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Abstract 
Blockchain and Distributed Ledger Technologies 

appear to be at a worldwide threshold of acceptance 

and adoption. Since their inception, several innovative 

projects have been proposing solutions to the 

blockchain trilemma, improving blockchain features 

and its technical limitations. However, the adoption of 

blockchain as a technology requires a comprehensive 

understanding and characterization of its technical 

aspects. The latter introduces an uncertainty for an 

organization to decide which blockchain protocol best 

meets its needs and demands. In general, there is a lack 

of proper testing and software engineering practices for 

assessing the usage of different blockchain protocols 

and understanding their performance. Toward that 

direction, this paper presents an architecture for a 

blockchain benchmarking framework that aims at the 

deployment and evaluation of different blockchain 

protocols. Moreover, we introduce a set of modules for 

testing and evaluating their behavior under different 

test-cases and scenarios. To illustrate the usefulness of 

the proposed architecture we demonstrate an 

instantiation with the deployment of a private XRPL 

Network. The experiments conducted in this work were 

focused on how XRPL behaves under heavy load.   

1. Introduction  

A distributed ledger is often described as a shared 

database which is accessed and maintained by a set of 

independent, possibly untrusted participants (i.e., 

nodes). Each participant can access and own an identical 

copy of the records (i.e., the ledger) exchanged within 

the network. All modifications or additions to the ledger 

are expressed immediately and agreed among the 

participants using a Consensus Algorithm (CA). 

Blockchain, which is considered as a type of a 

Distributed Ledger Technology (DLT), was first 

introduced within the concept of a cryptocurrency, 

while by then has received a lot of attention due to the 

unique characteristics it provides; i.e., security, 

anonymity, transparency, and decentralization [1]. The 

decentralized design of  a blockchain lack of some 

central authority to synchronize the state of the 

processes; which is considered a major challenge. Thus, 

blockchains are providing mechanisms for (a) 

Coordinating the distributed nodes, and (b) Validating 

the state of transactions propagated in the network. 

These mechanisms are the CAs; which are responsible 

for achieving the aforementioned goals. Moreover, CAs 

provide reliability and liveness to the network, while 

they also defend it against any malicious (aka byzantine) 

attacks [2].  

Since 2008; when Bitcoin was first introduced by 

Satoshi Nakamoto [3], blockchain has continued to 

grow and evolve. Moreover, for several years the world 

compared blockchain technology with Bitcoin; but soon 

it was realized that blockchain was introducing a radical 

change in the internet stack itself. The blockchain 

ecosystem soon realized the need for this technology to 

serve as a framework where applications can run on top 

of it while also be able to self-execute. Before this 

realization, blockchain was mainly used to serve 

Bitcoin’s needs, executing financial transactions, and as 

a sybil attack prevention mechanism. In 2014, Ethereum 

[4] was proposed as the next generation of a blockchain 

protocol; enabling the development of the so-called 

distributed applications (dApps). Ethereum also gave 

birth to the concept of Decentralized Autonomous 

Organizations (DAO), a decentralized enterprise 

completely operating with the use of a set of smart 

contracts. In a later stage, several researchers and 

organizations focused on the scalability of blockchain 

protocols. Thus, several solutions were proposed for 

improving the transaction rate but also lower the latency 

within a network.  

The choice of a blockchain protocol is challenging, 

especially for corporates that seek to use the technology 

for their products and/or services. Before the adoption 

of blockchain in a company’s infrastructure, questions 

such as (a) Is blockchain applicable to the 

company’s/organization challenges? (b) Which 

blockchain protocol is right for our needs? (c) To what 

extend does the selected blockchain can handle the 

security and privacy concerns of a client?, are discussed 

within their technical and management teams.  
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In an attempt to taggle the aforementioned 

challenges, this paper proposes an architecture for a 

blockchain benchmarking framework that aims to serve 

as a staged environment for supporting blockchain 

researchers and developers to test and validate the 

performance of a blockchain protocol under various 

settings and synthetic scenarios. In addition, the 

modules provided by the benchmarking framework aim 

to identify any performance bottlenecks during the 

network being under heavy load. 

 The rest of the paper is organized as follows. 

