
Integrating Peer-to-Peer Networking and Computing in the
AgentScape Framework

Benno J. Overeinder, Etienne Posthumus, and Frances M.T. Brazier
Department of Computer Science, Faculty of Sciences, Vrije Universiteit Amsterdam

de Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
{bjo,etienne,frances}@cs.vu.nl

Abstract

The combination of peer-to-peer networking and agent-
based computing seems to be a perfect match. Agents
are cooperative and communication oriented, while peer-
to-peer networks typically support distributed systems in
which all nodes have equal roles and responsibilities.
AgentScape is a framework designed to support large-scale
multi-agent systems. Pole extends this framework with peer-
to-peer computing. This combination facilitates the devel-
opment and deployment of new agent-based peer-to-peer
applications and services.

1 Introduction

The emergence of fast wide-area networks has moved
distributed computing to a new area in which distributed re-
sources in a wide-area network are more closely coupled
to provide a single integrated platform for computing and
data storage. Well-known examples are Grid computing
and peer-to-peer networks, which harness the computing
power of hosts in a network and make their under-utilized
resources available to users.

Informally, peer-to-peer systems can be described to be
distributed systems in which all nodes are peers in the sense
that they have equal roles and responsibilities. The nodes
in the distributed system have identical capabilities and re-
sponsibilities, and all communication is symmetric. Peer-
to-peer systems are characterized by decentralized control,
large scale, and extreme dynamics of their operating envi-
ronment.

Peer-to-peer systems are used for file-sharing (i.e., ex-
changing files between peers) and file-storage (i.e., the peer-
to-peer network is used as a distributed file system) [4, 25].
But peer-to-peer networks can also be used to harness
the computing power of hosts in a network, similar to
SETI@home or more elaborate systems like Condor [19]

and Grid computing environments [9].
In multi-agent systems, the (basic) interaction pattern be-

tween agents is peer-to-peer. Autonomous agents can ob-
serve their environment and reason and act on the basis of
these observations [35]. Agents are often adaptive: adaptive
to new environments, adaptive to new structures.

The main goal of integrating peer-to-peer functionality
within the AgentScape framework for large-scale multi-
agent systems is to simplify peer-to-peer application and
service development and deployment by freeing the pro-
grammer of all low-level details including communication,
security, and scheduling.

This paper briefly describes the AgentScape framework
and the Pole system: an extension to the AgentScape frame-
work for basic peer-to-peer networking and computing sup-
port. The peer-to-peer support is incorporated at three lev-
els: the middleware layer, the service layer, and at the appli-
cation level (the API runtime libraries). Section 2 briefly in-
troduces some concepts in peer-to-peer computing and au-
tonomous agents. The AgentScape framework is presented
in Section 3, and the integration of peer-to-peer networking
and computing support is explained in Section 4. Section 5
concludes the paper with a discussion and future work.

2 Peer-to-Peer Networking and Autonomous
Agents

This section presents a concise overview of peer-to-peer
networking and autonomous agents.

2.1 Peer-to-Peer Networking

Peer-to-peer computing has offered a compelling and in-
tuitive way for users to find and share resources directly
with each other, often without requiring a central author-
ity or server. Although today’s applications are primarily
used for finding, retrieving, and using information, they
hint at what complete access to the Internet can deliver in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the future. Resources, including information and process-
ing power, can be shared directly from those who have
them to those who need them. Buyers and sellers can be
matched directly through P2P auction and transaction ser-
vices, and new approaches to distributed resource-sharing
like SETI@home, Condor [19], or Grid environments [9]
are appearing. Peer-to-peer computing enables applica-
tions that are collaborative and communication-focussed:
it leverages available computing performance, storage, and
bandwidth found on systems connected to each other in a
world-wide network.

Today’s most well-known peer-to-peer applications are
Napster, Gnutella [4], and Freenet [5], but various research
projects have been initiated in the past few years, such as
Pastry [27] and Chord [28]. Although the different peer-
to-peer applications share the same notion of peer-to-peer
networking, the intended usage and approach varies from
application to application.

