (rule 5). If experiments
needed to be done to block the cell cycle, this method could suggest specific
properties that a protein, a pathway or a network of proteins should have to
cause this arrest.

Adding a molecule to unblock the cycle. In this case, the problem is
reversed. Starting from a cell arrested in one of the phases of its cycle, a new
molecule is added to unblock it. First of all, the cycle needs to be blocked by
deleting one important component, for example Cdc25 (a deletion of Cdc25
is lethal in most cells). Since Cdc25 is involved in a two-step process where
Cdk-CycB activates Cdc25, which in turn activates Cdk-CycB more, it can be
anticipated that the new molecule might have similar dynamics. Therefore, a
reaction rule is added such that the new molecule is forced to interact and
activate Cdk-CycB: Cdk-CycB~{p1}=[NewMol]=>Cdk-CycB. However, it is still
unclear how NewMol has to be regulated in the system. The function “learn”
proposes six rules that verify the specifications of the model and that suggest
ways to unblock the cycle. Only three of them are of interest:

_=[CycB]=>NewMol. _=[Cdk-CycB]=>NewMol. Weel~{p1}=>Weel~{p1}+NewMol.

The proposed rules indicate that the new protein needs to be activated di-
rectly or indirectly by the complex Cdk-CycB. Even in the case that the rules
are not totally biologically correct, they provide useful hints in terms of the
necessary processes to unblock the cell cycle.

5 Conclusion

Computation Tree Logic (CTL) is a powerful formalism for expressing the biolog-
ical properties of an organism, such as state reachability, checkpoints, stability
and oscillations. The scalability of symbolic model checking tools to evaluate
CTL formulae has been shown in large interaction networks of several hundreds
of variables in [6, 3] using the BIOCHAM system [4, 12]. Here we have shown how
CTL could be turned into a specification language for the observed behavior of a
living system. The ad-hoc machine learning technique that we have presented for
learning interaction rules from CTL specification, has been evaluated on small
models. However we have shown that the expressivity of rule patterns makes it
possible to direct the search so that the performances of the learning process
scale up linearly with the number of reaction rules. The flexibility of rule pat-
terns makes it possible also to use the learning process in an interactive way
for refining models. This capability has been illustrated with a scenario of drug
target discovery.

These results are thus quite encouraging for the design of automated rea-
soning tools to assist the biologist/modeler in Systems Biology. However, the
boolean abstraction level of bio-molecular interactions considered in this paper
is a rather crude abstraction, as it abstracts from the kinetics of reactions. It
should thus be considered as a first step for the learning of bio-molecular inter-
action rules with kinetics. In particular, the BIOCHAM language supports the



specification of the kinetics of reactions as well, and compiles them into a sys-
tem of ordinary differential equations. Furthermore, the kinetics of BIOCHAM
reactions can be used not only for simulations but also for checking temporal
properties expressed in a constraint-based extension of Linear Time Logic (as
ODE systems are deterministic). We are thus currently investigating the gen-
eralization of our machine learning algorithm to BIOCHAM numerical models
along the same lines.
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Appendix

lbias [# good rules[# rules tested[timel

undefined A => B reaction 3 45| 4s

(de)phosphorylation 1 11} <1s

add a specification:
cdc2 activated is a checkpoint of MPF activation 1 45| 4s

Table 1. Tyson [17] cell cycle experiment with the rule of MPF activation by dephos-
phorylation deleted.



deleted rule good|tested time
rules| rules
Cell cycle model by Qu et al. [18] (25 rules, 17 molecules, 46 specifications)
synthesis of CycB deleted 19| 1041 345s
inhibition of Weel by MPF 14| 1041 655s
activation of MPF by C25 2| 1041 4680 s
activation of C25 by MPF 5/ 1042 740s
RTK-MAPK cascade by Levchenko et al. [19] (22 rules, 22 molecules, 4 spec.)
RAF+RAFK=>RAF-RAFK 40| 1888 1092s
MEK+RAF~{p1}=>MEK-RAF~{p1} 33| 1888 1570s
MEK~{p1}+RAF~{p1}=>MEK~{p1}-RAF~{p1} 23| 1888 794s
MAPK+MEK~{p1,p2}=>MAPK-MEK~{p1,p2} 63| 1888 1382s
MAPK~ {p1}+MEK~{p1,p2}=>MAPK~{p1}-MEK~{p1,p2} 83| 1888 585s
RAF-RAFK=>RAFK+RAF~{p1} 35| 1887 917s
same rule, other pattern tested 4| 877 563s
MEK~{p1}-RAF~{p1}=>MEK~{p1,p2}+RAF~{p1} 29| 1887 6365
MEK-RAF~{p1}=>MEK~{p1}+RAF~{p1} 23| 1887 1189s
same rule, other pattern tested 2| 877 604s
MAPK-MEK~{p1,p2}=>MAPK~{p1}+MEK~{p1,p2} 86| 1887 1102s
MAPK~{p1}-MEK~{p1,p2}=>MAPK~{p1,p2}+MEK"{p1,p2}| 62| 1887 5355

Table 2. Two other examples. The bias defines all possible biological reactions
((de)complexation, synthesis, degradation or (de)phosphorylation)

Bias good |tested| time
rules| rules
complexation or phosphorylation 0 23| 1.8s
synthesis 0 5| 0.3s
synthesis and degradation 3 32| 2.2s
very general reaction A + B => C + D 29| 222|16.5s
Restriction to A + B => C 6 87| 6.0s

complexation and (de)phosphorylation A + B => Ap-Bp 2 51| 4.0s
add a specification:
activation of cdc2 is a checkpoint for MPF activation 1 51| 3.6s

Table 3. Tyson model with MPF activation process deleted.

deleted process good|tested| time
rules| rules
degradation of (pre)MPF by APC 23| 1042| 532s

complexation of CKI-MPF

all inhibition of MPF 0| 1043| 635s
other pattern A + B<=>C 4| 5831(4497s
complexation of MPF and its activation by C25 1| 1042| 285s
all activation of MPF 0| 1042| 227s
other patterns A + B<=>C 0| 5831|1504s

A+B=>+D 0]22550(4291s
Table 4. Another example of process discovery, with Qu’s cell cycle model [18]. The
bias is, again, all possible biological rules.




