
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

On Automation in Anesthesia

Soltesz, Kristian

2013

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Soltesz, K. (2013). On Automation in Anesthesia. Department of Automatic Control, Lund Institute of
Technology, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/b9b39df9-056a-4b88-8aa1-5bd2b9b144dd


On Automation in Anesthesia

Kristian Soltész

Department of Automatic Control



Department of Automatic Control
Lund University
PO Box 118
SE-221 00 Lund
Sweden

PhD Thesis
ISRN LUTFD2/TFRT--1096--SE
ISSN 0280–5316
ISBN 978-91-7473-484-3

c© 2013 by Kristian Soltész. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2013



Szeretett Nagytatámnak





Abstract

The thesis discusses closed-loop control of the hypnotic and the analgesic
components of anesthesia. The objective of the work has been to develop a
system which independently controls the intravenous infusion rates of the
hypnotic drug propofol and analgesic drug remifentanil. The system is de-
signed to track a reference hypnotic depth level, while maintaining adequate
analgesia. This is complicated by inter-patient variability in drug sensitiv-
ity, disturbances caused foremost by surgical stimulation, and measurement
noise. A commercially available monitor is used to measure the hypnotic
depth of the patient, while a simple soft sensor estimates the analgesic depth.
Both induction and maintenance of anesthesia are closed-loop controlled, us-
ing a PID controller for propofol and a P controller for remifentanil. In order
to tune the controllers, patient models have been identified from clinical
data, with body mass as only biometric parameter. Care has been taken
to characterize identifiability and produce models which are safe for the in-
tended application. A scheme for individualizing the controller tuning upon
completion of the induction phase of anesthesia is proposed. Practical as-
pects such as integrator anti-windup and loss of the measurement signal are
explicitly addressed. The validity of the performance measures, most com-
monly reported in closed-loop anesthesia studies, is debated and a new set
of measures is proposed. It is shown, both in simulation and clinically, that
PID control provides a viable approach. Both results from simulations and
clinical trials are presented. These results suggest that closed-loop controlled
anesthesia can be provided in a safe and efficient manner, relieving the reg-
ulatory and server controller role of the anesthesiologist. However, outlier
patient dynamics, unmeasurable disturbances and scenarios which are not
considered in the controller synthesis, urge the presence of an anesthesiolo-
gist. Closed-loop controlled anesthesia should therefore not be viewed as a
replacement of human expertise, but rather as a tool, similar to the cruise
controller of a car.
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Preface

Motivation

Closed-loop control has found its successful application in a wide range of
fields, stretching from indoor temperature control, to robotics or tracking in
DVD players. However, it has had a comparably limited impact in the field
of medicine.

The suggestion of controlling drug delivery for maintaining an adequate
anesthetic state during surgery is an exception and was proposed and demon-
strated already in the 1950s [Soltero et al., 1951]. There has since emerged
numerous studies on the topic, utilizing a wide range of control strategies.
However, little has changed in clinical practice. One contributing reason to
this is the justified concern regarding patient safety. This is foremost mani-
fested through the regulatory challenges facing any candidate system, partic-
ularly in North America [Manberg et al., 2008]. In order to achieve a broad
clinical acceptance, it must therefore be demonstrated that a candidate sys-
tem is safe and that it provides a benefit over manual drug dosing.

The potentials of closed-loop controlled anesthesia is that it is expected to
decrease drug dosage and facilitate post-operative recovery while increasing
patient safety and decreasing the workload of the anesthesiologist [Hemmer-
ling et al., 2010], [Liu et al., 2006], [Struys et al., 2001]. It might also reduce
the variability in drug dosing between anesthesiologists [Mackey, 2012]. This
has been confirmed by several studies, as mentioned in Section 1.2 of the
thesis. It is therefore rather questions concerning patient safety, which are
currently inhibiting a wider clinical acceptance. In fact, several clinical stud-
ies, including [Absalom and Kenny, 2003] and [Haddad et al., 2011], report
poor robustness, manifested as oscillatory response of the control system for
some cases.

It is unlikely that one control system (of practical complexity) will be
able to account for all patients in all anesthesia situations. In fact, this is
not needed in the presence of an anesthesiologist, who can intervene during
cases when the system does not perform satisfactory. This could pose a con-
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Preface

cern when it comes to system performance, but an acute threat to patient
safety can be avoided by introducing hard low-level bounds on e.g. drug in-
fusion rates, which confine the closed-loop system to an operational envelope
from within which poor performance can easily be recovered by switching to
manual mode.