Napster and Gnutella are primarily file-sharing appli-
cations: exchange of files between peers. Napster’s ap-
proach to information search is traditionally client-server,
while Gnutella adheres more to the peer-to-peer philoso-
phy and forwards information search requests to its neigh-
boring peers in the network. (Although Gnutella recently
introduced super nodes and client nodes for more scalable
information retrieval.) Freenet is more like a distributed in-
formation storage system. It pools unused disk space across
potentially hundreds of thousands of desktop computers to
create a collaborative virtual file system.

Pastry provides a scalable, distributed object location
and routing infrastructure for wide-area peer-to-peer appli-
cations. It can be used to support a variety of peer-to-peer
applications, including global data storage, data sharing,
group communication and naming. Chord, on the other
hand, focuses on a scalable peer-to-peer lookup service to
efficiently locate the node that stores a particular data item.
Chord provides support for just one operation: given a key,
it maps the key onto a node.

The JXTA project from Sun Microsystems [10, 29]
works on core network computing technology to provide a
set of simple, small, and flexible mechanisms that can sup-
port peer-to-peer computing. The focus is on creating basic
mechanisms and leaving policy choices to application de-
velopers.

The self-organizing behaviour of peer-to-peer networks
has also been studied. In particular scalability, fault-
tolerance, and security have been subject of study. It has
been observed that peer-to-peer networks organize them-
selves into a “small-world” networks [5, 16], which are typ-
ically characterized by a power-law distribution of the edge
degree. In such a distribution, the majority of nodes have
relatively few local connections to other nodes, but a signif-
icant small number of nodes have large wide-ranging sets of

connections. Even in very large networks, the small-world
topology enables short paths because these well-connected
nodes provide shortcuts [33]. Small-world networks are
surprisingly resistant to random errors, because random
failures are most likely to eliminate nodes from the poorly
connected majority of nodes. But the feature that makes it
immune to accidents also makes it vulnerable to attacks if
the well-connected nodes are targeted.

2.2 Autonomous Agents

From a Computer Systems perspective an agent is a pro-
cess, a piece of running code with data and state. The
functionality of these agents can most often be described
in terms of human behaviour, and to which the predicate
intelligent is associated [35]. Agents are processes that are
autonomous and pro-active (capable of making “their own”
decisions when they like), that can interact with objects and
services, communicate with other agents and may be mo-
bile.

Agents interact with objects. Objects are passive [15].
In other words, an object needs to be invoked in order to
perform a function, and performs only during an invoca-
tion. Agents, on the other hand, receive messages and au-
tonomously decide if, when, and how to (re-)act. The only
way for one agent to influence another agent is by sending a
message, possibly with a request. An agent is free to ignore
or react to such requests.

Message delivery may be subject to different “quality of
service” levels. For example, the message paradigm de-
scribed by FIPA prescribes reliable and ordered point-to-
point communication between agents [8].

Agents in computer systems are often mobile. The de-
cision to migrate is taken autonomously by a mobile agent
itself. The ability of migration provides mobile agents a
means to overcome the high latency or limited bandwidth
problem of traditional client-server interactions by moving
their computations to required resources or services. The
current evolution of intelligent and active networks in sys-
tem and network management, for example, is based on this
technology [3]. A similar tendency is observed in the search
and filtering of globally available information such as in the
electronic marketplaces, e-commerce, and information re-
trieval on the World Wide Web [13].

A distinction can be drawn based on whether the execu-
tion state is migrated along with the unit of computation or
not [24]. Systems providing the former option are said to
supportstrong mobility, as opposed to systems that discard
the execution state across migration, and are hence said to
provideweak mobility. In systems supporting strong mo-
bility, migration is completely transparent to the migrated
program, whereas with weak mobility, extra programming
is required in order to save part of the execution state.



Strong mobility as found in NOMADS [30], Ara [23],
and D’Agents [12], requires that the entire state of the agent,
including its execution stack and program counter [14],
is saved before the agent is migrated to its new location.
Strong mobility is a complicated task to realize, and typical
implementations of this functionality in multi-agent plat-
forms as mentioned above, provide platform specific solu-
tions. As a consequence, interoperability between hetero-
geneous multi-agent systems is difficult, if not impossible,
to realize.

Many of the multi-agent platforms support weak mobil-
ity (like Ajanta [31] and Aglets [18]). Most of the agent
systems are implemented on top of the Java Virtual Ma-
chine (JVM), which provides with object serialization basic
mechanisms to implement weak mobility. The JVM does
not provide mechanisms to deal with the execution state.

