82,913 research outputs found

    Bending modes, elastic constants and mechanical stability of graphitic systems

    Get PDF
    The thermodynamic and mechanical properties of graphitic systems are strongly dependent on the shear elastic constant C44. Using state-of-the-art density functional calculations, we provide the first complete determination of their elastic constants and exfoliation energies. We show that stacking misorientations lead to a severe lowering of C44 of at least one order of magnitude. The lower exfoliation energy and the lower C44 (more bending modes) suggest that flakes with random stacking should be easier to exfoliate than the ones with perfect or rhombohedral stacking. We also predict ultralow friction behaviour in turbostratic graphitic systems.Comment: 7 pages, 6 figure

    ShapeStacks: Learning Vision-Based Physical Intuition for Generalised Object Stacking

    Full text link
    Physical intuition is pivotal for intelligent agents to perform complex tasks. In this paper we investigate the passive acquisition of an intuitive understanding of physical principles as well as the active utilisation of this intuition in the context of generalised object stacking. To this end, we provide: a simulation-based dataset featuring 20,000 stack configurations composed of a variety of elementary geometric primitives richly annotated regarding semantics and structural stability. We train visual classifiers for binary stability prediction on the ShapeStacks data and scrutinise their learned physical intuition. Due to the richness of the training data our approach also generalises favourably to real-world scenarios achieving state-of-the-art stability prediction on a publicly available benchmark of block towers. We then leverage the physical intuition learned by our model to actively construct stable stacks and observe the emergence of an intuitive notion of stackability - an inherent object affordance - induced by the active stacking task. Our approach performs well even in challenging conditions where it considerably exceeds the stack height observed during training or in cases where initially unstable structures must be stabilised via counterbalancing.Comment: revised version to appear at ECCV 201

    Action Tubelet Detector for Spatio-Temporal Action Localization

    Full text link
    Current state-of-the-art approaches for spatio-temporal action localization rely on detections at the frame level that are then linked or tracked across time. In this paper, we leverage the temporal continuity of videos instead of operating at the frame level. We propose the ACtion Tubelet detector (ACT-detector) that takes as input a sequence of frames and outputs tubelets, i.e., sequences of bounding boxes with associated scores. The same way state-of-the-art object detectors rely on anchor boxes, our ACT-detector is based on anchor cuboids. We build upon the SSD framework. Convolutional features are extracted for each frame, while scores and regressions are based on the temporal stacking of these features, thus exploiting information from a sequence. Our experimental results show that leveraging sequences of frames significantly improves detection performance over using individual frames. The gain of our tubelet detector can be explained by both more accurate scores and more precise localization. Our ACT-detector outperforms the state-of-the-art methods for frame-mAP and video-mAP on the J-HMDB and UCF-101 datasets, in particular at high overlap thresholds.Comment: 9 page

    Disrupted orbital order and the pseudo-gap in layered 1T-TaS2_2

    Full text link
    We present a state-of-the-art density functional theory (DFT) study which models crucial features of the partially disordered orbital order stacking in the prototypical layered transition metal dichalcogenide 1T-TaS2 . Our results not only show that DFT models with realistic assumptions about the orbital order perpendicular to the layers yield band structures which agree remarkably well with experiments. They also demonstrate that DFT correctly predicts the formation of an excitation pseudo-gap which is commonly attributed to Mott-Hubbard type electron-electron correlations. These results highlight the importance of interlayer interactions in layered transition metal dichalcogenides and serve as an intriguing example of how disorder within an electronic crystal can give rise to pseudo-gap features

    Anomaly Identification Model for Telecom Users Based on Machine Learning Model Fusion

    Get PDF
    With the development of economic globalization and modern information and communication technology, the situation of communication fraud is becoming more and more serious. How to identify fraudulent calls accurately and effectively has become an urgent task in current telecommunications operations. Affected by the sample set and the current state of the art, the current machine learning methods used to identify the imbalanced distribution dataset of positive and negative samples have low recognition accuracy. Therefore, in this paper, we propose a new hybrid model solution that uses feature construction, feature selection and imbalanced classes handling. A stacking model fusion algorithm composed of a two-layer stacking framework with several state-of-the-art machine learning classifiers is adopted. The results show that the risk user identification model based on mobile network communication behavior established by our stacking model fusion algorithm can accurately predict the category labels of telecom users and improve the risk of telecom users. The generalization performance of the identification is high, which provides a certain reference for the telecommunications industry to identify risk users based on mobile network communication behaviors
    • …
    corecore