Section 2 tries to build a common understanding around 

blockchain by providing a description of the layers that 

reflect a blockchain protocol, a discussion on their most 

important features and a description of the most 

commonly used CAs. In Section 3, a literature review 

around blockchain benchmarking frameworks is 

presented, while Section 4 demonstrates the proposed 

framework with a description of the proposed 

architecture and its integral parts. In Section 5, a use 

case scenario is described (i.e, the XRPL - Ripple’s 

Case), providing a description on the features supported 

so far; along with an evaluation of the overall 

architecture. Finally, in Section 6, a discussion around 

the implications of the current research is provided 

while at the end, the paper concludes with our future 

plans and goals.  

2. Background - Building a Common 

Understanding 

2.1 Blockchain Preliminaries 

Blockchain protocols are broadly classified into two 

main categories. Public networks [5], which are 

considered to be democratic since they promote equal 

participation to all, and on the other hand private 

networks which are usually isolated networks governed 

by an organization or by a single party. Accessing 

private networks usually demands having an invitation, 

while also accept some rules defined in the beginning of 

the network. 

Transactions: In the beginning of cryptocurrencies, 

transactions were only used  for transferring a digital 

asset to another person’s account (i.e.,wallet). 

Nowaday, transactions may function in several different 

ways since further metadata can be encoded on them [6]. 

The participants of the blockchain may perform multiple 

transactions in time, either by transferring digital money 

or by adding a record, in the form of metadata, within 

the network. All unconfirmed transactions are entering 

a pool where the ones with the higher fee are executed 

first. After the successful execution and validation of the 

transaction the latter is attached on the next block. 

Finally, the block is appended on-chain and thus the 

blockchain is expanded by one block.       

Blocks: Blocks organize transactions and other 

metadata that relate to the data structure (e.g., hashes, 

timestamps, nonce). Transactions in blocks are encoded 

into a Merkle Tree [7] while each block includes the 

hash of the previous block as a pointer and thus forming 

a chain. This method maintains the integrity of the 

system, while one can validate the whole chain all the 

way back to the genesis block [8]. Moreover, a block 

can only be appended and not altered. Thus, the latter 

provides enhanced security; since no entity can change 

the data once in a block. 

Block time: Block time is considered the time required 

for a new verified block to be appended to the chain. 

Some blockchain protocols produce a new verified 

block every few seconds, while this process varies based 

on the system’s complexity. Block time is a key 

characteristic of blockchain systems which is often the 

case that block time relates to higher transaction rates. 

For blockchains, it is often a challenge to find a balance 

between block times and security of the network; since 

time is required for data to be validated and broadcasted 

to all nodes in the network. For instance, Ethereum [9] 

can produce one validated block approximately every  

15 seconds, while in Bitcoin it is on average of every 10 

minutes [10]. 

2.2 Blockchain Layers  

As depicted in Figure 1, a blockchain protocol can be 
reflected in mainly five layers. Bottom-up these are: the 
infrastructure layer, the network layer, the protocol layer, 
the services and the (optional) components layer , while 
at the top of the stack, the application layer. 

Infrastructure Layer: A blockchain network is built on 
top of a P2P network supported by several machines in a 
decentralized manner. Some machines can operate on 
tasks at any given time while taking computing resources 
or storing from those in the network. Thus, at the lower 
level of the stack, the infrastructure layer can be 
considered as a group of machines operating together. 
(e.g., miners [11]). 

Network Layer: Blockchain is considered as another 
layer on top of the internet, as without it, it would not 
operate. Currently, a blockchain protocol runs over 
TCP/IP. As such, the network layer consists of the 
connections between machines, and everything else that 
lays the groundwork for the network to operate. 

Protocol Layer: The protocol layer defines the protocol 
rules and the incentivization structures if any. In 
addition, this is the layer that defines the consensus 
mechanism used by the protocol. 
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Services and Optional Components Layer: This 
layer, refers to the tools and interfaces for interacting 
with the protocol and for supporting the development of 
dApps. It is worth mentioning that some of these tools 
and technologies are offered off-chain, meaning that 
developers can build them offline, on their private 
computers.  

