
Australasian Conference on Information Systems Beck, Eklund & Spasovski
2019 Fremantle Blockchain groupware performance case study

How blockchain impacts cloud-based system
performance: a case study for a groupware
communication application

Roman Beck
European Blockchain Center
IT University of Copenhagen
Copenhagen, Denmark
Email: romb@itu.dk

Peter W. Eklund
Centre for Cyber Security Research & Innovation (CSRI)
Deakin University
Geelong, Australia
Email: peter.eklund@deakin.edu.au

Jason Spasovski
Deloitte Consulting
Copenhagen, Denmark
Email: jspasovski@deloitte.dk

Abstract

This paper examines the performance trade-off when implementing a blockchain architecture
for a cloud-based groupware communication application. We measure the additional cloud-
based resources and performance costs of the overhead required to implement a groupware
collaboration system over a blockchain architecture.
To evaluate our groupware application, we develop measuring instruments for testing
scalability and performance of computer systems deployed as cloud computing applications.
While some details of our groupware collaboration application have been published in earlier
work, in this paper we reflect on a generalized measuring method for blockchain-enabled
applications which may in turn lead to a general methodology for testing cloud-based system
performance and scalability using blockchain.
Response time and transaction throughput metrics are collected for the blockchain
implementation against the non-blockchain implementation and some conclusions are drawn
about the additional resources that a blockchain architecture for a groupware collaboration
application imposes.
Keywords blockchain, groupware, collaboration systems, cloud computing, secure messaging
systems.

Australasian Conference on Information Systems Beck, Eklund & Spasovski
2019, Fremantle Blockchain groupware performance case study

 1

1 Introduction
Group communication tools are increasingly used in work environments and can be
characterized by many database changes that require fast, secure, and scalable message
processing. These requirements can be a challenge to security and scalability. Are these aims
simultaneously achievable in cloud-based groupware communication applications? If so, at
what cost to system resources and performance?
While group collaboration practices are intensifying in distributed teams, most collaboration
tools such as Jive or Yammer or Slack1 are architected around a trusted central server (Beck et
al., 2014). In order to reflect the changing nature of collaboration, decentralized collaboration
tools are anticipated that are as secure as centralized systems, but without the need for a
trusted third-party (Ciriello et al, 2018). This will – among other features – allow users to
control their data, even take their data with them when they move to the next assignment or
job (Tapscott & Tapscott 2016). One natural way of achieving decentralization in group
communication tools and permitting finer granular control over private data is to organize the
groupware application around a peer-to-peer blockchain.
While blockchain promises advantages over traditional databases, for instance strong
irrefutability, auditable data storage (Zyskind et al, 2015, Nakamoto, 2008, Fisher & Sanchez,
2016) and without the need for a trusted third-party, however it also introduces complexity
and implementation overhead. The strength of hardening data against tampering through the
use of a decentralized ledger results in a performance and scalability challenge, mainly because
of the overhead introduced by the consensus algorithms and the costs associated with
distributing the ledger (Dinh et al, 2017). For this reason, it is important to better understand
the advantages, disadvantages and costs of using blockchain in detail.
In this paper we were interested in how blockchain-powered groupware collaboration
applications scale? As this requires cloud-based performance testing, we also answer the
question how scalability and performance are benchmarked in blockchain-
enabled groupware applications? The future objective of our work is to develop expertise
that can predict performance impact and anticipate the resources needed to deploy blockchain-
enabled applications.
This paper is structured as follows. Section 2 presents some background on blockchain,
describing the mechanisms used in its implementation and summarizing the performance
characteristics of various blockchain implementation alternatives. Section 3 presents the
design science research approach that was followed in our iterative development and testing
cycle. Section 4 discusses the architecture used and gives details of the implementation of the
collaboration application. In Section 5, we present the measuring instruments and the various
test scenarios. In Section 6, the performance results are presented, focusing on the key metrics
of response-time and throughput at varying levels of resource provisioning. In Section 7 we
confront expectations with the experimental findings, thereafter we analyze each of the results.
Lastly, in Section 8 we conclude with a brief summary of the results, their analysis and our
future plan of work.