With what has been mentioned in mind, the main motivation behind the
work resulting in the thesis has been to demonstrate the safety and potential
of a closed-loop anesthesia system, both in simulation and clinically. This
includes showing that simple low-order models and controllers are adequate
for the task and that analgesia can be successfully controlled, in the absence
of a reliable dedicated clinical monitor, by using a simple soft sensor ap-
proach. In order to show this, an appropriate set of performance measures
is required. However, the measures most frequently used in closed-loop con-
trolled anesthesia were adopted from another context, for which they were
tailored. Another motivator has therefore been to establish a set of perfor-
mance measures which more closely reflects the clinical outcome.

A more detailed motivation of the work behind the thesis relies on tech-
nical and medical aspects. Consequently, it is not given here, but rather
integrated into the remainder of the text.

Contributions

Papers
Parts of the work underlying the thesis have been previously published or
accepted for publication. References to the corresponding papers are chrono-
logically listed below, together with a brief description of their contribution to
the thesis. The role of the author in the work behind each paper is explicitly
stated.

Paper I Soltész, K., J.-O. Hahn, G. A. Dumont, and J. M. Ansermino
(2011). “Individualized PID control of depth of anesthesia based on patient
model identification during the induction phase of anesthesia”. In: Proc.
IEEE Conference on Decision and Control and European Control Confer-
ence. Orlando, USA.

The two customary approaches to controlling the hypnotic depth compo-
nent of anesthesia is to use either robust or adaptive techniques. The short-
coming of the robust techniques is that they need to be very conservative,
due to large inter-patient variability in drug sensitivity. Meanwhile, contin-
uously adaptive techniques are challenged by the presence of unmeasurable
disturbances, mainly resulting from surgical stimulation, as well as measure-
ment noise. The paper presents an alternative where a robust controller is
used during the initial induction phase of anesthesia, during which there is
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no surgical stimulation. The response of the patient to the hypnotic drug
is subsequently used to re-tune the controller and the re-tuned controller is
employed throughout the remainder of the procedure. Consequently, individ-
ualized control is achieved, while avoiding the issues related to continuous
adaptation. The proposed scheme is evaluated in simulation on a set of pre-
viously published patient models, identified from clinical data.

K. Soltész wrote the simulation software, proposed the controller tuning
and was the main author of the manuscript.

Paper II Soltész, K., K. van Heusden, G. A. Dumont, T. Hägglund, C. L.
Petersen, N. West, and J. M. Ansermino (2012b). “Closed-loop anesthesia in
children using a PID controller: a pilot study”. In: Proc. IFAC Conference
on Advances in PID Control. Brescia, Italy.

The first study with a PID controller-based automatic drug delivery sys-
tem for propofol anesthesia in children is presented. It is shown that a ro-
bustly tuned PID controller is capable of delivering safe and adequate anes-
thesia. The design process of the control system is reviewed. Results are
discussed and compared to those of two previous studies in adults.

K. Soltész designed the controller in the underlying study, based on pa-
tient models identified by K. van Heusden. He also wrote the simulation
software used prior to clinical evaluation. The manuscript was assembled by
K. Soltész, with useful input from the co-authors.

Paper III Soltész, K., G. A. Dumont, K. van Heusden, and J. M. Anser-
mino (2012a). “Simulated mid-ranging control of propofol and remifentanil
using EEG-measured hypnotic depth of anesthesia”. In: 51st IEEE Confer-
ence on Decision and Control. Maui, USA.

The paper suggests an extension of an existing, clinically evaluated,
closed-loop drug delivery system for hypnotic depth control using propofol.
The extension introduces closed-loop administration of the analgesic drug
remifentanil, thus forming a multiple-input single-output (MISO) control sys-
tem. Remifentanil acts in, and is metabolized at, a significantly faster time
scale than propofol. Direct control of analgesia is hindered by the current ab-
sence of a reliable real-time nociception monitor. However, several hypnotic
depth monitors respond to nociception. Sudden changes in the measured
hypnotic depth are frequently caused by changes in noxious stimulation. The
novelty of this work lies in increasing the disturbance rejection bandwidth
of the control system for hypnotic depth by directing the high frequency
content of its control error to a remifentanil controller. A control system
based on this simple soft sensor approach was implemented and tuned using
the same patient models as in Paper II. The performance of the system was
demonstrated in a realistic simulation scenario.

K. Soltész proposed the structure and tuning of the additional control
loop, with technical input from K. van Heusden, G. A. Dumont and T. Häg-
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glund. J. M. Ansermino provided clinical information necessary for tuning
the controller and devising realistic simulations.

