
Benchmarking Blockchains: The case of XRP Ledger and Beyond

Marios Touloupou, Klitos Christodoulou, Antonis Inglezakis, Elias Iosif, Marinos Themistocleous

Department of Digital Innovation, University of Nicosia

Nicosia, Cyprus

{touloupos.m, christodoulou.kl, inglezakis.a, iosif.e, themistocleous.m}@unic.ac.cy

Abstract
Blockchain and Distributed Ledger Technologies

appear to be at a worldwide threshold of acceptance

and adoption. Since their inception, several innovative

projects have been proposing solutions to the

blockchain trilemma, improving blockchain features

and its technical limitations. However, the adoption of

blockchain as a technology requires a comprehensive

understanding and characterization of its technical

aspects. The latter introduces an uncertainty for an

organization to decide which blockchain protocol best

meets its needs and demands. In general, there is a lack

of proper testing and software engineering practices for

assessing the usage of different blockchain protocols

and understanding their performance. Toward that

direction, this paper presents an architecture for a

blockchain benchmarking framework that aims at the

deployment and evaluation of different blockchain

protocols. Moreover, we introduce a set of modules for

testing and evaluating their behavior under different

test-cases and scenarios. To illustrate the usefulness of

the proposed architecture we demonstrate an

instantiation with the deployment of a private XRPL

Network. The experiments conducted in this work were

focused on how XRPL behaves under heavy load.

1. Introduction

A distributed ledger is often described as a shared

database which is accessed and maintained by a set of

independent, possibly untrusted participants (i.e.,

nodes). Each participant can access and own an identical

copy of the records (i.e., the ledger) exchanged within

the network. All modifications or additions to the ledger

are expressed immediately and agreed among the

participants using a Consensus Algorithm (CA).

Blockchain, which is considered as a type of a

Distributed Ledger Technology (DLT), was first

introduced within the concept of a cryptocurrency,

while by then has received a lot of attention due to the

unique characteristics it provides; i.e., security,

anonymity, transparency, and decentralization [1]. The

decentralized design of a blockchain lack of some

central authority to synchronize the state of the

processes; which is considered a major challenge. Thus,

blockchains are providing mechanisms for (a)

Coordinating the distributed nodes, and (b) Validating

the state of transactions propagated in the network.

These mechanisms are the CAs; which are responsible

for achieving the aforementioned goals. Moreover, CAs

provide reliability and liveness to the network, while

they also defend it against any malicious (aka byzantine)

attacks [2].

Since 2008; when Bitcoin was first introduced by

Satoshi Nakamoto [3], blockchain has continued to

grow and evolve. Moreover, for several years the world

compared blockchain technology with Bitcoin; but soon

it was realized that blockchain was introducing a radical

change in the internet stack itself. The blockchain

ecosystem soon realized the need for this technology to

serve as a framework where applications can run on top

of it while also be able to self-execute. Before this

realization, blockchain was mainly used to serve

Bitcoin’s needs, executing financial transactions, and as

a sybil attack prevention mechanism. In 2014, Ethereum

[4] was proposed as the next generation of a blockchain

protocol; enabling the development of the so-called

distributed applications (dApps). Ethereum also gave

birth to the concept of Decentralized Autonomous

Organizations (DAO), a decentralized enterprise

completely operating with the use of a set of smart

contracts. In a later stage, several researchers and

organizations focused on the scalability of blockchain

protocols. Thus, several solutions were proposed for

improving the transaction rate but also lower the latency

within a network.

The choice of a blockchain protocol is challenging,

especially for corporates that seek to use the technology

for their products and/or services. Before the adoption

of blockchain in a company’s infrastructure, questions

such as (a) Is blockchain applicable to the

company’s/organization challenges? (b) Which

blockchain protocol is right for our needs? (c) To what

extend does the selected blockchain can handle the

security and privacy concerns of a client?, are discussed

within their technical and management teams.

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 6005
URI: https://hdl.handle.net/10125/80070
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

In an attempt to taggle the aforementioned

challenges, this paper proposes an architecture for a

blockchain benchmarking framework that aims to serve

as a staged environment for supporting blockchain

researchers and developers to test and validate the

performance of a blockchain protocol under various

settings and synthetic scenarios. In addition, the

modules provided by the benchmarking framework aim

to identify any performance bottlenecks during the

network being under heavy load.

 The rest of the paper is organized as follows.