2 Blockchain Background
Consensus algorithms are used within blockchains to ensure that participating nodes in the
distributed network agree with the state of the blockchain when new blocks are added
(Christidis & Devetsikiotis, 2016). Blockchain consensus algorithms have the property of
“Byzantine fault tolerance”, meaning that no single machine can succeed in a malicious attack
on the distributed system (Lamport et al., 1982) without being ‘checked’ or ‘detected’ by other
nodes in the distributed network. This is an important feature for a groupware communication

1 https://www.jivesoftware.com, https://products.office.com/en-au/yammer/, https://slack.com/

Australasian Conference on Information Systems Beck, Eklund & Spasovski
2019, Fremantle Blockchain groupware performance case study

 2

tool because the architecture delivers strong irrefutability among the message group that, in
practice, eliminates ex post facto amendments to the ledger.
The first implementation of a blockchain in 2009 used the consensus algorithm ‘proof-of-work’
(Nakamoto, 2008). Since then, a variety of consensus algorithms have been developed and
used, mostly variants of ‘proof-of-stake’ or ‘proof-of-authority’.
Bitcoin is a cryptocurrency powered by a blockchain that allows users to submit transactions
without the need for a centrally trusted organization; this is achieved using ‘proof-of-work’
consensus (Nakamoto, 2008). The proof-of-work algorithm is based on one-way hash
functions, where the only mechanism to recover a hash key is via brute-force, namely without
strategy or heuristic, to generate and test permutations of messages until they match the hash
value. This undirected search approach requires a large amount of computational resource
(and therefore energy), resulting in slow transaction times and small throughput.
‘Proof-of-stake’ is a less expensive consensus alternative to proof-of-work. Here, no brute-force
computing is required to achieve consensus. Instead, the next node to create a block is selected
proportional to its ‘stake’ in the blockchain. In cryptocurrency blockchains, the stake is the
number of tokens a node holds - usually combined with how long they have been held (Bentov,
Gabizon, & Mizrahi, 2016). In non-cryptocurrency blockchains, stakes typically do not exist.
Thus, an authority is selected to add blocks to the blockchain, usually via a ballot or lottery,
referred to as ‘proof-of-authority’ consensus (Knirsch, Unterweger, & Engel, 2018).

Table 1. Some blockchain frameworks and their performance claims extended from Buchman, 2016
and Vukolic, 2017.

All blockchains fall into one of two categories, namely ‘public’ or ‘private’ (Peters & Panayi,
2016). Public-blockchains allow all users on the network to view the data stored, while private
blockchains hide data stored on the blockchain between permissioned participants. Private
blockchains can be either fully-private or consortium blockchains. Read/write permissions of
a fully-private blockchain are controlled by a single organization, while consortium
blockchains distribute read/write permissions across a permissioned consortium, which adds
the extra security of decentralization. Thus, while the consensus mechanism for measuring
blockchain scalability and performance is important, so too is the governance structure and
decision whether to use a public permissioned/permission-less or private-consortium
blockchain (Beck et al, 2018).

3 Design science methodology
For the development and evaluation of our groupware collaboration tool we follow a Design
Science Research (DSR) approach (Simon, 1996). Like other prior DSR information system
artefact approaches, we design, implement, and evaluate a new IT artifact (March & Smith,
1995; Orlikowski & Iacono, 2001). In this case a blockchain-powered groupware collaboration
tool, while simultaneously developing a method to compare the performance and scalability
overhead to guide future blockchain systems design and evaluation (Gregor & Hevner, 2013;
Gregor & Jones, 2007).

MEDES ’19, November 12–14, 2019, Limassol, Cyprus Eklund and Beck

Framework Name Consensus Algorithm OpenSource Throughput (tx/s) Response time (secs)
Bitcoin PoW Y 3-5 > 500
Ethereum PoW Y 15-30 360
Ethereum Casper PBFT/PoW hybrid - ethash Y ⇡ 5000 unknown
Ripple RPCA (Ripple Protocol consensus Algorithm) Y 50,000 4
NEO Delegated-BFT Y 10,000 15-20
Hyperledger Fabric Kafka/Raft Y 80,000 < 1
Hyperledger Sawtooth Proof of Elapsed Time (PoET) Y more than 80,000 < 1
MultiChain PBFT + MultiChain Y 1000-1500 5 � 10
Qourum Raft/IBFT Y 835 5
Tendermint Tendermint BFT Y 4,000-10,000 < 1
Red Belly Democratic-BFT N 660,000 2 � 4
Kadena Scalable PoW-BFT N 8,000 < 0.1

Table 1: Some blockchain performance claims, extended from [6, 8].

rarely get concrete details on the resources that provision the perfor-
mance tests, the nature of the tra�c and load on the cloud-services,
or the geographic spread of the cloud resources. It seems most of
the tests are also conducted without the presence of deception on
the network, so we have no sense of how corruptible the protocols
are, and therefore no idea how robust or reliable the solutions –
compared to one another – when prone to deception.

