
Computing and Informatics, Vol. 29, 2010, 757–782

MEMORY-EFFICIENT QUERY PROCESSING
OVER XML FRAGMENT STREAM
WITH FRAGMENT LABELING

Sangwook Lee, Jin Kim, Hyunchul Kang

School of Computer Science and Engineering
Chung-Ang University
Seoul, 156-756, Korea
e-mail: {swlee, jkim}@dblab.cse.cau.ac.kr, hckang@cau.ac.kr

Manuscript received 3 February 2009; revised 16 March 2009

Communicated by Imre J. Rudas

Abstract. The portable/hand-held devices deployed in mobile computing environ-

ment are mostly limited in memory. To make it possible for them to locally process
queries over a large volume of XML data, the data needs to be streamed in frag-
ments of manageable size and the queries need to be processed over the stream with
as little memory as possible. In this paper, we report a considerable improvement
of the state-of-the-art techniques of query processing over XML fragment stream
in memory efficiency. We use XML fragment labeling (XFL) as a method of rep-
resenting XML fragmentation, and show that XFL is much more effective than
the popular hole-filler (HF) model employed in the state-of-the-art in reducing the
amount of memory required for query processing. The state-of-the-art with the HF
model requires more memory as the stream size increases. With XFL, we overcome
this fundamental limitation, proposing the techniques to make query processing
scalable in the sense that memory requirement is not affected by the size of the
stream as long as the stream is bounded. The improvement is verified through
implementation and a detailed set of experiments.

Keywords: XML, XML fragment stream, XML fragment labeling, hole-filler mo-
del, XML stream query processing, mobile computing

Mathematics Subject Classification 2000: 68N01: Software; 68U01: Comput-
ing Methodologies and Applications; 68M14: Distributed Systems; 68M20: Perfor-
mance Evaluation



758 S. Lee, J. Kim, H. Kang

1 INTRODUCTION

Due to the advance of wireless communication technology, the portable/hand-held
devices of various sorts have been widely deployed in mobile and pervasive comput-
ing environment. For instance, the global market for the smart phones is explosively
growing in recent years. According to strategy analytics, a market research insti-
tute, 91 million smart phones were sold worldwide in 2006, 150 million in 2007, 211
million in 2008, and 460 million are expected to be sold in 2010 [21]. In the near
future, with a number of mobile devices around with its own processing capabili-
ties, dissemination of XML data to them over wireless broadcast channels will be
prevalent, for XML has been established as a standard for data exchange not just
on the Internet but among heterogeneous devices and systems. Additional filtering
of the broadcast XML data could be locally conducted in the client devices through
XML queries. The portable/hand-held client devices of today are still with limited
resource, especially with limited memory. As such, the whole of the broadcast data
could not be stored as an XML document against which the client queries are to
be executed. Rather, the server partitions the source XML document into XML
fragments of small and manageable size, and broadcasts a stream of them. Thus,
query processing at the client is over such an XML fragment stream. Arrival of the
XML fragments at a client may not be in proper order, and yet the stream query
processing over them should return the correct result while using the limited amount
of memory available at the client. In this scenario, the most critical requirement is
to use as little memory as possible in query processing.

To realize such a capability, three components are needed. First, a method
of representing XML fragmentation; second, XML data schema with fragmenta-
tion information; third, a stream query processing algorithm. The state-of-the-art
techniques in this approach include XFrag [2] and XFPro [11]. They employ the
hole-filler model (HF model for short) [3, 6] for the first component. The HF model
is simple in representing XML fragmentation. Each XML fragment could contain
holes, which are supposed to be filled with other XML fragments (i.e., fillers) that
could have other holes. For each hole and its corresponding filler, a value is assigned.
It is called a hole ID (for the hole) or a filler ID (for the filler). The HF model is
getting popular and widely adopted for relevant research [2, 11, 1, 10].

This paper is to claim that there exists a much more effective method of repre-
senting XML fragmentation than the HF model. We call it XML fragment labeling
(XFL for short). XFL is as simple as the HF model, and is basically an exten-
sion of the well-known XML labeling (a.k.a. XML numbering) [23, 15, 22, 17, 14]
in the sense that the unit of labeling is an XML fragment whereas in the conven-
tional XML labeling, the unit is an XML node when the XML data is modeled as
a tree.

In [2], the memory usage for each of three XPath queries on an auction.xml
document was measured with the HF model. With only the HF model replaced
by XFL, in our earlier work we had conducted exactly the same experiments. The
results with XFL were very promising compared with those with the HF model.



Memory-Efficient Query Processing over XML Fragment . . . 759

When the minimum amount of memory required during the entire course of query
processing is compared, the improvement was about in the range of 25% to 50%
for each of the three queries. Encouraged by these preliminary results reported
in [13], we have further explored XFL and drawn a conclusion that the state-of-
the-art techniques of XML fragment stream query processing should replace its HF
model with XFL. First, we explain in detail why XFL is much more efficient than
the HF model with examples. Then, we propose several techniques to optimize
XML fragment stream query processing for memory efficiency with XFL and also
with the HF model for fairness in comparison. There, we show that XFL is much
more lenient to such optimizations than the HF model. The state-of-the-art with
the HF model can deal only with a static stream, and requires more memory for
query processing as the stream size increases. With XFL, a dynamic stream could
be handled as well, and a very crucial result is that query processing is scalable due
to the aforementioned optimizations in the sense that memory requirement is not
affected by the stream size as long as the stream is bounded. Such scalability could
not be achieved with the HF model even with the possible optimizations.

The rest of this paper is organized as follows. Section 2 describes the HF model
and introduces XFL. The inefficiency of the HF model compared with XFL is de-
scribed. Section 3 proposes some possible optimization techniques with XFL and
also with the HF model. Section 4 reports the implementation and experimental
results. Section 5 overviews the related work. Finally, Section 6 summarizes the
contributions of this paper and gives some concluding remarks.

2 HOLE-FILLER MODEL AND XML FRAGMENT LABELING

2.1 Hole-Filler Model [3, 6]

XML data can be modeled as a node-labeled tree. Figure 1 shows a) an example
of an XML data, b) its tree representation, c) its fragmentation where the region of
the tree marked by a triangle denotes an XML fragment, and d) its representation
of the fragmentation with the HF model. In Figure 1 d), there are 5 fragments.
The root element of each fragment has two attributes – fid (filler ID) and tsid
(tag structure ID). The fid is the ID of a fragment (i.e., a filler), and the expla-
nation of the tsid and the tag structure will be given shortly. The IDs of the 5
fragments are 1 through 5. Filler 1 has 2 holes in it, and their IDs are 2 and 3,
respectively. Filler 2 and the filler 3 have 1 hole each whose IDs are is 4 and 5,
respectively. In filler 1, the original start tag <a> is annotated with attributes
fid and tsid, resulting in <a fid=1 tsid=10>. The original body of the element
‘a’, <b><c>10</c><d>20</d></b> <b><c>30</c><d>40</d></b> is re-
placed by the 2 holes, <hole hid=2 tsid=11/> and <hole hid=3 tsid=11/> where
hid represents the hole ID. These are called hole elements. Meanwhile, in filler 2,
the original body of the first instance of element ‘b’, <c>10</c><d>20</d>, is
replaced by <c>10</c> and a hole element <hole hid=4 tsid=13/>. The same
pattern of fragmentation occurs in the filler 3, too.