Application Layer: Last, the application layer is 
positioned at the top of the stack, and it is necessary for 
hosting the distributed applications. In this way, the 
dApp will be hosted on a decentralized network using 
Software as a Service (SaaS). This layer also makes all 
dApps easy to access and integrated with any other 
device.  

 

 

Figure 1. Blockchain stack/layers 

2.3 Blockchain Consensus Algorithms  

Consensus Algorithms are at the core of every 

blockchain protocol. Several CAs have been discussed in 

the literature [12], each one of them providing its own 

unique characteristics. Consensus Algorithms are 

responsible for the decision-making process of the active 

group of nodes that are participating in the network. 

Also, CAs keep the protocol active while nodes may not 

trust each other but they trust the algorithm that runs in 

the core of the blockchain protocol. A list of the most 

common CAs used in blockchain protocols follows. 

Proof of Work (PoW): This CA is used to select a miner 

for the next block generation. Bitcoin uses the PoW CA. 

The fundamental concept behind this algorithm is to 

overcome a complex mathematical problem and give a 

solution fast. The complexity of the “puzzle” depends on 

the number of participants, the existing power and the 

network load. The hash of each block includes the hash 

of the previous block, which increases security and 

avoids any block breach from happening. Furthermore, 

this mathematical puzzle requires a lot of computational 

power and thus the node that solves the puzzle gets to 

mine the next block.  

Proof of Stake (PoS): Proof of Stake [13] is the most 

common alternative to PoW. It is foreseen to be used in 

Ethereum which will shift from PoW to PoS. In this type 

of CA, validators invest in the system's tokens instead of 

investing in costly hardware to solve a complicated 

puzzle by locking up some of their coins. Validators 

validate blocks by placing a bet on them if they discover 

a block they believe can be added to the chain. Moreover, 

all validators get a reward proportionate to their bets 

based on the actual blocks added in the blockchain. 

practical Byzantine Fault Tolerance (pBFT): In the 

late 1990s, a CA called Practical Byzantine Fault 

Tolerance was introduced. pBFT was created to perform 

well in asynchronous systems while it is designed to have 

a minimal overhead time. Its objective was to address a 

number of issues with existing Byzantine Fault 

Tolerance methods. 

3. Related Work - Blockchain 

Benchmarking Frameworks  

Currently, there are multiple studies regarding 
measuring the performance of blockchain protocols. 
Some of those studies are targeting public blockchains 
while some others the private ones. BlockBench [14] is 
a framework for analyzing private blockchain protocols. 
It is considered adaptable in terms of integration of any 
private blockchain while it can measure throughput, 
latency, scalability, and fault tolerance against different 
workloads. Additionally, the authors in [15] have 
considered the scalability of blockchain protocols an 
urgent concern. Thus, they have studied how different 
bottlenecks in the Bitcoin network can affect the overall 
throughput of the network. Based on the results of their 
work, they concluded to the fact that block size 
reparameterization should be considered as priority 
towards achieving next-generation, high-load 
blockchain protocols. In the work conducted in [16], the 
authors have studied the propagation time of blocks and 
transactions in the network concluding to the fact that the 
latter is the primary cause for blockchain forks. They 
have also demonstrated what can be achieved while 
pushing the network to its limit by introducing unilateral 
changes to the client’s behavior. Based on the 
benchmarks demonstrated in [17], Parity has proved to 
be the fastest and lightest Ethereum client in terms of 
block processing time. Moreover, the authors in [18], 
have introduced a framework for analyzing existing 
PoW-based deployments and PoW blockchain variants 
in an attempt to compare the trade-offs between their 
performance and security provisions. Moreover, along 
the most popular blockchain benchmarking frameworks 
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is also IBM’s Caliper [19]. Hyperledger Caliper is a 
blockchain benchmarking tool intended to run 
benchmarks on deployed smart contracts, allowing the 
analysis of throughput, latency and resource 
consumption of the smart contract. As of 2019, the 
authors in [20] categorize Hyperledger Caliper and 
Blockbench as the two most popular blockchain 
benchmarking frameworks; while their work 
demonstrate a comparison between these two. The work 
conducted in [21] introduce BCTMark which is a 
framework for benchmarking blockchain technologies 
on an emulated network. The researchers of this work 
have conducted their experiments on three blockchain 
protocols where they have measured different metrics 
such as CPU consumption and energy footprint for 
different numbers of clients. Not only that, but also in the 
work conducted in [22], the researchers characterized the 
performance feature of Quorum [23]. They have studied 
its throughput and latency characteristics with different 
workloads and CAs. In summary, using a suite of micro-
benchmarks, they have explored how certain transaction 
and smart contact parameters may affect the latency of 
transactions.  