4 SMART CONTRACTS
In blockchain systems, consensus protocols are constrained by the
property of byzantine fault tolerance and while each consensus
protocol that we surveyed claims this property, the degree of e�ort
required to subvert the blockchain varies, but is largely unknown,
untested or unreported.

While the blockchain as a data-structure looks to be an impreg-
nable point of entry for attackers, DLT systems – by virtue of very
di�erent architecture to traditional centralized systems – are not
immune to new and di�erent types of vulnerability. On the con-
trary, the highly decentralized architecture for the execution of
smart contracts exposes vulnerability at every consensus node that
executes an Ethereum Virtual Machine (EVM) in Ethereum. It is
worthwhile therefore to explore the execution environment for
smart contracts because the performance and vulnerability of the
execution languages can give insight to performance, scalability
and security.

4.1 Smart Contract Programming Languages
Smart contracts are programs that run on the blockchain network.
Smart contract languages (a.k.a. called contract-oriented program-
ming languages) are programming languages that are used to write
or specify smart contracts.

Solidity is the pre-eminent language for Ethereum and some
other DLT platforms. Other programming languages can also run
on the Ethereum Virtual Machine (EVM)1. These include Python,
Go, Rust, Java Ruby etc. Solidity is believed to be the cause behind
the Decentralized Autonomous Organization (DAO) hack in 2016.
TheDAO, built on Ethereum,was hacked but not through tampering

1https://github.com/ethereum/wiki/wiki/Ethereum-Virtual-Machine-
(EVM)-Awesome-List

with the Ethereum blockchain on which it ran, but rather through
an exploit of the EVM programming language Solidity that fooled a
smart contract into spending all its Ether. Solidity su�ers from some
design �aws including batch over�ow – if you over�ow a number
it over�ows silently and resets its value to 0, double-spending is
also possible, and unauthorized function calls can be inserted into
code.

Bitcoin Script language, the Bitcoin programming language, sup-
ports only conditionals, stack manipulation, hashing, and digital-
signature veri�cation operations but no loops, thus all programs
halt and the language is not Turing complete. Ivy [11] is a higher-
level language that can compile to Bitcoin Script, the low-level
language used by the Bitcoin protocol to determine whether a
transaction is authorized. It is a stack-based language and limited
to Bitcoin capabilities, Simplicity [17] is a typed, combinator-based,
functional language without loops and recursion, designed to be
used for crypto-currencies and blockchain applications. Simplicity
is meant to replace Bitcoin Script, and thus allow for developing
abstract and expressive smart contract programming languages.

Flint [19], is type-safe, capabilities-secure, contract-oriented pro-
gramming language designed for writing robust smart contracts.
Flint allows programmers to use caller capabilities to de�ne access
control on smart contract functions. To prevent vulnerabilities relat-
ing to the unintentional loss of currency, transfers of assets in Flint
are performed through safe atomic operations. Formal modeling
and veri�cation of smart contracts - e.g. F* [5] either using smart
contract source code or using their byte code helps avoid the �aws
existing in current smart contract programming languages and the
lack of practical programmer experience with contract-oriented
programming languages. On the other hand, there is another co-
hort who wants to use model-driven engineering to generate smart
contracts from abstract models cite (Towards Model-Driven Engi-
neering of Smart Contracts for Cyber-Physical Systems) to simplify
the contract modeling, and automate the source code generation.

4.2 Execution Environments
The Ethereum Virtual Machine (EVM) is Turing complete 256 bit
Virtual Machine that allows anyone to execute EVM Byte Code.
EVM/Solidity are the most popular development combination for

Australasian Conference on Information Systems Beck, Eklund & Spasovski
2019, Fremantle Blockchain groupware performance case study

 3

We follow a DSR approach because we aim for a methodological development and evaluation
of an IT artifact, at the same time developing a way to compare the performance and scalability
of blockchain-enabled applications more generally. We followed the guidelines for theory-
generating DSR by Beck et al. (2013) including (1)-(4) as follows, these steps are iterative (Beck
et al., 2013).

a) Creating awareness of the problem and suggesting an approach to solve it: Poor
scalability and performance are two routine pitfalls using blockchain systems
(Tschorsch and Scheuermann, 2016), this is partly due to the restrictions of the core
technology, but the design and architecture of the underlying application can also
impact performance. Our approach is to design the architecture and functionality with
an emphasis on minimizing vulnerabilities exposed by the use of the blockchain.

b) Developing the artefact: The application was developed iteratively, after each stage
tested and evaluated and subsequent improvements made. The first iteration involved
the architecture of the software, where the focus was on obtaining best performance
and scalability by following common software patterns (Richards, 2015). The second
iteration focused on creating the core functionality of the application using ‘Separation
of Concerns’ (Hürsch & Lopes, 1995).

c) Evaluating the artefact: After an initial development stage the architecture was
evaluated and a decision taken on whether an alternative architectural pattern would
be better suited. This architectural pattern revision took advantage of non-validator
blockchain nodes, i.e., not every client participates in consensus-making. This design
modification improved performance and scalability. After the second stage we analysed
the core functionality, and pin-pointed bottlenecks based of micro-benchmarks of the
blockchain technology used (Buchman, 2016). The evaluation of the core functionality
led to the decision that using non-blocking (asynchronous) functions could circumvent
validator response time, thus improving performance. Using asynchronous functions
is a design choice that was well suited to this use case, but does not suit all use cases.

d) Abstracting design knowledge: In order to accurately abstract design knowledge and
measure efficiency, we created a tool to measure scalability and performance based on
a performance testing methodology (Menascé, 2002). The measurement of scalability
and performance can be subjective, depending on the underlying cloud-based
infrastructure, thus we reduce this idea to an objective comparison between two
systems: comparing an implementation without blockchain to a system with the same
underlying infrastructure with a blockchain implementation. This allows us to
measure the overhead of the blockchain relative to the base-line performance of the
artifact with and without the features provided by the blockchain. In the following text
we will explain in more detail the developed collaboration tool and how the
performance and scalability tests are applied.

4 Blockchain-based collaboration tool implementation
The core functionality of the collaboration tool is powered by a RESTful API built in Scala
which sends and receives messages between groupware clients, otherwise referred to as ‘the
application’. The blockchain used in our experiment is the permissioned private consortium
blockchain Tendermint2. Tendermint is a relatively lightweight blockchain solution. Its
consensus method is ‘proof-of-authority’ using a voting mechanism (Buchman, 2016), as
opposed to the more computational expensive proof-of-work made famous by Bitcoin.
Two different node types exist in Tendermint, namely validator and non-validator nodes.
Validator nodes are part of the consortium, nodes which vote to agree on consensus, while non-
validator nodes are restricted to reading and proposing transactions on the blockchain. All

2 http://tendermint.com version 0.9.

Australasian Conference on Information Systems Beck, Eklund & Spasovski
2019, Fremantle Blockchain groupware performance case study

 4

nodes in the Tendermint blockchain communicate over a persistent encrypted TCP P2P gossip
communication protocol3.
From a design perspective, a straight-forward method of using a blockchain is to store all data
in the blockchain. Storing all data has one significant drawback; namely if all data stored on
the blockchain is immutable, no data can ever be removed. This in turn causes the blockchain
to grow so large that it can become impractical to store and distribute, particularly for a
groupware messaging application.
Growth of the blockchain is inevitable but the rate of growth can be managed. All data in our
implementation is stored in MongoDB4, while only a hash-key of the data entries is saved in
the blockchain. The hash-keys in the blockchain are used as a check to confirm the validity of
the data stored in the database. For each individual data-entry retrieved from the database, the
blockchain is queried with the appropriate hash-keys, thus confirming the validity the data
retrieved from the database. A flag indicating the validity of data is always sent along with the
message retrieved from the database. This approach to abbreviating the blockchain is a
common idea among developers, particularly those building proof-of-concept blockchain
implementations, but it is vulnerable since a malefactor can always shift their point of attack
from the blockchain to the NoSQL database.
In order for the application to communicate with the blockchain validator nodes, each
application server runs a local version of the blockchain. This local version is a non-validator
node synchronized with the blockchain, it pushes new transactions to validator nodes but does
not participate in the consensus. This design was chosen to allow validator nodes to focus on
adding transactions with consensus rather than responding to blockchain queries, which
would otherwise slow the consensus. We adopted an asynchronous approach when pushing
new transactions to the blockchain, this allows users to view transactions before the
transaction is validated by all validators. When adding a new transaction, the validity of the
transaction is checked by the local blockchain, returning true if the local blockchain verifies
the transaction as valid. The local blockchain node ‘gossips’ with the validators with consensus
being quickly found. Subsequently, the new transactions are added to the blockchain, after
which the user receives confirmation that the transaction is validated (Buchman, 2016).

