16 research outputs found

    New Method for 3D Shape Retrieval

    Full text link
    The recent technological progress in acquisition, modeling and processing of 3D data leads to the proliferation of a large number of 3D objects databases. Consequently, the techniques used for content based 3D retrieval has become necessary. In this paper, we introduce a new method for 3D objects recognition and retrieval by using a set of binary images CLI (Characteristic level images). We propose a 3D indexing and search approach based on the similarity between characteristic level images using Hu moments for it indexing. To measure the similarity between 3D objects we compute the Hausdorff distance between a vectors descriptor. The performance of this new approach is evaluated at set of 3D object of well known database, is NTU (National Taiwan University) database.Comment: 10 pages, 5 figures, publication pape

    3D video performance segmentation

    Full text link
    We present a novel approach that achieves segmentation of subject body parts in 3D videos. 3D video consists in a free-viewpoint video of real-world subjects in motion immersed in a virtual world. Each 3D video frame is composed of one or several 3D models. A topology dictionary is used to cluster 3D video sequences with respect to the model topology and shape. The topology is characterized using Reeb graph-based descriptors and no prior explicit model on the subject shape is necessary to perform the clustering process. In this frame-work, the dictionary consists in a set of training input poses with a priori segmentation and labels. As a consequence, all identified frames of 3D video sequences can be automatically segmented. Finally, motion flows computed between consec-utive frames are used to transfer segmented region labels to unidentified frames. Our method allows us to perform robust body part segmentation and tracking in 3D cinema sequences. Index Terms — 3D video, topology dictionary, shape matching, body segmentation 1

    Finding Kinematic Structure in Time Series Volume Data

    Get PDF
    This paper presents a new scheme for acquiring 3D kinematic structure and motion from time series volume data. Our basic strategy is to first represent the shape structure of the target in each frame by Reeb graph which we compute by using geodesic distance of target's surface, and then estimate the kinematic structure of the target which is consistent with these shape structures. Although the shape structures can be very different from frame to frame, we propose to derive a unique kinematic structure by way of clustering some nodes of graph, based on the fact that they are partly coherent to a certain extent of time series. Once we acquire a unique kinematic structure, we fit it to other Reeb graphs in the remaining frames, and describe the motion throughout the entire time series. The only assumption we make is that human body can be approximated by an articulated body with certain numbers of end-points and branches. We demonstrate the efficacy of the proposed scheme through some experiments

    Topology dictionary with Markov model for 3D video content-based skimming and description

    Get PDF

    Topology dictionary with Markov model for 3D video content-based skimming and description

    Full text link
    This paper presents a novel approach to skim and de-scribe 3D videos. 3D video is an imaging technology which consists in a stream of 3D models in motion captured by a synchronized set of video cameras. Each frame is composed of one or several 3D models, and therefore the acquisition of long sequences at video rate requires massive storage de-vices. In order to reduce the storage cost while keeping rele-vant information, we propose to encode 3D video sequences using a topology-based shape descriptor dictionary. This dictionary is either generated from a set of extracted pat-terns or learned from training input sequences with seman-tic annotations. It relies on an unsupervised 3D shape-based clustering of the dataset by Reeb graphs, and features a Markov network to characterize topological changes. The approach allows content-based compression and skimming with accurate recovery of sequences and can handle com-plex topological changes. Redundancies are detected and skipped based on a probabilistic discrimination process. Semantic description of video sequences is then automat-ically performed. In addition, forthcoming frame encoding is achieved using a multiresolution matching scheme and allows action recognition in 3D. Our experiments were per-formed on complex 3D video sequences. We demonstrate the robustness and accuracy of the 3D video skimming with dramatic low bitrate coding and high compression ratio. 1

    2D Figure Pattern Mining

    Get PDF

    3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

    Get PDF
    Content-based 3D model retrieval (CB3DMR) aims at augmenting the text-based search with the ability to search 3D data collections by using examples, sketches, as well as geometric and structural features..

    Extremal Human Curves: a New Human Body Shape and Pose Descriptor

    Get PDF
    Shape and pose similarityInternational audienceAutomatic estimation of 3D shape similarity from video is a very important factor for human action analysis, but also a challenging task due to variations in body topology and the high dimensionality of the pose configuration space.We consider the problem of 3D shape similarity in 3D video sequence for different actors and motions. Most current approaches use conventional global features as a shape descriptor and define the shape similarity using L2 distance. However, such methods are limited to coarse representation and do not sufficiently reflect the pose similarity of human perception. In this paper, we present a novel 3D human pose descriptor called Extremal Human Curves (EHC), extracted from both the spatial and the topological dimensions of body surface. To compare tow shapes, we use an elastic metric in Shape Space between their descriptors, based on static features, and then perform temporal convolutions, thereby capturing the pose information encoded in multiple adjacent frames. We quantitatively analyze the effectiveness of our descriptors for both 3D shape similarity in video and content-based pose retrieval for static shape, and show that each one can contribute, sometimes substantially, to more reliable human shape and pose analysis. Experimental results are promising and show the robustness and accuracy of the proposed approach by comparing the recognition performance against several stateof- the-art methods

    Learning View-Model Joint Relevance for 3D Object Retrieval

    Get PDF
    3D object retrieval has attracted extensive research efforts and become an important task in recent years. It is noted that how to measure the relevance between 3D objects is still a difficult issue. Most of the existing methods employ just the model-based or view-based approaches, which may lead to incomplete information for 3D object representation. In this paper, we propose to jointly learn the view-model relevance among 3D objects for retrieval, in which the 3D objects are formulated in different graph structures. With the view information, the multiple views of 3D objects are employed to formulate the 3D object relationship in an object hypergraph structure. With the model data, the model-based features are extracted to construct an object graph to describe the relationship among the 3D objects. The learning on the two graphs is conducted to estimate the relevance among the 3D objects, in which the view/model graph weights can be also optimized in the learning process. This is the first work to jointly explore the view-based and model-based relevance among the 3D objects in a graph-based framework. The proposed method has been evaluated in three data sets. The experimental results and comparison with the state-of-the-art methods demonstrate the effectiveness on retrieval accuracy of the proposed 3D object retrieval method
    corecore