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ABSTRACT
There has been much recent interest in XML publish/subscribe sys-
tems. Some systems scale to thousands of concurrent queries, but
support a limited query language (usually a fragment of XPath 1.0).
Other systems support more expressive languages, but do notscale
well with the number of concurrent queries. In this paper, wepro-
pose a set of novel query processing techniques, referred toasMas-
sively Multi-Query Join Processing techniques, for processing a
large number of XML stream queries involving value joins over
multiple XML streams and documents. These techniques enable
the sharing of representations of inputs to multiple joins,and the
sharing of join computation. Our techniques are also applicable
to relational event processing systems and publish/subscribe sys-
tems that support join queries. We present experimental results to
demonstrate the effectiveness of our techniques. We are able to
process thousands of XML messages with hundreds of thousands
of join queries on real RSS feed streams. Our techniques gainmore
than two orders of magnitude speedup compared to the naive ap-
proach of evaluating such join queries.
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1. INTRODUCTION
XML has become the primary standard for data exchange on the

Internet and for enterprise applications. The rapid emergence of
Web Services in particular has underlined the need to support effi-
cient XML processing in distributed environments. A crucial com-
ponent of Web Service based architectures are message brokers.
They manage large numbers of subscriptions, or queries thatex-
press the interest of subscribers — both users and applications. The
subscriptions are matched in real-time withevent streams (or for
short, streams) of incoming XML documents, created by publish-
ers like applications behind a Web Service interface, news services,
or blog writers. Because of its close relationship to traditional pub-
lish/subscribe (pub/sub) systems, we will use the termXML pub-
lish/subscribe system to refer to this class of message brokers. In
the setting of processing XML streams, events and documentsare
interchangeable terms.

It is crucial for XML pub/sub systems to be both expressive and
scalable. Expressiveness refers to the ability of the querylanguage
to support a wide variety of queries. The downside of greaterex-
pressiveness is that complex queries are more difficult to imple-
ment efficiently. For applications like message brokering,an XML
pub/sub system has to scale in terms of the number of subscrip-
tions and the stream rate of incoming messages, while providing
sufficient functionality to express all relevant subscriptions.

There has been much recent work on XML pub/sub systems that
can efficiently process a large number of XML subscriptions over
streaming XML documents [5, 10, 13, 16, 17, 25]. These systems
support a proper subset of XPath 1.0, typically limited to forward
axes (child and descendant), predicate evaluation and wildcard op-
erator*. However, they are unable to express a large class of im-
portant queries: queries that correlatemultiple input events to de-
tect complex patterns in real-time. This class has been recognized
as being highly important for event processing [27, 12]. We refer
to these queries asinter-document queries.

Inter-document queriesjoin different XML documents based on
values in their nodes, either attributes or text. An inter-document
query is capable of joining multiple documents in either thesame
XML stream, or across multiple streams. For example, for monitor-
ing blogs and news articles, users might be interested in blog post-
ings by the same author or about the same topic that appear within
a short time of each other and are above some reputation threshold.
Inter-document queries are also building-blocks for more power-
ful queries like finding all electronics product announcements that
“create above-average attention in the blogosphere.” In enterprises,
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related events containing information about the quality ofservice
that customers receive need to be processed to monitor compliance
with service level agreements. There has been some emergingwork
on XQuery stream processing [21, 15]. XQuery can express join
queries, but none of the existing systems scales to a large number
of concurrently running queries.

Example. We illustrate our approach with a running example.
For ease of exposition, we consider processing of a single XML
streamS that includes book announcements and RSS feed items
for blog articles. Our techniques can be easily extended to handle
multiple XML streams. Two example documents are shown in Fig-
ures 1 and 2. The superscript of each element node denotes itsnode
id as defined by pre-order traversal of the XML tree. The dashed
ovals connected to leaf nodes with dashed lines represent the text
values of the leaf nodes in this document.

Table 1 shows three example queries. Query Q1 looks for a book
announcement followed by a blog article from one of its authors
that promotes this book. Q2 tries to find a book announcement
followed by a blog article from one of its authors following up on
material in the book. Q3 checks for blog cross-postings.

XML message brokers are used for applications ranging from
tens of publishers and subscribers, in small enterprises, to hundreds
of thousands of users in Internet scale RSS feed monitoring for
blogs and news. Hence an XML pub/sub system has to process

Q1 Return a book announcement, followed by a blog article
from one of its authors with the same title as the book.

Q2 Return a book announcement, followed by a blog article
from one of its authors on the same category as the book.

Q3 Return a pair of blog postings by the same author
and with the same title.

Table 1: Examples of Inter-Document Queries

S//book->x1[.//author->x2][.//title->x3]
Q1 FOLLOWED BY{x2=x5 AND x3=x6, T1}

S//blog->x4[.//author->x5][.//title->x6]
S//book->x1[.//author->x2][.//category->x7]

Q2 FOLLOWED BY{x2=x5 AND x7=x8, T2}
S//blog->x4[.//author->x5][.//category->x8]
S//blog->x4[.//author->x5][.//title->x6]

Q3 FOLLOWED BY{x5=x5’ AND x6=x6’, T3}
S//blog->x4’[.//author->x5’][.//title->x6’]

Table 2: XSCL Formulations of queries in Table 1

anywhere from a few hundred to millions of concurrently active
subscriptions for streams that can have high arrival rates.The only
way to achieve this kind of scalability is by effective multi-query
optimization (MQO).

Unfortunately, MQO for inter-document queries is a very chal-
lenging problem. As even the simple queries in Table 1 illustrate,
the join condition consists both of tree patterns (e.g., to identify
the author nodes and title nodes) and node value comparisons(e.g.,
equality of author name text for book announcement and blog arti-
cle). This can create a wide variety of conditions with little appar-
ent commonality. To address this issue, we propose to dissect each
query intotree pattern components andvalue comparison compo-
nents. The tree pattern components are expressible in the simpler
XPath fragments supported by existing XML pub/sub systems like
YFilter [13]. This enables us to leverage existing XML pub/sub
technology for efficient discovery of tree pattern components. Un-
fortunately this does not suffice, because the main performance bot-
tleneck in practice is the evaluation of the value comparison com-
ponents, as is confirmed by our experimental section.

We show that value comparison components, which have only
very limited structure information, almost always can be described
by a small number ofquery templates. This is guaranteed for XML
documents that have a fairly regular schema, which is commonin
practice [11], and for documents with a small number of nodes,
which is often the case for individual RSS feed items. Even for
other XML streams, in practice the number of value comparison
components is small, because only a few of the possible compar-
isons are semantically meaningful. (E.g., it is unlikely that a query
would ever compare the author name with the ISBN of a book.)
This observation gives us a powerful handle on MQO. Without dis-
secting join conditions, each different condition would have to be
implemented and executed individually, similar to a nestedloops
join whose outer loop iterates over all queries and whose inner loop
evaluates the join predicates. Our dissection approach induces a
partitioning of the query set into a small number of equivalence
classes, one for each query template. Now we only need a per-
template implementation and can take advantage of set-oriented
processing of all queries that belong to the same template. By map-
ping this into a relational join problem, we can take advantage of a
wealth of expertise in relational query processing.