Section 2 tries to build a common understanding around

blockchain by providing a description of the layers that

reflect a blockchain protocol, a discussion on their most

important features and a description of the most

commonly used CAs. In Section 3, a literature review

around blockchain benchmarking frameworks is

presented, while Section 4 demonstrates the proposed

framework with a description of the proposed

architecture and its integral parts. In Section 5, a use

case scenario is described (i.e, the XRPL - Ripple’s

Case), providing a description on the features supported

so far; along with an evaluation of the overall

architecture. Finally, in Section 6, a discussion around

the implications of the current research is provided

while at the end, the paper concludes with our future

plans and goals.

2. Background - Building a Common

Understanding

2.1 Blockchain Preliminaries

Blockchain protocols are broadly classified into two

main categories. Public networks [5], which are

considered to be democratic since they promote equal

participation to all, and on the other hand private

networks which are usually isolated networks governed

by an organization or by a single party. Accessing

private networks usually demands having an invitation,

while also accept some rules defined in the beginning of

the network.

Transactions: In the beginning of cryptocurrencies,

transactions were only used for transferring a digital

asset to another person’s account (i.e.,wallet).

Nowaday, transactions may function in several different

ways since further metadata can be encoded on them [6].

The participants of the blockchain may perform multiple

transactions in time, either by transferring digital money

or by adding a record, in the form of metadata, within

the network. All unconfirmed transactions are entering

a pool where the ones with the higher fee are executed

first. After the successful execution and validation of the

transaction the latter is attached on the next block.

Finally, the block is appended on-chain and thus the

blockchain is expanded by one block.

Blocks: Blocks organize transactions and other

metadata that relate to the data structure (e.g., hashes,

timestamps, nonce). Transactions in blocks are encoded

into a Merkle Tree [7] while each block includes the

hash of the previous block as a pointer and thus forming

a chain. This method maintains the integrity of the

system, while one can validate the whole chain all the

way back to the genesis block [8]. Moreover, a block

can only be appended and not altered. Thus, the latter

provides enhanced security; since no entity can change

the data once in a block.

Block time: Block time is considered the time required

for a new verified block to be appended to the chain.

Some blockchain protocols produce a new verified

block every few seconds, while this process varies based

on the system’s complexity. Block time is a key

characteristic of blockchain systems which is often the

case that block time relates to higher transaction rates.

For blockchains, it is often a challenge to find a balance

between block times and security of the network; since

time is required for data to be validated and broadcasted

to all nodes in the network. For instance, Ethereum [9]

can produce one validated block approximately every

15 seconds, while in Bitcoin it is on average of every 10

minutes [10].

2.2 Blockchain Layers

As depicted in Figure 1, a blockchain protocol can be
reflected in mainly five layers. Bottom-up these are: the
infrastructure layer, the network layer, the protocol layer,
the services and the (optional) components layer , while
at the top of the stack, the application layer.

Infrastructure Layer: A blockchain network is built on
top of a P2P network supported by several machines in a
decentralized manner. Some machines can operate on
tasks at any given time while taking computing resources
or storing from those in the network. Thus, at the lower
level of the stack, the infrastructure layer can be
considered as a group of machines operating together.
(e.g., miners [11]).

Network Layer: Blockchain is considered as another
layer on top of the internet, as without it, it would not
operate. Currently, a blockchain protocol runs over
TCP/IP. As such, the network layer consists of the
connections between machines, and everything else that
lays the groundwork for the network to operate.

Protocol Layer: The protocol layer defines the protocol
rules and the incentivization structures if any. In
addition, this is the layer that defines the consensus
mechanism used by the protocol.

Page 6006

Services and Optional Components Layer: This
layer, refers to the tools and interfaces for interacting
with the protocol and for supporting the development of
dApps. It is worth mentioning that some of these tools
and technologies are offered off-chain, meaning that
developers can build them offline, on their private
computers.

Application Layer: Last, the application layer is
positioned at the top of the stack, and it is necessary for
hosting the distributed applications. In this way, the
dApp will be hosted on a decentralized network using
Software as a Service (SaaS). This layer also makes all
dApps easy to access and integrated with any other
device.

Figure 1. Blockchain stack/layers

2.3 Blockchain Consensus Algorithms

Consensus Algorithms are at the core of every

blockchain protocol. Several CAs have been discussed in

the literature [12], each one of them providing its own

unique characteristics. Consensus Algorithms are

responsible for the decision-making process of the active

group of nodes that are participating in the network.

