624 research outputs found

    Localization of DOA trajectories -- Beyond the grid

    Full text link
    The direction of arrival (DOA) estimation algorithms are crucial in localizing acoustic sources. Traditional localization methods rely on block-level processing to extract the directional information from multiple measurements processed together. However, these methods assume that DOA remains constant throughout the block, which may not be true in practical scenarios. Also, the performance of localization methods is limited when the true parameters do not lie on the parameter search grid. In this paper we propose two trajectory models, namely the polynomial and bandlimited trajectory models, to capture the DOA dynamics. To estimate trajectory parameters, we adopt two gridless algorithms: i) Sliding Frank-Wolfe (SFW), which solves the Beurling LASSO problem and ii) Newtonized Orthogonal Matching Pursuit (NOMP), which improves over OMP using cyclic refinement. Furthermore, we extend our analysis to include wideband processing. The simulation results indicate that the proposed trajectory localization algorithms exhibit improved performance compared to grid-based methods in terms of resolution, robustness to noise, and computational efficiency

    On adaptive control and particle filtering in the automatic administration of medicinal drugs

    Get PDF
    Automatic feedback methodologies for the administration of medicinal drugs offer undisputed potential benefits in terms of cost reduction and improved clinical outcomes. However, despite several decades of research, the ultimate safety of many--it would be fair to say most--closed-loop drug delivery approaches remains under question and manual methods based on clinicians' expertise are still dominant in clinical practice. Key challenges to the design of control systems for these applications include uncertainty in pharmacological models, as well as intra- and interpatient variability in the response to drug administration. Pharmacological systems may feature nonlinearities, time delays, time-varying parameters and non-Gaussian stochastic processes. This dissertation investigates a novel multi-controller adaptive control strategy capable of delivering safe control for closed-loop drug delivery applications without impairing clinicians' ability to make an expert assessment of a clinical situation. Our new feedback control approach, which we have named Robust Adaptive Control with Particle Filtering (RAC-PF), estimates a patient's individual response characteristic in real-time through particle filtering and uses the Bayesian inference result to select the most suitable controller for closed-loop operation from a bank of candidate controllers designed using the robust methodology of mu-synthesis. The work is presented as four distinct pieces of research. We first apply the existing approach of Robust Multiple-Model Adaptive Control (RMMAC), which features robust controllers and Kalman filter estimators, to the case-study of administration of the vasodepressor drug sodium nitroprusside and examine benefits and drawbacks. We then consider particle filtering as an alternative to Kalman filter-based methods for the real-time estimation of pharmacological dose-response, and apply this to the nonlinear pharmacokinetic-pharmacodynamic model of the anaesthetic drug propofol. We ultimately combine particle filters and robust controllers to create RAC-PF, and test our novel approach first in a proof-of-concept design and finally in the case of sodium nitroprusside. The results presented in the dissertation are based on computational studies, including extensive Monte-Carlo simulation campaigns. Our findings of improved parameter estimates from noisy observations support the use of particle filtering as a viable tool for real-time Bayesian inference in pharmacological system identification. The potential of the RAC-PF approach as an extension of RMMAC for closed-loop control of a broader class of systems is also clearly highlighted, with the proposed new approach delivering safe control of acute hypertension through sodium nitroprusside infusion when applied to a very general population response model. All approaches presented are generalisable and may be readily adapted to other drug delivery instances

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance

    On Automation in Anesthesia

    Get PDF
    The thesis discusses closed-loop control of the hypnotic and the analgesic components of anesthesia. The objective of the work has been to develop a system which independently controls the intravenous infusion rates of the hypnotic drug propofol and analgesic drug remifentanil. The system is designed to track a reference hypnotic depth level, while maintaining adequate analgesia. This is complicated by inter-patient variability in drug sensitivity, disturbances caused foremost by surgical stimulation, and measurement noise. A commercially available monitor is used to measure the hypnotic depth of the patient, while a simple soft sensor estimates the analgesic depth. Both induction and maintenance of anesthesia are closed-loop controlled, using a PID controller for propofol and a P controller for remifentanil. In order to tune the controllers, patient models have been identified from clinical data, with body mass as only biometric parameter. Care has been taken to characterize identifiability and produce models which are safe for the intended application. A scheme for individualizing the controller tuning upon completion of the induction phase of anesthesia is proposed. Practical aspects such as integrator anti-windup and loss of the measurement signal are explicitly addressed. The validity of the performance measures, most commonly reported in closed-loop anesthesia studies, is debated and a new set of measures is proposed. It is shown, both in simulation and clinically, that PID control provides a viable approach. Both results from simulations and clinical trials are presented. These results suggest that closed-loop controlled anesthesia can be provided in a safe and efficient manner, relieving the regulatory and server controller role of the anesthesiologist. However, outlier patient dynamics, unmeasurable disturbances and scenarios which are not considered in the controller synthesis, urge the presence of an anesthesiologist. Closed-loop controlled anesthesia should therefore not be viewed as a replacement of human expertise, but rather as a tool, similar to the cruise controller of a car

    On Simultaneous Localization and Mapping inside the Human Body (Body-SLAM)

    Get PDF
    Wireless capsule endoscopy (WCE) offers a patient-friendly, non-invasive and painless investigation of the entire small intestine, where other conventional wired endoscopic instruments can barely reach. As a critical component of the capsule endoscopic examination, physicians need to know the precise position of the endoscopic capsule in order to identify the position of intestinal disease after it is detected by the video source. To define the position of the endoscopic capsule, we need to have a map of inside the human body. However, since the shape of the small intestine is extremely complex and the RF signal propagates differently in the non-homogeneous body tissues, accurate mapping and localization inside small intestine is very challenging. In this dissertation, we present an in-body simultaneous localization and mapping technique (Body-SLAM) to enhance the positioning accuracy of the WCE inside the small intestine and reconstruct the trajectory the capsule has traveled. In this way, the positions of the intestinal diseases can be accurately located on the map of inside human body, therefore, facilitates the following up therapeutic operations. The proposed approach takes advantage of data fusion from two sources that come with the WCE: image sequences captured by the WCE\u27s embedded camera and the RF signal emitted by the capsule. This approach estimates the speed and orientation of the endoscopic capsule by analyzing displacements of feature points between consecutive images. Then, it integrates this motion information with the RF measurements by employing a Kalman filter to smooth the localization results and generate the route that the WCE has traveled. The performance of the proposed motion tracking algorithm is validated using empirical data from the patients and this motion model is later imported into a virtual testbed to test the performance of the alternative Body-SLAM algorithms. Experimental results show that the proposed Body-SLAM technique is able to provide accurate tracking of the WCE with average error of less than 2.3cm
    corecore