4. Blockchain Benchmarking Framework - 

Proposition  

Testing is a critical phase of the software engineering 
life-cycle; especially before moving an application to the 
production environment. Blockchain protocols are 
complex systems that comprise of many components 
ranging from the underlying communication network, 
cryptographic libraries, gossip protocols, consensus 
algorithms, virtual machines and game theoretical 
aspects.  It is often the case that bootstrapping a private 
blockchain network on a private computer and use it for 
testing is a challenging task. It is even more challenging 
to compare various private blockchain implementations 
in terms of transactions throughput, latency, fault-
tolerance, and scalability.  

Having an isolated environment where you can 
introduce changes to the source code, test and debug the 
system without affecting the implementation of the 
production blockchain, is essential. Implementing a 
blockchain infrastructure  considers several design 
choices such as  network performance, network 
anomalies, node’s misbehavior, etc. However, the latter 
introduces several challenges; while a blockchain 
network usually consists of several nodes running in 
different machines around the world (i.e., high level of 
distribution and decentralization).  

To this end, we are proposing an initial setup of a 
blockchain benchmarking framework which is depicted 
in Figure 2 and is publicly available in our GitHub 
repository [24]. Currently, it is able to  deploy a full mesh 
network with a given number of nodes/validators. 

Moreover, different scripts are developed  for generating 
traffic in the network (i.e., in the form of payment 
transactions), a monitoring framework for capturing and 
visualizing data produced in the network, but also a 
connectivity manager, aiming for the adaptation of the 
network rules of the validators during runtime.  

4.1 Architecture Overview 

As depicted in Figure 2, the proposed benchmarking 
framework is consisted with four main building blocks. 
These are: (a) the Control & Configuration components, 
(b) the Validators’ Network, (c) the Accounts 
Management and Traffic Generator, and lastly (d) the 
Monitoring Services.   

4.2 Internal Components 

Control and Configuration: In the control and 
configuration component, a set of scripts have been 
developed for the generation of the configuration files, 
bootstrapping the network, and adapting the connectivity 
between the nodes/validators. Specifically, the process 
of deploying a blockchain network with n number of 
nodes/validators is limited to a single  line of scripting 
code “./run_testnet X N”. Variable X defines the 
blockchain protocol to be deployed, where N defines the 
number of nodes/validators to be part of the network. 

Validators’ Network: One of our initial goals was to 
design a benchmarking framework which would provide 
dynamicity to the end user. To this end, our automation 
scripts were designed in such a way that changing the 
number in the deployment request results in a network 
topology with the number of nodes the user has defined. 
The upper limit of the number of nodes/validators that 
can be deployed, depends on the currently available 
resources. 

 
Figure 2. Blockchain benchmarking framework 
architecture 
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Accounts Management and Traffic Generator: 
Generating traffic in the network while the 
validators/nodes work on closing the next ledger provide 
useful insights for the blockchain under test. Closing a 
new ledger/block and attach it on the chain is performed 
by the execution of transactions. Transactions should 
also be signed (with the private key of the proposer), 
accepted, and validated following the underlying CA of 
the blockchain protocol. As it is depicted in the 
“Accounts Management and Traffic Generator” block of 
Figure 3, two components were developed responsible 
for generating accounts but also execute transactions in 
the network. The user may call the Traffic Generator 
Manager, giving as parameter the number of transactions 
to be executed but also the amount of coins to be 
exchanged. 

 
 

Figure 3. XRP Ledger network topology 

 
Monitoring Services: Monitoring data is essential 

to understand the behavior of a system. Collecting as 

much data as possible is a key towards the identification 

of any system anomalies. Thus, we have identified the 

need of integrating a monitoring system to enhance the 

proposed benchmarking framework capabilities. In a 

nutshell, during the deployment of the benchmarking 

framework, an extra set of services are spawned forming 

the monitoring framework. The aim of the monitoring 

framework is to gather and visualize different data from 

the transactions performed in the network as well as data 

regarding the health of the nodes participating in the 

network. Moreover, the proposed monitoring framework 

is considered a black box to the blockchain protocol; 

while someone can build his/her custom metric exporter 

gathering data based on their needs. 