Paper IV van Heusden, K., G. A. Dumont, K. Soltész, C. L. Petersen,
A. Umedaly, N. West, and J. M. Ansermino (2013a). “Clinical evaluation of
robust PID control of propofol anesthesia in children”. IEEE Transactions
on Control System Technology. In press.

This paper is based on the same study as Paper II, but presents the
entire study involving 102 closed-loop controlled anesthesia cases. The initial
controller was deliberately tuned conservatively, as described in Paper II. A
slightly more aggressive controller tuning was supported by the extended set
of patient models available after the first 23 clinical cases using the initial
controller.

The paper was written foremost by K. van Heusden. K. Soltész was in-
volved in the data analysis and controller tuning prior to, and during, the
clinical study and assisted in assembling the manuscript.

Paper V Soltész, K., J.-O. Hahn, T. Hägglund, G. A. Dumont, and J. M.
Ansermino (2013b). “Individualized closed-loop control of propofol anesthe-
sia: a preliminary study”. Biomedical Signal Processing and Control 8 (6),
pp. 500–508.

This paper is an extended journal version of Paper I, giving a more in-
depth analysis of what one could expect to achieve from an individualized
hypnotic depth control scheme.

K. Soltész wrote the simulation software, proposed the controller tunings
and was the main author of the manuscript.

Paper VI West, N., G. A. Dumont, K van Heusden, C. L. Petersen, S.
Khosravi, K. Soltész, A. Umedaly, E. Reimer, and J. M. Ansermino (2013).
“Robust closed-loop control of induction and maintenance of propofol anes-
thesia in children”. Pediatric Anesthesia 23 (8), pp. 712–719.

The clinical details of the study, upon which Papers II, IV and VII are
based, are presented in this paper.

N. West was the main contributor to this publication. K. Soltész took part
during some of the clinical cases and assisted in preparing the manuscript –
particularly the controller related section.

Paper VII van Heusden, K., J. M. Ansermino, K. Soltész, S. Khosravi,
N. West, and G. A. Dumont (2013b). “Quantification of the variability
in response to propofol administration in children”. IEEE Transactions on
Biomedical Engineering. In press.

This paper presents the model structures and system identification meth-
ods used to obtain the models, which were used in tuning the controllers
described in Papers II, IV and VI.
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The paper was written foremost by K. van Heusden. K. Soltész charac-
terized the unidentifiability problem, caused by the lack of sufficient input
signal excitation, and proposed the introduction of low (first) order models.
He also assisted in assembling the manuscript.

Paper VIII Soltész, K., G. A. Dumont, and J. M. Ansermino (2013a).
“Assessing control performance in closed-loop anesthesia”. In: 21st Mediter-
ranean Conference on Control and Automation (MED13). Platanias-Chania,
Greece, pp. 191–196.

Recently, several control systems for closed-loop anesthesia have been
demonstrated both in simulation and clinical studies. A set of performance
measures, proposed by Varvel et al., have constituted the standard means
of comparing such systems. This paper debates the adequacy of the Varvel
measures, as applied to closed-loop anesthesia, and proposes an alternative
set of measures. Key features of the proposed measures are: wide acceptance
within the control community; reflection of clinical feasibility; separate mea-
sures for induction and maintenance of anesthesia; separation of outliers de-
tection and performance evaluation. The proposed measures are descriptive,
few, and easy to compute.

K. Soltész constructed the examples and wrote the manuscript. G. A.
Dumont and J. M. Ansermino provided useful comments on engineering and
clinical aspects, respectively.

Unpublished Work
Apart from the enlisted papers, the thesis contains contributions, which have
not yet been published. A deeper discussion on what the challenges and
objectives of modeling and controlling anesthesia in humans is provided. A
variation of the identification scheme in Paper VII is proposed, together
with a related discussion on model structure. Integrator anti-windup and a
possible way to handle temporary loss of measurement signal are discussed.
Finally, an up to date survey of prior art in closed-loop controlled hypnosis
(using propofol) and analgesia (using remifentanil) is given.
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Preface

Outline

Chapter 1 provides an introduction to clinical anesthesia from an automatic
control perspective. This involves a review of the functional components and
temporal phases of anesthesia and an introduction to the anesthetic drugs
considered in the thesis. Different drug dosing regimens and clinical moni-
tors are presented. Finally, models commonly used in the literature are in-
troduced.

Chapter 2 reveals identification issues related to the models introduced
in Chapter 1. Previous and current attempts to approach these issues are
presented. A model structure and identification procedure with the aim of
producing safe models in the absence of adequate input excitation is proposed
and demonstrated on clinical data. The resulting models are subsequently
used throughout the thesis.