760 S. Lee, J. Kim, H. Kang

���

���

���������

���	�����

����

���

���
�����

���������

����

����

��

�

� �


� ��

��

	� 
�

�

��

� ����� ��������

���� ����� ���������

���� ����� ���������

���

� ����� ��������

 ���� �

���� ����! ���������

���

 ����� ��������

 ���� �

���� ����" ���������

� �

� ����! �������������

� ����" ��������!����

�#

��$ ����� %�&��� �����'��'(��

��$ ����� %�&��� �����'��'(��

��$ ����� %�&�� ��

��$ ����� %�&��� �����'��'(���

���$�

���$�

�#

� �

��

�

	�

�

��

�

�

� �

�

�

��

Fig. 1. Hole-filler model; a) XML data, b) tree representation, c) fragmentation, d) XML

fragments with HF model, e) tag structure

The tsid is the ID assigned to each tag that occurs on a path in the XML
tree. Their values are uniquely given in the tag structure, which is to summarize
the structure of the XML data and also to specify how it is fragmented. Figure 1 e)
shows the tag structure of the XML data of Figure 1 a). There are 4 tags, ‘a’ through
‘d’, and 10 through 13 are respectively assigned as their unique tsid’s. As for the
tag ‘b’, there are 2 instances in the XML data of Figure 1 a). They are considered
as the same tag because both appears on the same path from the root of the tree
(i.e., /a/b). The same is true for the tags ‘c’ and ‘d’. The value of attribute filler
being “true” specifies that the corresponding tag is the root of an XML fragment
(i.e., the root of the subtree that corresponds to an XML fragment). The fid, hid,
and tsid are the metadata added to XML fragments to correlate the fragments with
the HF model.

2.2 XML Fragment Labeling

In this section, we introduce XML fragment labeling (XFL). The conventional XML
node labeling was devised to represent structural relationship (e.g., parent-child,
ancestor-descendant, etc.) among the nodes of XML data modeled as a tree, and
is exploited in the structural joins for XML query processing. In the vertical frag-
mentation of an XML data modeled as a tree, each of the obtained fragments is
a subtree of the original XML tree. Thus, the relationship among the fragments
could also be represented as a tree where a node is an XML fragment. We call
it an XML fragment tree, an example of which is shown in Figure 1 c). Thus, its
fragments could be labeled with any of the conventional XML labeling schemes in
the same way as the nodes of the original XML tree are labeled. Figure 2 a) shows



Memory-Efficient Query Processing over XML Fragment . . . 761

XFL of the XML fragment tree of Figure 1 c) where Dewey order encoding [18] is
employed as an XML labeling scheme. There are 5 fragments whose labels are 1,
1.1, 1.2, 1.1.1, and 1.2.1. They are given in XML in Figure 2 b). The root element
of each fragment has two attributes FID (fragment ID)1 and tsid. The value of FID
is the label assigned with XFL. With XFL, there is no need of holes or fillers alto-
gether. Thus, there are no hole/filler IDs specified. Only the fragment IDs (FIDs)
will do. In fragment 1, the original start tag <a> is annotated with attributes
FID and tsid, resulting in <a FID=1 tsid=10/>, and the original body of ele-
ment ‘a’, <b><c>10</c><d>20</d></b><b><c>30</c><d>40</d></b>,
is now null because the whole of it is taken out into its child fragments whose FIDs
are 1.1, and 1.2. Meanwhile, in fragment 1.1, the original body of the first instance
of element ‘b’, <c>10</c><d>20</d>, is replaced by <c>10</c> alone without
the hole for <d>20</d>, which is taken out into fragment 1.1.1. The same pattern
of fragmentation occurs in fragment 1.2, too. Though there is no hole element, the
structural relationship among the fragments can be identified due to XML labeling
used for the FIDs. The metadata added to XML fragments is just FID and tsid.

)* +*

,

-*

.

/

0 .

/

0

1*

-

-2- -2)

-2-2-
-2)2-

3, 4567- 89:07-*;<

3/ 4567-2- 89:07--<

3.<-*3;.<

3;/<

3/ 4567-2) 89:07--<

3.<+*3;.<

3;/<

30 4567-2-2- 89:07-+<)*3;0<

30 4567-2)2- 89:07-+<1*3;0<

,= /=

Fig. 2. XML fragment labeling; a) XML fragment tree with XFL, b) XML fragments with
XFL

The basic XFL presented so far is not complete in representing an XML frag-
mentation. There could exist ambiguity, example of which is shown in Figure 3. In
Figure 3 a), we have an XML fragment tree consisting of 2 fragments whose FIDs are
1 and 1.1. Since there are 2 instances of ‘b’ elements in fragment 1, we cannot iden-
tify which ‘b’ is the parent of the ‘c’ element in fragment 1.1. Such ambiguity should
be avoided in XFL. Otherwise, it is not always guaranteed that the original XML
source data could be reconstructed exactly as it was, given its fragments and their
FIDs. Though such reconstruction is not needed in XML fragment stream query
processing, correct reconstruction is a requirement for any method of representing
XML fragmentation for correct query processing. Figures 3 b) and Figure 3 c) show

1 To distinguish the fragment ID in XFL from the filler ID of the HF model, the acronym
in uppercase letters, FID, is used for the fragment ID whereas the one in lowercase letters,
fid, is used for the filler ID.



762 S. Lee, J. Kim, H. Kang

examples of unambiguous fragmentation with XFL. With a simple rule, the ambi-
guity can be avoided. The rule is that the repeating elements, say n elements, with
the same tag name at the same path from the root of an XML document (e.g., those
that are marked with * or + in a DTD) are partitioned into n different fragments.
We wrap up this subsection with two definitions and a lemma. The notations here
will be used again in Section 3.

>

?

@ABCD@ABCD@ABCD@ABCD

@ABCDED@ABCDED@ABCDED@ABCDED

>

F F

?

>G ?GFG

>

F F

?

F F

Fig. 3. Ambiguous and unambiguous fragmentation with XFL

Definition 1 (XML Fragmentation Function). Let D, τ , Mf be an XML docu-
ment, a tag structure for D, and a method of representing XML fragmentation,
respectively. Let Fx be a function which maps D into a collection of XML frag-
ments out of D such that Fx(D, τ,Mf) = < d1, . . . , dk > (k ≥ 1) where di is an
XML fragment which comprises di

s and di
m where di

s is a subtree of D obtained as
specified in τ when D is modeled as a node-labeled tree, and di

m is the metadata
added to di

s to correlate di
s with other dj

s’s (i 6=j) according to Mf .

Definition 2 (Unambiguous XML Fragmentation). Let D, τ , Mf be an XML do-
cument, a tag structure for D, and a method of representing XML fragmenta-
tion, respectively. An XML fragmentation of D with τ and Mf is unambiguous
if Rx(Fx(D, τ,Mf), τ,Mf) = D where Rx is a reverse function of Fx which recon-
structs D from a collection of XML fragments out of D produced by Fx.

Lemma 1. Given an XML document D, there exists an unambiguous XML frag-
mentation of D with XFL.

Proof. Suppose D is vertically fragmented under the aforementioned rule such
that Fx(D, τ, ‘XFL’) = < d1, . . . , dk > (k ≥ 1) where τ is the tag structure and
di(i = 1, . . . , k) is an XML fragment as defined in Definition 1. Let rD be the
root node of D. For each fragment di except the one with rD, the following two
statements hold:

1. The parent fragment dj of di(i 6= j) is uniquely identified.

2. The parent node of the root element of di in D is uniquely identified in dj .



Memory-Efficient Query Processing over XML Fragment . . . 763

The first statement holds because of the FIDs of di and dj . To show that the
second one also holds, let ri and rj be the root elements of di and dj , respectively,
and given two node instances x and y in D such that x is an ancestor of y, let
P (x, y) denote the path from x to y. Note that ri has the tsid attribute. Con-
sulting the tag structure τ with the tsid value of ri, P (rD, ri) can be known. Let
P (rD, ri) = P (rD, rj) · P (rj, np) · P (np, ri) where np is the parent node of ri in D,
and the · denotes the path concatenation where the connecting node appears just
once (e.g., ‘/a/b/c’ · ‘c/d/e’ = ‘/a/b/c/d/e’). The node np must be in rj at the
path P (rj, np), and there is only one instance of such np in rj because of the rule
applied in fragmentation.