Security is of great importance in agent systems, not only
in electronic monetary transactions, but also that mobile
agents should not become the next generation of viruses.
Current research on secure agent systems concentrates
mainly on protecting hosts against hostile mobile agents.
The problem of security stems from the fact that untrusted
code needs to be executed. Modern solutions are based on
the notion of protection domains by which a security policy
for accessing local resources can be enforced [11]. Only
very few systems also provide facilities for protecting mo-
bile agents against hostile hosts [17, 26].

3 The AgentScape Framework: A Scalable
Multi-Agent Infrastructure

AgentScape is a middleware layer that supports large-
scale agent systems. The rationale behind the design de-
cisions are (i) to provide a platform for large-scale agent
systems, (ii) support multiple code bases and operating
systems, and (iii) interoperability with other agent plat-
forms [34]. The consequences of the design rationale with
respect to agents and objects, interaction, mobility, security
and authorization, and services are presented in the follow-
ing subsections. This section concludes with some notes on
a prototype implementation of the AgentScape model.

3.1 The AgentScape Model

The overall design philosophy is “less is more,” that is,
the AgentScape middleware should provide a minimal but
sufficient support for agent applications, and “one size does
not fit all,” that is, the middleware should be adaptive or
reconfigurable such that it can be tailored to a specific ap-
plication (class) or operating system/hardware platform.

Agentsandobjectsare basic entities in AgentScape. A
location is a “place” at which agents and objects can reside
(see Fig. 1). Agents are active entities in AgentScape that

AgentScape

Solaris

Location A

AgentScape
middleware

AgentScape
middleware

AgentScape
middleware

AgentScape

Linux 

middlewaremiddleware
AgentScape

W2K/XP

middleware

Linux Solaris

Location B

Linux 

serviceobjectagent

Figure 1. AgentScape conceptual model.

interact with each other by message-passing communica-
tion. Furthermore, agent migration in the form of weak mo-
bility is supported. Objects are passive entities that are only
engaged into computations reactively on an agent’s initia-
tive. Besides agents, objects, and locations, the AgentScape
model also definesservices. Services provide information
or activities on behalf of agents or the AgentScape middle-
ware.

Scalability, heterogeneity, and interoperability are im-
portant principles underlying the design of AgentScape.
The design of AgentScape includes the design of agents,
objects and services, interactions, migrations, security and
authorization, as well as the agent platform itself. For exam-
ple, scalability of agents and objects is realized by distribut-
ing objects according to a per-object distribution strategy,
but not agents. Instead, agents have a public representation
that may be distributed if necessary.

The basic idea in the AgentScape model is that the core
functionality is provided by theagent interfaceimplemen-
tations such that the middleware (or the agent representa-
tion of the middleware) can be designed to perform basic
functions. This approach has a number of advantages. As
the middleware provides basic functionality, the complex-
ity of the design of the middleware can be kept manageable
and qualities like robustness and security of the middleware
can be more easily asserted. Additional functionality can be
implemented in the agent-specific interface implementation
(see Fig. 2).

− killMe

− putMessage
− moveMe

− createAgent

Agent specific interface implementation
(can be simple proxy or wrapper routine):

− kill

− move
− suspend

− start_agent

Location Manager/Middleware interface:
− create_agent

Agent specific interface implementation
(can be simple proxy or wrapper routine):

− putMessage
− moveMe
− killMe
− createAgent

− create_agent
− start_agent
− kill
− suspend
− move

Agent + Interface

AgentScape OS interface

AgentScape Operating System interface:

Figure 2. The AgentScape interface model.



Agent-agent interaction is exclusively via message-
passing communication. Asynchronous message passing
has good scalability characteristics with a minimum of syn-
chronization between the agents.

Agent migration between locations is based on weak mo-
bility [24] (see also Section 2.2). Thestateof the agent
is captured (e.g., the variables referenced by the agent) but
not thecontextof the agent (e.g., stack pointer and program
counter).

3.2 An AgentScape Architecture

Agents and objects are supported byagent serversand
object serversrespectively. Agent servers provide the inter-
face and access to AgentScape to the agents that are hosted
by the agent server. Similarly, objects servers provide ac-
cess to the objects that are hosted by the object server. Ser-
vices are made accessible in AgentScape by service access
providers.