5 Blockchain-based collaboration tool evaluation
Collaboration tools are on-line services used by large audiences and are characterized by
countless database changes, with the addition of other special requirements, such as the need
for low response times and confidential data storage. These requirements prove to be a
challenge to both security and scalability.
Many commercial message-based groupware applications use blockchain (see Dust5, Status6,
e-Chat7, and BeeChat8), some with the purpose of creating an immutable, distributed
permanent record of communication and others with the intent of an agreed Peer-to-peer
protocols for message deletion. Spasovski (with Andreassen and Lyck) developed dallr9 to
create a simple intuitive platform with a flat learning curve to target small to medium sized
companies. dallr is a groupware communication application that provides the platform for our
empirical comparison. Two test scenarios are designed to simulate large numbers of users
communicating via the collaboration tool. Performance and scalability are the two key features
measured. Performance is evaluated via response-time, scalability under increasing load and
the server resources consumed. The difference between the two test scenarios lies in the form
or topology of communication between the users. The first uses a realistic messaging pattern

3 https://en.wikipedia.org/wiki/Gossip_protocol
4 https://www.mongodb.com
5 https://usedust.com
6 https://status.im
7 https://echat.io
8 https://beechat.io
9 https://bitbucket.org/nosaj/dallr-scala/src/blockchain-testing-tendermint-nonblocking/

Australasian Conference on Information Systems Beck, Eklund & Spasovski
2019, Fremantle Blockchain groupware performance case study

 5

based on a scale-free network (Barabasi et al, 1999). The second simulates a client-server
topology where a single node (server/authority/command and control node) receives
messages from the entire client-network.
Each test scenario was run for 60 seconds including a 10 second ramp-up period in which all
threads are started and thereafter run concurrently. The time-out for all requests is 20 seconds
throughout all tests. Response-time and throughput are the preferred metrics to test both
‘SendMessage’ and ‘RetrieveAllMessages’ functions. SendMessage appends a message to those
previously sent. RetrieveAllMessages is the analogue of restarting the groupware client and
reloading every message ever sent between two parties into the groupware application. Both
non-blockchain and blockchain implementations are tested for each of the network topology
scenarios, scale-free and centralised.
We create the first testing scenario by applying network theory, specifically scale-free network
theory to produce scale-free networks. We use the Barabasi-Albert (1999) model to produce
power-law graphs using a Java implementation of the Barabasi-Albert model named
GraphStream10. Each user is represented as a vertex and a message sent from one user to
another is represented as an (undirected) edge. A node with relatively high degree of
connectivity is denoted a ‘hub’.

Figure 1: Overview of the testing environment.

The first test scenario receives the number of users as input and creates that many threads
(users) that run in parallel. The scale-free network graph is loaded into the test which instructs
each user who to message using the ‘SendMessage’ function. Each ‘SendMessage’ function has
a 10% chance to trigger ‘RetrieveAllMessage’ function, followed by a 300-millisecond delay.
Once the test reaches the end, it waits for (#users*2) milliseconds before restarting.
We now describe the second scenario, namely 1 to n-1 (or centralized client-server topology).
By forcing all users to send their messages to a single user (User #1), we replicate a heavy load
onto a single user. By comparing the load on the heavily loaded user with the remaining users
in both implementations, we emphasize the blockchain's ability to cope with centralized stress.
The test takes the number of users as input and creates that many threads (users) run in
parallel. Each user concurrently sends a message to User #1, using ‘SendMessage’, followed by
300 milliseconds delay. Thereafter the user has a 10% chance to retrieve all messages using the
‘RetrieveAllMessage’ function, followed by a 300 milliseconds delay.

10 http://graphstream-project.org/

Australasian Conference on Information Systems Beck, Eklund & Spasovski
2019, Fremantle Blockchain groupware performance case study

 6

As seen in Figure 1, all requests are sent using 10 slave test-machines controlled by the master
testing server. Each slave concurrently sends requests to an ‘Application Load balancer’ which
distributes requests across application servers. The blockchain implementation runs a local
blockchain used to communicate and synchronized with the validator blockchains. A single
database server is shared between all application servers. The tests, using Apache JMeter11, ran
up to 800 concurrent users for over a minute. Microsoft Azure12 was used as the cloud
infrastructure for all servers. The 10 blockchain validator nodes are deployed in three different
geographic regions (Amsterdam, London and Frankfurt) on the DigitalOcean cloud13. In this
way, we attempt to replicate the real-world, where the blockchain nodes would be distributed
between a consortium of dispersed organizations.
Buchman (2016) ran detailed tests on Tendermint showing that by adding more validators,
this both lowers the throughput and increases latency. He first ran 64 validators and achieved
throughput of 4,000 transactions per second with latencies of 2 seconds, and then 8 validators
with 9,000 transactions per second and 1.5 second latency. The number of instances that run
the application and local blockchain are the only factors that change within the testing
infrastructure. The tests are run initially with one instance and the load gradually increased
until results show average response times of over a second. After 1 second average response
times appear, the number of instances is doubled and the tests are restarted and run until an
average response time of over 1 second re-appears. This process is repeated until an average
response time of over 1 second appears on 8 test instances. Both implementations are tested
on 4 cloud configurations with of 1, 2, 4 and 8 instances.