Since both di and dj are trees, the merge of di and dj by connecting ri as a child
of np in dj results in a tree. In such a merge, there is no ambiguity because (1)
and (2) above hold. Thus, the function Rx exists such that Rx(Fx(D, τ, ‘XFL’), τ,
‘XFL’) = D. 2

2.3 Query Processing over XML Fragment Stream with XFL

In this section, a brief sketch of how an XPath query is processed over XML frag-
ment stream with XFL is given with an example. Consider an XML fragment tree
with XFL in Figure 2 a). Its corresponding tag structure is given in Figure 1 e).
For an XPath expression, it is transformed into a query processor where each loca-
tion step of the XPath expression [4] is an operator. For example, XPath expression
/a/b[c=30]/d against the XML tree in Figure 2 a) is transformed into a query proces-
sor shown in Figure 4 a) where each box is an operator and the value in parentheses
beside each operator is the tag ID of the operator as defined in the tag structure.
Now the question is how <d>40</d>, the answer to the query /a/b[c=30]/d, would
be produced.

When each fragment arrives at the client, at least some information on it (if
not the fragment itself) may need to be kept in the memory of the client for the
completion of query processing. We call it fragment information. In principle, to
process a query over an XML fragment stream, some form of bookkeeping of the
information on the streamed fragment is essential because the whole of the source
XML data would not be reconstructed and the fragment itself just streamed in would
be discarded soon. This is especially so when the memory to be taken up for query
processing is limited.

The tag structure in Figure 1 e) is delivered to the client first. Now suppose the
order of fragments of Figure 2 b) arriving at the client is 1, 1.1, 1.2, 1.1.1, 1.2.1.
Then, the query /a/b[c=30]/d is processed as follows:

• Fragment 1, <a FID=1 tsid=10 />, arrives. The tsid of the root element in
this fragment is 10. Consulting the tag structure, it is known that the set
of tsid values of the elements contained in this fragment is {10}. (Actually,
there is only one element ‘a’). Thus, in the query processor in Figure 4 a), the
operator which needs to process this fragment is only the ‘a’ operator. Fragment



764 S. Lee, J. Kim, H. Kang

H I J

K

L MN

H I J

K

L MN

H I J

K

L MN

H I J

K

L MN

HO IO

LO JO

PQNO PQQO PQMO

PQRO

SQTUV

SQTUV SQWQTXV
SQTYV SQWQTXV

SQWRTYV

Fig. 4. XML fragment stream query processing with XFL; a) fragment stream query pro-
cessor, b) after fragment 1 arrives, c) after fragment 1.1 arrives, d) after fragment 1.2
arrives

information <1, ?> is recorded in association with the operator ‘a’ where ‘?’
denotes ‘undecided’ (Figure 4 b)). Then, the fragment itself is discarded.

• Fragment 1.1, <b FID=1.1 tsid=11><c>10</c></b>, arrives. The tsid of
the root element in this fragment is 11. Consulting the tag structure, it is
known that the set of tsid values of the elements contained in this fragment
is {11,12}, where ‘11’ corresponds to the ‘b’ node at the path /a/b, and ‘12’
corresponds to the ‘c’ node at the path /a/b/c. The ‘d’ node is excluded because
its filler attribute value is “true” in the tag structure. Thus, the operators which
need to process this fragment are ‘b’ and ‘c’. Fragment information <1.1, F> is
recorded in association with the operator ‘b’ where ‘F’ denotes that the predicate
condition c=30 is false with this fragment. Then, the fragment itself is discarded
(Figure 4 c)).

• Fragment 1.2, <b FID=1.2 tsid=11><c>30</c></b>, arrives. The same pro-
cessing as for fragment 1.1 is done except that fragment information <1.2, T>
is recorded in association with the operator ‘b’ where ‘T’ denotes true. Also the
fragment information <1, ?> associated with the operator ‘a’ is now changed to
<1, T>. This is because <1.2, T> is recorded in association with the operator
‘b’, and fragment 1.2 is a child of fragment 1 (Figure 4 d)).

• Fragment 1.1.1, <d FID=1.1.1 tsid=13>20</d>, arrives. The tsid of the root
element in this fragment is 13. Consulting the tag structure, it is known that
the set of tsid values of the elements contained in this fragment is {13}. Thus,
the operator which needs to process this fragment is ‘d’. Since the ‘b’ operator,
the parent of ‘d’, has the fragment information<1.1, F>, fragment 1.1.1, a child
of fragment 1.1, is discarded.



Memory-Efficient Query Processing over XML Fragment . . . 765

• Fragment 1.2.1, <d FID=1.2.1 tsid=13>40</d>, arrives. The same process-
ing as for fragment 1.1.1 is done except that the data <d>40</d> out of the
fragment is produced as a query result. This is because <1,T> and <1.2, T>
are recorded in association with the operator ‘a’ and ‘b’, respectively, and frag-
ment 1.2.1 is a descendant of fragment 1 and of fragment 1.2.

2.4 Comparison between HF Model and XFL

The main inefficiencies inherent in the HF model are two-fold: space overhead in-
curred because of the holes and inability to directly support the descendant axis of
XPath. In this section, we explain them and describe why XFL overcomes them.

2.4.1 Hole Overhead

The overhead for the hole IDs and the hole elements could be very huge considering
the typical structure of XML documents on the Web. According to [16], most of the
XML data on the Web is not deep in height, and the heights of the 99% of XML
data on the Web are not greater than 8. The large volume of XML data is due to
its great width (i.e., because of a number of repeating subtrees.) Consider the DTD
in Figure 5 a). In an XML document that conforms to it would have as many ‘book’
subtrees as there are books on sale in the bookstore. For an XML fragmentation
shown in Figure 5 b) where each book subtree is an XML fragment, there would be
as many holes in the ‘books’ fragment as there are ‘book’ fragments.

Z[[\]^[_` aZ[[\]b cdc]e

Z[[\] aZ[[\fb Z[[\]gh`b Z[[\ijd`j^[_ke

Z[[\ a^i^h`b gl^m[_]b k`g_ b n_io`b pqrse

gl^m[_] agl^m[_te

uuuuuuuuuuuuuuuuuuuuuuuu

Z[[\]

Z[[\]^[_`

Z[[\ Z[[\ Z[[\ ......

cdc]

......

ge

Ze

Fig. 5. Example of DTD and XML fragmentation; a) DTD, b) XML fragment tree

With XFL, in contrast, there is neither a hole nor a hole element in the frag-
ments. As such, we could considerably reduce the size of the XML fragments (e.g.,



766 S. Lee, J. Kim, H. Kang

the ‘books’ fragment). In the first fragment of Figure 1 d), for example, there are 2
hole elements (i.e, <hole hid = 2 tsid = 11/ > and <hole hid = 3 tsid = 11/ >).
Other hole elements, <hole hid = 4 tsid = 13/ > and <hole hid = 5 tsid = 13/ >,
exist in the second and the third fragments. Let x be the size of a hole element,
and n be the total number of holes created in XML fragmentation. (For example,
x = 21 bytes and n = 4 in Figure 1 d). x could be reduced depending on the im-
plementation.) Then, because of the hole elements, the size of the XML fragment
stream with the HF model is greater than that with XFL by x ∗ n. Let m be the
average number of holes in a fragment. (For example, there are on the average 0.8
holes per fragment in Figure 1 d).) The average size of a fragment with the HF
model is greater than that with XFL by x ∗m. If a fragment needs to be buffered
in memory in its entirety on its arrival at a client, the size of the buffer with the
HF model should be larger than that with XFL by x ∗m on the average. Thus, the
values of x and m would affect the feasible size of an XML fragment.

A more important improvement with XFL is that memory requirement at the
client for query processing could be reduced considerably. In XFrag and XFPro with
the HF model, the fragment information accumulated at the client memory during
query processing consists mostly of hole IDs, their filler IDs, results of predicate
evaluation, and potential query results that are temporarily buffered until their fate
is determined. The hole IDs and their filler IDs are stored to figure out the parent-
child relationship among fragments. With removing holes altogether in XFL, the
volume of fragment information that needs to be accumulated could be considerably
reduced. The extra space overhead incurred for bookkeeping of fragment informa-
tion with the HF model during the entire course of query processing compared with
that with XFL is O(n) where n is the total number of holes created in XML frag-
mentation. Considering the aforementioned typical structure of XML documents
on the Web [16], n could be very large, and thus, with XFL, we could save a good
amount of memory in query processing.

2.4.2 Descendant Axis

A hole and its filler in the HF model represents a link from a parent fragment to
its child one in the XML fragment tree. Thus, a sequence of the holes and their
fillers form a parent-child chain of fragments. As such, given two fragments that are
an ancestor and a descendant with each other, such a structural relationship could
not be identified with the HF model until all the intermediate fragments connecting
the two are fully streamed in. Because of this, the processing of the widely used
descendant axis of XPath, usually abbreviated as //, would be inefficient with the
HF model.2 For a descendant axis, it needs to be resolved into all the possible paths
that are expressed only with a sequence of child axes between the ancestor and the
descendant elements involved. The final query result is a union of the results of all

2 To be exact, // is the abbreviated notation for an XPath location step /descendant-
or-self::node()/ [15].



Memory-Efficient Query Processing over XML Fragment . . . 767

XPath expressions with the resolved paths as stated in [11]. Consider an XPath
query ‘/a//b’ as an example. Suppose there are two different paths ‘c/d/e’ and
‘d/f’ between ‘a’ and ‘b’. Then, the original query ‘/a//b’ is resolved into two
queries: ‘/a/c/d/e/b’ and ‘/a/d/f/b’. All of these two rewritten expressions need
to be evaluated, and their results are merged to produce the result of ‘/a//b’. Due
to such a limitation with the HF model, the amount of memory required for query
processing over a fragment stream at a client would increase.

With XFL, in contrast, given any pair of XML fragments, their structural re-
lationship can be easily identified only with their fragment IDs without accessing
other fragments connecting the two because the fragment IDs are assigned with XML
labeling. Thus, with XFL, the descendant axis of XPath can be directly supported.

3 SCALABLE QUERY PROCESSING
OVER XML FRAGMENT STREAM

According to the experimental results with the state-of-the-art techniques of query
processing over XML fragment stream that employ the HF model [2, 11], the mini-
mum amount of memory required to complete query processing at a client increase
as the size of the stream increases.

An XML fragment stream may be very long and dynamic. It may be even
unbounded. Some fragments are static (e.g., the fragment containing the root or
non-repeating elements) while most fragments could be dynamically generated and
appended to the XML document to be instantly disseminated. The fragments for
up-to-second stock prices, hourly weather forecast, sensor readings, new books put
on the shelf for sale in a bookstore, etc. are such examples. Figure 6 a) shows
an example of an XML fragment tree where ‘a’ and ‘b’ fragments are static while ‘c’
and ‘d’ fragments are the ones dynamically generated. Figure 6 b) shows an example
of an XPath query to be executed against the dynamic XML fragment stream out
of the XML fragment tree of Figure 6 a). With a long or a dynamic stream which is
possibly unbounded, its size will ever-increase as time goes by, and the amount of
memory required for query processing at a client will also keep increasing. It might
end up using up to the entire memory available so that the completion of query
processing may not be guaranteed.

As such, for the state-of-the-art techniques of query processing over XML frag-
ment stream to be of practical use, they need to be further optimized so that they
are scalable with respect to the increase of the stream size. Ideally, they should be
insensitive to the stream size, and the amount of memory required for query pro-
cessing should be affected only by the complexity of the query not by the stream
size. In this section, we propose a few optimization techniques for memory efficiency
with XFL as well as with the HF model for fairness in comparison. As you can see
shortly, XFL is much more amenable to such optimizations than the HF model.



768 S. Lee, J. Kim, H. Kang

v v
......

wx

////a[ba[ba[ba[b=10]//c//d=10]//c//d=10]//c//d=10]//c//d

yx

w

y

z{

| |
......

......

: static fragment            : dynamic fragment

v v
......

w

y

}{

| |
......

Fig. 6. Dynamic XML Fragment Stream; a) XML fragment tree, b) XPath Query

3.1 XPath Step Reduction

An XPath expression is a sequence of location steps [4]. Each step consists of axis,
node test, and optional predicates. The delimiter between steps is a slash (/). For
example, an XPath expression ‘/a/b[@c=1]/d’ consists of 3 steps, ‘a’, ‘b[@c=1]’,
and ‘d’. Only the second step has a predicate given in brackets. The axes of all
the three steps are ‘child’, which is omitted because it is the default of the 13 axes
of XPath [4]. The axis in the predicate ‘[@c=1]’ is ‘attribute’. The abbreviated
expression above can be fully given as ‘/child::a/child::b[attribute::c=1]/child::d’.
The tag names ‘a’, ‘b’, and ‘d’ in the three steps and also ‘c’ in the predicate are for
the name test, the most common form of node test in XPath.

Bookkeeping of fragment information during query processing over XML frag-
ment stream needs to be done for each location step of the XPath query. As such,
in general, the more the location steps in the query, the more memory would be
required. With XFL, a given XPath expression could be rewritten into the one with
fewer steps such that the two expressions produce the same result.

Given an XML document D and an XPath expression q, let q(D) denote the
result of processing q against D. Given a collection of XML fragments 〈d1, . . . , dk〉
(k ≥ 1) obtained out of D by the XML fragmentation function Fx with the tag
structure τ and the method of representing XML fragmentation Mf as defined in
Definition 1 (i.e., Fx(D, τ,Mf) = 〈d1, . . . , dk〉), let q(〈d1, . . . , dk〉, τ,Mf) denote the
result of processing q against the XML fragment stream of 〈d1, . . . , dk〉 regardless
of the order of the fragments in the stream. With these notations, we have the
following lemma:

Lemma 2 (Removal of Predicate-free Prefix Steps). Let D, τ , Fx be an XML do-
cument, a tag structure for D, and the XML fragmentation function, respectively.



Memory-Efficient Query Processing over XML Fragment . . . 769

An XPath expression q of the form ‘/a1/a2/ . . . /an/b[P ]/ . . . /c’ where the step
ai (i = 1, . . . , n) does not have a predicate and P is a predicate, can be rewrit-
ten into a reduced one qr of the form ‘//b[P ]/ . . . /c’ such that q(D) = qr(Fx(D, τ,
‘XFL’), τ , ‘XFL’).

Proof. Given two node instances x and y in D such that x is an ancestor of y,
let P (x, y) denote the path from x to y. Let rD be the root node of D. Out of
all the ‘b’ nodes in D, only those at the path /a1/a2/ . . . /an/b are relevant to q.
For any ‘b’ node contained in an XML fragment f , P (rD, b) is known because of
the tag structure τ . More specifically, P (rD, b) = P (rD, fr) · P (fr, b) where fr is
the root element of f , and · denotes the path concatenation. Note that fr has
a tsid attribute. Consulting the tag structure τ with it, we can know P (rD, fr).
(For example, consider the last fragment in Figure 2 b) (i.e., <d FID = 1.2.1 tsid =
13 >40</d>). Looking up the tag structure in Figure 1 e) for the tag element whose
id = 13, we can see that the full path leading to the ‘d’ node in the root element of
the fragment at hand is /a/b/d.) P (fr, b) is known because it is within f at hand.
As such, with the prefix path /a1/a2/ . . . /an/b in q being reduced to //b in qr, the
answer to q could be obtained with qr. 2

Lemma 2 means that bookkeeping of fragment information out of the path that
forms any prefix steps of an XPath expression is not necessary if there is no predicate
involved in it. For the step with a predicate, the bookkeeping is required to relate
its result nodes that satisfy the predicate with the result nodes of its subsequent
steps. We call this optimization removal of predicate-free prefix steps.