A location is a closely related collection of agent and
object servers, possibly on the same (high-speed) network,
on hosts which are managed in the same administrative do-
main. Each host runs aminimal AOS kernel, and zero
or more agent servers, objects servers, and service access
providers. A location is implemented by the distributed
AOS kernels, the agent servers, the object servers, and ser-
vice access providers.

Depending on the policy or resource requirements, one
agent can be exclusively assigned to one agent server, or a
pool of agents can be hosted by one agent server. The ex-
plicit use of agent servers makes some aspects in the life
cycle model of agents more clear. An active agent is as-
signed to, and runs on a server; a suspended agent is not
assigned to an agent server. In this model, starting a newly
created, or activating an existing suspended agent, is simi-
lar, and some design decisions of the agent life cycle can be
simplified.

The use of agent and object servers is transparent to the
agents. Hence from the agent perspective, agent servers do
not belong to the AgentScape model. However, e.g., for per-
formance or security management reasons, an agent could
ask the middleware to determine on which agent server the
agent runs.

TheAgentScape Operating System(AOS) forms the ba-
sic fundament of the AgentScape middleware. An overview
of the AgentScape architecture is shown in Fig. 3. The AOS
offers a uniform and transparent interface to the underly-
ing resources and hides various aspects of network envi-
ronments, communication, operating system, access to re-
sources, etc. The AgentScape API is the interface to the
middleware. Both agents and services (e.g., resource man-
agement and directory services) use this interface to the
AOS middleware.

Object
Server

Agent
Server

Agent
Server

AgentScape OS Kernel

R
es

ou
rc

e

agent
container

management

M
an

ag
em

en
t

S
er

vi
ce

s

D
ire

ct
or

y

security

module module

comm.

module

bind protocol location
services

migration
module

module

life cycle

table

agent/process

AgentScape

API

Figure 3. An AgentScape middleware architecture.

The design of the AgentScape Operating System ismod-
ular. The AOS kernel is the central active entity that co-
ordinates all activities in the middleware. The modules in
the AOS middleware provide the basic functionality. Be-
low a brief overview of the most important modules is
given. The life-cycle module is responsible for the cre-
ation and deletion of agents. The communication module
implements a number of communication services, e.g., sim-
ilar to UDP, TCP, and streaming, with different qualities-of-
service. Support for agent mobility is implemented in the
migration module. The location service associates an agent
identifier with an contact-address. There are also location
services for objects, services, and locations. The security
architecture is essential in the design of AgentScape, as it
is an integral part of the middleware. Many modules in the
middleware have to request authentication or authorization
in order to execute their tasks.

In AgentScape, interoperability between agent platforms
can be realized in two ways. First by conforming to stan-
dards like FIPA [8] or OMG MASIF [20]. These agent
platform standards define interfaces and protocols for in-
teroperability between different agent platform implemen-
tations. For example, the OMG MASIF standard defines
agent management, agent tracking (naming services), and
agent transport amongst others. The FIPA standard is more
comprehensive in that it defines also agent communication
and agent message transport, and even defines an abstract
architecture of the agent platform. A second approach to
interoperability is realized by reconfiguration or adaptation
of the mobile agent. This can be accomplished by an agent
factory as described by Brazier et al. [1], which regenerates
an agent given a blueprint of the agent’s functionality and its
state, using the appropriate components for interoperability
with the other agent platform.



3.3 AgentScape Prototype

A prototype implementation of the AgentScape architec-
ture is currently available and provides the following basic
functionality: creation and deletion of agents, communica-
tion between agents and middleware, and weak migration of
agents. The AgentScape Operating System kernel and some
basic services are implemented in the programming lan-
guage Python, while the agent servers are implemented in
Java. Agent servers for other programming languages will
be made available in forthcoming releases of AgentScape.

Distributed shared (replicated) objects in AgentScape
will be supported by the Globe system [32]. Globe is
a large-scale wide-area distributed system that provides a
object-based framework for developing applications.

The use of multiple programming languages is not only
available at the application level (i.e., building agents and
objects in a programming language of choice), but also the
modules of the AOS are implemented in different program-
ming languages. For example, multiple location services
can be present in the AOS, each implemented in a different
language. One specific implementation of a location ser-
vice based on peer-to-peer networking is described in the
next section.