5. Experimental Evaluation 

In order to evaluate the performance of the proposed 

framework in terms of efficiency and ease of use, our 

experiments have been deployed in a Virtual Machine 

(VM) running on top of a bare metal server with the 

following specifications: 

• Dell PowerEdge R640 Server 

o Intel® Xeon® Gold 6230 2.1G, 20C/40T, 

10.4GT/s, 27.5M Cache, Turbo, HT (125W) 

DDR4-2933 X 2 

o 40 Cores, 80 Threads  

o 32GB RDIMM DDR4 2666MT/s Dual Rank 

X4   

5.1 XRPL Client Setup 

As previously mentioned, our aim was to develop a 

generic blockchain benchmarking framework; where 

researchers and/or developers would be able to deploy 

and test different blockchain protocols with different 

requirements and constraints. In our initial instantiation 

of the architecture we have successfully deployed a 

private XRP Ledger network. As it is depicted in Figure 

3 we are able to deploy an XRPL Network consisted with 

n number of nodes/validators. The specifications of the 

VM used during this instantiation are the following:  

• Ubuntu 18.04 LTS 

o Intel(R) Xeon(R) Gold 6230 CPU @ 

2.10GHz (6 Cores) 

o 12 GB RAM DDR4 

5.2 Evaluation Metrics 

During the evaluation process, several metrics were 

captured and stored in the monitoring system. 

Specifically, using the Server Info methods, provided by 

the rippled daemon, we retrieve the status of the server. 

Some of the metrics exposed in the monitoring system 

were: ServerLatency, validationQuorum, loadFactor, 

Peers, Uptime, serverStateDurationUs, convergeTimeS 

and proposers. Description of these metrics is provided 

by the XRPL website [25]. Moreover, a Docker Stats 

exporter has been deployed [26] in order to export the 

default metrics which  the docker engine provides by 

default. Such metrics are: CPU Usage, Memory Usage, 

NET I/O, and Block I/O. These metrics are gathered and 

stored in an InfluxDB in the form of time series data.  
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5.3 Results & Discussion 

For the evaluation process we have performed three 

experimental scenarios altering the number of validators 

of the network. Starting from 10 validators, then 20 and 

40 respectively, we have measured the mean converge 

time (i.e., time of the validators to close the last ledger) 

and how it is changed when more validators are 

participating in the consensus process but also while 

more proposers are in the network. Moreover, we have 

measured the server latency, which defines how each 

validator performs in terms of load, XRPL defines the 

server latency as “The amount of time spent waiting for 

I/O operations, in milliseconds. If this number is not very 

low, then the rippled server is probably having serious 

load issues.”  

Before executing the aforementioned experiments, the 

time to deploy an XRPL  network in our benchmarking 

framework was measured using the built-in method of 

Linux based systems – time [28]. The latter is depicted 

in Table 1.  

The deployment time of an XRPL network with 10 

validators was measured at 1 minute and 4 seconds, 

while the deployment of a network topology consisted 

with 65 nodes was measured at 2 minutes and 50 

seconds. 

 
Table 1. XRPL network deployment time 

Nodes/Validators Time 

10 1m4.727sec 

20 1m10.671sec 

40 2m11.798sec 

60 2m43.028sec 

65 2m50.124sec 

 

5.3.1 Experiment 1 

During our first experiment, an XRPL network topology 

was deployed with 10 validators acting as proposers, 

while 8 of them (i.e., 80% of the Network participants 

[29]) as validators.  The network topology was a full 

mesh network - all nodes connected between each other. 

In this setup, using the Traffic Generator Manager, 1 

million transactions were submitted to random accounts, 

exchanging a random amount of XRPs. The process was 

repeated 5 times while the number of successful 

transactions, execution time, converge time and server 

latency were captured and stored. Finally, the mean 

value of each metric was calculated while the results of 

this first experiment are depicted in Table 2.  