~ �

��

�

��

���

�

�

��

�

���

��� ���

����

���

���
�

� ��

��� ��� ��� ���

���

���

�

� ��

��� ���

���

�� ��

���

� � � �

~

� �

Fig. 7. Example of XPath step reduction; a) XML data with tag ID, b) fragment stream
query processor, c) reduced fragment stream query processor

Example 1. Consider an XML data in Figure 7 a) where the value in parentheses
beside each node is the tag ID as defined in the tag structure. XPath expres-
sions /a/b/d/e, /a/b[c=10]/d/e, /a/b[d/e=20]/f/c against it can be reduced to //e,
//b[c=10]/d/e, //b[d/e=20]/f/c, respectively.



770 S. Lee, J. Kim, H. Kang

The removal of predicate-free prefix steps can be further generalized as given in the
following lemma:

Lemma 3 (Removal of Predicate-free Steps). Let D, τ, Fx be an XML document,
a tag structure for D, and the XML fragmentation function, respectively. An XPath
expression q of the form ‘/S1/b1[P1]/S2/b2[P2]/ . . . /Sn/bn[Pn]/Sn+1/c’ where Si (i =
1, . . . , n+ 1) is a sequence of location steps without any predicate, Pi (i = 1, . . . , n)
is a predicate, and each of bi (i = 1, . . . , n) and c is a location step, can be rewritten
into a reduced one qr of the form ‘//b1[P

′

1]//b2[P
′

2]// . . . //bn[P
′

n]//c’ where P ′

i (i =
1, . . . , n) is a predicate obtained by removing all the predicate-free steps in Pi, such
that q(D) = qr(Fx(D, τ, ‘XFL’), τ , ‘XFL’).

Proof. Let q1 = //b1[P1]/S2/b2[P2]/ . . . /Sn/bn[Pn]/Sn+1/c. We know that q(D) =
q1(Fx(D, τ , ‘XFL’), τ , ‘XFL’) because of Lemma 2.
Let qi = //b1[P1]//b2[P2]// . . . //bi[Pi]/Si+1/bi+1[Pi+1]/ . . . /Sn/bn[Pn]/Sn+1/c (i =
1, . . . , n). That is qi is obtained from q by removing the predicate-free steps S1,
S2, . . . , Si. Suppose q(D) = qi(Fx(D, τ, ‘XFL’), τ , ‘XFL’). Then we can show that
qi(Fx(D, τ, ‘XFL’), τ , ‘XFL’)=qi+1(Fx(D, τ, ‘XFL’), τ , ‘XFL’).

Out of all the ‘bi+1’ nodes in D that satisfy the predicate condition Pi+1, only
those satisfying the following two conditions are relevant to q:

1. It is at the path /S1/b1/S2/b2/ . . . /Si/bi/Si+1/bi+1.

2. It is a descendant of a ‘bi’ node which satisfies the predicate Pi.

For any ‘bi+1’ node contained in an XML fragment f , the condition (1) can be
checked because P (rD, bi+1) is known through the tag structure τ as stated in the
proof of Lemma 2. As for the condition (2), even if the ancestor ‘bi’ node that
satisfies the predicate Pi is contained in a fragment fa other than f , the ancestor-
descendant relationship between ‘bi’ and ‘bi+1’ can be identified because of the FIDs
of fa and f with XFL. Thus, qi(Fx(D, τ, ‘XFL’), τ , ‘XFL’)=qi+1(Fx(D, τ, ‘XFL’),
τ , ‘XFL’), and by induction, q(D) = qn+1(D, τ, ‘XFL’), τ , ‘XFL’).

The proof for the reduction of Pi to P ′

i (i = 1, . . . , n) is omitted because the
same logic as above is applied. Hence, q(D) = qr(Fx(D, τ, ‘XFL’), τ , ‘XFL’). 2

Example 2. Consider the XML data in Figure 7 a).
XPath expression /a/b[d/e=20]/f/c can be reduced to //b[.//e=20]//c. Fi-

gure 7 b) shows its fragment stream query processor in the current state-of-the-art
whereas Figure 7 c) shows its reduced counterpart.

Lemma 3 means that bookkeeping of fragment information out of the path
that forms any predicate-free subsequence of steps of an XPath expression is not
necessary. For the steps with a predicate, the bookkeeping is required to relate
among their result nodes that satisfy their respective predicates. As an example,
for an XPath expression ‘//b1[P1]//b2[P2]//. . . //bn[Pn]//c’, let us consider the two
instances of ‘bi’ to ‘bi+1’ paths in Figure 8 where only the left one is qualified for
‘bi[Pi]//bi+1[Pi+1]’. What is essential here for correct query processing is to figure



Memory-Efficient Query Processing over XML Fragment . . . 771

out if the left ‘bi+1’ is a descendant of the left ‘bi’ but not of the right one, and
the other way round for the right ‘bi+1’. As such, the bookkeeping of the IDs of
the fragments that contain the instances of ‘bi’ and ‘bi+1’ is a necessary condition
for query processing, and also sufficient because with XFL, the ancestor-descendant
relationship between two fragments can be identified only with their FIDs. This
general form of XPath step reduction is called removal of predicate-free steps.

b
i

b
i

......

b
i+1

b
i+1predicatepredicatepredicatepredicate

PPPP����
TRUETRUETRUETRUE

predicatepredicatepredicatepredicate

PPPP����
FALSEFALSEFALSEFALSE

Fig. 8. Example for removal of predicate-free steps

Meanwhile, are these optimizations applicable with the HF model as well? The
removal of predicate-free prefix steps is applicable for the same reason as with XFL
but not the removal of predicate-free steps. The reason for the latter can be ex-
plained with the aforementioned example in Figure 8. Without the fragment infor-
mation on the full parent-child chain through the hole IDs and the filler IDs along
the ‘bi’ to ‘bi+1’ paths, it is impossible to figure out if the left ‘bi+1’ is a descendant
of the left ‘bi’ but not of the right one, and the other way round for the right ‘bi+1’
unless all the ‘bi’s and ‘bi+1’s belong to the same fragment.

3.2 Deletion and No Bookkeeping
of Useless Fragment Information

With the XPath step reduction, memory efficiency in query processing would be
enhanced because no bookkeeping is done for the removed steps; but the XPath
step reduction alone does not yet guarantee the scalability of query processing.

3.2.1 Child Counting

The major reason why more and more memory is used up as query processing
continues is that the fragment information is accumulated but not deleted even after
it has become of no use for query processing any more. As an example, consider (a)
an XML fragment tree and (b) an XPath query Q1 in Figure 9. All the information
on the fragments ‘a’, ‘b’, and ‘c’ in Figure 9 a) could be deleted because all the ‘c’
fragments are not qualified for Q1 (the text node of ‘b’ element is 10 not 20 to satisfy
the query predicate). However, none can be deleted because a new ‘b’ fragment,



772 S. Lee, J. Kim, H. Kang

‘<b>20</b>’ at the path /x/a/b, may be streamed in later in order to make all
the ‘c’ fragments qualified for Q1. But what if no such element, ‘<b>20</b>’, will
ever come?

�

�

��

� �

�

......

......

��

Q1 :  /Q1 :  /Q1 :  /Q1 :  /x/a[bx/a[bx/a[bx/a[b=20]/c=20]/c=20]/c=20]/c

��

Fig. 9. Example for child counting; a) XML fragment tree, b) XPath Query

For scalability, the fragment information useless for query processing should be
deleted or not kept in the first place. As for the aforementioned case in the example
of Figure 9, if there were a way to know that all the child fragments of ‘a’ fragment
had been streamed in, we could have deleted all the accumulated information on the
‘a’, ‘b’, and ‘c’ fragments all at once. One simple solution is to let every fragment
record the number of its child fragments though it cannot be applied when the
stream of child fragments is unbounded. This child fragment counting alone could
considerably help reduce the memory requirement at a client. It can be used both
with XFL and with the HF model. With the latter, the child fragment counting
amounts to the counting of the holes in a fragment.