Chapter 3 deals with control of the hypnotic and analgesic components of
anesthesia, defined in Chapter 1. Goals for a hypnotic depth closed-loop con-
trol system are established. A controller structure and tuning method, based
on the models revealed in Chapter 2, for meeting these goals are introduced.
The outcome of a clinical study, implementing some of the proposed tech-
niques and justifying the remaining, is presented. Chapter 3 also proposes a
simple soft-sensor based technique to control analgesia by means of remifen-
tanil infusion. The analgesia controller is intended to be used alongside the
hypnotic depth controller, with no changes made to the structure or tuning
of the latter. Its functionality and performance is demonstrated in a realistic
simulation scenario.

Chapter 4 is divided into two parts. The first part summarizes the thesis
and the second part proposes future research directions and activities.

16



1
Introduction

1.1 Clinical Anesthesia

The thesis deals with automation within clinical anesthesia. The aim is to
make the text self-supporting, which is why the first chapter contains an
introduction to clinical anesthesia, from the viewpoint of a control systems
engineer. This introduces the minimum of information needed to support
the remaining text, assuming no medical knowledge on top of what is pro-
vided in the high school curriculum. (Medical terms, with which the engi-
neer might not be familiar, are explained in footnotes.) The interested reader
might therefore wish to consult a text book, e.g. [Miller and Pardo, 2011] or
[Barash et al., 2009], to obtain a broader introduction to the field of clinical
anesthesia. A historical perspective is provided in [Keys, 1978] or the more
recent [Diaz et al., 2001].

Functional Components
Although anesthetic drugs are used in several contexts, the intended target
application in the thesis is elective general surgery. Within this application,
anesthesia can be conveniently classified into three functional components,
each associated with a corresponding class of drugs [Barash et al., 2009].
These functional components are shown in Figure 1.1 and presented below.

Hypnosis The main functional component of anesthesia is hypnosis, or the
rendering of drug-induced unconsciousness. Its purpose is to take the patient
to a state which inhibits the perception and recall of noxious stimuli1.

Analgesia Although an adequate hypnotic state prevents the patient from
perceiving or recalling noxious stimuli, their presence can still affect the
hemodynamic2 state of the patient, respiration and hormonal secretion. This

1 Noxious stimulus: an actually or potentially tissue damaging event.
2 Hemodynamics: the study of blood flow and circulation.
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Chapter 1. Introduction

hypnosis

immobility

analgesia

Figure 1.1 The three functional components of clinical anesthesia: hyp-
nosis, analgesia and immobility.

can be prevented by analgesic3 drugs which compromise the sympathetic and
parasympathetic nervous systems.

Immobility Certain muscles, particularly abdominal4 ones, exhibit reflex
activity. This activity is typically not blocked in an adequate hypnotic and
analgesic state, which motivates the use of paralyzing drugs, establishing a
neuromuscular blockade, during some surgical procedures. The resulting im-
mobility component of anesthesia is completely decoupled from hypnosis and
analgesia, which allows separate treatment from a control perspective. The
thesis focuses entirely on control of the hypnotic and analgesic patient states
and there will consequently be no emphasis on the immobility component of
anesthesia.

Anesthetic Drugs
This section discusses some aspects of drugs used to provide an adequate
hypnotic and analgesic state during surgical procedures. Furthermore, the
two drugs used throughout the remainder of the thesis are introduced.

Hypnotic Drugs – Propofol A drug of which the main purpose is to
control the hypnotic state of the patient is referred to as a hypnotic drug.
There exist a multitude of known hypnotic drugs, several of which are no
longer used in clinical practice. See [Barash et al., 2009] for an extensive
pharmacopedia. Hypnotic drugs can be classified by means of administration;
inhalation or intravenous infusion.

3 Analgesia: the absence of sensibility to pain.
4 Abdomen: the part of the body that lies between the thorax and the pelvis and encloses
the stomach, intestines, liver, spleen, and pancreas.
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1.1 Clinical Anesthesia

The routinely used inhaled volatile drugs5 (nitrous oxide, isoflurane, des-
flurane and sevoflurane) are not purely hypnotic, but also provide analgesia
to some extent. By means of real-time mass spectroscopy it is possible to
measure the alveoal6 uptake, by comparing drug concentration in inhaled
and exhaled gas.