4 Integrating Peer-to-Peer Networking and
Computing in AgentScape

This section presents the proposed software architecture
of the AgentScape peer-to-peer networking and computing
infrastructure. The peer-to-peer networking infrastructure
in AgentScape is called Pole∗. The design approach of Pole
lies somewhere in between Chord and Pastry, and JXTA
(as described in Section 2.1). Similar to Chord and Pastry,
Pole implements an overlay network for routing messages
and storing information. However, the intended design of
Pole also includes high-level services for more complex co-
ordination using peer-to-peer networks, and making these
services available to the peer-to-peer application developer;
similar to the JXTA project philosophy.

The peer-to-peer support in AgentScape is intended for
the development of a variety of agent-based peer-to-peer In-
ternet systems like global file sharing, file storage, name and
location services, group communication, and agent coordi-
nation. Typical applications that can use the AgentScape
peer-to-peer infrastructure are distributed auctions and in-
formation retrieval. These applications put stringent re-
quirements on agent coordination and can profit from the
peer-to-peer functionality provided. Other appliance of
peer-to-peer functionality can be in instant messaging or,

∗Peer is consonant with pier, which is build on top of poles.

agent
factory

directory
services

information
retrieval

distributed
file storage

p2p
services

p2p
module

security 
module

comm.
module

AgentScape OS Kernel

. . .

AgentScape Applications

AgentScape Application Services

distributed
auction

Figure 4. AgentScape peer-to-peer architecture.

on a system level, in agent-based resource management on
wide-area networks [22].

The Pole peer-to-peer software architecture can be
roughly broken down into the three layers as presented in
the AgentScape framework: AOS kernel layer, services
layer, and application layer (see Fig. 4). The AOS kernel
layer deals with communication management such as rout-
ing and other low-level “plumbing.” The service layer deals
with higher-level concepts, such as indexing, searching, and
file sharing. At the top is the layer of applications such
as instant messaging, information retrieval, auctioning, and
storage systems.

4.1 AgentScape OS Kernel Support for Peer-to-
Peer Networking

The AgentScape OS kernel provides basic support for
services and agent applications. The AOS kernel can be ex-
tended with peer-to-peer functionality by loading (either at
startup or dynamically) the p2p module into the AgentScape
middleware (see Fig. 4). Modules in the AgentScape mid-
dleware implement the AgentScape OS kernel functional-
ity. The functionality provided by the modules is available
to the layers built on top of the AOS kernel layer, e.g., ser-
vices and applications make use of the security module for
implementing their security policy or encrypting their mes-
sages that are sent to and fro.

At the AOS kernel layer, mechanisms for peer groups
are supported to create policies for creation and deletion,
communication, and security. The current prototype im-
plementation of AgentScape uses XML-RPC to accomplish
message-passing communication. The messages sent be-
tween peers are structured with XML, and support transfer
of data, content and code in a protocol-independent man-
ner. Future developments also require monitoring of the
behaviour and activity of peers, in order to implement ac-
cess control, priority setting, traffic metering, and band-
width balancing.

The current p2p kernel module provides the basic mech-
anisms to realize a peer-to-peer overlay network and mes-
sage routing. The first Pole prototype implementation of the



p2p module organizes the hosts in an overlay network with
a circle topology, i.e., a host is a node on the circle topology.
Currently, the MD5 digest (128-bit hash) of the IP number
of a host is computed and the numerical value of the MD5 IP
hash is used determine its node position on the circle topol-
ogy. The MD5 digest of a combination of an IP number
and a port number can be used to introduce virtual nodes,
where multiple virtual nodes can reside on one single host
to improve load balancing (e.g., servers with large amounts
of memory and high bandwidth connectivity can host multi-
ple virtual nodes, while a laptop connected by WLAN hosts
one node).

The index keys are stored in the peer-to-peer network at
the node for which the direct successor relation holds. For
example, suppose the numerical value of the index key isk,
then the index key and the associated data is stored at node
a (the MD5 hash of the IP number), wherea ≤ k, and there
is no other nodeb such thata < b andb ≤ k. An important
characteristic of hash functions, and in particular for secure
hash functions like SHA-1, is that the hash function maps
index keys (or the IPs and port numbers in case of hosts) to
hash values with a uniform distribution. This characteristic
also ensures a uniform distribution of the index keys over
the nodes in the network.