The query dissection into tree pattern and value comparison
components naturally leads to atwo-stage approach to query pro-
cessing. Our system has two major components—theXPath Evalu-
ator for processing all tree pattern components and theJoin Proces-
sor for evaluating the value comparison components (see Figure3).
For an incoming XML document, first the XPath Evaluator is in-
voked to evaluate the tree patterns. It produces a set of bindings of
variables defined in these patterns. These bindings are referred to
asXPath witnesses, or witnesses for short. Second, the Join Pro-
cessor uses the witnesses to perform value joins on a per-template
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Figure 3: Two-Stage Query Processing

basis. In this scheme, the XPath Evaluator can be viewed as anac-
cess method or accelerator for efficiently “retrieving” thewitnesses
for the join processing stage. As mentioned above, we can lever-
age existing XML pub/sub technology for the XPath Evaluatorand
hence focus on the Join Processor in this paper.

Our contributions. The problem we address in this paper is
to efficiently process a large number of continuous inter-document
queries against incoming XML streams. Our main contributions
are as follows.

• We propose novelMassively Multi-Query Join Processing
techniques1 for efficiently evaluating a large number of inter-
document queries over streams of XML documents. The
key to achieving scalability is to dissect join conditions into
tree pattern and value comparison components. This leads to
a two-stage processing approach in which both storage and
computation can be shared effectively among queries.

• We develop a compact representation for the results of the
first processing stage, the tree pattern witnesses producedby
the XPath Evaluator, for efficient access during the second
processing stage. (Section 3)

• We propose a scalable Join Processor for the second stage.
The main idea is to map the problem into a relational frame-
work which facilitates sharing of join processing cost across
different queries. (Section 4)

• We present query optimization techniques for the Join Pro-
cessor to further improve performance. Here we take advan-
tage of the relational formulation, e.g., for view materializa-
tion. (Section 5)

• We evaluate the performance of our join processing tech-
niques through an extensive set of experiments in Section 6.

We discuss related work in Section 7 and conclude in Section 8.

2. XSCL QUERY LANGUAGE
The XPath fragments that form the query language for existing

XML pub/sub systems like YFilter are not expressive enough for
inter-document queries. It is possible to express these queries in
XQuery, but that is a much more general language with many addi-
tional features (and complications), which are not relevant for this
discussion. Some of the inter-document queries would look un-
necessarily complex in XQuery, obscuring the query structure and
optimization opportunities.

To be able to express inter-document queries in a natural and
compact manner, we define the XML Stream Conjunctive Lan-
guage, or XSCL for short. XSCL adds join operators to the XPath
operators used by previous XML pub/sub systems. It can be viewed
as a fragment of XQuery, i.e., all XSCL queries can be converted
into equivalent XQuery expressions. Due to space constraints we
omit the formal language definition, which is not necessary for
grasping the features relevant to this discussion.

1This term is grammatically correct since “Massively” refers to
“Multi-Query”, rather than to “Join.”

Each query in XSCL consists of three clauses:SELECT, FROM
andPUBLISH. TheSELECT clause specifies how to construct the
output XML stream of the query, and is similar to the XQueryRE-
TURN clause. ThePUBLISH clause assigns a name to the query’s
output stream, so that other queries can refer to it as their input.
For example, the query “SELECT * FROM blog” outputs every
event from input stream blog. This query can be alternatively writ-
ten as “blog”, since in XSCL theSELECT clause can be omitted,
defaulting toSELECT *. From a query optimization point of view,
the most relevant construct is theFROM clause. It specifies the join
condition for the query’s input streams, using a variety of operators
from two groups—traditional XPath operators and join operators.

XPath operators. Tree patterns in XML documents can be ex-
pressed with the same XPath operators that are used by existing
XML pub/sub systems. In particular, the following axis operators
can be used: / (child), // (descendant), @ (attribute) and [](pred-
icate). These operators have the usual XPath semantics. We can
apply these operators to a particular XML streamS by placing the
stream name before them. For example,S//blog//title outputs the
titles of blog articles from streamS.

Join operators. In addition to the operators drawn from XPath,
XSCL has two join operators, which make it significantly more
expressive than the previously used XPath fragments. The join op-
erators are used for inter-document queries. The first,JOIN, is
equivalent to the time-based window join operator in the relational
data stream processing literature [19]. It has two parameters, pred
andT , thejoin predicate andtime constraint, respectively. The ex-
pression AJOIN{pred, T } B produces an output event when there
is an event produced by expression A and an event produced by
expression B occurring withinT time units of each other, and they
together satisfy predicatepred. Subexpressions A and B are com-
posed from XPath operators only. We refer to them asXPath query
blocks, or query blocks for short. We will usually useπ to denote
a query block. In this paper we assumepred contains only equal-
ity predicates. Efficiently processing a large number of inequality
predicates is left as future work.

The second join operator,FOLLOWED BY, corresponds to the
sequencing operator in event processing systems [8, 12, 27]. It
has the same two parameters asJOIN and can be used in the same
context. The only difference is thatFOLLOWED BY is “forward-
looking.” Expression AFOLLOWED BY{pred, T } B only pro-
duces an output result when there is an event produced by expres-
sion A followed by (i.e., with timestamp value greater than)an
event produced by expression B withinT time units, and they to-
gether satisfy predicatepred.

Notice that the time constraint parameterT requires XML docu-
ments to have timestamps. They can be assigned either by the pub-
lishers (event sources) or by the XML pub/sub system itself.This
choice is application dependent. A detailed discussion on how to
manage timestamps is beyond the scope of this paper and has been
examined in related work [26].

All our techniques extend to tuple-based window joins [23],i.e.,
whereT expresses a window constraint in terms of the number of
events rather than timestamps.

Variable binding construct. In theFROM clause, we can also
bind XML element nodes obtained through XPath operators in
query blocks to variables through the use of theAS clause. These
variables can be referred to in join predicates in theFROM clause,
and in theSELECT clause for output construction. (This is similar
to SQL’sAS clause.)

Examples.Table 2 shows the XSCL formulation of the example
queries from Table 1, using Ti as the window constraint for query
Qi. Three points should be noted for the XSCL formulations. First,
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the semantics of the equality operator in XSCL is defined as equal-
ity of the string values of the nodes, where the string value of a
node is defined by XPath semantics.

Second, in theFOLLOWED BY predicatepred of an XSCL
query, it is possible to apply the standard XPath operators like /,
// and [] to variables bound in the query blocks toFOLLOWED
BY. However, we can show that any XSCL query can be rewrit-
ten into a form where predicates inside theFOLLOWED BY part
of the query do not contain any XPath operators and only contain
value joins that involve pairs of variables bound in the two input
query blocks ofFOLLOWED BY. We say that an XSCL queryq
is in value-join normal form if q has this property. In the remain-
der of this paper we assume queries are in this normal form. Also,
when two variables (in two different queries or in the same query)
have exactly the same definition, we assume the two variablesare
of the same name. Our assumptions are without loss of generality,
since these effects can be achieved through rewrite techniques dur-
ing query insertion. The three queries presented in Table 2 fulfill
our assumptions.

Third, when theSELECT clause is omitted for a join query, we
construct the output XML tree in a default way as follows. We
create a new root node and make the root element nodes from
the two query blocks its children. For example, for query Q1
each output XML tree has two subtrees under the root, where
the first subtree corresponds to the output of XPath expression
//book[.//author][.//title] given by the first query block, and the
second subtree corresponds to the output of XPath expression
//blog[.//author][.//title] given by the second query block.

