47 research outputs found

    Guardexpert pro: application-centric IoT solution for guard touring system

    Get PDF
    Internet of Things (IoT) technology promotes remote data acquisition and device control across wireless network infrastructure and is a catalyst for increasing internet-connected applications. This paper presents the development of an IoT based application for a guard touring system (GTS). A traditional GTS lacks real-time functionalities such as data upload, multitasking, summon features as well as competitive pricing. It is proven that the developed IoT based GTS, which consists of an Android application, web browser and cloud database, enables easy deployment and monitoring of guardโ€™s patrolling activities. The performance analysis shows that the accuracy for Global Positioning System (GPS) location tracking has by default a 68% confidence level within a set geo-fencing radius of 25 meters while the end-to-end delay is about one minute over cellular and Wi-Fi networks from a test run within UTM campus

    Review of Detection and Monitoring Systems for Buried High Pressure Pipelines:Final Report

    Get PDF
    The Netherlands has approximately two million kilometers of underground cables and pipelines. One specific type of buried infrastructure is the distribution network of hazardous material such as gas, oil, and chemicals (โ€˜transportleiding gevaarlijke stoffenโ€™). This network comprises 22.000 kilometers of high-pressure transportation pipelines. Because they are located under the ground, these pipelines are subject to excavation damages. Incidents in them Belgian Gellingen (2004) and German Ludwigshafen (2014) show that consequences of pipeline damages are significant. They can cause fatalities to excavation workers and impact the environment too. In addition, only direct costs for recovery of damages are estimated by the pipeline owner association (VELIN) to range already from several hundreds of thousands to even a few millions of euros. This figure does not yet include the indirect costs. Serious incidents will eventually undermine the publicโ€™s acceptance for hazardous pipelines, so it goes without saying that pipeline excavation incidents should, therefore, be avoided. Nowadays, third parties seem to be causing most of the damage to underground pipelines (Capstick, 2007; CONCAWE, 2013; EGIG, 2015; J. M. Muggleton & Rustighi, 2013). Reasons for this, often mentioned by industry, are that utility location information (KLIC-melding) is not always available and, when available, it is not always accurate or too difficult to interpret by excavator operators. It is crucial to detect underground infrastructure in a timely fashion to avoid damages. For this purpose, initiatives are needed to help excavator operators to detect pipelines and monitor groundworks taking place close to pipelines. Such initiatives could focus on the identification and the development of technologies for pipeline strike avoidance. The first step in this direction was this study โ€“ which in turn is related to the Safety Deals that are prepared by the association of pipeline owners in the Netherlands (VELIN) and the Dutch Ministry of Infrastructure and the Environment. VELIN and I&M requested the University of Twente to systematically review existing technologies for excavation damage avoidance. Such an overview is not available to the Dutch industry to date. The project team therefore identified and described existing systems for global monitoring and detection of utilities. These systems eventually help detect clashes between excavator equipment and high-pressure transportation pipelines

    Port security and information technology

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 2005.Includes bibliographical references (p. 92).The terrorist attacks of September 11th 2001 on New York and Washington DC shed light on the many security shortcomings that sea ports and the entire import and export process face. A primary source of these problems is the information sharing process which makes it hard to track the source of a problem in the import and export process due to lack of information and coordination. This thesis attempts to examine these data sharing problems by looking at what federal agencies, ports, and other private firms have been doing to solve the problems. The document exchange between various stakeholders and the process behind that was also examined to find potential problems. The reason behind doing this is because it is essential to understand the process and its problems before any meaningful results can be extracted from examining the efforts being done to solve the problems. The findings were similar for all cases showing that the primary reason preventing any of these problems to be solved is the unwillingness of commercial stakeholders to share information due to lack of incentives and privacy concerns.by Nikolaos Harilaos Petrakakos.S.M