Routinely used intravenous drugs (propofol, ketamine, etomidate, mida-
zolam, diazepam, lorazepam and thiopental) are pure hypnotic drugs, with
the exception of ketamine which also provides analgesia to some extent.
Propofol is a relatively new addition to this group, introduced in the 1990s.
It has both fast redistribution and metabolism [Cummings et al., 1984] and
does not accumulate in tissues unlike some of the other drugs. Particularly
due to these properties, propofol has become widely accepted and the stan-
dard drug of choice for intravenous anesthesia. Throughout the remainder of
the thesis, propofol will be the hypnotic drug of consideration.

Unlike inhaled drugs, it is not possible to measure the effect site (brain)
concentration of propofol in real-time. This disadvantage is outweighed by
the fast redistribution and metabolism of the drug, its lack of accumulation
and the possibility of precise titration by means of electronically controlled
intravenous infusion pumps. Besides, it is common practice to predict the
effect site drug concentration using mathematical patient models, introduced
in Section 1.3.

A major advantage of propofol, as compared to inhaled drugs, is that it
is a pure hypnotic. This allows for decoupled control of the hypnotic and
analgesic components of analgesia. It should be mentioned that this decou-
pling is, however, somewhat complicated by a synergistic interaction between
propofol and several analgesic drugs. A model of this synergy is introduced
in Section 1.3.

Another reason for the increasing popularity of propofol is that its use
is associated with low incidence of postoperative nausea and vomiting com-
pared to other hypnotic drugs [Borgeat et al., 1992], [Sebel and Lowdon,
1989]. This decreases the duration of postoperative care and ultimately pa-
tient mortality. Furthermore, propofol lacks the strong hypotensive7 action
common to inhaled drugs.

Analgesic Drugs – Remifentanil The fact that inhaled hypnotic drugs
have analgesic properties enable their stand-alone use during surgical pro-
cedures involving limited noxious stimulation. During more stimulating pro-
cedures, or whenever the hypnotic drug of choice does not possess analgesic

5 Volatile drug: a drug that can be readily vaporized and administered by inhalation or
mechanical ventilation.

6 (Pulmonary) alveolus: the blood–breathing gas interface site for oxygen and carbon
dioxide.

7 Hypotensive: causing a reduction in blood pressure.
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Chapter 1. Introduction

effect, an analgesic drug is co-administered with the hypnotic one.
The most frequently used analgesic drugs are from the family of opioids

(remifentanil, sufentanil, alfentanil, fentanyl, morphine and hydromorphine).
In doses representative for clinical anesthesia, opioids do not exhibit hypnotic
properties. However, there exists a synergistic effect between opioids and
several of the hypnotic drugs, including propofol [Kern et al., 2004], [Minto et
al., 2000]. This synergy enforces both the effect of the hypnotic and analgesic
drug and plays a key role when the drugs are co-administered.

Remifentanil is the most recent addition to the opioid family. It is char-
acterized by its very fast redistribution and metabolism; remifentanil is the
fastest-acting of the opioids and its dynamics are of an order of magnitude
faster than those of propofol. This makes remifentanil well suited for closed-
loop controlled anesthesia and at the same time somewhat harder to manu-
ally titrate than the other opioids. The explanation of its fast metabolism is
that remifentanil is metabolized by esterases8 in the blood plasma, while the
metabolism of other opioids rely on hepatic9 biotransformation and renal10

excretion. This motivates the use of remifentanil in patients with liver or
kidney conditions.

The Anesthetic State
In the context of this work, providing adequate anesthesia is equated to
controlling the anesthetic state of the patient undergoing general surgery.
The anesthetic state is here defined as the combination of the hypnotic and
analgesic states. The means of affecting this state (the control signals) are
the intravenous infusion rates of propofol and remifentanil, respectively.

Depth of Hypnosis The hypnotic state can be adequately quantified by
a scalar variable, referred to as the depth of hypnosis (DOH). The DOH
measurement variable is defined in Section 2.1. As described later in this
section, there exist real-time DOH monitors, enabling feedback control of
the DOH. Modeling the influence of propofol infusion rate on the DOH is
the topic of Section 1.3 and Chapter 2. For now, it is sufficient to mention that
DOH is, in stationarity, monotonically dependent on the propofol infusion
rate. Noxious stimulation decreases the DOH, see Section 2.2.

Depth of Analgesia The analgesic state of the patient can also be quan-
tified by a scalar; the depth of analgesia (DOA11). However, to date there

8 Esterase: any enzyme which catalyzes the hydrolysis of an ester into its alcohol and
acid.

9 Hepatic: pertaining to the liver.
10 Renal: pertaining to the kidney.
11 In some literature DOA is used to denote depth of anesthesia, which is used analogously

with DOH.
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1.1 Clinical Anesthesia

exist no reliable, clinically available, (real-time) DOA monitors. This is con-
firmed in the introduction of several works proposing novel candidates e.g.
[Brouse et al., 2011] and [Liley et al., 2010].