3.2.2 Deletion and No Bookkeeping
of Information on Disqualified Fragments

More delicate case where the useless fragment information can be deleted is shown
in Figure 6. Suppose that the ‘a’ and ‘b’ fragments in the XML fragment tree
of Figure 6 a) are static whereas the ‘c’ and ‘d’ ones are dynamically generated.
There are two ‘a’ fragments and two ‘b’ fragments shown, and all the ‘d’ fragments
that are the descendants of the right ‘a’ are not qualified for the XPath query of
Figure 6 b). Thus, on arrival of the right ‘b’ fragment (i.e., <b>20</b>), all the
accumulated information on the ‘c’ and ‘d’ fragments that has already arrived as the
descendants of the right ‘a’ can be deleted. Besides, from then on, no bookkeeping
of any information is necessary for the ‘c’ and ‘d’ fragments that are yet to come as
the descendants of the right ‘a’.



Memory-Efficient Query Processing over XML Fragment . . . 773

This technique of deletion and no bookkeeping of information on the disqualified
fragments can be very easily applied with XFL because the ancestor-descendant
relationship between two fragments can be identified only with their fragment IDs.
In the above example, the fragment ID of the left ‘a’ is kept with the mark of its
predicate having been evaluated true whereas the fragment ID of the right ‘a’ is
kept with the mark of its predicate having been evaluated false. Then, all the ‘c’
and the ‘d’ fragments that are yet to come can be properly dealt with depending on
which ‘a’ is their ancestor. With the HF model, however, it could only be applied
in a very inefficient way, resulting in virtually no benefit. The information on a ‘c’
fragment, in the above example, cannot be deleted until the information on its child
‘d’ fragment is deleted first. Otherwise, when a ‘d’ fragment arrives, it becomes
a dangling fragment. There is no way to figure out if its ancestor is the left ‘a’
or the right ‘a’ without the information on its parent ‘c’ fragment. As such, the
information on the full parent-child chain through the involved hole IDs and the
filler ID needs to be kept first before any part of it can be deleted; and, in deletion,
the order matters. It is always strictly from descendant to ancestor. Thus, even
when a fragment which is known to be disqualified arrives, its filler ID and hole
IDs need to be still kept in order to connect its ancestor to its descendants. We
cannot expect that a child fragment instance arrives right after its parent fragment
instance not just because the order of arrival of the fragments at a client could be
arbitrary but because the order of dynamic generation and dissemination of XML
fragments may be that all the parent fragments with holes in them (e.g., all the ‘c’
fragments in Figure 6 a)) precede that of all their fillers (e.g., all the ‘d’ fragments
in Figure 6 a)). As such, the precious memory could be temporarily used up to
store the information of disqualified fragments such as the ‘c’ fragments below the
right ‘a’. Even if it could be eventually deleted, such too late deletion does not help
reduce the amount of the minimum memory required for query processing. With
XFL, in contrast, there could be no dangling fragment, the order does not matter
at all in deleting the fragment information, and no bookkeeping is necessary at all
for the fragments which are known to be disqualified for the query.

3.3 Hole Sharing

The original HF model cannot represent a dynamic XML fragment stream while
XFL easily can. Suppose a fragment f contains the repeating elements that are
to be dynamically generated and streamed as filler fragments. Then, f needs to
arrange holes to accommodate them before f itself is streamed. But how many?
Simply reserving a predetermined number of holes may turn out to be a waste, just
incurring the hole overhead; or a shortage when the number of dynamic fragments
exceeds the number of reserved holes (see Figure 10 a)). To cope with this situation
along with memory efficiency in mind, the HF model could be extended by employing
an XML labeling scheme as in XFL. Only one hole is reserved to be shared by all
the dynamically generated filler fragments. With the ID of the shared hole being ‘p’,
the filler IDs become ‘p.1’, ‘p.2’, . . . with a prefix labeling scheme (see Figure 10 b)).



774 S. Lee, J. Kim, H. Kang

This hole sharing would considerably alleviate the hole overhead of the HF model,
and thus reduce the amount of the memory required for query processing.

�� ����� �¡ ��¢£¤

 � ¥�¦£�� §¦�¡�£��

��¢£¤ ¦£¤£¦¨£©

©ª��� ��¢¢ª

¡£�£¦��£© § ¢¢£¦¤

«¬«¬«¬«¬ «¬®«¬®«¬®«¬® «¬¯«¬¯«¬¯«¬¯ «¬°«¬°«¬°«¬°......«¬±«¬±«¬±«¬±

² ¤��¦£© ��¢£

³´µ¶ · «´µ¶ · «´µ¶ · «´µ¶ · «¸

©ª��� ��¢¢ª

¡£�£¦��£© § ¢¢£¦¤

¹µ¶ ·¹µ¶ ·¹µ¶ ·¹µ¶ ·

�¸ º¸

Fig. 10. Hole sharing

The hole sharing is applicable only to the HF model. With XFL, no special
arrangement such as the hole sharing is needed to represent a dynamic XML frag-
ment stream. Suppose a fragment f contains the repeating elements that are to be
dynamically generated and streamed as filler fragments. With f labeled as Lp with
an XML labeling scheme, each of the dynamically generated fragments, fc, is given
a label Lc in a way that fc can be identified as a child of f given two labels Lp

and Lc.

Although the hole sharing with the HF model employs an XML labeling scheme
as in XFL, it is not exactly the same as XFL. First, the shared hole in a fragment
is still a hole, which needs to be represented as a hole element with its own hole
ID and tsid as defined in Section 2.1 and as depicted in the first three fragments of
Figure 1 d) for example. With XFL, there is no hole in any fragment, and thus, no
hole ID. Secondly, in the hole sharing with the HF model, the labels are assigned
as the ID of the shared hole and as the IDs of its fillers such that their parent-child
relationship can be identified. For a pair of a conventional non-shared hole and its
singleton filler, their parent-child relationship is identified when the hole ID and the
filler ID are equal to each other. For a shared hole with Lh as its hole ID and one
of its fillers with Lf as its filler ID, their parent-child relationship is identified when
Lh is a prefix of Lf . With XFL, the labels are assigned to the fragments so that the
structural relationship among the fragments can be identified.



Memory-Efficient Query Processing over XML Fragment . . . 775

4 IMPLEMENTATION AND PERFORMANCE EVALUATION

We have implemented four versions of the techniques of query processing over XML
fragment stream in Java using J2SE Development Kit 5.0 Update 11. They are
called HF-b, HF-o, XFL-b, and XFL-o, where -b stands for basic whereas -o for
optimized. HF-b is the implementation of XFrag as described in [2] plus its im-
provement proposed in XFPro as described in [11]. Both XFrag and XFPro are
based on the HF model, so is HF-b; but it is not with the optimization techniques of
Section 3. HF-o is the same as HF-b except that it is optimized with the applicable
techniques of Section 3. XFL-b (XFL-o), which is based on XFL instead of the HF
model, is the counterpart of HF-b (HF-o).

The performance experiments were conducted in a system with Intel Dual Core
CPU 6600 2.40GHz and 2GB memory on Windows XP Professional. A total of
10 XPath queries, Q1 through Q10 as listed in Table 1, were employed. The XML
stream sources against which the client queries were processed were auction.xml ’s
of 5 different sizes generated by xmlgen of XMark benchmark [20]. Their sizes
are 11.3MB, 22.8MB, 34MB, 45.3MB, and 56.2MB, respectively. For queries Q1
through Q6, we assumed that these streams were bounded and thus we turned
the child counting on during query processing with XFL-o and with HF-o. For the
remaining queries, Q7 through Q10, we assumed that these streams were unbounded
and thus we turned it off as mentioned in Section 3.2.1. Though each of these
streams was of fixed size, whether it was bounded or not could be simulated in such
a way.

