13 research outputs found

    Memory-Efficient Query Processing over XML Fragment Stream with Fragment Labeling

    Get PDF
    The portable/hand-held devices deployed in mobile computing environment are mostly limited in memory. To make it possible for them to locally process queries over a large volume of XML data, the data needs to be streamed in fragments of manageable size and the queries need to be processed over the stream with as little memory as possible. In this paper, we report a considerable improvement of the state-of-the-art techniques of query processing over XML fragment stream in memory efficiency. We use XML fragment labeling (XFL) as a method of representing XML fragmentation, and show that XFL is much more effective than the popular hole-filler (HF) model employed in the state-of-the-art in reducing the amount of memory required for query processing. The state-of-the-art with the HF model requires more memory as the stream size increases. With XFL, we overcome this fundamental limitation, proposing the techniques to make query processing scalable in the sense that memory requirement is not affected by the size of the stream as long as the stream is bounded. The improvement is verified through implementation and a detailed set of experiments

    MonetDB/XQuery: a fast XQuery processor powered by a relational engine

    Get PDF
    Relational XQuery systems try to re-use mature relational data management infrastructures to create fast and scalable XML database technology. This paper describes the main features, key contributions, and lessons learned while implementing such a system. Its architecture consists of (i) a range-based encoding of XML documents into relational tables, (ii) a compilation technique that translates XQuery into a basic relational algebra, (iii) a restricted (order) property-aware peephole relational query optimization strategy, and (iv) a mapping from XML update statements into relational updates. Thus, this system implements all essential XML database functionalities (rather than a single feature) such that we can learn from the full consequences of our architectural decisions. While implementing this system, we had to extend the state-of-the-art with a number of new technical contributions, such as loop-lifted staircase join and efficient relational query evaluation strategies for XQuery theta-joins with existential semantics. These contributions as well as the architectural lessons learned are also deemed valuable for other relational back-end engines. The performance and scalability of the resulting system is evaluated on the XMark benchmark up to data sizes of 11GB. The performance section also provides an extensive benchmark comparison of all major XMark results published previously, which confirm that the goal of purely relational XQuery processing, namely speed and scalability, was met

    On the Complexity of Nonrecursive XQuery and Functional Query Languages on Complex Values

    Full text link
    This paper studies the complexity of evaluating functional query languages for complex values such as monad algebra and the recursion-free fragment of XQuery. We show that monad algebra with equality restricted to atomic values is complete for the class TA[2^{O(n)}, O(n)] of problems solvable in linear exponential time with a linear number of alternations. The monotone fragment of monad algebra with atomic value equality but without negation is complete for nondeterministic exponential time. For monad algebra with deep equality, we establish TA[2^{O(n)}, O(n)] lower and exponential-space upper bounds. Then we study a fragment of XQuery, Core XQuery, that seems to incorporate all the features of a query language on complex values that are traditionally deemed essential. A close connection between monad algebra on lists and Core XQuery (with ``child'' as the only axis) is exhibited, and it is shown that these languages are expressively equivalent up to representation issues. We show that Core XQuery is just as hard as monad algebra w.r.t. combined complexity, and that it is in TC0 if the query is assumed fixed.Comment: Long version of PODS 2005 pape

    The bea/xqrl streaming xquery processor

    No full text
    In this paper, we describe the design, implementation, and performance characteristics of a complete, industrial-strength XQuery engine, the BEA streaming XQuery processor. The engine was designed to provide very high performance for message processing applications, i.e., for transforming XML data streams, and it is a central component of the 8.1 release of BEA’s WebLogic Integration (WLI) product. This XQuery engine is fully compliant with the August 2002 draft of the W3C XML Query Language specification. A goal of this paper is to describe how an efficient, fully compliant XQuery engine can be built from a few relatively simple components and well-understood technologies

    Survey over Existing Query and Transformation Languages

    Get PDF
    A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability of many current Semantic Web approaches to cope with data available in such diverging representation formalisms as XML, RDF, or Topic Maps. A common query language is the first step to allow transparent access to data in any of these formats. To further the understanding of the requirements and approaches proposed for query languages in the conventional as well as the Semantic Web, this report surveys a large number of query languages for accessing XML, RDF, or Topic Maps. This is the first systematic survey to consider query languages from all these areas. From the detailed survey of these query languages, a common classification scheme is derived that is useful for understanding and differentiating languages within and among all three areas
    corecore