State Estimation There exists no single device, which accurately mea-
sures or estimates the anesthetic state of the patient. However, the anesthetic
state is reflected in patient signs (which are relatively hard to artificially mea-
sure) and biological signals (which are generally relatively easy to measure).

Patient signs reflecting the anesthetic state involve response to speech,
eyelash reflex, miosis12, grimacing (and other movement), breathing pattern,
lachrimation13 and perspiration; see [Barash et al., 2009] for a more extensive
description. With the partial exception of breathing pattern, all mentioned
signs indicate an excessively low DOH or DOA. Since both remifentanil and
propofol depress spontaneous breathing and additionally act in a synergistic
fashion on both the DOH and DOA, it is hard to draw correct conclusions
about the anesthetic state from the patient breathing pattern alone.

A more informed estimate of the anesthetic state can be made if mea-
surement of heart rate, blood pressure, blood oxygen saturation and blood
or end-tidal14 carbon dioxide concentrations are available. These are eas-
ily measurable scalar entities, monitored in every modern operating room.
For instance, noxious stimulation increases blood pressure and heart rate
when the DOA is inadequately low. In the aware state, the respiratory re-
flex is triggered by an increasing blood carbon dioxide concentration. Since
remifentanil depresses the respiratory reflex, monitoring the blood or end-
tidal carbon dioxide concentrations provide surrogate measures of the DOA.
If the anesthetic state of the patient remains unaltered and no mechanical
ventilation is provided, a high carbon dioxide concentration is likely to be
proceeded by a decline in blood oxygen saturation, which can rapidly evolve
into a critical state.

The DOH is reflected in the brain activity of the patient and it has been
shown to correlate well with certain features of the cortical electroencephalo-
gram (EEG), see e.g. [Liu et al., 1997] and [Bibian et al., 2010]. To date
there exist several clinical DOH monitors based on this finding, including
the Bispectral Index (BIS) monitor [Johansen and Sebel, 2000], the Spec-
tral Entropy (SE) monitor [Viertö-Oja et al., 2004], the NeuroSense monitor
[Bibian et al., 2010], the Cerebral State Index (CSI) monitor [Jensen et al.,
2006], the Index of Consciousness (IoC) monitor [Revuelta et al., 2008], the
Narcotrend monitor [Kreuer et al., 2001] and the A-line monitor [Litvan et
al., 2002]. All these monitors compute a scalar DOH estimate based on the

12 Miosis: the constriction of the pupil of the eye, resulting from a normal response to an
increase in light.

13 lachrimation: tear production.
14 End-tidal: at the end of a normal exhalation.
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EEG spectrum, which is obtained non-intrusively by means of electrodes on
the forehead of the patient. The A-line monitor is different from the others in
that it makes use of the auditory evoked potential (AEP)15 resulting from the
introduction of a certain sound signal by means of earphones, to determine
the DOH of the patient.

The BIS monitor is the one of the mentioned devices which is by far
the clinically most wide-spread. However, both clinical and simulation parts
of the thesis make use of the NeuroSense monitor, for reasons explained in
Section 2.1.

As mentioned, there exist no reliable, clinically available DOA monitors to
date. There are, however, several ongoing studies with the aim of developing
such devices. Some examples include the Surgical Stress Index (SSI) [Huiku
et al., 2007] based on heart rate variability, blood pressure and plethysmo-
graphic16 pulse wave amplitude, the PhysioDoloris monitor [Jeanne et al.,
2009] based on heart rate variability, the MedStorm monitor [Choo et al.,
2010] based on skin conductance variability, the Analgoscore monitor [Hem-
merling et al., 2009] based on mean arterial pressure (MAP) and heart rate,
a measure [Liley et al., 2010] based on EEG characteristics and another mea-
sure [Brouse et al., 2011] based on heart rate variability. For the context of
the thesis it is assumed that direct DOA measurements are not available.

Regardless of the presence of monitoring devices, human experience plays
a key role in assessing the anesthetic state of the patient. In current practice,
drug doses are determined by the anesthesiologist as described in Section 1.2.

The Reference State Assuming the anesthetic state has been properly
quantified and can be estimated in real-time, it remains to define a reference
anesthetic state in order to provide adequate anesthesia. This reference is
influenced by several factors, of which the type of surgical procedure is the
dominant one. The magnitude and persistence of noxious stimulation plays a
key role. Procedures involving moderate amounts of noxious stimulation can
be conducted under a low DOH, referred to as sedation, with or without the
co-administration of analgesic drugs.