Expressiveness of XSCL.It is easy to show that XSCL is more
expressive than conjunctive queries [3]. When the join graph of
an XSCL query is cyclic, it is therefore NP-hard to find an op-
timal query evaluation plan (join ordering) in general. Since we
would like to process a large number of continuous XSCL queries,
this makes our problem even harder. Hence instead of attacking
the general conjunctive query processing problem, we propose an
efficient solution that is applicable to a very large and practically
important subset of the problem instances.

3. STAGE 1: FROM XSCL QUERIES TO
VALUE JOINS

Recall that the two-stage query processing scheme separates
XSCL query processing into XPath tree pattern processing and
value join processing. Given a set of input XSCL queries, we
take all the (single-document) tree patterns corresponding to query
blocks in these queries, and insert them into the XPath Evaluator
with the goal of returningwitnesses that represent single-document
variable bindings. For each evente, we first invoke the XPath Eval-
uator to produce all its witnesses, and then value-join the witnesses
from e with witnesses from events earlier in the stream. Due to
space constraints, we omit the proof that this two-stage query pro-
cessing scheme yields correct query results.

In this section we describe the first of the two stages of our mul-
tiple XSCL query processing, XPath Processing, and focus onhow
to efficiently represent the witnesses produced by the XPathEval-
uator (Section 3.1).

For ease of exposition, we make simplifications to the query
structures in the following discussion. First, we consideronly
XSCL queries with a singleFOLLOWED BY operator, where the
two corresponding query blocks will match two different XML
documents in order to produce a query output. Second, we assume
that the predicate of aFOLLOWED BY operator is a conjunction
of simple equality predicates on string values. In the following,

each such simple equality predicate is referred to as avalue join
predicate or value join for short. We also assume that value joins
occur only between leaf nodes of tree patterns. Last, we assume
all queries read a single input stream. Our techniques can beex-
tended to handle queries involving multipleFOLLOWED BY or
JOIN operators with more complex predicates than conjuncts, and
more than one input stream.

3.1 XPath Processing and Output Represen-
tation

Given an input XML document, the XPath Evaluator can benefit
from existing XML pub/sub technology for efficient discovery of
tree patterns. How do we represent these witnesses for the second
stage value-join processing, while preserving tree structure infor-
mation in them? One extreme design point for representing XPath
witnesses is a relational schema storing each valid combination of
all the variable bindings involved in an XPath query block. The
other extreme design point would be to completely shred the wit-
nesses into a binary relation of individual bindings of variables, as
described below.

For a given XPath query blockπ, we derive avariable tree pat-
tern, which extends the standard notion of an XPath tree pattern [1]
by associating each tree node with a variable name. We then create
a binary relation for each pair of a parent and a child node in the
tree pattern.

This binary relation factors out redundant information. Itis anal-
ogous to normalization of relational schemas based on functional,
multi-value and join dependencies. In addition, the representation
for witnesses of one query block will be easy to share among other
query blocks that bind to the same XML element nodes. Thus in
this paper we decided to examine in-depth this way of representing
witnesses; a full exploration of this design space is futurework.

To reduce the number of relations, instead of using a binary re-
lation for each edge in the variable tree patterns, we use a single
relation of four attributes(var1, var2, node1, node2) to
store the pairs of variable bindings forall edges in the variable tree
patterns. Each tuple in this relation stores innode1 andnode2
a binding consisting of a pair of node ids, and this binding corre-
sponds to a pair of variables whose names are stored invar1 and
var2. We denote this relation asRbinW , which stands for “binary
representation of witnesses”.

There are other pieces of information that need to be stored for
value join processing in the second stage. We encode them in re-
lations as follows. Note thatRbinW stores bindings of pairs of
variables from the currently processed stream document. The id
and timestamp of this document are stored in the singleton-relation
RdocTSW with schema(docid, timestamp). For example,
suppose evente1 in Figure 1 has document idd1 and timestamp
t1. When it is the current document being processed,RdocTSW

contains one tuple(d1, t1). Similarly, binary relationRdocTS

stores the docid, timestamp pairs of previous documents.
The representation of bindings from previous stream documents

is very similar toRbinW , and they are all stored in a relation
Rbin. However, since the bindings could come from different doc-
uments, the schema ofRbin extends that ofRbinW with an addi-
tionaldocid attribute. Its schema is therefore(docid, var1,
var2, node1, node2).

In addition to storing the bindings of variable pairs in the tree pat-
tern, we also need to store the string values of nodes that arebound
to variables, so that we can evaluate the value joins on the string
values of these variable bindings in the Join Processor. To store
the string values of nodes from the current stream document while
avoiding redundancy, we use a binary relationRdocW with schema
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(node, strVal) for this purpose. Nodes that are not bound to
any variable will not be stored in this relation. Similarly,we store
the string values of nodes bound in previous stream documents in
a relationRdoc. Its schema is(docid, node, strVal), ex-
tending that ofRdocW with adocid attribute.

Example continued.Consider again our running example with
Queries Q1, Q2, and Q3 shown in Table 2. Assume that the docu-
mentd1 shown in Figure 1 has been processed. Then Tables 4(b)
and 4(c) show the contents of relationsRbin andRdoc.

4. STAGE 2: PROCESSING VALUE JOINS
In this section we propose novel techniques for processing ahuge

number of value joins. A straightforward way would be to evalu-
ate theFOLLOWED BY operator for each XSCL query separately.
This strategy is not scalable for two reasons. First, there is no op-
portunity for sharing of computation among multiple queries. Sec-
ond, this one-query-at-a-time processing imposes a specific nested-
loop style join strategy, where the “outer loop” iterates over each
query, and the “inner loop” completes the join processing for that
query. With set-oriented query processing strategies, we can sig-
nificantly improve performance.

Thus, we would like to group the join processing of multiple
queries so that computation can be shared among them, and a more
efficient join strategy compared to one-query-at-a-time can be used.
However, since join operators in different queries could access dif-
ferent variables and have different join conditions, it seems that
set-oriented processing of multiple queries is extremely hard to
achieve.

The key insight here is that with the right query plan, two dif-
ferent queries can still share processing. In this section,we de-
fine the notion of query templates, and present the query plans for
value-join processing based on query templates. Intuitively, the
XSCL queries are partitioned into equivalence classes based on
which query templates they belong to. The join processing ofall
the XSCL queries belonging to the same query template can now
be shared. Therefore, instead of performing joins individually for
each XSCL query, we now perform a join for each set of XSCL
queries belonging to the same query template.2

4.1 Query Template Based Join Processing
Due to space constraints, we give only an informal presentation

of the ideas illustrated by examples, emphasizing intuition rather
than rigor. The formal definitions of query template based join pro-
cessing, as well as its proof of correctness, can be found in our
online technical report [18].