The search algorithm for keys in the peer-to-peer net-
work makes use hypercube routing (or generalized prefix
routing) over the circle topology. The 128-bit hash id’s of
the nodes are used for prefix routing: given the key index
value, the search request is sent to the node that halves the
distance to the destination node. To this end, each node
keeps a table of node id’s at 20, 21, . . . , 2m−1 distance in
them-bit (in our case 128-bit) address space.

The self-organizing peer-to-peer overlay networks based
on distributed hash tables provide efficient and fault-tolerant
routing, object location, and load balancing. However, the
basic protocols do not consider network proximity at all.
An extension to the basic Pastry routing protocol is a sim-
ple heuristic that measures the proximity among a small
number of nodes. The resulting local properties are used
for routing messages to reduce network usage [2]. Chord
reduces lookup latencies by preferential contacting nodes
likely to be nearby in the underlying network. To this
end, Chord estimates the routing costs to neighboring nodes
based on latencies observed while building its routing ta-
bles [7]. Similar approaches will be adapted by Pole.

4.2 AgentScape Services for Peer-to-Peer Com-
puting

AgentScape services for peer-to-peer computing expand
upon the capabilities of the AOS kernel and facilitate appli-
cation development. Facilities provided in this layer include
mechanisms for searching, sharing, indexing, and caching.

Search capabilities can include distributed, parallel searches
across peer groups. Note that the directory services in
AgentScape can make use of the peer-to-peer services. Di-
rectory services are typically databases (or data structures)
that can be indexed by attributes, and their distributed infor-
mation can be updated using peer-to-peer mechanisms.

One specific service currently under development in the
AgentScape environment is a location service based on
peer-to-peer networking. A location service in AgentScape
maps agent handles to contact-addresses. An agent han-
dle in AgentScape is a location service specific data struc-
ture used to efficiently map a unique agent identifier to its
contact-address. AgentScape can support multiple location
services, for example one based on DNS (or something sim-
ilar with a hierarchical structure) and another based on peer-
to-peer networking. The unique agent identifier is registered
at a specific location service, and a location service specific
agent handler is returned for future use.

The peer-to-peer location service prototype computes the
MD5 digest value of the agent’s identifier and uses this
value as the agent handle (the key used for searching in the
peer-to-peer network). The hash value of the agent iden-
tifier and the contact-address are stored in the peer-to-peer
network as described in Section 4.1. The contact-address
can be compared with a business card stating different pro-
tocols and references to contact a person, e.g., address fol-
lowed by street, number, and city; telephone followed by
a number; email followed by an email address; or TCP/IP
followed by IP and port number. When an agent wants to
contact another agent, it gives the agent handle to the lo-
cation service, and the contact-address is returned. Given
the contact-address, the agent can now choose between the
different protocols to contact the remote agent.

In general, the peer services layer can be used to sup-
port other custom, application-specific functions, for exam-
ple a secure peer messaging system could be built to allow
anonymous authorship and a persistent message store. The
peer services layer provides the mechanisms to create such
secure tools; specific tool policies are determined by the ap-
plication developers themselves.

4.3 Peer-to-Peer AgentScape Applications

AgentScape agent-based peer-to-peer applications are
built using the peer services as well as the AOS kernel layer.
The Pole peer-to-peer facilities are made available to the ap-
plication developer as runtime libraries that implement the
API to AgentScape peer-to-peer services and the AOS ker-
nel peer-to-peer module.

Peer applications enabled by both the core and peer ser-
vices layers include peer-to-peer electronic auctions and
markets that link buyers and sellers directly [21]. Agent-
based resource sharing applications can be built more



quickly and easily.

Besides the AgentScape interface to Pole, an interface to
CP2PC will be provided. CP2PC is a minimal programming
interface to file sharing peer-to-peer systems [6]. Client side
applications can be built on top of this interface by different
developers. CP2PC defines interfaces for joining, search-
ing, downloading, publishing operations, and for manag-
ing meta-information, configuration and control, monitor-
ing, and peer groups. The client side applications can be in-
terfaced by CP2PC to other peer-to-peer systems like Pole,
Chord, Pastry, JXTA, etc.