Also, CAs keep the protocol active while nodes may not

trust each other but they trust the algorithm that runs in

the core of the blockchain protocol. A list of the most

common CAs used in blockchain protocols follows.

Proof of Work (PoW): This CA is used to select a miner

for the next block generation. Bitcoin uses the PoW CA.

The fundamental concept behind this algorithm is to

overcome a complex mathematical problem and give a

solution fast. The complexity of the “puzzle” depends on

the number of participants, the existing power and the

network load. The hash of each block includes the hash

of the previous block, which increases security and

avoids any block breach from happening. Furthermore,

this mathematical puzzle requires a lot of computational

power and thus the node that solves the puzzle gets to

mine the next block.

Proof of Stake (PoS): Proof of Stake [13] is the most

common alternative to PoW. It is foreseen to be used in

Ethereum which will shift from PoW to PoS. In this type

of CA, validators invest in the system's tokens instead of

investing in costly hardware to solve a complicated

puzzle by locking up some of their coins. Validators

validate blocks by placing a bet on them if they discover

a block they believe can be added to the chain. Moreover,

all validators get a reward proportionate to their bets

based on the actual blocks added in the blockchain.

practical Byzantine Fault Tolerance (pBFT): In the

late 1990s, a CA called Practical Byzantine Fault

Tolerance was introduced. pBFT was created to perform

well in asynchronous systems while it is designed to have

a minimal overhead time. Its objective was to address a

number of issues with existing Byzantine Fault

Tolerance methods.

3. Related Work - Blockchain

Benchmarking Frameworks

Currently, there are multiple studies regarding
measuring the performance of blockchain protocols.
Some of those studies are targeting public blockchains
while some others the private ones. BlockBench [14] is
a framework for analyzing private blockchain protocols.
It is considered adaptable in terms of integration of any
private blockchain while it can measure throughput,
latency, scalability, and fault tolerance against different
workloads. Additionally, the authors in [15] have
considered the scalability of blockchain protocols an
urgent concern. Thus, they have studied how different
bottlenecks in the Bitcoin network can affect the overall
throughput of the network. Based on the results of their
work, they concluded to the fact that block size
reparameterization should be considered as priority
towards achieving next-generation, high-load
blockchain protocols. In the work conducted in [16], the
authors have studied the propagation time of blocks and
transactions in the network concluding to the fact that the
latter is the primary cause for blockchain forks. They
have also demonstrated what can be achieved while
pushing the network to its limit by introducing unilateral
changes to the client’s behavior. Based on the
benchmarks demonstrated in [17], Parity has proved to
be the fastest and lightest Ethereum client in terms of
block processing time. Moreover, the authors in [18],
have introduced a framework for analyzing existing
PoW-based deployments and PoW blockchain variants
in an attempt to compare the trade-offs between their
performance and security provisions. Moreover, along
the most popular blockchain benchmarking frameworks

Page 6007

is also IBM’s Caliper [19]. Hyperledger Caliper is a
blockchain benchmarking tool intended to run
benchmarks on deployed smart contracts, allowing the
analysis of throughput, latency and resource
consumption of the smart contract. As of 2019, the
authors in [20] categorize Hyperledger Caliper and
Blockbench as the two most popular blockchain
benchmarking frameworks; while their work
demonstrate a comparison between these two. The work
conducted in [21] introduce BCTMark which is a
framework for benchmarking blockchain technologies
on an emulated network. The researchers of this work
have conducted their experiments on three blockchain
protocols where they have measured different metrics
such as CPU consumption and energy footprint for
different numbers of clients. Not only that, but also in the
work conducted in [22], the researchers characterized the
performance feature of Quorum [23]. They have studied
its throughput and latency characteristics with different
workloads and CAs. In summary, using a suite of micro-
benchmarks, they have explored how certain transaction
and smart contact parameters may affect the latency of
transactions.

4. Blockchain Benchmarking Framework -

Proposition

Testing is a critical phase of the software engineering
life-cycle; especially before moving an application to the
production environment. Blockchain protocols are
complex systems that comprise of many components
ranging from the underlying communication network,
cryptographic libraries, gossip protocols, consensus
algorithms, virtual machines and game theoretical
aspects. It is often the case that bootstrapping a private
blockchain network on a private computer and use it for
testing is a challenging task. It is even more challenging
to compare various private blockchain implementations
in terms of transactions throughput, latency, fault-
tolerance, and scalability.

Having an isolated environment where you can
introduce changes to the source code, test and debug the
system without affecting the implementation of the
production blockchain, is essential. Implementing a
blockchain infrastructure considers several design
choices such as network performance, network
anomalies, node’s misbehavior, etc. However, the latter
introduces several challenges; while a blockchain
network usually consists of several nodes running in
different machines around the world (i.e., high level of
distribution and decentralization).

To this end, we are proposing an initial setup of a
blockchain benchmarking framework which is depicted
in Figure 2 and is publicly available in our GitHub
repository [24]. Currently, it is able to deploy a full mesh
network with a given number of nodes/validators.

Moreover, different scripts are developed for generating
traffic in the network (i.e., in the form of payment
transactions), a monitoring framework for capturing and
visualizing data produced in the network, but also a
connectivity manager, aiming for the adaptation of the
network rules of the validators during runtime.

4.1 Architecture Overview

As depicted in Figure 2, the proposed benchmarking
framework is consisted with four main building blocks.
These are: (a) the Control & Configuration components,
(b) the Validators’ Network, (c) the Accounts
Management and Traffic Generator, and lastly (d) the
Monitoring Services.

4.2 Internal Components

Control and Configuration: In the control and
configuration component, a set of scripts have been
developed for the generation of the configuration files,
bootstrapping the network, and adapting the connectivity
between the nodes/validators. Specifically, the process
of deploying a blockchain network with n number of
nodes/validators is limited to a single line of scripting
code “./run_testnet X N”. Variable X defines the
blockchain protocol to be deployed, where N defines the
number of nodes/validators to be part of the network.

Validators’ Network: One of our initial goals was to
design a benchmarking framework which would provide
dynamicity to the end user. To this end, our automation
scripts were designed in such a way that changing the
number in the deployment request results in a network
topology with the number of nodes the user has defined.
The upper limit of the number of nodes/validators that
can be deployed, depends on the currently available
resources.

Figure 2. Blockchain benchmarking framework
architecture

Page 6008

Accounts Management and Traffic Generator:
Generating traffic in the network while the
validators/nodes work on closing the next ledger provide
useful insights for the blockchain under test. Closing a
new ledger/block and attach it on the chain is performed
by the execution of transactions. Transactions should
also be signed (with the private key of the proposer),
accepted, and validated following the underlying CA of
the blockchain protocol. As it is depicted in the
“Accounts Management and Traffic Generator” block of
Figure 3, two components were developed responsible
for generating accounts but also execute transactions in
the network. The user may call the Traffic Generator
Manager, giving as parameter the number of transactions
to be executed but also the amount of coins to be
exchanged.

Figure 3. XRP Ledger network topology

Monitoring Services: Monitoring data is essential

to understand the behavior of a system. Collecting as

much data as possible is a key towards the identification

of any system anomalies. Thus, we have identified the

need of integrating a monitoring system to enhance the

proposed benchmarking framework capabilities. In a

nutshell, during the deployment of the benchmarking

framework, an extra set of services are spawned forming

the monitoring framework. The aim of the monitoring

framework is to gather and visualize different data from

the transactions performed in the network as well as data

regarding the health of the nodes participating in the

network. Moreover, the proposed monitoring framework

is considered a black box to the blockchain protocol;

while someone can build his/her custom metric exporter

gathering data based on their needs.

5. Experimental Evaluation

In order to evaluate the performance of the proposed

framework in terms of efficiency and ease of use, our

experiments have been deployed in a Virtual Machine

(VM) running on top of a bare metal server with the

following specifications:

• Dell PowerEdge R640 Server

o Intel® Xeon® Gold 6230 2.1G, 20C/40T,

10.4GT/s, 27.5M Cache, Turbo, HT (125W)

DDR4-2933 X 2

o 40 Cores, 80 Threads

o 32GB RDIMM DDR4 2666MT/s Dual Rank

X4

5.1 XRPL Client Setup

As previously mentioned, our aim was to develop a

generic blockchain benchmarking framework; where

researchers and/or developers would be able to deploy

and test different blockchain protocols with different

requirements and constraints. In our initial instantiation

of the architecture we have successfully deployed a

private XRP Ledger network. As it is depicted in Figure

3 we are able to deploy an XRPL Network consisted with

n number of nodes/validators. The specifications of the

VM used during this instantiation are the following:

• Ubuntu 18.04 LTS

o Intel(R) Xeon(R) Gold 6230 CPU @

2.10GHz (6 Cores)

o 12 GB RAM DDR4

5.2 Evaluation Metrics

During the evaluation process, several metrics were

captured and stored in the monitoring system.