Given an XSCL queryQ with two query blocks connected by a
FOLLOWED BY operator, such as query Q1 in Table 2, we can
visualize it as a graph, referred to as ajoin graph, illustrated by
Figure 4. Each query block is represented by a tree pattern formed
by solid, bold edges, referred to asstructural edges. Each node
in the tree pattern is labeled by the name of a variable bound in
the corresponding query block inQ. For example, the root node
of the left-hand-side tree pattern in Figure 4 is labeled byx1, the
name of the variable bound to //book in Q1. There are two typesof
structural edges, representing child axis and descendant axis. For
ease of exposition, we assume only descendant axes are present in
the XSCL queries we deal with. For each equality predicatex = y

in the FOLLOWED BY predicate ofQ, we draw a dashed edge

2Mathematically speaking, instead of performing join on theorigi-
nal XSCL query space, we now perform join on the quotient space
of the XSCL queries defined by the equivalence relation induced
by query templates.

Figure 4: Join Graph of
Query Q1 in Table 2

Figure 5: Query Template Q
for Q1, Q2 and Q3 in Table 2

between the two (leaf) nodes corresponding tox andy. We call
such an edge avalue join edge. For example, the value join edge
betweenx2 andx5 in Figure 4 corresponds to the join predicate
x2 = x5 in Q1.

A query template (or a template for short)Q of Q, is a graph
isomorphic to its join graph with different node labels described as
follows. Each nodeu in Q is labeled by a uniquely namedmeta-
variable, whose value is the label ofu’s corresponding nodev in
the join graph ofQ; i.e., the name ofv’s corresponding variable in
the queryQ. Each edge isQ is also uniquely labeled.

For example, Q1 in Table 2 belongs to the query template de-
noted asQ, which is shown in Figure 5. Q2 and Q3 in Table 2
also belong to the same query template. The six nodes in this query
template are labeled fromvar1 to var6. The value of the meta-
variablevari is xi for 1 ≤ i ≤ 6. The correspondence between
nodes and edges in the query template and each query is obvious.
For example, edgep1 connectingvar1 andvar2 in the template
corresponds to the structural constraintx1//x2 in Query Q1.

4.2 Sharing Templates With Graph Minor
In Section 4.1, we require that the query templateQ of a query

Q be isomorphic to its join graph. However, we can show that if
we derive a simplified query templateQ′ of Q from the graph mi-
nor [24] of the join graph ofQ through a set of reduction rules
below, the join processing result onQ′ will be the same asQ. This
enables more queries to share the same query template for join pro-
cessing.

Given the join graph ofQ, we compute its minor via the follow-
ing reduction rules. First, we recursively remove the leaf nodes that
do not participate in any value joins from the join graph. Next, we
remove the nodes that are not the descendants of the least common
ancestors of the remaining leaf nodes. Finally, we remove all those
intermediate nodes that have only one child in the modified join
graph. The resulting join graph contains only leaf nodes that par-
ticipate in value joins, as well as the intermediate nodes that are the
least common ancestors of some of the leaf nodes. We derive the
query template ofQ from the resulting join graph.

The intuition is that since the structural constraints for each indi-
vidual query block inQ have been evaluated by the XPath Evalua-
tor in Stage 1, the value join processing stage need only check the
value constraints, as well as a subset of the structural constraints
involving those leaf nodes that satisfy the value constraints. The
correctness of this approach is proved in [18].

The number of different query templates depends on the maxi-
mum number of value join predicates in the query workload, but
not on the number of queries registered with the system, evenif
these queries have very different tree patterns or seem to equate
different nodes. For example, for queries with three value joins in
the join predicate of oneFOLLOWED BY operator, we show all
16 possible query templates in Figure 6. The first 6 templatesin
the dashed box correspond to the query templates for queriesde-
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#VJ #QT(flat schema) #QT(complex schema)

1 1 1
2 3 3
3 6 16
4 16 <230

Table 3: Number of Query Templates with respectd to Number
of Value Joins

Algorithm 1 Join Processing Algorithm

Require: Current stream documentd

1: Invoke the XPath Evaluator ind to produceRbinW , RdocW

andRdocTSW

2: for all query templatesQ in the systemdo
3: Evaluate the corresponding conjunctive query to producere-

sults of XSCL queries belonging to templateQ
4: Maintain join state with Algorithm 2

fined on a “flat” XML document schema with two tree levels, such
as the schema of the blog articles illustrated in Figure 2. Table 3
shows the relationship between the number of value joins involved
in the queries and the number of different query templates for these
queries. We leave it as future work to derive a closed-form formula
for the exact relationship.

In the remainder of this section, we will explain our join pro-
cessing techniques based on query templates. Our techniques can
be decomposed into two parts. First, we encode all the informa-
tion needed in join processing as relations, so that we can leverage
techniques from relational join processing (Section 4.3).Second,
for each query template, we create a relational conjunctivequery
with which we evaluate all XSCL queries belonging to that query
template at once (Section 4.4). Our query template based join pro-
cessing algorithm for each documentd is given as Algorithm 1.

4.3 Representing Join Graphs As Relations
The information needed in join processing includes the join

graphs of the XSCL queries, and the XPath witnesses from the cur-
rent stream document as well as from previous stream documents
that participate in the join. We have shown in Section 3.1 how
to encode XPath witnesses from the current and previous stream
documents in relationsRbinW , RdocW , RdocTSW , Rbin, Rdoc and
RdocTS . We now describe how to encode the join graphs of XSCL
queries based on query templates as relations.

For each query templateQ, we use a relationRT to encode
the join graphs of XSCL queries belonging to this template. The
schema contains one attributeqid for storing the query id. Also,
it contains one attributevari for each node in the query template
labeled byvari, the name of a meta-variable. Finally, it contains
one attributewl for storing the window length of the join operator.
Each query belonging to the templateQ will be encoded as a tuple
in relationRT . For example, the schema and content of relation
RT for the three queries in Table 2 belonging to join templateQ in
Figure 5 is shown in Table 4(a).

4.4 Conjunctive Query For Each Template
For each XSCL query templateQ, we create a relational con-

junctive query, denoted asCQT , so that the XSCL queries belong-
ing toQ can be evaluated all at once inCQT .

We present the conjunctive queries in Datalog. For a given
query templateQ, here is how we createCQT . For each
value join edge in templateQ, there is a copy ofRdoc and

Algorithm 2 Maintain Join StateRdoc, Rbin andRdocTS

Require: RdocW , RbinW andRdocTSW produced by the XPath
Evaluator when processing the current stream document

1: SetRdoc to Rdoc ∪ (RdocW × πtimestamp(RdocTSW ))
2: SetRbin to Rbin ∪ (RbinW × πtimestamp(RdocTSW ))
3: SetRdocTS to RdocTS ∪ RdocTSW

L1

L2

L3

RT(qid, var1, var2, var3, var4, var5, var6, wl)

var1, var2

var4, var5

strVal
Rdoc(docid,

node2, strVal)

Rbin(docid, var1,

var2, node1, node2)

d
o
ci

d
,

n
o
d
e2

RdocW(node5,

strVal)

RbinW(var4, var5,

node4, node5)

n
o
d
e5

Rdoc(docid,

node3, strVal')

Rbin(docid, var1,

var3, node1, node3)

d
o
ci

d
,

n
o
d
e3

RdocW(node6,

strVal')

RbinW(var4, var6,

node4, node6)

n
o
d
e6

va
r1

, v
ar

3

var4, var6

strVal'

node1 node4

Figure 7: Relational Conjunctive Query CQT For XSCL
Query TemplateQ in Figure 5

RdocW joined on their string value attributes in the body of
CQT . For example, for edgee1 of query templateQ in Fig-
ure 5, we put a copy ofRdoc(docid, node2, strVal) and
RdocW(node5, strVal) joined on string valuestrVal in
the body ofCQT . For each structural edge in the query tem-
plate, we put a copy ofRbin or RbinW in CQT body, depend-
ing on whether this edge appears on the LHS or RHS tree pattern
in the query template. We do not need to evaluate in the body
of CQT the tree pattern parts of the XSCL queries, since these
structural constraints have been evaluated in the XPath Evaluator,
and their results have been stored inRbinW andRbin. For exam-
ple, for edgep1 of query templateQ in Figure 5, we put a copy
of RbinW(docid, var1, var2, node1, node2) in the
body ofCQT . This completes the construction ofCQT body.