    Focusing on the case analysis of advanced smart ports

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ–‰์ •๋Œ€ํ•™์› ๊ธ€๋กœ๋ฒŒํ–‰์ •์ „๊ณต, 2023. 2. Lee, Soo-young.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ตœ๊ทผ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ๊ฐœ๋…๊ณผ ํ•ญ๋งŒ ๊ฒฝ์Ÿ๋ ฅ๊ณผ์˜ ๊ด€๊ณ„๋ฅผ ๊ณ ์ฐฐํ•ด ๋ณด๊ณ , ์„ ์ง„ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์— ๋Œ€ํ•œ ๋‹ค๊ฐ์ ์ธ ๋ถ„์„์„ ํ†ตํ•ด ์šฐ๋ฆฌ๋‚˜๋ผ ์Šค๋งˆํŠธ ํ•ญ๋งŒ ๋ฐœ์ „ ๋ฐฉํ–ฅ์— ๋Œ€ํ•œ ์‹œ์‚ฌ์ ์„ ๋„์ถœํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด A. Molavi ์™ธ์˜ ์—ฐ๊ตฌ์—์„œ ํ™•๋ฆฝ๋œ ์Šค๋งˆํŠธ ํ•ญ๋งŒ ํ‰๊ฐ€ ์ฒ™๋„์˜ 4๊ฐ€์ง€ ์ธก๋ฉด, ์šด์˜์ธก๋ฉด(Operation), ํ™˜๊ฒฝ์ธก๋ฉด(Environment), ์—๋„ˆ์ง€ ์ธก๋ฉด(Energy), ๊ทธ๋ฆฌ๊ณ  ์•ˆ์ „๊ณผ ๋ณด์•ˆ ์ธก๋ฉด(Safety & Security)์˜ ๋ถ„์„ํ‹€์„ ํ™œ์šฉํ•˜์—ฌ ์Šค๋งˆํŠธ ํ•ญ๋งŒ ๊ฐœ๋ฐœ๊ณผ ๋ฐœ์ „์— ๊ฐ€์žฅ ์•ž์„  ๋„ค๋œ๋ž€๋“œ์˜ ๋กœํ…Œ๋ฅด๋‹ด ํ•ญ๋งŒ๊ณผ ๋…์ผ์˜ ํ•จ๋ถ€๋ฅดํฌ ํ•ญ๋งŒ์˜ ์ •์ฑ… ๋ถ„์„์„ ์‹œ๋„ํ•˜์˜€๋‹ค. A. Molavi ์™ธ์˜ ์—ฐ๊ตฌ๋Š” ์ธก์ • ๊ฐ€๋Šฅํ•œ ์Šค๋งˆํŠธํ™” ์ง€์ˆ˜๋ฅผ ๋ฐœ์ „์‹œ์ผœ ๊ฐ ํ•ญ๋งŒ์˜ ์Šค๋งˆํŠธํ™” ์ •๋„๋ฅผ ๊ฐ€๋Š ํ•˜๊ณ  ์žฅ๋‹จ์ ์„ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•œ ์ทจ์ง€์—์„œ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ํ‰๊ฐ€ ์ฒ™๋„๋ฅผ ํ™œ์šฉํ•˜๋˜ ์งˆ์ ์ธ ๋ถ„์„์œผ๋กœ ์ ‘๊ทผํ•˜์—ฌ ์ •์ฑ… ํ™œ์šฉ ์ธก๋ฉด์—์„œ ์œ ์šฉํ•œ ์‹œ์‚ฌ์ ์„ ๋„์ถœํ•˜๋Š”๋ฐ ๋ชฉ์ ์„ ๋‘์—ˆ๋‹ค. ๋˜ํ•œ ๋™์ผํ•œ ํ‹€์„ ํ™œ์šฉํ•˜์—ฌ ํ˜„์žฌ ๋ถ€์‚ฐ ์ปจํ…Œ์ด๋„ˆ ํ„ฐ๋ฏธ๋„์˜ ์Šค๋งˆํŠธ ํ•ญ๋งŒ ๋ฐœ์ „ ๊ณ„ํš์„ ๋ถ„์„ํ•˜๊ณ  ๋ฐœ์ „๋ฐฉํ–ฅ ์„ค์ •์— ๋„์›€์„ ์ฃผ๊ณ ์ž ํ•˜์˜€๋‹ค. ์šฐ์„  ์šด์˜ ์ธก๋ฉด์—์„œ ์„ ์ง„ ์Šค๋งˆํŠธ ํ•ญ๋งŒ๋“ค์€ ํ•ญ๋งŒ ๋‚ด ํ•˜์—ญ ์ „ ๊ณผ์ •์˜ ์™„์ „ ์ž๋™ํ™”๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๊ณ , ์ด์— ๊ทธ์น˜์ง€ ์•Š๊ณ  ํ•ญ๋งŒ ๋‚ด ๋ชจ๋“  ๊ณผ์ •์„ 4์ฐจ ์‚ฐ์—…ํ˜๋ช…์˜ ์ฒจ๋‹จ ๊ธฐ์ˆ ๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ๋ฌด์ธํ™”์™€ ํšจ์œจํ™”๋ฅผ ์ถ”๊ตฌํ•˜์˜€๋‹ค. ์ด ๊ณผ์ •์—์„œ A.I, IoT, ๋ธ”๋ก์ฒด์ธ ๋“ฑ 4์ฐจ ์‚ฐ์—…ํ˜๋ช…์˜ ํ•ต์‹ฌ ๊ธฐ์ˆ ๋“ค์„ ์ ๊ทน ํ™œ์šฉํ•˜์—ฌ ํ•ญ๋งŒ์˜ ์ „์ฒด์ ์ธ ๋ชจ์Šต์„ ๋ณ€ํ™”์‹œ์ผœ ๊ฐ€๊ณ  ์žˆ์œผ๋ฉฐ, ๋น„์šฉ์ ˆ๊ฐ๊ณผ ์ƒ์‚ฐ์„ฑ ์ฆ๋Œ€ ๋“ฑ ์ง์ ‘์ ์ธ ํšจ๊ณผ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ธ€๋กœ๋ฒŒ ๋ฌผ๋ฅ˜์˜ ํ•ต์‹ฌ ๊ตฌ์‹ฌ์ ์œผ๋กœ์จ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋ฐœ์ „์‹œ์ผœ ๋‚˜๊ฐ€๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํ•ญ๋งŒ ๊ฒฝ์Ÿ๋ ฅ ํ–ฅ์ƒ์€ ๋ฌผ๋ก  ๋ฌผ๋ฅ˜ ํฌํ„ธ๋กœ์จ์˜ ์ง€์œ„๋ฅผ ์„ ์ ํ•˜๊ธฐ ์œ„ํ•œ ๊ฒฝ์Ÿ๋„ ์‹ฌํ™”๋˜๊ณ  ์žˆ๋‹ค. ํ™˜๊ฒฝ ์ธก๋ฉด์—์„œ๋Š” ์นœํ™˜๊ฒฝ ํ•ญ๋งŒ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ฆ๋Œ€๋˜๊ณ  ์žˆ๋‹ค. ํ•ญ๋งŒ์€ ๋” ์ด์ƒ ๋„์‹œ์™€ ๋ถ„๋ฆฌ๋˜์–ด ์กด์žฌํ•˜๋Š” ๋…๋ฆฝ๋œ ์˜์—ญ์ด ์•„๋‹Œ, ์ธ์ ‘ ๋„์‹œ ์ฃผ๋ฏผ๋“ค๊ณผ ์ƒํ˜ธ ์˜ํ–ฅ์„ ์ฃผ๊ณ ๋ฐ›์œผ๋ฉฐ ๋ฐœ์ „ํ•˜๋Š” ํ˜ธํ˜œ์ ์ธ ๊ด€๊ณ„๋ฅผ ๊ตฌ์ถ•ํ•ด์•ผ ํ•œ๋‹ค๋Š”๋ฐ ๊ณต๊ฐ๋Œ€๊ฐ€ ํ˜•์„ฑ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ทธ๋™์•ˆ ํ•ญ๋งŒ ํ™œ๋™์„ ํ†ตํ•ด ์•ผ๊ธฐ๋˜์—ˆ๋˜ ํ™˜๊ฒฝ ์˜ค์—ผ ๋ฌธ์ œ๋ฅผ ์ค„์ด๊ณ  ์ง€์—ญ์‚ฌํšŒ์— ๊ธฐ์—ฌํ•˜๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ๋“ค์ด ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ์ „๋ ฅ์— ๊ธฐ๋ฐ˜ํ•œ ์นœํ™˜๊ฒฝ ํ•˜์—ญ์žฅ๋น„๋กœ ๋Œ€์ฒดํ•˜๊ณ , ์„ ๋ฐ•์˜ ์—ฐ๋ฃŒ๋ฅผ ์นœํ™˜๊ฒฝ ์—ฐ๋ฃŒ๋กœ ์ „ํ™˜ํ•˜๋Š” ๋…ธ๋ ฅ์ด ์ง„ํ–‰ ์ค‘์ด๋‹ค. ํ•ญ๋งŒ ๋‚ด ์œ ํœด๋ถ€์ง€๋ฅผ ํ™œ์šฉํ•ด ์‹ ์žฌ์ƒ์—๋„ˆ์ง€๋ฅผ ๋ฐœ์ „ํ•˜๊ณ  ์ธ๊ทผ ์ง€์—ญ์— ๊ณต๊ธ‰ํ•˜๋Š” ๋ฐฉ์•ˆ๊ณผ, ํ•ญ๋งŒ์˜ ํ™˜๊ฒฝ ๋ฌธ์ œ๋ฅผ IoT ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฐ์‹œํ•˜๊ณ  ๊ณต์œ ํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜์—ฌ ํ•ญ๋งŒ์˜ ์ง€์† ๊ฐ€๋Šฅํ•œ ๋ฐœ์ „์„ ์˜๋„ํ•˜๋ฉฐ ํƒ„์†Œ ์ค‘๋ฆฝ ์‚ฌํšŒ๋กœ์˜ ์ง„์ „์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ์ž์ฒ˜ํ•˜๊ณ  ์žˆ๋‹ค. ์—๋„ˆ์ง€ ์ธก๋ฉด์—์„œ๋Š” ์Šค๋งˆํŠธ ํ•ญ๋งŒ์ด ๋ฏธ๋ž˜ ์ˆ˜์†Œ ์‚ฌํšŒ์˜ ํ•ต์‹ฌ ๊ณต๊ธ‰ ๊ธฐ์ง€๊ฐ€ ๋  ์ „๋ง์ด๋‹ค. ํ•ด์ƒ ๋ฌผ๋ฅ˜์™€ ์œก์ƒ ๋ฌผ๋ฅ˜๊ฐ€ ๊ฒฐํ•ฉ๋˜๋Š” ๊ธฐ๋Šฅ์  ์ด์ ์„ ํ™œ์šฉํ•˜์—ฌ ์ˆ˜์†Œ์˜ ์ƒ์‚ฐ๊ณผ ์ €์žฅ, ๋ถ„๋ฐฐ ๋“ฑ ์ˆ˜์†Œ ๊ฒฝ์ œ์˜ ํ•ต์‹ฌ ์ธํ”„๋ผ๋ฅผ ํ•ญ๋งŒ ๋‚ด ๊ตฌ์ถ•ํ•˜๊ณ  ํ•ญ๋งŒ ๊ธฐ๋Šฅ๊ณผ์˜ ๊ฒฐํ•ฉ์„ ์‹œ๋„ํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์„ ์ง„ ํ•ญ๋งŒ๋“ค์€ ๋Œ€๊ทœ๋ชจ ํŒŒ์ดํ”„ ๋ผ์ธ์„ ๊ฑด์„คํ•˜๋Š” ํ”„๋กœ์ ํŠธ๋“ค์„ ์ง„ํ–‰ํ•˜๋ฉฐ ๋ฏธ๋ž˜๋ฅผ ์ค€๋น„ํ•˜๊ณ  ์žˆ๋‹ค. ์•ˆ์ „๊ณผ ๋ณด์•ˆ ์ธก๋ฉด์—์„œ๋Š” ํ•ญ๋งŒ์ด ์ฒจ๋‹จ ๊ธฐ์ˆ  ํ™œ์šฉ์˜ ๊ฒฝ์—ฐ์žฅ์ด ๋˜๊ณ  ์žˆ๋‹ค. ํ•ญ๊ณต ๋ฐ ํ•ด์ƒ, ์ˆ˜์ค‘ ๋“œ๋ก  ๋“ฑ ์ฒจ๋‹จ ์žฅ๋น„๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ๋“œ๋„“์€ ํ•ญ๋งŒ์„ ๊ฐ€์ƒ ํ˜„์‹ค์„ธ๊ณ„์ธ ํŠธ์œˆ ํƒ€์›Œ์— ์ด์‹ํ•˜๊ณ  ์ธ๊ณต์ง€๋Šฅ์— ์˜ํ•œ ์‹ค์‹œ๊ฐ„ ๊ด€๋ฆฌ ๊ฐ๋…์ด ๊ฐ€๋Šฅํ•œ ์‹œ์Šคํ…œ์ด ๊ตฌ์ถ•๋˜๊ณ  ์žˆ๋‹ค. ํ•ญ๋งŒ ๋‚ด ํ•˜์—ญ์ž‘์—…์˜ ๋ฌด์ธํ™”๋Š” ์•ˆ์ „์‚ฌ๊ณ ์˜ ์œ„ํ—˜์„ ํš๊ธฐ์ ์œผ๋กœ ์ค„์ผ ์ˆ˜ ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์‚ฌ๊ฐ ์ง€๋Œ€๊ฐ€ ์—†๋Š” ๊ด€๋ฆฌ ๊ฐ๋…๋„ ๊ฐ€๋Šฅํ•ด์ ธ ํ•ญ๋งŒ ๋‚ด ์žฌ๋‚œ์‚ฌ๊ณ ์™€ ๋ฐ€์ž…๊ตญ ๋“ฑ์˜ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ๋ณ€ํ™”์‹œํ‚ฌ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์„ ์ง„ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์—์„œ ์ถ”๊ตฌํ•˜๋Š” ๊ทผ๋ณธ์ ์ธ ๋ฐฉํ–ฅ์€ ์„ธ๊ณ„ ๋ฌผ๋ฅ˜์˜ ํ•ต์‹ฌ ํฌํ„ธ์„ ๊ตฌ์ถ•ํ•˜๋Š” ๊ฒƒ์ด๋ฉฐ ์ด๋ฅผ ์œ„ํ•ด ํ•ญ๋งŒ์˜ ์—ญํ• ์€ ๊ธฐ์กด์˜ ์ง€์—ญ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋„˜์–ด ๊ธฐ๋Šฅ์ ์œผ๋กœ ๊ทธ๋ฆฌ๊ณ  ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํŒฝ์ฐฝํ•˜๊ณ  ์žˆ๋‹ค. ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๊ฒฝ์šฐ ์ผ์ฐ์ด ์ž๋™ํ™” ํ•ญ๋งŒ์˜ ๋ฐœ์ „์„ ์‹œ์ž‘ํ•œ ์œ ๋Ÿฝ ํ•ญ๋งŒ์€ ๋ฌผ๋ก  ์ธ๊ทผ ์ค‘๊ตญ๊ณผ ์‹ฑ๊ฐ€ํฌ๋ฅด์˜ ์ž๋™ํ™” ํ•ญ๋งŒ๊ณผ ๋น„๊ตํ•ด๋„ ๋’ค์ณ์ง€๊ณ  ์žˆ๋Š” ๊ฒƒ์ด ํ˜„์‹ค์ด๋‹ค. ์ด๋ฅผ ๋งŒํšŒํ•˜๊ธฐ ์œ„ํ•ด ์ค‘์•™ ์ •๋ถ€ ์ฐจ์›์—์„œ ์Šค๋งˆํŠธ ํ•ด์ƒ๋ฌผ๋ฅ˜์ฒด๊ณ„ ๊ตฌ์ถ• ์ „๋žต์„ ์ˆ˜๋ฆฝํ•˜๊ณ  2030๋…„ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ๋ณธ๊ฒฉ์ ์ธ ์šด์˜์„ ๊ณ„ํšํ•˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๋ณธ ๊ณ„ํš์€ ์ „๋ฐ˜์ ์ธ ๋ฌผ๋ฅ˜ ๊ธฐ๋Šฅ ์ค‘ ํ•˜์œ„ ์š”์†Œ๋กœ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์„ ์ธ์‹ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์Šค๋งˆํŠธ ํ•ญ๋งŒ์„ ์ž๋™ํ™” ํ•ญ๋งŒ์ด๋ผ๋Š” ์ข์€ ์ธก๋ฉด์—์„œ๋งŒ ๋ฐ”๋ผ๋ณด๊ณ  ์žˆ๋Š” ๊ฒƒ์œผ๋กœ, ํ•ญ๋งŒ์˜ ๋ฏธ๋ž˜ ์ž ์žฌ๋ ฅ์— ๋Œ€ํ•œ ์„ ์ง„ ํ•ญ๋งŒ๋“ค์˜ ์ธ์‹๊ณผ๋Š” ํฐ ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•˜๊ฒ ๋‹ค. ๋˜ํ•œ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ๋ฐœ์ „ ๊ณผ์ •์—์„œ ๋ฏผ๊ฐ„ ๊ธฐ์—…๊ณผ ํ•ญ๋งŒ ์ดํ•ด๊ด€๊ณ„์ž๋“ค์ด ์ ๊ทน์ ์œผ๋กœ ์ฐธ์—ฌํ•˜๊ณ  ํ˜‘๋ ฅํ•˜์—ฌ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ๋ชจ์Šต์„ ๊ทธ๋ ค๊ฐ€๋Š” ์„ ์ง„ ํ•ญ๋งŒ๊ณผ๋Š” ๋‹ฌ๋ฆฌ ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๊ฒฝ์šฐ ์—ฌ์ „ํžˆ ์ •๋ถ€ ์ฃผ๋„ ๋ฐœ์ „ ๋ฐฉ์‹์„ ๊ณ ์ˆ˜ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ฐ€์žฅ ์ฃผ๋„์ ์ธ ์—ญํ• ์„ ํ•ด์•ผ ํ•  ํ•ญ๋งŒ ๊ณต์‚ฌ๋“ค์˜ ์—ญํ• ์ด ๋ฏธ๋ฏธํ•œ ๊ฒƒ์€ ํ•œ๊ณ„๋ผ๊ณ  ํ•˜๊ฒ ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ–ฅํ›„ ํƒ„์†Œ ์ค‘๋ฆฝ ์‚ฌํšŒ๋กœ์˜ ์ดํ–‰์˜๋ฌด ๋“ฑ ํ™˜๊ฒฝ์ ์ธ ๋ฌธ์ œ์™€ ์นœํ™˜๊ฒฝ ์—๋„ˆ์ง€๋กœ์˜ ์ „ํ™˜์ด ์ค‘์š”์‹œ๋˜๊ณ  ์žˆ๋Š” ์‹œ์ ์—์„œ ์ด์— ๋Œ€ํ•œ ๊ทผ๋ณธ์ ์ธ ์ „ํ™˜๊ณ„ํš์ด๋‚˜ ํ•ญ๋งŒ์˜ ์ƒˆ๋กœ์šด ์—ญํ• ์— ๋Œ€ํ•œ ๊ณ ๋ฏผ์ด ๋ถ€์กฑํ•œ ๊ฒƒ๋„ ๋น„๊ต ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๋„์ถœํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์œ ๋Ÿฝ์˜ ํ•ญ๋งŒ๋“ค๊ณผ๋Š” ๋‹ฌ๋ฆฌ ์ˆ˜์†Œ ๊ฒฝ์ œ๋กœ์˜ ์ดํ–‰์— ์žˆ์–ด ํ•ญ๋งŒ์˜ ํ•ต์‹ฌ์  ์—ญํ• ์ด ๋น ์ ธ ์žˆ๋‹ค๋Š” ๊ฒƒ์€ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์— ๋Œ€ํ•œ ์ธ์‹ ๋ถ€์กฑ์—์„œ ๋น„๋กฏ๋œ ๊ฒƒ์œผ๋กœ ๋ณด์ด๋ฉฐ ์ด์— ๋Œ€ํ•œ ์ •์ฑ…์  ๊ฐœ์„ ์ด ํ•„์š”ํ•œ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.This study examines the relationship between the concept of smart ports and port competitiveness, which have recently been in the spotlight, and attempts to derive implications for Korea's smart port development direction through various analysis of advanced smart ports. To this end, this research attempted to analyze the policies of Rotterdam Port in the Netherlands and Hamburg Port in Germany, which are most advanced in smart port development and development, using the analysis framework of four smart port evaluation measures established in A. Molavi et al. In terms of operation, advanced smart ports achieved complete automation of the entire loading and unloading process in the port, and not only this, but all processes in the port were pursued for unmanned and efficient use of the advanced technologies of the 4th Industrial Revolution. In terms of the environment, interest in eco-friendly ports is increasing. There is a consensus that ports should no longer be independent areas that exist separately from cities, but should establish reciprocal relationships that interact and develop with residents of neighboring cities. In terms of