6 Discussion of Experimental Research
This section presents experimental results in the form of line graphs focusing on system
performance, measured in response times and throughput for different topologies and
resourcing. Ramsay et. al (1988) famously noted negative user behavior with response times
greater than 200 milliseconds. We focus on maintaining a response time of less than 200ms
and do not display results over 350 milliseconds. We used line graphs for comparing
blockchain and non-blockchain implementations in terms of different user loads using the
scale-free network and 1 to n-1 test scenario. The two messaging functions tested in each
scenario are the ‘RetrieveAllMessages’ function and the ‘SendMessage’ as previously described.
The metric to measure scalability is the average response time and throughput under an
increasing user-loads. In our evaluations, ‘User #1’ represents the heavily loaded user that
receives all messages in the 1 to n-1 test scenario while ‘User i’ represents each of the remaining
n-1 users. The users in this test are represented as a rooted tree where each user is a node and
each edge a message sent. The user receiving all messages is the root node of the rooted tree,
all the remaining users are leaf nodes. This allows us to compare the average response times of
the ‘RetrieveAllMessages’ function being called on the blockchain and non-blockchain
implementations. This evaluation illustrates how the two implementations handle the stress of
a single heavily loaded user.
We anticipated that the function ‘RetrieveAllMessages’ would be the bottleneck on the
blockchain implementation. This is due to the large number of queries the blockchain performs
within the function. The blockchain data is stored using Merkle-tree data structure, and thus
it takes 𝑂(𝑙𝑜𝑔&𝑛) time to search a block containing n transactions. The function
‘RetrieveAllMessages’ retrieves all the user’s messages (m) from the database, and then queries
the blockchain. This implies a running time of 𝑂(𝑚	𝑙𝑜𝑔&𝑛) added to the database query. The
send message function performs a single insertion to the database, as well as a single call to
the function ‘InsertToblockchain’, the latter being a constant time operation.

11 http://jmeter.apache.org
12 https://azure.microsoft.com/en-au/
13 http://www.digitalocean.com

Australasian Conference on Information Systems Beck, Eklund & Spasovski
2019, Fremantle Blockchain groupware performance case study

 7

Due to the asynchronous nature of how the implementation adds messages to the blockchain,
we expected the sending of messages to perform well. Insertion to the database is expected to
be much slower than querying due to write locks on the database (Nyati et al., 2013).
We did not expect to return consistent results due to unpredictable network traffic on the
Microsoft Azure cloud that can cause unexpected response times and inconsistent latencies.
Evidence of unpredictable network traffic on the Microsoft Azure cloud is visible and latencies
throughout tests can randomly double over any 45 second period. A graphical illustration of
our evaluation and measuring results can be seen in Figure 2 & 3.

Figure 2: Comparing the throughput of ‘SendMessage’ and ‘RetrieveAllMessages’ functions on both
Scale-Free & 1 to n-1 topologies and implementations (blockchain and non-blockchain) on a single D3
(4 Core 13 GB RAM) instance.

Figure 3: Scale-Free Network Test: compares ‘RetrieveAllMessages’ for both Scale-Free & 1 to n-1
topologies for both implementations (blockchain and non-blockchain) on a one x D3 (4 Core 13 GB
RAM) instance.

The results scale linearly until they reach their threshold, and then have an exponential rate of
growth. This is due to the time-outs when the implementation can no longer handle the
transaction load at the given resource level.
In most tests, the majority of reliable results are those under 200 milliseconds on average and
the scalability of both implementations is linear. As a concrete example, a single instance of
‘RetrieveAllMessages’ has a threshold of 50 users, whereas 8 instances can handle 400 users,
namely the function scales linearly.
We observe that the non-blockchain implementation can handle 4 to 8 times the load of the
blockchain implementation before thresholding, and this blockchain tool incurs a penalty of 2
to 4 times on response time. Results also showed that in the blockchain application the
‘SendMessage’ function keeps pace with the non-blockchain tool. This is due to the
asynchronous non-blocking design pattern choice our tool follows. The ‘SendMessage’
function does not wait until each message is validated and added to the blockchain before
returning to work.