The head of the conjunctive queryCQT is a relation denoted
asRoutT , whose schema containsqid, docid1, wl, as well as
one attribute for each node involved in the conjunctive query. For
example, the schema ofRoutT for query templateQ in Figure
5 is (qid, docid1, node1, node2, node3, node4,
node5, node6, wl), wherenodei stores the binding node id
of an XSCL query variable whose named is stored as value invari
in the template. For each tuple in this relation,node1 through
node3 values come from documentdocid1. node4 through
node6 values come from the current document.

Below we give the Datalog representation of the conjunctive
query for query templateQ in Figure 5.

RoutT (qid, docid, node1, node2, node3, node4, node5, node6, wl) :–
Rdoc(docid, node2, strV al), Rbin(docid, var1, var2, node1, node2),
RdocW (node5, strV al), RbinW (var4, var5, node4, node5),
Rdoc(docid, node3, strV al′), Rbin(docid, var1, var3, node1, node3),
RdocW (node6, strV al′), RbinW (var4, var6, node4, node6),
RT (qid, var1, var2, var3, var4, var5, var6, wl)

This conjunctive queryCQT is visualized in Figure 7. In this
figure, each node is a relation in the body ofCQT . There is an
edge between two relations, if there is a join between them. The
edge is labeled by the set of attributes on which the two relations
are joined. In the visualization of the conjunctive query, we place
the relations in three levels, denoted as L1, L2 and L3. The relations
in level L1 are copies ofRdoc andRdocW . The relations in L2 are
copies ofRbin andRbinW . In level L3, there is always only one
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Figure 6: 16 Query Templates With 3 Value Joins

Table 4: Relations involved in Section 4.4.1
(a) RT for Query TemplateQ in Figure 5

qid var1 var2 var3 var4 var5 var6 wl

Q1 x1 x2 x3 x4 x5 x6 T1
Q2 x1 x2 x7 x4 x5 x8 T2
Q3 x4 x5 x6 x4 x5 x6 T3

(b) Rdoc After Processingd1

docid node strVal

d1 0 –
d1 2 Danny Ayers
d1 3 Andrew Watt
d1 4 Beginning RSS and Atom Programming
d1 5 Scripting & Programming
d1 6 Web Site Development

(c) Rbin After Processingd1

docid var1 var2 node1 node2

d1 x1 x2 0 2
d1 x1 x2 0 3
d1 x1 x3 0 4
d1 x1 x7 0 5
d1 x1 x7 0 6

(d) RdocW of d2

node strVal

0 –
2 Danny Ayers
3 Beginning RSS and Atom Programming
4 Book Announcement
5 Scripting & Programming

(e) RbinW of d2

var1 var2 node1 node2

x4 x5 0 2
x4 x6 0 3
x4 x8 0 4
x4 x8 0 5

(f) Content ofRoutT After Processingd2

qid docid1 node1 node2 node3 node4 node5 node6 wl

Q1 d1 0 2 4 0 2 3 T1
Q2 d1 0 2 5 0 2 5 T2

Algorithm 3 Producing Query Results FromRoutT

Require: Input relationsRoutT , RdocTSW andRdocTS

1: Let the single tuple inRdocTSW bed2
2: for all tuplesa in RoutT do
3: Find a tupled1 in RdocTS with d1.docid = a.docid1
4: if 0 < d2.timestamp − d1.timestamp ≤ a.wl then
5: Construct an output XML document for the query with id

a.qid based on the specification of itsSELECT clause

relationRT for the query templateQ. The relations in level L1, L2
and L3 are joined together to produceRoutT .

To produce final query outputs fromRoutT , we invoke Algo-
rithm 3, which iterates over tuples inRoutT . For each tuple, we
first make sure that the temporal constraint of its corresponding
query is satisfied (Line 3). Note that the temporal constraint we
check in Algorithm 3 corresponds to that forFOLLOWED BY op-
erator. If the temporal constraint is satisfied, we then produce an
output XML document according to the specification of theSE-
LECT clause in that query. This process of producing query results
from RoutT is straightforward. We therefore do not discuss it fur-
ther and focus only on the conjunctive queryCQT that produces
relationRoutT for each query templateQ.

After query results have been generated for the current docu-

ment, in Line 1 of Algorithm 1, we maintain the join state consist-
ing of relationsRdoc, Rbin andRdocTS with Algorithm 2. After-
wards, we can discard the relationsRdocW , RbinW andRdocTSW ,
and start processing the next stream document.

4.4.1 Query Processing Example
Let us now walk through the query processing steps for queries

Q1, Q2, Q3 in Table 2 against the sequence of two documentsd1
andd2 shown in Figure 1 and 2, which have timestampst1 andt2
(t1 < t2) respectively.

When documentd1 comes into the system, sinceRdoc and
Rbin are initially empty,d1 does not produce any query result.
RdocW , RbinW and RdocTSW are then merged intoRdoc, Rbin

andRdocTS respectively, with thedocid value of each new tu-
ple in Rdoc andRbin set tod1. The content ofRdoc andRbin at
the end of processing this document is shown respectively inTable
4(b) and 4(c).RdocTS contains only one tuple,{(d1, t1)}.

When documentd2 arrives, we show the content ofRdocW and
RbinW produced by the XPath Evaluator in Table 4(d) and 4(e).
RdocTSW contains one tuple{(d2, t2)}.

Now we want to joinRdoc, Rbin, RdocW , RbinW , andRT to
produceRoutT . The content ofRoutT is shown in Table 4(f).

Finally, we invoke Algorithm 3 to produce one output XML doc-
ument each for query Q1 and Q2. According to XSCL semantics,
the two output XML documents produced by Q1 and Q2 have ex-
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actly the same content. The root of the output document has two
subtrees, where the first subtree corresponds to the subtreerooted
at thebook element ind1, and the second subtree corresponds to
the subtree rooted at theblog element ind2.

5. QUERY OPTIMIZATION
We have presented the basic ideas of query template based join

processing in Section 4. The result of these techniques, Algorithm
1, evaluates the conjunctive queries for different templates inde-
pendently as is shown in Line 1. It therefore leaves much room
for sharing computation among these query templates. Also,join
processing for the current XML event on the stream might benefit
from remembering the results of processing previous XML events.
In this section, we propose view materialization as the solution to
both these issues.

So far we have assumed that we keep as join state only
Rdoc, Rbin andRdocTS . We have not considered materializing any
intermediate join results for the conjunctive queryCQT of a query
templateQ. We now would like to explore the view materialization
spectrum with respect to join processing cost.

