5,171 research outputs found

    A Flexible and Modular Framework for Implementing Infrastructures for Global Computing

    Get PDF
    We present a Java software framework for building infrastructures to support the development of applications for systems where mobility and network awareness are key issues. The framework is particularly useful to develop run-time support for languages oriented towards global computing. It enables platform designers to customize communication protocols and network architectures and guarantees transparency of name management and code mobility in distributed environments. The key features are illustrated by means of a couple of simple case studies

    Integrating Peer-to-Peer Networking and Computing in the AgentScape Framework

    Get PDF
    The combination of peer-to-peer networking and agentbased computing seems to be a perfect match. Agents are cooperative and communication oriented, while peerto -peer networks typically support distributed systems in which all nodes have equal roles and responsibilities. AgentScape is a framework designed to support large-scale multi-agent systems. Pole extends this framework with peerto -peer computing. This combination facilitates the development and deployment of new agent-based peer-to-peer applications and services

    Supporting internet-scale multi-agent systems

    Get PDF

    Bounded Distributed Flocking Control of Nonholonomic Mobile Robots

    Full text link
    There have been numerous studies on the problem of flocking control for multiagent systems whose simplified models are presented in terms of point-mass elements. Meanwhile, full dynamic models pose some challenging problems in addressing the flocking control problem of mobile robots due to their nonholonomic dynamic properties. Taking practical constraints into consideration, we propose a novel approach to distributed flocking control of nonholonomic mobile robots by bounded feedback. The flocking control objectives consist of velocity consensus, collision avoidance, and cohesion maintenance among mobile robots. A flocking control protocol which is based on the information of neighbor mobile robots is constructed. The theoretical analysis is conducted with the help of a Lyapunov-like function and graph theory. Simulation results are shown to demonstrate the efficacy of the proposed distributed flocking control scheme
    corecore