5 Summary and Future Work

This paper presents the Pole software architecture to
extend the AgentScape framework with peer-to-peer com-
puting facilities. The peer-to-peer computing functionality
in the AgentScape framework is incorporated at three lev-
els: AOS kernel, AgentScape services, and API runtime li-
braries. These peer-to-peer facilities can be used as build-
ing blocks in the construction of a variety of agent-based
peer-to-peer Internet applications like distributed auctions,
global file storage, and distributed information retrieval.

There is a prototype implementation of the Pole peer-
to-peer software architecture and the AgentScape envi-
ronment. One implementation of the location service in
AgentScape makes use of the Pole peer-to-peer system.
Other services in the AgentScape OS, such as name and
directory services, will also make use of the peer-to-peer
technology. Furthermore, the proposed management sys-
tem in AgentScape used for allocating resources and load-
sharing and balancing of agents over the resources, is based
on agent-oriented peer-to-peer computing. The dynamic
nature of available and unavailable resources, and dynami-
cally created, deleted, and migrating agents, requires scal-
able and robust mechanisms to manage the distributed sys-
tem effectively. Peer-to-peer computing seems to have the
potential to offer a solution.

Future work on the Pole system will include key and data
replication strategies for fault-tolerance and search perfor-
mance. Other improvements will include the exploitation
of network proximity in message routing in order to reduce
communication latencies and increase bandwidth.

Acknowledgements

The authors would like to thank Niek Wijngaards and
Maarten van Steen for the valuable discussions and their
comments. This work is supported by NLnet Foundation,
http://www.nlnet.nl/.

References

[1] F. M. T. Brazier, B. J. Overeinder, M. van Steen, and N. J. E.
Wijngaards. Agent factory: Generative migration of mobile
agents in heterogeneous environments. InProceedings of the
ACM Symposium on Applied Computing (SAC 2002), pages
101–106, Madrid, Spain, Mar. 2002.

[2] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Ex-
ploiting network proximity in distributed hash tables. In
Proceedings of the International Workshop on Future Direc-
tions in Distributed Computing (FuDiCo 2002), Forl̀ı, Italy,
June 2002.

[3] W.-S. E. Chen and C.-L. Hu. A mobile agent-based active
network architecture for intelligent network control.Infor-
mation Sciences, 141(1-2):3–35, Mar. 2002.

[4] D. Clark. Face-to-face with peer-to-peer networking.Com-
puter, 34(1):18–21, Jan. 2001.

[5] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and B. Wi-
ley. Protecting free expression online with Freenet.IEEE
Internet Computing, 6(1):40–49, Jan./Feb. 2002.

[6] CP2PC Home Page. http://www.cs.vu.nl/pubs/globe/cp2pc.
[7] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-

ica. Wide-area cooperative storage with CFS. InProceed-
ings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), pages 202–215, Banff, Canada, Oct.
2001.

[8] J. Dale and E. Mamdani. Open standards for interoperat-
ing agent-based systems.Software Focus, 2(1):1–8, Spring
2001.

[9] I. Foster and C. Kesselman, editors.The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann, San
Fransisco, CA, 1999.

[10] L. Gong. JXTA: A network programming environment.
IEEE Internet Computing, 5(3):88–95, May/June 2001.

[11] L. Gong and R. Schemers. Implementing protection do-
mains in the Java Development Kit 1.2. InProceedings of
the Symposium on Network and Distributed System Security,
pages 125–134, San Diego, CA, Mar. 1998. Internet Society.

[12] R. S. Gray, G. Cybenko, D. Kotz, R. A. Peterson, and
D. Rus. D’Agents: Applications and performance of a
mobile-agent system.Software: Practice and Experience,
32(6):543–573, May 2002.

[13] V. N. Gudivada, V. V. Raghavan, W. I. Grosky, and
R. Kasanagottu. Information retrieval on the World Wide
Web. IEEE Internet Computing, 1(5):58–68, Sept./Oct.
1997.

[14] K. A. Iskra, F. van der Linden, Z. W. Hendrikse, B. J.
Overeinder, G. D. van Albada, and P. M. A. Sloot. The im-
plementation of Dynamite: An environment for migrating
PVM tasks. Operating Systems Review, 34(3):40–55, July
2000.

[15] N. R. Jennings and W. J. Wooldridge, editors.Agent Tech-
nology: Foundations, Application, and Markets. Springer-
Verlag, Berlin, Germany, 1998.