Higher DOH and DOA are required in the presence of noxious stimulation.
However, a high DOH or DOA depresses the respiratory system, resulting
in apnea17 [Barash et al., 2009]. During some surgical procedures this is
anticipated and the patient is mechanically ventilated through an artificial

15 Auditory evoked potential: a component of the EEG arising when the brain processes
sound information.

16 Plethysmogram: the output of a pulse oximeter; a device usually attached to a fingertip,
optically measuring oxygen saturation of arterial blood.

17 Apnea: the cessation of breathing.

22
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airway such as a tracheal18 tube or laryngeal mask airway19. Other surgical
procedures, particularly ones requiring airway access, dictate spontaneously
breathing patients. During these procedures it is crucial to limit the DOH
and DOA in order to avoid apnea in the patient.

If the DOH is too low, awareness can occur during the surgical procedure.
This can be particularly problematic if neuromuscularly blocking drugs are
co-administered, in which case the patient can be totally aware but unable to
communicate due to the immobility caused by the neuromuscular blockade.
Depending on the analgesic state the patient might or might not perceive no-
ciceptive20 signals. The most serious cases of awareness are those which the
patient is able to recall after the surgical procedure [Liu et al., 1991]. Further-
more, it is desirable to minimize drug use in order to facilitate postoperative
recovery [Gan et al., 1997] and decrease long-term postoperative mortality
[Monk et al., 2005]. It should also be noted that the hypnotic–opioid synergy,
mentioned above and further explained in Section 1.3, provides several con-
trol signal (propofol and remifentanil infusion rate) combinations resulting
in the same DOH, but with different associated DOA.

As indicated in this section there are several considerations to take into ac-
count when determining the reference anesthetic state. They will be revisited
below and in Section 3.1 as they play an important role when synthesizing
clinically adequate controllers for the anesthetic state.

Temporal Phases of Anesthesia
Section 1.2 reviews possible dosing regimens, which in the control framework
correspond to manual, open-loop feed-forward and closed-loop techniques,
respectively. Regardless of which paradigm is used, the administration of
anesthesia during general surgery can be divided into three distinct temporal
phases, described below.

Induction The induction phase of anesthesia (or simply induction) is a
transient phase during which the patient is transitioned from consciousness
to an adequate anesthetic state. Induction is routinely conducted by admin-
istering bolus21 doses of propofol and remifentanil followed by essentially
constant rate infusions of the two drugs. The typical duration of induction
is a few minutes.

Noxious stimulation is moderate during induction, with the exception
of intubation22 toward the end of the induction phase during procedures

18 Trachea: Cartilaginous tube descending from the larynx (the part of the respiratory
tract containing the vocal chords), carrying air to the lungs. Also known as windpipe.

19 Laryneal mask: An airway tube with a cuff which is inserted between the vocal chords.
20 Nociception: the neural processes of encoding and processing noxious stimuli.
21 Bolus: A single, relatively large dose of a drug.
22 Intubation: the insertion of a tracheal tube.
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requiring mechanical ventilation. The control challenge during induction of
anesthesia is therefore that of fast reference tracking. This is foremost com-
plicated by the presence of a large inter-patient variability in the sensitivity
to propofol and remifentanil, combined with uncertain parameter values ob-
tained for each individual, further described in Section 2.1.

An aggressive control strategy in combination with a patient–model mis-
match often results in an overshoot of the measurement signal. In cases re-
quiring spontaneously breathing patients, a DOH or DOA overshoot may
result in an apneic period, which needs to be resolved before continuing with
the procedure. A high DOH might also result in hypotension, which is of par-
ticular concern in fragile patients such as the elderly. On the other hand, an
overly defensive control strategy will result in an induction of long duration,
prolonging the surgical procedure, which ultimately influences the queuing
time of the operating room. This is particularly a concern during short rou-
tine surgeries, where the duration of the entire procedure is on the same time
scale as that of induction of anesthesia.

Propofol infusion is perceived as painful by several patients while the
DOH and DOA are still low [Tan and Onsiong, 1998]. This is particularly
true in young children [Cameron et al., 1992]. It was suggested in [Scott et al.,
1988] that the perceived pain increases with decreased propofol infusion rate.
Although the pain can be partially alleviated by adequate premedication, it
is desirable to avoid an overly defensive drug dosing strategy at the beginning
of induction.

Ultimately, a trade-off between expected induction duration and model
error sensitivity has to be wisely made in the process of synthesizing a control
strategy for the anesthetic state.

