13,082 research outputs found

    Benchmarking Blockchains: The case of XRP Ledger and Beyond

    Get PDF
    Blockchain and Distributed Ledger Technologies appear to be at a worldwide threshold of acceptance and adoption. Since their inception, several innovative projects have been proposing solutions to the blockchain trilemma, improving blockchain features and its technical limitations. However, the adoption of blockchain as a technology requires a comprehensive understanding and characterization of its technical aspects. The latter introduces an uncertainty for an organization to decide which blockchain protocol best meets its needs and demands. In general, there is a lack of proper testing and software engineering practices for assessing the usage of different blockchain protocols and understanding their performance. Toward that direction, this paper presents an architecture for a blockchain benchmarking framework that aims at the deployment and evaluation of different blockchain protocols. Moreover, we introduce a set of modules for testing and evaluating their behavior under different test-cases and scenarios. To illustrate the usefulness of the proposed architecture we demonstrate an instantiation with the deployment of a private XRPL Network. The experiments conducted in this work were focused on how XRPL behaves under heavy load

    Distributed Access Control with Blockchain

    Full text link
    The specification and enforcement of network-wide policies in a single administrative domain is common in today's networks and considered as already resolved. However, this is not the case for multi-administrative domains, e.g. among different enterprises. In such situation, new problems arise that challenge classical solutions such as PKIs, which suffer from scalability and granularity concerns. In this paper, we present an extension to Group-Based Policy -- a widely used network policy language -- for the aforementioned scenario. To do so, we take advantage of a permissioned blockchain implementation (Hyperledger Fabric) to distribute access control policies in a secure and auditable manner, preserving at the same time the independence of each organization. Network administrators specify polices that are rendered into blockchain transactions. A LISP control plane (RFC 6830) allows routers performing the access control to query the blockchain for authorizations. We have implemented an end-to-end experimental prototype and evaluated it in terms of scalability and network latency.Comment: 7 pages, 9 figures, 2 table

    How blockchain impacts cloud-based system performance: a case study for a groupware communication application

    Get PDF
    This paper examines the performance trade-off when implementing a blockchain architecture for a cloud-based groupware communication application. We measure the additional cloud-based resources and performance costs of the overhead required to implement a groupware collaboration system over a blockchain architecture. To evaluate our groupware application, we develop measuring instruments for testing scalability and performance of computer systems deployed as cloud computing applications. While some details of our groupware collaboration application have been published in earlier work, in this paper we reflect on a generalized measuring method for blockchain-enabled applications which may in turn lead to a general methodology for testing cloud-based system performance and scalability using blockchain. Response time and transaction throughput metrics are collected for the blockchain implementation against the non-blockchain implementation and some conclusions are drawn about the additional resources that a blockchain architecture for a groupware collaboration application impose
    corecore