Australasian Conference on Information Systems Beck, Eklund & Spasovski
2019, Fremantle Blockchain groupware performance case study

 8

Figure 4: Scale-Free Network Test: compares ‘RetrieveAllMessages’ for both Scale-Free & 1 to n-1
topologies for both implementations (blockchain and non-blockchain) on eight x D3 (4 Core 13 GB
RAM) instances.

We also conclude that the ‘RetrieveAllMessages’ function on the blockchain tool has a tougher
time coping with the same user load on the 1 to n-1 test scenario than in the scale-free network
topology. All querying of the blockchain occurs through the local blockchain which cannot
handle the load directed on a single user in the 1 to n-1 test scenario.

Figure 5 (left) The ‘SendMessage’ function on 1 to n-1 network (Blockchain & Non-Blockchain)
showing how the function scales over D3 instances 1-8 and (right) the ‘RetrieveAllMessages’ function
on 1 to n-1 network (Blockchain & Non-Blockchain) showing how the function scales over D3
instances 1-8.

The non-blockchain application has linear throughput growth throughout all tests while the
blockchain application grows linearly until a threshold is reached. The throughput is throttled
on both functions of the blockchain tool due to ‘RetrieveAllMessages’ function timing out. The
testing software is built to run on threads which disallow the test to continue until the time out
is finished. The response time of ‘RetrieveAllMessages’ starts increasing dramatically from 100
users which is where the linear growth of the throughput stops. In Figure 2 (right) it is visible
that a blockchain root node has a polynomial rate of growth while the non-blockchain root
node seems to be constant. The leaf nodes are almost identical regardless of the
implementation. This proves that blockchains are capable of keeping up with non-blockchain
solutions when they are not under heavy load.

Australasian Conference on Information Systems Beck, Eklund & Spasovski
2019, Fremantle Blockchain groupware performance case study

 9

Figure 6 (left) The ‘SendMessage’ function Scale-Free network (Blockchain & Non-Blockchain) on a
single D3 (4 Core 13GB RAM) instance (left) and (right) the ‘RetrieveAllMessages’ function on a
Scale-Free network (Blockchain & Non-Blockchain) on a single D3 (4 Core 13GB RAM) instance.

7 Conclusion
The paper shows that the blockchain implementation of a groupware communication
application scales linearly as the number of instances is increased, until it reaches the
throughput threshold. We also learned that using the Tendermint blockchain incurs a 4-8
multiplicative factor on scalability when used with our cloud-based groupware application, and
a multiplicative factor of 2-4 on the average response times and throughput in the application.
These two findings imply that high throughput and low response times can still be achieved if
enough servers are deployed to resource the groupware communication application. For well-
established companies concerned with transaction immutability and ledger security, paying 4
to 8 times more in cloud computing costs is unlikely to be a concern.
We have also shown that blockchains perform poorly when handling heavy traffic loads
through single centralized users. This implies – naturally enough – that centralized topologies
are more vulnerable to cyber-attacks, such as denial of service, because they expose a single
point of failure, which when placed under stress, has an amplifying effect in the remainder of
the network. Indeed, such a network traffic model is better suited to a trusted 3rd party server
model rather than a distributed ledger implementation.
This paper reflects on the testing method for a single cloud-based blockchain-enabled
application for groupware communication. The testing parameters are the number of
applications, the quantity of messages sent and the topology of the message traffic. The
resources consumed are in terms of servers and processes deployed, the transaction
throughput and the network latency. The ambition of our future research is to provide a general
methodology for quantifying and anticipating cloud-based resources and overall system
performance when deploying blockchain-enabled applications. A further ambition is to use
this experience to compare the performance when using different blockchain frameworks in
applications. This in order to better inform developer choices.

8 References
Barabási, A. L., Albert, R., & Jeong, H. (1999). Mean-field theory for scale-free random networks.

Physica A: Statistical Mechanics and its Applications, 272(1-2), 173-187.
Beck R., Pahlke, I. & Seebach,C. (2014). Knowledge exchange and symbolic action in social media-

enabled electronic networks of practice: A multilevel perspective on knowledge seekers and
contributors Management Information Systems Quarterly (MISQ), 38 (4), 1245-1269

Beck, R., Müller-Bloch, C. and King, J. L.,(2018). “Governance in the Blockchain Economy: A
Framework and Research Agenda.” In Journal of the Association of Information Systems (JAIS),
19 (10), Article 1.