Specifically, using the Server Info methods, provided by

the rippled daemon, we retrieve the status of the server.

Some of the metrics exposed in the monitoring system

were: ServerLatency, validationQuorum, loadFactor,

Peers, Uptime, serverStateDurationUs, convergeTimeS

and proposers. Description of these metrics is provided

by the XRPL website [25]. Moreover, a Docker Stats

exporter has been deployed [26] in order to export the

default metrics which the docker engine provides by

default. Such metrics are: CPU Usage, Memory Usage,

NET I/O, and Block I/O. These metrics are gathered and

stored in an InfluxDB in the form of time series data.

Page 6009

5.3 Results & Discussion

For the evaluation process we have performed three

experimental scenarios altering the number of validators

of the network. Starting from 10 validators, then 20 and

40 respectively, we have measured the mean converge

time (i.e., time of the validators to close the last ledger)

and how it is changed when more validators are

participating in the consensus process but also while

more proposers are in the network. Moreover, we have

measured the server latency, which defines how each

validator performs in terms of load, XRPL defines the

server latency as “The amount of time spent waiting for

I/O operations, in milliseconds. If this number is not very

low, then the rippled server is probably having serious

load issues.”

Before executing the aforementioned experiments, the

time to deploy an XRPL network in our benchmarking

framework was measured using the built-in method of

Linux based systems – time [28]. The latter is depicted

in Table 1.

The deployment time of an XRPL network with 10

validators was measured at 1 minute and 4 seconds,

while the deployment of a network topology consisted

with 65 nodes was measured at 2 minutes and 50

seconds.

Table 1. XRPL network deployment time

Nodes/Validators Time

10 1m4.727sec

20 1m10.671sec

40 2m11.798sec

60 2m43.028sec

65 2m50.124sec

5.3.1 Experiment 1

During our first experiment, an XRPL network topology

was deployed with 10 validators acting as proposers,

while 8 of them (i.e., 80% of the Network participants

[29]) as validators. The network topology was a full

mesh network - all nodes connected between each other.

In this setup, using the Traffic Generator Manager, 1

million transactions were submitted to random accounts,

exchanging a random amount of XRPs. The process was

repeated 5 times while the number of successful

transactions, execution time, converge time and server

latency were captured and stored. Finally, the mean

value of each metric was calculated while the results of

this first experiment are depicted in Table 2.

5.3.2 Experiment 2

In the second experiment, the number of

nodes/validators were increased to 20. In this case, 20 of

the nodes were acting as proposers while 16 of them

were acting as actual validators. The experiment was

executed 5 times while the same metrics as the first

experiment were also captured and visualized. The latter

is depicted in Table 3.

5.3.3 Experiment 3

During the third experiment, an XRPL Network

topology with 40 nodes/validators was deployed. In this

case, the 40 of them were acting as proposers while 33

nodes were acting as validators. The same process as

with the previous experiments was followed and

repeated 5 times, while the same metrics were captured

and visualized. The results of this experiment are

depicted in Table 4.

Based on the results of the three experiments, it is

realized that the mean time to execute 1 million

transactions is increased based on the number of

participants but also the number of the actual validators

of the network. It is measured at about 2 hours during the

first experiment, while it was increased by 2,5 hours

when the network was consisted with 20 participants and

3 hours with 40 participants. Moreover, the mean

converge time was also increased by 0.1 seconds in the

network of 20 participants rather than 10 participants,

and by 0.2 more during the experiment with 40

participants. Server Latency was also increased during

the three experiments but not at a point where the

network could become unresponsive. These outcomes

are well justified since BFT algorithms (i.e., Ripple

Consensus Protocol) demands more time to come into

consensus when there are more participants in the

validation quorum.

6. Conclusions

In this work, we proposed an initial setup of a

blockchain benchmarking framework, aiming at the

provision of the necessary tools to measure but also to

visualize different metrics of the blockchain protocol

under a test. Moreover, we have demonstrated the

integration of the first use case using the rippled daemon.