energy, smart ports are expected to become a key supply base for the future hydrogen society. Taking advantage of the functional advantages of combining marine logistics and land logistics, the core infrastructure of the hydrogen economy, such as hydrogen production, storage, and distribution, is built in ports and attempted to combine them with port functions. In terms of safety and security, ports are becoming a competition for the use of advanced technology. Using high-tech equipment such as aviation, sea, and underwater drones, a system that allows real-time management and supervision by artificial intelligence is being established by transplanting a wide port into a virtual reality twin tower. In the case of Korea, the reality is that it is lagging behind not only European ports that started the development of automated ports early but also automated ports in neighboring China and Singapore. To make up for this, the central government has established a "smart maritime logistics system construction strategy" and plans to operate smart ports in earnest in 2030. However, this plan recognizes smart ports as a sub-factor of the overall logistics function, which only looks at smart ports in the narrow aspect of automated ports, which is very different from advanced ports' perceptions of the future potential of ports. In addition, unlike advanced ports in which private companies and port stakeholders actively participate and cooperate in the development of smart ports, Korea still adheres to the government-led development method, and the role of port authorities to play the most leading role is insignificant. In addition, at a time when environmental problems such as the obligation to transition to a carbon-neutral society in the future and the transition to eco-friendly energy are becoming important, this comparative study was able to derive the lack of concern about the fundamental transition plan or the new role of ports. Unlike ports in Europe, the absence of a key role in the transition to a hydrogen economy seems to stem from a lack of