[16] M. A. Jovanovic. Modeling peer-to-peer network topologies
through “small-world” models and power laws. InProceed-
ings of the IX Telecommunications Forum (TELFOR 2001),
Belgrade, Yugoslavia, Nov. 2001.



[17] N. Karnik and A. Tripathi. Security in the Ajanta mo-
bile agent system. Software: Practice and Experience,
31(4):301–329, Apr. 2001.

[18] D. B. Lange, M. Oshima, G. Karjoth, and K. Kosaka. Aglets:
Programming mobile agents in Java. InWorldwide Comput-
ing and Its Applications, volume 1274 ofLecture Notes in
Computer Science, pages 253–266. Springer-Verlag, Berlin,
Germany, 1997.

[19] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor—A
hunter for idle workstations. InProceedings of the 8th In-
ternational Conference on Distributed Computing Systems,
pages 104–111, San Jose, CA, June 1988.

[20] D. Milojicic et al. MASIF: The OMG mobile agent system
interoperability facility. InProceedings of the 2nd Interna-
tional Workshop on Mobile Agents, volume 1477 ofLecture
Notes in Computer Science, pages 50–67, Berlin, Germany,
Sept. 1998. Springer-Verlag.

[21] E. Ogston and S. Vassiliadis. A peer-to-peer agent auction.
In Proceedings of the First International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS
2002), Bologna, Italy, July 2002.

[22] B. J. Overeinder, N. J. E. Wijngaards, M. van Steen, and
F. M. T. Brazier. Multi-agent support for Internet-scale Grid
management. InProceedings of the AISB’02 Symposium on
AI and Grid Computing, pages 18–22, London, UK, Apr.
2002.

[23] H. Peine. Application and programming experience with
the Ara mobile agent system.Software: Practice and Expe-
rience, 32(6):515–541, May 2002.

[24] G. P. Picco. Mobile agents: An introduction.Microproces-
sors and Microsystems, 25(2):65–74, Apr. 2001.

[25] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weath-
erspoon, and J. Kubiatowicz. Maintenance-free global data
storage. IEEE Internet Computing, 5(5):40–49, Sept./Oct.
2001.

[26] V. Roth and M. Jalali-Sohi. Concepts and architecture of a
security-centric mobile agent server. InFifth International
Symposium on Autonomous Decentralized Systems (ISADS
2001), pages 435–443, Dallas, TX, Mar. 2001.

[27] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. InMiddleware 2001, volume 2218 ofLecture
Notes in Computer Science, pages 329–350, Berlin, Ger-
many, 2001. Springer-Verlag.

[28] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for Internet applications. InProceedings of the 2001 Con-
ference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM’01),
pages 149–160, San Diego, CA, Aug. 2001.

[29] Sun Microsystems, Inc. Project JXTA: An open, innovative
collaboration. White Paper, http://www.jxta.org/project/-
www/docs/OpenInnovative.pdf, Apr. 2001.

[30] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A.
Hill, R. Jeffers, T. S. Mitrovich, B. R. Pouliot, and D. S.
Smith. Nomads: Toward a strong and safe mobile agent sys-
tem. InProceedings of the Fourth International Conference
on Autonomous Agents, pages 163–164, 2000.

[31] A. Tripathi, N. Karnik, M. Vora, T. Ahmed, and R. Singh.
Mobile agent programming in Ajanta. InProceedings of
the 19th International Conference on Distributed Comput-
ing Systems (ICDCS’99), pages 190–197, Austin, TX, May
1999.

[32] M. van Steen, P. Homburg, and A. S. Tanenbaum. Globe: A
wide-area distributed system.IEEE Concurrency, 7(1):70–
78, Jan.–Mar. 1999.

[33] D. J. Watts and S. H. Strogatz. Collective dynamics of
‘small-world’ networks. Nature, 393(6684):440–442, June
1998.

[34] N. J. E. Wijngaards, B. J. Overeinder, M. van Steen, and
F. M. T. Brazier. Supporting Internet-scale multi-agent sys-
tems.Data and Knowledge Engineering, 41(2–3):229–245,
June 2002.

[35] M. J. Wooldridge and N. R. Jennings. Intelligent agents:
Theory and practice.The Knowledge Engineering Review,
10(2):115–152, June 1995.