In this use case, we have executed three experiments

while we have measured the server latency and the

converge time of each network participant. Based on our

results we conclude that those two metrics are correlated

with the number of the network participants while both

metrics increased when the number of participants

increased. For future work we plan to involve the

Page 6010

integration of more blockchain protocols into our

benchmarking framework, while also implement more

complex test scenarios using the capabilities of the

Connectivity Manager.

7. Acknowledgment

This work has been partially supported by the

University Blockchain Research Initiative (UBRI)

project, funded by the Ripple’s Impact Fund, an advised

fund of Silicon Valley Community Foundation (Grant

id: 2018-188546).

8. References

[1] T. Ahram, A. Sargolzaei, S. Sargolzaei, J. Daniels,

and B. Amaba, “Blockchain technology

innovations,” in 2017 IEEE Technology and

Engineering Management Society Conference,

TEMSCON 2017, Jul. 2017, pp. 137–141, doi:

10.1109/TEMSCON.2017.7998367.

[2] “IEEE Xplore Full-Text PDF:”

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arn

umber=8632190 (accessed Mar. 05, 2021).

[3] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic

Cash System.” Accessed: Mar. 05, 2021. [Online].

Available: www.bitcoin.org.

[4] K. Sultan, U. Ruhi, and R. Lakhani, “Conceptualizing

Blockchains: Characteristics & Applications,”

Proceedings of the 11th IADIS International

Conference Information Systems 2018, IS 2018, pp.

49–57, Jun. 2018, Accessed: Jun. 22, 2020. [Online].

Available: http://arxiv.org/abs/1806.03693.

[5] K. Okupski, “Bitcoin Developer Reference Working

Paper Last changes: 30th July 2016,” 2016.

Accessed: Jun. 22, 2020. [Online].

[6] M. Vukolić, “Rethinking permissioned blockchains,”

in BCC 2017 - Proceedings of the ACM Workshop on

Blockchain, Cryptocurrencies and Contracts, co-

located with ASIA CCS 2017, Apr. 2017, pp. 3–7, doi:

10.1145/3055518.3055526.

[7] T. Neudecker and H. Hartenstein, “Network layer

aspects of permissionless blockchains,” IEEE

Communications Surveys and Tutorials, vol. 21, no.

1, pp. 838–857, Jan. 2019, doi:

10.1109/COMST.2018.2852480.

[8] Z. Li, A. V. Barenji, and G. Q. Huang, “Toward a

blockchain cloud manufacturing system as a peer to

peer distributed network platform,” Robotics and

Computer-Integrated Manufacturing, vol. 54, pp.

133–144, Dec. 2018, doi:

10.1016/j.rcim.2018.05.011.

[9] P. Kumari and P. Kaur, “A survey of fault tolerance

in cloud computing,” Journal of King Saud

University - Computer and Information Sciences,

2018, doi:

https://doi.org/10.1016/j.jksuci.2018.09.021.

[10] O. Boireau, “Securing the blockchain against

hackers,” Network Security, vol. 2018, no. 1, pp. 8–

11, 2018, doi: 10.1016/S1353-4858(18)30006-0.

[11] F. Calvão, “Crypto-miners: Digital labor and the

power of blockchain technology,” Economic

Anthropology, vol. 6, no. 1, pp. 123–134, Jan. 2019,

doi: 10.1002/sea2.12136.

[12] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A

Survey of Distributed Consensus Protocols for

Blockchain Networks,” IEEE Communications

Surveys Tutorials, vol. 22, no. 2, p. 1, Apr. 2020, doi:

10.1109/COMST.2020.2969706.

[13] F. Imbault, M. Swiatek, R. de Beaufort, and R. Plana,

“The green blockchain: Managing decentralized

energy production and consumption,” Jul. 2017, doi:

10.1109/EEEIC.2017.7977613.

[14] T. Tuan et al., “BLOCKBENCH: A Framework for

Analyzing Private Blockchains,” doi:

10.1145/3035918.3064033.

[15] K. Croman et al., “On Scaling Decentralized

Blockchains (A Position Paper) Initiative for

CryptoCurrencies and Contracts (IC3) 1 Cornell.”

Accessed: Nov. 19, 2020. [Online].

[16] C. Decker, R. Wattenhofer, and E. Zurich,

Information Propagation in the Bitcoin Network. .

[17] “Performance Analysis | Parity Technologies.”

https://www.parity.io/performance-analysis/

(accessed Nov. 19, 2020).

[18] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis,

H. Ritzdorf, and S. Capkun, “On the Security and

Performance of Proof of Work Blockchains,” in

Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, 2016,

pp. 3–16, doi: 10.1145/2976749.2978341.