awareness of smart ports, and policy improvements are needed.Chapter 1. Introduction ๏ผ‘ 1.1. Study Background ๏ผ‘ 1.2. Scope and Method of Study ๏ผ’ Chapter 2. Theoretical Discussions and Prior Study Reviews ๏ผ” 2.1. Theoretical discussion of smart ports ๏ผ” 2.1.1. Significance of Ports ๏ผ” 2.1.2. Development of Ports ๏ผ• 2.1.3. Prior Study of Smart Ports ๏ผ– 2.1.4. Smart Port Index (SPI) ๏ผ™ 2.2. Theoretical discussion of port competitiveness ๏ผ‘๏ผ‘ 2.2.1 The Concept of Port Competitiveness ๏ผ‘๏ผ‘ 2.2.2. A Prior Study on Port Competitiveness ๏ผ‘๏ผ“ 2.2.3. Port Competitiveness and Performance Evaluation ๏ผ‘๏ผ• 2.3. The relationship between smart ports and port competitiveness ๏ผ‘๏ผ— 2.3.1. Smart Port Components and Port Competitiveness ๏ผ‘๏ผ— 2.3.2. Trends in Smart Port Development ๏ผ’๏ผ“ 2.4. Results of previous study review ๏ผ’๏ผ— 3.1. Analysis Targets and Data ๏ผ’๏ผ˜ 3.2. Analytical Model ๏ผ’๏ผ™ Chapter 3. Case Analysis ๏ผ“๏ผ’ 3.1. Port of Rotterdam (Netherlands) ๏ผ“๏ผ’ 3.1.1. Background and Status of Smart Port Introduction ๏ผ“๏ผ’ 3.1.2. Operational Aspects of Smart Port ๏ผ“๏ผ” 3.1.3. Environmental Aspects of Smart Port ๏ผ“๏ผ— 3.1.4. Energy Aspects of Smart Port ๏ผ“๏ผ™ 3.1.5. Safety and Security Aspects of Smart Port ๏ผ”๏ผ‘ 3.1.6. Implications ๏ผ”๏ผ“ 3.2. Port of Hamburg (Germany) ๏ผ”๏ผ• 3.2.1. Background and Status of Smart Port Introduction ๏ผ”๏ผ• 3.2.2. Operational Aspects of Smart Port ๏ผ”๏ผ˜ 3.2.3. Environmental Aspects of Smart Port ๏ผ•๏ผ‘ 3.2.4. Energy Aspects of Smart Port ๏ผ•๏ผ“ 3.2.5. Safety and Security Aspects of Smart Port ๏ผ•๏ผ• 3.2.5. Implications ๏ผ•๏ผ– 3.3. Port of Busan (S.Korea) ๏ผ•๏ผ˜ 3.3.1. Background and Status of Smart Port Introduction ๏ผ•๏ผ˜ 3.3.2. Operational Aspects of Smart Port ๏ผ–๏ผ 3.3.3. Environmental Aspects of Smart Port ๏ผ–๏ผ’ 3.3.4. Energy Aspects of Smart Port ๏ผ–๏ผ“ 3.3.5. Safety and Security Aspects of Smart Port ๏ผ–๏ผ” Chapter 4. Conclusion ๏ผ–๏ผ– 4.1. Results of Research ๏ผ–๏ผ– 4.2. Policy Implications ๏ผ—๏ผ 4.3. Limitations of Research ๏ผ—๏ผ” Bibliography ๏ผ—๏ผ– Abstract in Korean ๏ผ˜๏ผ’์„