Let RL̂ denote the result of joiningRdoc andRbin. In one ex-
treme of the spectrum, adopted by the Algorithm 1, we do not mate-
rializeRL̂, and instead compute it fromRdoc andRbin for each in-
coming document. This is likely to result in redundant computation
in the join processing. In the other extreme of the spectrum,we can
try to materialize the entireRL̂, and keep it up to date after process-
ing each incoming document. The materialization ofRL̂ makes the
join processing for each input document less expensive. However,
the view maintenance cost ofRL̂ is likely to be high, since in or-
der to maintainRL̂ for each incoming document, we need to first
join RbinW andRdocW together, whose result is denoted asRR̂,
and then mergeRR̂ into the existingRL̂. Although RdocW will
be small for each incoming document, the size ofRbinW could
be proportional to the number of XSCL queries in the system, and
therefore the join result could be very large. Also, it may not be
worth maintaining the entireRL̂, if we do not use such a material-
ized result in its entirety in processing future documents.We would
therefore like to find a sweet spot in the materialization spectrum to
minimize the sum of join processing and view maintenance costs.

Determining how much ofRL̂ to materialize requires a careful
study of howRL̂ is used in query processing. The schema ofRL̂

is (docid1, var1, var2, node1, node2, strVal),
where variablesvar1 andvar2 bind respectively to nodesnode1
andnode2 in documentdocid1, andnode1 is an ancestor of
node2. Also, strVal is a string value corresponding to node
node2. Recall this is because we assumed that value joins only
happen at tree pattern leaf nodes; that is,Rdoc andRbin are joined
onRdoc.node = Rbin.node2, and thereforestrVal in the result
corresponds to the string value of nodenode2.

Note that for each incoming document, we usually do not have to
accessall the tuples inRL̂. Instead, we only need to access those
tuples whose string values appear in the nodes from the current
stream document that are bound to variables. In other words,we
will only access those tuples inRL̂ whose string values are in the
result ofRdocW 1strVal Rdoc. Formally, we denote this subset of
RL̂ asRL, defined byRdocW 1strVal (Rdoc 1node=node2 Rbin).
If we could materialize this part ofRL̂, then we could save the costs
of the joins that produce them in the join processing for conjunctive
queryCQT ’s. Also, this observation is symmetric betweenRL̂ and
RR̂. That is, those tuples inRR̂ whose string values correspond to
some nodes inRL̂ will be accessed and participate in other joins.
This means we will have to compute those parts ofRR̂. Formally,
the subset ofRR̂ that needs to be computed isRR ≡ Rdoc 1strVal

(RdocW 1node2=node RbinW ). In sum, only the tuples inRL and
RR will participate in conjunctive query processing.

For each incoming XML event, we cannot avoid the cost of com-
putingRR. However, it is possible to reduce the cost of computing
RL through materialization of join results for previous events. To
do so, we break upRL̂ into slices, where each slice is a set of tuples
produced by the join of tuples inRdoc with a certain string value
andRbin. Specifically, we keep a “view cache” of slices inRL̂,
denoted asV C, where each cache entry is keyed on a string value
s, and stores in the value component a relationRL,s, computed by
EL,s ≡ σstrVal=s(Rdoc) 1node=node2 Rbin. Similarly, we define
ER,s to beσstrVal=s(RdocW ) 1node=node2 RbinW .

Whenever we perform a join between the set of tuples inRdoc

with a certain string values andRbin, we first look up the view
cache with search keys, to see whether it has been materialized.
The size of the view cache can be set according to the memory
constraint of the system. Cached entries can be replaced by acache
replacement policy appropriate for the workload, such as LRU.

We incorporate the materialization based optimization above into
Algorithm 1 to produce an improved algorithm, Algorithm 4. Es-
sentially, Line 4 through Line 4 are newly added to compute the
slices ofRL andRR, in order to reduce the query processing cost
of Line 4. The computation of slices ofRL benefits from remem-
bering the partial result of processing previous XML events, in par-
ticular, slices ofRL̂. The union of these computed slices ofRL

(resp.RR) gives the result of the entireRL (resp.RR).
We then evaluate the conjunctive query for each query tem-

plate in Line 4 – 4. Note that we no longer need to access
Rbin, RbinW , Rdoc andRdocW . Instead, we access onlyRL and
RR computed above. This enables sharing of join processing
among different query templates. For example, to process query
templateQ in Figure 5, we modify the conjunctive queryCQT

presented in Section 4.4 into the following query which accesses
only RL, RR andRT .

RoutT (qid, docid, node1, node2, node3, node4, node5, node6, wl) :–
RL(docid, var1, var2, node1, node2, s),
RR(var4, var5, node4, node5, s),
RL(docid, var1, var3, node1, node3, s′),
RR(var4, var6, node4, node6, s′),
RT (qid, var1, var2, var3, var4, var5, var6, wl)

Finally, we maintain the join state and view cache in Line 4 – 4
of Algorithm 4.

6. PERFORMANCE EVALUATION
We measure the performance of join processing and our opti-

mization techniques at two levels. We generate a technical bench-
mark through synthetically generated data of different document
schema complexity, and we also measure the performance of our
techniques on real RSS data. We have written an XSCL translator,
which translates XSCL queries into SQL queries that correspond
to the relational conjunctive queries described in Section4. These
SQL queries are then evaluated on an SQL engine. We choose Mi-
crosoft SQL Server 2005 Standard Edition in the experimentsas
the Join Processor. All experiments were run on a Dual Core 3.6
GHz Pentium D PC with 3.5 GB of RAM. The operating system
is Windows XP Professional. We repeat each experiment 10 times.
The standard deviation in all runs was well below 1%; we therefore
report only averages, omitting error bars from the graphs.

6.1 Technical Benchmark
In this first set of experiments, we evaluate a set of XSCL queries

that join two fixed input documents. We compare the performance
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Figure 8: Performance on Simple Doc-
ument Schema
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Figure 9: Performance on Simple Doc-
ument Schema
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Figure 10: Performance on Simple Doc-
ument Schema
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Figure 11: Performance on Complex
Document Schema
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Figure 12: Performance on Complex
Document Schema
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Figure 13: Performance on Complex
Document Schema

Algorithm 4 Improved Join Processing Algorithm With View
Cache
Require: Current stream documentd

1: Invoke the XPath Evaluator ind to produceRbinW , RdocW

andRdocTSW

2: Semi-joinRdocW with Rdoc onstrVal to obtain a setSTR

of common string values
3: for all distinct string valuess in STR do
4: if there is an entry with keys in view cacheV C then
5: Set relationRL,s to the value component of the entry
6: else
7: Compute relationRL,s by EL,s, and insert an entry into

V C with key s, and valueRL,s

8: Compute relationRR,s by ER,s

9: for all query templatesQ in the systemdo
10: Evaluate the corresponding conjunctive queryCQT , with

RL,s’s andRR,s’s computed above
11: Maintain join state with Algorithm 2
12: MaintainV C with Algorithm 5

of our join processing algorithm from Section 4, which we denote
as MMQJP in the figures, with a naive approach which sequentially
evaluates theFOLLOWED BY operator in each XSCL query, de-
noted as Sequential. We run this experiment on XML documents
with different complexity in their schema.