We first compared XFL-b with HF-b in their memory requirement. The size
of the auction.xml used was 56.2MB. Figure 11 shows the results where the y-axis
denotes the memory requirement for query processing. XFL-b required much less
memory than HF-b in processing of all the queries. Figure 12 compares the memory
requirements of XFL-b and HF-b for the query Q1 as the stream size increases.
Although XFL-b required much less memory than HF-b in all XML stream sizes,
both basic versions turned out not to be scalable with respect to the increase of the
stream size. Their memory requirements increased as the stream size increased. As
such, both would not be of practical use when the stream size is large and the client
has only limited amount of memory.

Would the desired scalability be achieved with the optimization techniques of
Section 3? Figure 13 shows a) the comparison between HF-b and HF-o and b) that
between XFL-b and XFL-o for Q1. The optimization techniques of Section 3 were
revealed as effective for both XFL and the HF model, reducing memory require-
ment considerably; but their effectiveness was greater with XFL than with the HF
model, and more importantly, the desired scalability was observed only with XFL-o.
Figure 14 compares the memory requirement of XFL-o and that of HF-o for all the
queries in Table 1 as the stream size increases. Note that for queries Q1 through Q6
with the bounded streams, XFL-o is not sensitive to the increase of the stream size
whereas HF-o still is. For queries Q7 through Q10 with the unbounded streams, the



776 S. Lee, J. Kim, H. Kang

scalability was not observed even with XFL-o. This is because the child counting
was not used.3

These results mean that the technique of query processing over XML fragment
stream with XFL is scalable with respect to the stream size increase as long as the
stream is bounded, and thus it is of practical use whereas that with the HF model
is not.

XML Fragment Stream Source Size : 56.2MB

0

10

20

30

40

50

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query

M
e

m
o

ry
  

R
e

q
u

ir
e

m
e

n
t(

M
B

)

HF-b XFL-b

Fig. 11. Memory requirment in query processing (HF-b vs. XFL-b)

Q1

0

5

10

15

20

25

30

11,3 22,8 34 45,3 56,2

XML Fragment Stream Source Size(MB)

M
e

m
o

ry
  

R
e

q
u

ir
e

m
e

n
t(

M
B

)

HF-b XFL-b

Fig. 12. Memory requirement in processing Q1 (HF-b vs. XFL-b)

3 The meaningful queries against an unbounded stream are usually the continuous
ones which often include some timing semantics or constraints (e.g., sliding windows).

We did not consider such a thing in the experiments. For continuous queries against
an unbounded stream, the child counting needs to be extended to incorporate the timing
semantics or constraints so that it may be used in query processing for memory efficiency.
Such an extension is beyond the scope of this paper.



Memory-Efficient Query Processing over XML Fragment . . . 777

Q1

0

5

10

15

20

25

30

11,3 22,8 34 45,3 56,2

XML Fragment Stream Source Size(MB)

M
e

m
o

ry
  

R
e

q
u

ir
e

m
e

n
t(

M
B

)

HF-b HF-o

Q1

0

2

4

6

8

10

12

14

11,3 22,8 34 45,3 56,2

XML Fragment Stream Source Size(MB)

M
e

m
o

ry
  

R
e

q
u

ir
e

m
e

n
t(

M
B

)

XFL-b XFL-o

Fig. 13. Memory requirement in processing Q1 (Basic vs. optimized versions)

5 RELATED WORK

The HF model and the tag structure were proposed in [3, 6] as the components of
XStreamCast whereby the source XML data is fragmented and streamed to a number
of clients where queries are processed over the stream. The tag structure plays the
same role as the well-known DataGuide [8] which summarizes the path structure of

Q1 /site/people/person[name=“Claudine Nunn”]/watches/watch

Q2 /site/people/person[name=“Claudine Nunn”]//watch

Q3 /site/people/person[name=“Torkel Prodrodmidis”]/profile/interest

Q4 /site/people/person[name=“Torkel Prodrodmidis”]//interest

Q5 /site/closed auctions/closed auction[price>“100”]/type

Q6 /site/closed auctions/closed auction[price>“200”]//author

Q7 /site/open auctions/open auction[initial>“200”]/bidder/time

Q8 /site/open auctions/open auction/bidder[increase>“200”]/time

Q9 /site/open auctions/open auction[initial>“200”]//start

Q10 /site/open auctions/open auction[initial≤“500”]/bidder[increase>“200”]/time

Table 1. XPath queries in experiments



778 S. Lee, J. Kim, H. Kang

Q1

0

1

2

3

4

5

6

11,3 22,8 34 45,3 56,2

XML Fragment Stream Source Size(MB)

M
e

m
o

ry
  

R
e

q
u

ir
e

m
e

n
t(

M
B

)

HF-o XFL-o

Q2

0

1

2

3

4

5

6

11,3 22,8 34 45,3 56,2

XML Fragment Stream Source Size(MB)

M
e

m
o

ry
  

R
e

q
u

ir
e

m
e

n
t(

M
B

)

HF-o XFL-o

Q3

0

1

2

3

4

5

6

11,3 22,8 34 45,3 56,2

XML Fragment Stream Source Size(MB)

M
e

m
o

ry
  

R
e

q
u

ir
e

m
e

n
t(

M
B

)

HF-o XFL-o

Q4

0

1

2

3

4

5

6

11,3 22,8 34 45,3 56,2

XML Fragment Stream Source Size(MB)

M
e

m
o

ry
  

R
e

q
u

ir
e

m
e

n
t(

M
B

)

HF-o XFL-o

Q5

0

1

2

3

4

5

6

7

11,3 22,8 34 45,3 56,2

XML Fragment Stream Source Size(MB)

M
e

m
o

ry
  

R
e

q
u

ir
e

m
e

n
t(

M
B

)

HF-o XFL-o

Q6

0

1

2

3

4

5

6

7

11,3 22,8 34 45,3 56,2

XML Fragment Stream Source Size(MB)

M
e

m
o

ry
  

R
e

q
u

ir
e

m
e

n
t(

M
B

)

HF-o XFL-o

Q7

0

5

10

15

20

11,3 22,8 34 45,3 56,2

XML Fragment Stream Source Size(MB)

M
e

m
o

ry
  

R
e

q
u

ir
e

m
e

n
t(

M
B

)

HF-o XFL-o

Q8

0

2

4

6

8

10

12

14

16

11,3 22,8 34 45,3 56,2

XML Fragment Stream Source Size(MB)

M
e

m
o

ry
  

R
e

q
u

ir
e

m
e

n
t(

M
B

)

HF-o XFL-o

Q9

0

1

2

3

4

5

6

11,3 22,8 34 45,3 56,2

XML Fragment Stream Source Size(MB)

M
e

m
o

ry
  

R
e

q
u

ir
e

m
e

n
t(

M
B

)

HF-o XFL-o

Q10

0

5

10

15

20

11,3 22,8 34 45,3 56,2

XML Fragment Stream Source Size(MB)

M
e

m
o

ry
  

R
e

q
u

ir
e

m
e

n
t(

M
B

)

HF-o XFL-o

Fig. 14. Memory Requirement in Query Processing (HF-o vs. XFL-o)



Memory-Efficient Query Processing over XML Fragment . . . 779

a semistructured data except that the former also specifies the XML fragmentation
schema. It also corresponds to a part of the fragment context specification defined
as a core component of the XML Fragment Interchange specified by the W3C XML
Fragment Working Group [9].

XFrag [2] is the first proposed framework of query processing over XML fragment
stream based on the HF model. XFPro [11] which is based on the XFrag framework
proposed techniques and data structures to expedite query processing compared
with XFrag. However, its main focus was on query processing time, not on memory
efficiency. Memory efficiency with XFPro and that with XFrag were comparable.
The historical XML data management with the HF model was investigated in [1].
Methods of XML fragmentation with the HF model for XML fragment stream query
processing based on query frequencies were proposed in [10].