5.3.2 Experiment 2 

In the second experiment, the number of 

nodes/validators were increased to 20. In this case, 20 of 

the nodes were acting as proposers while 16 of them 

were acting as actual validators. The experiment was 

executed 5 times while the same metrics as the first 

experiment were also captured and visualized. The latter 

is depicted in Table 3. 

5.3.3 Experiment 3 

During the third experiment, an XRPL Network 

topology with 40 nodes/validators was deployed. In this 

case, the 40 of them were acting as proposers while 33 

nodes were acting as validators. The same process as 

with the previous experiments was followed  and 

repeated 5 times, while the same metrics were captured 

and visualized. The results of this experiment are 

depicted in Table 4. 

Based on the results of the three experiments, it is 

realized that the mean time to execute 1 million 

transactions is increased based on the number of 

participants but also the number of the actual validators 

of the network. It is measured at about 2 hours during the 

first experiment, while it was increased by 2,5 hours 

when the network was consisted with 20 participants and 

3 hours with 40 participants. Moreover, the mean 

converge time was also increased by 0.1 seconds in the 

network of 20 participants rather than 10 participants, 

and by 0.2 more during the experiment with 40 

participants. Server Latency was also increased during 

the three experiments but not at a point where the 

network could become unresponsive. These outcomes 

are well justified since  BFT algorithms (i.e., Ripple 

Consensus Protocol) demands more time to come into 

consensus when there are more participants in the 

validation quorum. 

6. Conclusions  

In this work, we proposed an initial setup of a 

blockchain benchmarking framework, aiming at the 

provision of the necessary tools to measure but also to 

visualize different metrics of the blockchain protocol 

under a test. Moreover, we have demonstrated the 

integration of the first use case using the rippled daemon. 

In this use case, we have executed three experiments 

while we have measured the server latency and the 

converge time of each network participant. Based on our 

results we conclude that those two metrics are correlated 

with the number of the network participants while both 

metrics increased when the number of participants 

increased. For future work we plan to involve the 
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integration of more blockchain protocols into our 

benchmarking framework, while also implement more 

complex test scenarios using the capabilities of the 

Connectivity Manager.  
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Table 2. Evaluation results of 1st experiment 

 

 
Table 3. Evaluation results of 2nd experiment 

 
Run Nodes Validator 

Quorum 

Transactions Successful 

Transactions 

Time 

(Hours) 

Converge 

Time 

(Sec) 

Server 

Latency 

(Sec)  
1 20 16 1000000 941914 4.290780171 2.8 1.3  
2 20 16 1000000 942104 4.285953195 2.8 1.3  
3 20 16 1000000 942833 4.289543764 2.8 1.3  
4 20 16 1000000 942147 4.283003006 2.8 1.3  
5 20 16 1000000 942522 4.287276685 2.8 1.3 

Mean 

Value 

   
942304 4.287311364 2.8 1.3 

 

 
Table 4. Evaluation results of 3rd experiment 

 
Run Nodes Validator 

Quorum 

Transactions Successful 

Transactions 

Time 

(Hours) 

Converge 

Time 

(Sec) 

Server 

Latency 

(Sec)  
1 40 32 1000000 931876 5.234565751 3 1.5  
2 40 32 1000000 931673 5.276554455 3 1.5  
3 40 32 1000000 931871 5.128935424 3 1.5  
4 40 32 1000000 932792 5.243675606 3 1.5  
5 40 32 1000000 933779 5.986525675 3 1.5 

Mean 

Value 

   
932398.2 5.374051382 3 1.5 

 

 
Run Nodes Validator 

Quorum 

Transactions Successful 

Transactions 

Time 

(Hours) 

Converge 

Time 

(Sec) 

Server 

Latency 

(Sec)  
1 10 8 1000000 975621 2.058881831 2.7 1  
2 10 8 1000000 976020 2.057368169 2.7 1  
3 10 8 1000000 975554 2.059850487 2.7 1  
4 10 8 1000000 975570 2.058161562 2.7 1  
5 10 8 1000000 975769 2.059236403 2.7 1 

Mean 

Value 

    
975706.8 2.05869969 2.7 1 

Page 6012