Two-Level Document Schema. We first choose a document
schema that models the schema of an RSS feed item, shown by
the example in Figure 2. The schema has only two levels, whereall
leaves are children of the root. LetN be the number of leaves in
the schema. parameters in this experiment and their defaultvalues
are shown in Table 5.

We then manually compose two documents conforming to this

Algorithm 5 Maintain View CacheV C

Require: SetSTR of common string values inRdoc andRdocW

Require: The RL,s’s andRR,s’s computed when processing the
current document

1: for all string valuess in STR do
2: SetRL,s to RL,s ∪ RR,s

3: Insert/Update the cache entry keyed ons with valueRL,s

schema, referred to asd1 andd2. The root node ind1 is denoted
asn0, and theN leaf nodes ind1 are denoted asn1 throughnN .
Similarly, the root node ind2 is denoted asn′

0, and theN leaf nodes
in d2 are denoted asn′

1 throughn′
N . These two documents have the

property that all leaf nodes in each document have differentstring
values, but each leaf nodeni in d1 has the same string value as the
leaf noden′

i in the corresponding position ind2, for 1 ≤ i ≤ N .
Since our focus is measuring the performance of the join proces-

sor, we need to computeRdoc, RdocW , Rbin andRbinW as the in-
puts to join processing. Given the properties of the two documents,
we compute these tables as follows. We insertN tuples intoRdoc

corresponding to theN leaves ind1, where each tuple stores the
information of node ID and the string value of a particular leaf in
d1. Rbin also containsN tuples, where each tuple corresponds to
a particular parent, child pair ind1. Similarly, we load information
of d2 into RdocW andRbinW . Note that the tables generated above
are guaranteed to be supersets of the results returned by theXPath
Evaluator on any number of XPath query blocks. We therefore do
not need to invoke the XPath Evaluator in this experiment.

We generate each XSCL query by first selecting a set of vari-
ables bound in the LHS and RHS tree patterns of that query in the
following way. We randomly pick an integer valuek from 1 to
N with a Zipfian distribution. For the LHS tree pattern, there are
k variables bound to the leaf nodes in the document schema, de-
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Figure 17: Random Generation of XSCL Queries

Variable Default Value
Number of XSCL queries 1000
Number of leaves in document schema 6
Zipfian parameter 0.8

Table 5: Parameters (default values)

noted asv1 throughvk, as well as a variablev0 bound to the root
node. v0 is bound only to root noden0 in documentd1. The k

variablesvi(1 ≤ i ≤ k), are mapped tok different leaf nodes
nj(1 ≤ j ≤ N) in documentd1 chosen uniformly at random.
Similarly, there arek variablesv′

1 throughv′
k bound to leaf nodes

for RHS tree pattern, as well as a variablev′
0 bound to the root.v′

0

is bound only ton′
0 in documentd2. Thek variablesv′

i(1 ≤ i ≤ k)
are randomly bound tok different leaf nodesn′

j(1 ≤ j ≤ N) in
d2. We now generatek value joins for this query, where theith

join has a string value equality predicatevi = v′
i. This finishes the

construction of queryQ. The query construction is shown in Figure
17. Observe that based on this query generation approach, the max-
imum number of query templates in our join techniques is exactly
N , regardless of the actual number of XSCL queries generated.

First, we vary the number of XSCL queries, and show the result
in Figure 8. When the number of queries is small, the performance
of MMQJP and sequential evaluation does not differ much. How-
ever, MMQJP gains more than two orders of magnitude improve-
ment when the number of queries is large.

We then varyN , the number of leaf nodes in the document
schema. The result is shown in Figure 9. Note that according to the
way we generate XSCL queries, increasingN will result in more
query templates in MMQJP. The time cost of both approaches is
about 6 times larger atN = 12 compared toN = 4; recall from
Section 4 that the complexity of the query template does not in-

crease linearly withN .
We also vary the Zipfian parameter for generatingk for each

query (queries with smaller k values are more likely to be gener-
ated), and show the results in Figure 10. Parameterk has little
impact on the performance of MMQJP, since the number of query
templates remain the same under these Zipfian values3. On the
other hand, the performance of sequential evaluation improves by
a factor of 2 when the Zipfian value increases from 0.0 to 1.6, be-
cause the queries are much simpler at a higher value of the param-
eter of the Zipf distribution.

Three-Level Document Schema.We repeat the same set of ex-
periments on a more complex document schema. This schema has
three levels of tree nodes, where the root and the intermediate nodes
all have a branching factor of 4, resulting in 16 leaf nodes inthis
schema. As in the previous setting, we manually compose two doc-
umentsd1 andd2 conforming to this schema, with the property that
the string values of the leaf nodes in the corresponding positions of
the two documents are identical.

In this setting, we have a new parameterK, denoting the max-
imum number of value joins per query. Its default value is 4. To
generate each query, we first randomly pick a valuek from 1 toK

with Zipfian distribution. As in the previous setting, for the LHS
tree pattern, there arek variablesv1 throughvk bound to leaf nodes
in the document schema. We pick uniformly at randomk different
leaf nodes fromd1 to be bound to thesek variables. variablev0

in LHS pattern is bound to the root node of documentd1. Now, to
form a more complex tree pattern compared to the previous setting,
the nodes in the intermediate level of the document schema that are
along the paths between the root node and the leaf nodes bounded
by v1 throughvk will be bounded by additional variables in the
LHS tree pattern. This adds additional structural joins in the con-
junctive query for each query template. The construction for RHS
tree pattern is similar. Finally, we generatek value join predicates
for the XSCL query, where theith predicate isvi = v′

i.
In this setup, we vary the number of queries, the maximum num-

ber of value joins per query, and the Zipfian parameter for generat-
ing k. The results are shown Figures 11, 12 and 13, respectively.

When we vary the number of queries, the time cost of both ap-
proaches grows more than linearly. This is because as the number
of queries grows, more query templates are involved. In MMQJP,
the number of query templates increases from 6 to 22 when the
number of queries grow from 10 to 100000. Still, MMQJP outper-
forms sequential evaluation by two orders of magnitude whenthere
are 100000 queries.

3Only when the Zipfian distribution is extremely skewed, some
query templates involving many value joins will not occur.
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When we varyK, the maximum number of value joins per
XSCL query, we see that the time cost of MMQJP grows faster than
sequential evaluation. This is because MMQJP is affected more
significantly by the increasing number of query templates. The
numbers of query templates are 2, 6, 20 and 39 forK = 2, 3, 4
and 5, respectively. Varying the Zipfian parameter in this setting
has a larger impact on the performance of sequential evaluation
compared to MMQJP, because similar as in the previous scenario
the numbers of query templates stay constant (around 20), whereas
many actual queries have a simpler structure.

6.2 Query Optimization
We presented query optimization techniques based on view ma-

terialization in Section 5. We now evaluate its effectiveness based
on the synthetic workload described in the previous section. Since
we are interacting with the database engine on the level of SQL,
it is difficult to cache slices ofRL̂ as was described in Section 5.
Therefore, given the inputRbin, RbinW , Rdoc andRdocW to the
Join Processor, we materialize the following relations:

Rvj(n1, n1′, s) :– Rdoc(d1, n1, s), RdocW (n1′, s)
RL(d1, v1, v2, n1, n2, s) :– Rvj(n1, n1′, s), Rbin(d1, v1, v2, n1, n2)
RR(v1, v2, n1′, n2′, s) :– Rvj(n1, n1′, s), RbinW (v1, v2, n1′, n2′)

We then evaluate the conjunctive queryCQT for each query tem-
plateQ based only onRL andRR, and we compare the join pro-
cessing cost of MMQJP without view materialization and the cost
of MMQJP with view materialization. For the latter, we also mea-
sure the time cost of computingRvj , RL andRR, respectively.