Much work has been done on XML stream query processing. They are either
for XML document stream filters (e.g., YFilter [5], FiST [12]) or conventional
XML query processing against the XML stream not against the stored XML (e.g.,
XSQ [19], BEA/XQRL [7]). These works are different from the work on query
processing over XML fragment stream. First, in the XML stream filters, the goal
is basically not for the conventional query processing. The role is reversed in the
sense that queries are selected when they are matched against the streaming XML
documents rather than the streaming XML data is retrieved. Secondly, XML frag-
mentation and the relationship among the fragments are not considered. Finally
and most importantly, the amount of memory available for query processing is not
assumed to be so limited as in our work though memory efficiency in stream query
processing is basically a requirement.

6 CONCLUDING REMARKS

In this paper, we addressed query processing over XML fragment stream in port-
able/hand-held devices widely deployed in the mobile and pervasive computing envi-
ronment. Since those devices are usually with limited memory, the most important
technical goal is to devise a method to complete query processing with as little
memory as possible. In this paper, we presented and verified a considerable im-
provement of the state-of-the-art techniques so that they could now be practically
viable.

The contributions of this paper are two-fold. First, we employed XML frag-
ment labeling(XFL) as a method of representing XML fragmentation and correlat-
ing among the XML fragments, and showed that XFL is much more effective than
the popular hole-filler model employed by the state-of-the-art techniques in reducing
memory requirement in query processing. Secondly, we proposed several techniques
like XPath step reduction and others to optimize query processing with XFL, show-
ing that query processing with XFL is scalable with the increase of the stream size
in the sense that the memory requirement of query processing is not affected by the
stream size as long as the stream is bounded.



780 S. Lee, J. Kim, H. Kang

As a future work, we are currently investigating the methods of fragmenting
an XML document with XFL. This is to study the effect of XML fragmentation on
resource requirements in the client devices in fragment stream query processing.

Acknowledgement

This work was supported by the Basic Research Program of the Korea Science and
Engineering Foundation (grant No. R01-2006-000-10609-0). The authors also thank
Prof. C. Lee at Chung-Ang University for his valuable comments and help.

REFERENCES

[1] Bose, S.—Fegaras, L.: Data Stream Management for Historical XML Data. Proc.
ACM SIGMOD Int’l Conf. on Management of Data, 2004.

[2] Bose, S.—Fegaras, L.: XFrag: A Query Processing Framework for Fragmented
XML Data. Proc. Int’l Workshop on the Web and Databases, 2005.

[3] Bose, S.—Fegaras, L.—Levine, D.—Chaluvadi, V.: A Query Algebra for
Fragmented XML Stream Data. Proc. Int’l Conf. on Data Base Programming Lan-
guages, 2003.

[4] Clark, J.—DeRose, S. (Eds.): XML Path Language (XPath) version 1.0. W3C
Recommendation, Nov. 1999, http://www.w3.org/TR/xpath.

[5] Diao, Y.—Altinel, M.—Franklin, M.—Zhang, H.—Fischer, P.: Path Shar-
ing and Predicate Evaluation for High-Performance XML Filtering. ACM Trans. on
Database Systems, Vol. 28, Dec. 2003, No. 4, pp. 467–516.

[6] Fegaras, L.—Levine, D.—Bose, S.—Chaluvadi, V.: Query Processing of
Streamed XML Data. Proc. Int’l Conf. on Information and Knowledge Management,
2002.

[7] Florescu, D.—Hillery, C.—Kossmannn, D.—Lucas, P.—Riccardi, F.—

Westmann, T.—Carey, M.—Sundararajan, A.—Agrawal, G.: The
BEA/XQRL Streaming XQuery Processor. Proc. Int’l Conf. on VLDB, 2003.

[8] Goldman, R.—Widom, J.: DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. Proc. Int’l Conf. on VLDB, 1997.

[9] Grosso, P.—Veillard, D. (Eds.): XML Fragment Interchange (XFI). W3C Can-
didate Recommendation, Feb. 2001, http://www.w3.org/TR/xml-fragment.

[10] Huo, H.—Wang, G.—Hui, X.—Xiao, C.—Zhou, R.: Document Fragmenta-
tion for XML Streams Based on Query Statistics. Proc. Int’l Conf. on WISE, 2006,
pp. 350–356.

[11] Huo, H.—Wang, G.—Hui, X.—Zhou, R.—Ning, B.—Xiao, C.: Efficient
Query Processing for Streamed XML Fragments. Proc. Int’l Conf. on DASFAA, 2006.

[12] Kwon, J.—Rao, P.—Moon, B.—Lee, S.: FiST: Scalable XML Document Filter-
ing by Sequencing Twig Patterns. Proc. of Int’l Conf. on VLDB, 2005, pp. 217–228.



Memory-Efficient Query Processing over XML Fragment . . . 781

[13] Lee, S.—Kim, J.—Kang, H.: XFLab: A Technique of Query Processing over XML

Fragment Stream. Proc. the 24th British Int’l Conf. on Databases (BNCOD2007),
Glasgow, U.K., July 2007, pp. 182–186.

[14] Li, C.—Ling, T.: QED: A Novel Quaternary Encoding to Completely Avoid Rela-

beling in XML Updates. Proc. Int’l Conf. on Information and Knowledge Manage-
ment, 2005.

[15] Li, Q.—Moon, B.: Indexing and Querying XML Data for Regular Path Expressions.

Proc. Int’l Conf. on VLDB, 2001.

[16] Mignet, L.—Barbosa, D.—Veltri, P.: The XML Web: A First Study. Proc.
Int’l WWW Conf., 2003.

[17] O’Neil, P.—O’Neil, E.—Pal, S.—Cseri, I.—Schaller, G.—Westbury, N.:
ORDPATHs: Insert-Friendly XML Node Labels. Proc. ACM SIGMOD Int’l Conf. on
Management of Data, 2004, pp. 903–908.

[18] Online Computer Library Center: Introduction to the Dewey Decimal Classification.
http://www.oclc.org/oclc/fp/about/about_the_ddc.htm.

[19] Peng, F.—Chawathe, S.: XPath Queries on Streaming Data. Proc. ACM SIG-
MOD Int’l Conf. on Management of Data, 2003, pp. 431–442.

[20] Schmidt, A.—Wass, F.—Kersten, M.—Carey, M.—Manolescu, I.—

Busse, R.: XMark: A Benchmark for XML Data Management. Proc. Int’l Conf.
on VLDB, 2002.

[21] Strategy Analytics: http://www.strategyanalytics.com.

[22] Wu, X.—Lee, M.—Hsu, Y.: A Prime Number Labeling Scheme for Dynamic
Ordered XML Trees. Proc. Int’l Conf. on Data Engineering, 2004, pp. 66–77.

[23] Zhang, C.—Naughton, J.—DeWitt, D.—Luo, Q.—Lohman, G.: On Sup-
porting Containment Queries in Relational Database Management Systems. Proc.
ACM SIGMOD Int’l Conf. on Management of Data, 2001, pp. 425–436.

Sangwook Lee received the B. Sc. and M. Sc. degrees in com-
puter science and Engineering from Chung-Ang University,
Seoul, Korea in 2006 and 2008, respectively. His research in-
terests include XML database and stream data management.



782 S. Lee, J. Kim, H. Kang

Jin Kim received the B. Sc. and M. Sc. degrees in computer

science and engineering from Chung-Ang University, Seoul, Ko-
rea in 2006 and 2008, respectively. His research interests include
XML database and web database.

Hyunchul Kang received the B. Sc. degree in computer engi-

neering from Seoul National University, Seoul, Korea in 1983,
and received the M. Sc. and Ph.D. degrees in computer science
from University of Maryland, College Park in 1985 and 1987,
respectively. In 1988, he joined the School of Computer Science
and Engineering, Chung-Ang University, Seoul, Korea where he
is currently a Professor. His current research interests include
XML and web data management, stream data management, and
mobile data management.