    Visible Light Communications for Industrial Applicationsโ€”Challenges and Potentials

    Get PDF
    Visible Light Communication (VLC) is a short-range optical wireless communication technology that has been gaining attention due to its potential to offload heavy data traffic from the congested radio wireless spectrum. At the same time, wireless communications are becoming crucial to smart manufacturing within the scope of Industry 4.0. Industry 4.0 is a developing trend of high-speed data exchange in automation for manufacturing technologies and is referred to as the fourth industrial revolution. This trend requires fast, reliable, low-latency, and cost-effective data transmissions with fast synchronizations to ensure smooth operations for various processes. VLC is capable of providing reliable, low-latency, and secure connections that do not penetrate walls and is immune to electromagnetic interference. As such, this paper aims to show the potential of VLC for industrial wireless applications by examining the latest research work in VLC systems. This work also highlights and classifies challenges that might arise with the applicability of VLC and visible light positioning (VLP) systems in these settings. Given the previous work performed in these areas, and the major ongoing experimental projects looking into the use of VLC systems for industrial applications, the use of VLC and VLP systems for industrial applications shows promising potential

    Review of the Digital Twin Technology Applications for Electrical Equipment Lifecycle Management

    Get PDF
    Digital twin is one of the emerging technologies for the digital transformation of the power industry. Many existing studies claim that the widespread application of digital twins will shift the industry to a principally new level of development. This article provides an extensive overview of the industrial application experience of digital twin technologies for solving the problems of modern power systems with a particular focus on the task of high-voltage power equipment lifecycle management. The latter task contours one of the most promising areas for the application of the digital twins in the power industry since it requires deep analysis of the technological processes dynamics and the development of physical, mathematical and computer models that cover all the potential benefits of the digital twin technology. At the moment, there is a lack of reliable data on the problems of assessing and predicting the technical state of high-voltage power equipment. The use of digital twin technology in modern power systems will allow for aggregating data from a variety of real objects and will allow the automatization of collecting and processing of big data by implementing artificial intelligence methods, which will ultimately make it possible to manage the life cycle of the power equipment. The article puts to scrutiny the industrial experience of digital twins creation, considering the technical solutions suggested by the largest manufacturers of electrical equipment. A classification of digital twins, examples and main features of their application in the power industry, including the problem of managing the life cycle of high-voltage electrical equipment, are considered and discussed. ยฉ 2023 by the authors.Ministry of Education and Science of the Russian Federation, MinobrnaukaThe research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged

    Enabling emergent configurations in the industrial internet of things for oil and gas explorations : a survey

    Get PDF
    Abstract: Several heterogeneous, intelligent, and distributed devices can be connected to interact with one another over the Internet in what is termed internet of things (IoT). Also, the concept of IoT can be exploited in the industrial environment for enhancing the production of goods and services and for mitigating the risk of disaster occurrences. This application of IoT for enhancing industrial production is known as industrial IoT (IIoT). Emergent configuration (EC) is a technology that can be adopted to enhance the operation and collaboration of IoT connected devices in order to improve the efficiency of the connected IoT systems for maximum user satisfaction. To meet user goals, the connected devices are required to cooperate with one another in an adaptive, interoperable, and homogeneous manner. In this paper, a survey of the concept of IoT is presented in addition to a review of IIoT systems. The application of ubiquitous computing-aided software define networking (SDN)-based EC architecture is propounded for enhancing the throughput of oil and gas production in the maritime ecosystems by managing the exploration process especially in emergency situations that involve anthropogenic oil and gas spillages

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors
    corecore