[19] “Performance testing smart contracts developed

within VS Code using Hyperledger Caliper – IBM

Developer.”

https://developer.ibm.com/technologies/blockchain/t

utorials/blockchain-performance-testing-smart-

contracts-vscode-caliper/ (accessed Mar. 24, 2021).

[20] R. Wang, K. Ye, and C. Z. Xu, “Performance

Benchmarking and Optimization for Blockchain

Systems: A Survey,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in

Bioinformatics), Jun. 2019, vol. 11521 LNCS, pp.

171–185, doi: 10.1007/978-3-030-23404-1_12.

[21] D. Saingre, T. Ledoux, and J. M. Menaud,

“BCTMark: A Framework for Benchmarking

Blockchain Technologies,” in Proceedings of

IEEE/ACS International Conference on Computer

Systems and Applications, AICCSA, Nov. 2020, vol.

2020-Novem, doi:

10.1109/AICCSA50499.2020.9316536.

[22] A. Baliga, I. Subhod, P. Kamat, and S. Chatterjee,

“Performance Evaluation of the Quorum Blockchain

Platform,” arXiv, Jul. 2018, Accessed: Mar. 24, 2021.

[Online]. Available: http://arxiv.org/abs/1809.03421.

[23] “ConsenSys Quorum | ConsenSys.”

https://consensys.net/quorum/ (accessed Mar. 24,

2021).

Page 6011

[24] “UNIC-IFF/ripple-docker-testnet: Ripple/XRP

Private Testnet setup scripts for Docker Engine.”

https://github.com/UNIC-IFF/ripple-docker-testnet

(accessed Nov. 19, 2020).

[25] “https://xrpl.org/server_info.html.”

https://xrpl.org/server_info.html (accessed Mar. 03,

2021).

[26] “Docker Stats exporter for Prometheus.”

https://github.com/wywywywy/docker_stats_export

er (accessed Mar. 03, 2021).

[27] “Prometheus - Monitoring system & time series

database.” https://prometheus.io/ (accessed Mar. 05,

2021).

[28] “How to get script execution time from within the

shell script in Linux.”

https://www.golinuxcloud.com/get-script-execution-

time-command-bash-script/ (accessed Mar. 05,

2021).

[29] K. Christodoulou, E. Iosif, A. Inglezakis, and M.

Themistocleous, “Consensus Crash Testing:

Exploring Ripple’s Decentralization Degree in

Adversarial Environments,” Future Internet, vol. 12,

no. 3, p. 53, Mar. 2020, doi: 10.3390/fi12030053.

Table 2. Evaluation results of 1st experiment

Table 3. Evaluation results of 2nd experiment

Run Nodes Validator

Quorum

Transactions Successful

Transactions

Time

(Hours)

Converge

Time

(Sec)

Server

Latency

(Sec)
1 20 16 1000000 941914 4.290780171 2.8 1.3
2 20 16 1000000 942104 4.285953195 2.8 1.3
3 20 16 1000000 942833 4.289543764 2.8 1.3
4 20 16 1000000 942147 4.283003006 2.8 1.3
5 20 16 1000000 942522 4.287276685 2.8 1.3

Mean

Value

942304 4.287311364 2.8 1.3

Table 4. Evaluation results of 3rd experiment

Run Nodes Validator

Quorum

Transactions Successful

Transactions

Time

(Hours)

Converge

Time

(Sec)

Server

Latency

(Sec)
1 40 32 1000000 931876 5.234565751 3 1.5
2 40 32 1000000 931673 5.276554455 3 1.5
3 40 32 1000000 931871 5.128935424 3 1.5
4 40 32 1000000 932792 5.243675606 3 1.5
5 40 32 1000000 933779 5.986525675 3 1.5

Mean

Value

932398.2 5.374051382 3 1.5

Run Nodes Validator

Quorum

Transactions Successful

Transactions

Time

(Hours)

Converge

Time

(Sec)

Server

Latency

(Sec)
1 10 8 1000000 975621 2.058881831 2.7 1
2 10 8 1000000 976020 2.057368169 2.7 1
3 10 8 1000000 975554 2.059850487 2.7 1
4 10 8 1000000 975570 2.058161562 2.7 1
5 10 8 1000000 975769 2.059236403 2.7 1

Mean

Value

975706.8 2.05869969 2.7 1

Page 6012