The experiments are performed on both the two-level and the
three-level document schema. We use the default values for all pa-
rameters above, except that we set the number of queries to 100000.
The results on the two-level and the three-level document schema
and shown respectively in Figure 14 and 15.

Since according to the experiment setup,Rbin and Rdoc only
contain information for a single document,d1, the materialization
costs ofRvj , RL andRR are small compared to the join process-
ing cost. However, we expect that the materialization cost of RL

could potentially be large in real stream settings, sinceRbin might
contain many tuples produced by the XPath Evaluator from previ-
ous events. Therefore the benefit of materializing slices ofRL̂ for
computingRL, instead of recomputingRL from scratch when pro-
cessing each event should be significant. Also, in this experiment,
we assume we can afford the space to materialize the entireRL.
In practice we may only be able to materialize some slices ofRL,
in which case view cache replacement policies may be involved, as
was mentioned in Section 5.

The results show great benefits from evaluating conjunctive
queries by first materializing these relations. This is especially
true for the case of the three-level document schema, where we
have significantly more query templates compared to the two-level
schema (22 templates for complex schema versus 6 for the simple
schema). Materializing these relations enables sharing ofcompu-
tation among the conjunctive queries for different query templates;
therefore, the more query templates we have, the more benefits we
receive from view materialization.

6.3 XSCL Queries over RSS Streams
We evaluate the performance of MMQJP and sequential evalu-

ation of XSCL queries over (RSS and Atom) feed streams. The
feeds we use in this experiment are collected from 418 channels
over a period of time from June to October in 2006. There are a
total of 225K items in the feed. Each feed item has a simple doc-
ument schema similar to the schema in Figure 2. Specifically,it
has five leaf nodes taggeditem_url, channel_url, title,
timestamp anddescription.

We randomly generate queries in the same way as in Section
6.1. We assign a time window of∞ to all the generated queries.
This means in processing the 225K feed items, no feed item will be
discarded from the join state.

Processing XSCL queries over streams involves both the XPath
Evaluator and the Join Processor. We evaluated the XPath ex-
pressions corresponding to the XPath query blocks we generated
on YFilter, an instance of the XPath Evaluator, and we found the
time cost of XPath processing over the entire stream in YFilter is
about 15 seconds, which is significantly less than the time cost in
join processing (using either MMQJP or sequential evaluation).4

Therefore, the join processing is the bottleneck of the overall XSCL
query processing, and in the following text we focus on measuring
the cost of join processing.

To run stream processing experiments on a relational database,
we perform the following operations for each feed item. First, we
issue bulk load statements to load the data of the current feed item
into RbinW andRdocW . The way we generateRbinW andRdocW

is similar to the way we described in Section 6.1. We do not include
the loading cost in our numbers, since that cost will be negligible in
a real main memory based implementation. Next, we evaluate the
conjunctive queries, and measure their costs. We then move data
from RbinW to Rbin, andRdocW to Rdoc with SQL statements,
however for the same reason as before we also do not include this
cost in our overall numbers. We run MMQJP with and without
view materialization and also compare to Sequential. We report the
total time cost of evaluating conjunctive queries over all the items
in the web feed stream.

According to the this setup, there are five different query tem-
plates in MMQJP. For each feed item, SQL Server needs to evalu-
ate the SQL queries corresponding toCQT for eachQ defined in
Section 4.4. This means over a stream ofS events, the number of
queries to evaluate for MMQJP will be5S. However, since there is
a fixed overhead in the order of tens of milliseconds in submitting
an SQL query to a secondary-storage based relational database en-
gine, a measurement of the total cost of evaluating these5S SQL
queries will not reflect the real throughput of a publish/subscribe
system. Therefore, instead of evaluating the conjunctive queries
for query templates once for each feed item, we batch the joinpro-
cessing by loading a set of feed items intoRbinW andRdocW at
one time and perform the joins. This significantly reduces the total
number of SQL queries to evaluate. Due to space constraints,we
omitted the details for this step.

The throughput of MMQJP compared to sequential evaluation
while varying the number of queries is reported in Figure 16.
MMQJP demonstrates impressive throughput with a large number
of queries. View materialization helps further by enablingsharing
of computation among different query templates. The throughput
of MMQJP with or without view materialization stays flat after the
number of queries grow beyond 10000, since there are only thou-
sands of distinct queries according to our query generationscheme
— after generating 10000 queries, almost all queries generated later
on are duplicates. This is consistent with our assumption about
the workload. Note that we recomputeRL from scratch for every
batch in this experiment, since we did not materialize slices ofRL̂.
Therefore, we expect the throughput of MMQJP with view materi-
alization to be even higher if that is done. The experimentalresults
where we vary the parameter of the Zipf distribution are similar,
and we thus omit them from the paper due to space constraints.

4The YFilter implementation we use is based on Java; still its
XPath evaluation cost is much smaller compared the join process-
ing cost measured in SQL Server.
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7. RELATED WORK
XML Stream Processing.Our work is the first to address both

expressiveness in query language and scalability in systemthrough-
put for XML publish/subscribe systems. There has been a large
body of work on XML query processing, each addressing parts
of these challenges [10, 16, 13, 22]. YFilter [13], XPush [17]
and XSQ [25] are based on variants of finite-state automata, and
support a significant portion of XPath 1.0 for stream processing.
They however do not support queries joining multiple documents or
streams. Other XML pub/sub work on more expressive XML query
languages has focused on specific optimizations for a small num-
ber of queries [21, 20, 6]. Our MMQJP techniques can potentially
be combined with these optimization techniques in an XML pub-
lish/subscribe system. Examining this is part of our futurework.

Other Related Work. Traditional pub/sub systems [4, 28, 14]
sacrifice expressiveness to achieve high performance. For ex-
ample, Le Subscribe [14] is a highly scalable pub/sub system.
More recently, Cayuga [12] and SASE [27] propose stateful pub-
lish/subscribe systems for complex relational event processing.
Data streams have attracted considerable attention in the database
community in recent years. Existing DSMSes concentrate on pro-
cessing of complex relational queries and do not explore multi-
query optimization in depth [7, 23, 9, 2, 29].

8. CONCLUSIONS
We have presented Massively Multi-Query Join Processing

(MMQJP) techniques, which efficiently process large numbers of
continuous inter-document queries over XML streams. Though not
elaborated in this paper, it is easy to see that our approach is also
applicable to continuous query processing over relationalstreams.

There are many avenues for future work. First, we would like
to build an expressive publish/subscribe system based on MMQJP
techniques, capable of processing both relational and XML streams
with a large number of continuous queries. Second, in this paper we
have explored a sweet spot in the expressiveness/scalability spec-
trum between XPath and XQuery stream processing; in the future
we would like to push this sweet spot towards supporting larger
subsets of XQuery in stream settings.
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