Becker, J., Breuker, D., Heide, T., Holler, J., Rauer, H-P. & Bohme, R. (2013). Can we afford integrity
by proof-of-work? scenarios inspired by the bitcoin currency. In the Economics of Information
Security and Privacy, pp. 135–156. Springer.

Australasian Conference on Information Systems Beck, Eklund & Spasovski
2019, Fremantle Blockchain groupware performance case study

 10

Bentov, I., Gabizon, A. and Mizrahi, A. (2016). "Cryptocurrencies without proof of work." In Int., Conf.
on Financial Cryptography and Data Security, pp. 142-157. Springer.

Buchman, E. (2016). Tendermint: Byzantine fault tolerance in the age of blockchains (Masters
dissertation), University of Guelph,
https://allquantor.at/blockchainbib/pdf/buchman2016tendermint.pdf

Cachin, C., & Vukolić, M. (2017). Blockchains Consensus Protocols in the Wild. arXiv preprint
arXiv:1707.01873. https://arxiv.org/abs/1707.01873

Ciriello, R., Beck, R., and Thatcher, J., (2018). “The Paradoxical Effects of Blockchain Technology on
Social Networking Practices.” In Proceedings of the International Conference on Information
Systems, San Francisco.

Dinh, T. T. A., Wang, J., Chen, G., Liu, R., Ooi, B. C., & Tan, K. L. (2017). Blockbench: A framework for
analyzing private blockchains. In Proc. of the 2017 ACM Int. Conf. on Management of Data (pp.
1085-1100). ACM Press.

Fisher, J., & Sanchez, M. H. (2016). “Authentication and verification of digital data utilizing blockchain
technology”. U.S. Patent Application No. 15/083,238.

Hürsch, W. L., and C. Videira Lopes. "Separation of concerns." (1995),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.5223

Knirsch, F., Unterweger, A. and Engel, D. (2018). "Privacy-preserving blockchain-based electric vehicle
charging with dynamic tariff decisions." Computer Science-Research and Development 33, no. 1-
2: 71-79.

Christidis, K. & Devetsikiotis, M. (2016). “Blockchains and smart contracts for the Internet of things.”
IEEE Access, 4:2292–2303.

Lamport, L., Shostak, R. & Pease, M. (1982). “The byzantine generals’ problem”. ACM Trans. Program.
Lang. Syst., 4(3):382–401.

Menascé, D.A. (2002). "Load testing of web sites." IEEE Internet Computing 6, no. 4: 70-74
Nyati, S. Pawar, S., & Ingle, R. (2013). “Performance evaluation of unstructured NoSQL data over

distributed framework.” In Advances in Computing, Communications and Informatics (ICACCI),
2013 International Conference on (pp. 1623-1627). IEEE.

Peters, G. W., & Panayi, E. (2016). Understanding Modern Banking Ledgers through blockchain
Technologies: Future of Transaction Processing and Smart Contracts on the Internet of Money.
Banking Beyond Banks and Money. Springer International, 239–278. 

Ramsay, J., Barbesi, A., & Preece, J. (1998). A psychological investigation of long retrieval times on the
World Wide Web. Interacting with computers, 10(1), 77-86.

Richards, M. (2015). Software architecture patterns. O'Reilly Media, Incorporated.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf
Spasovski, J., & Eklund, P.W. (2017). Proof of stake blockchain: performance and scalability for

groupware communications. In Proc. of MEDES 2017. ACM Press.
Tapscott, D., & Tapscott, A. (2016). The Impact of the Blockchain Goes Beyond Financial Services,

Harvard Business Review
Tschorsch, F., & Scheuermann, B. (2016). "Bitcoin and beyond: A technical survey on decentralized

digital currencies." IEEE Communications Surveys & Tutorials 18, no. 3: 2084-2123.
Vukolic, M. (2016) The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication. In

Open Problems in Network Security, J. Camenisch and D. Kesdogan (eds.), Springer.
Zyskind, G., & Nathan, O. (2015). Decentralizing privacy: Using blockchain to protect personal data. In

Security and Privacy Workshops (SPW), 2015 IEEE (pp. 180-184). IEEE.

Copyright
Copyright: © 2019 authors. This is an open-access article distributed under the terms of the Creative
Commons Attribution-NonCommercial 3.0 Australia License, which permits non-commercial use,
distribution, and reproduction in any medium, provided the original author and ACIS are credited.