Maintenance Reaching the desired anesthetic state marks the transition
from the induction to the maintenance phase. See Section 2.2 for a possible
definition of the boundary between the two phases.

The main focus during maintenance of anesthesia is attenuation of the
influence of noxious stimuli on the anesthetic state, further considered in
Section 2.2. The control objective during maintenance is therefore that of
output disturbance rejection subject to model uncertainty. As explained in
Section 3.1, the reference DOH can be regarded as an interval rather than a
scalar value, further motivating this focus. Similar to that during induction,
a trade-off between performance and robustness needs to be made when
synthesizing a control strategy.

Anesthetic reference state changes may be issued during the maintenance
phase if the reference anesthetic state is deemed insufficient. It might be
motivated to decrease the DOH or DOA reference toward the end of the pro-
cedure, to shorten the duration of the emergence phase. This also decreases
the total use of drug.
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Emergence The transition between maintenance and emergence is
marked by the halting of anesthetic drug administration. This is some-
times done in the presence of moderate noxious stimulation, typically from
skin closure. The influence of this stimulation on the DOH shortens the time
it takes for the patient to return to consciousness, ultimately influencing the
queuing time of the operating room.

The emergence phase is uninteresting from a control perspective as the
control signals (drug infusion rates) are disabled. However, according to the
models discussed in Chapter 2, drug dosing during maintenance (and induc-
tion) can affect the duration of the maintenance phase, which should be taken
into consideration.

1.2 Drug Dosing Regimens

As mentioned in Section 1.1, this work considers procedures during which
propofol is used as the hypnotic drug and remifentanil as the analgesic one.
Both propofol and remifentanil are administered by means of intravenous bo-
luses or infusions. This setting, in which all anesthetic drugs are administered
intravenously is known as total intravenous anesthesia (TIVA) [Absalom and
Struys, 2007]. From a control point of view, TIVA can be provided using
either of the three dosing regimens described below. It should be noted that
it is not necessary to use the same regiment for all co-administered drugs.
Different administration regimens may also be used for induction and main-
tenance or even within the same temporal phase of anesthesia.

Manual Control
This is the current standard practice of providing anesthesia. The anesthe-
siologist assesses the anesthetic state of the patient and adjusts drug dosage
accordingly. In the current context, this corresponds to setting the flow rates
of one propofol and one remifentanil infusion pump. If the hypnotic or anal-
gesic state of the patient is deemed insufficient, the anesthesiologist might
provide bolus doses by means of the pump interface. The role of the anes-
thesiologist can here be viewed as that of a sophisticated state estimator and
feedback controller.

In the presence of expected changes in surgical stimulation, or other cir-
cumstances leading to an expected change of the anesthetic state, the anes-
thesiologist can decide to change drug infusion rates or issue a bolus dose
of either drug. Furthermore, drug doses are sometimes decreased to reduce
emergence time, as mentioned in Section 1.1.

To summarize, the anesthesiologist has the combined role of state esti-
mator, feedback controller and feed-forward (from foreseeable disturbances
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Figure 1.2 Schematic overview of drug dosing regimens used in clinical
anesthesia.
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and reference) controller. A schematic sketch illustrating the manual dosing
regimen is shown in Figure 1.2(a).

Open-loop Feed-Forward Control
A step toward automated anesthesia was taken through the introduction of
Target controlled infusion (TCI) systems [Absalom and Struys, 2007]. A TCI
system is an open-loop feed-forward controller. Rather than setting an infu-
sion rate, the anesthesiologist sets a target drug concentration. Depending
on the TCI system, this is either a blood plasma or effect site (brain) drug
concentration [Pouke et al., 2004]. The TCI system then relies on a patient
model, see Section 1.3, to compute an adequate infusion profile, which is
subsequently delivered to the patient intravenously by means of a computer
controlled infusion pump.

From the above description it is clear that TCI systems are sensitive to
model error and lack a mechanism to counteract disturbances. The role of
the anesthesiologist is consequently similar to the one during manual drug
dosing. A frequent assessment of the anesthetic state, see Section 1.1, is
made and the target concentration is adjusted accordingly. In doing so, the
anesthesiologist essentially introduces integral action to the control scheme.
This is indeed needed in order to attenuate disturbances and handle model
error. Feed-forward from anticipated disturbances and reference changes are
handled in the same way as during manual drug dosing. A schematic sketch
illustrating TCI drug dosing is shown in Figure 1.2(b), in which Ĉe denotes
the estimated effect site drug concentration.

So far, several similarities between manual dosing and TCI have been
described. There are, however, two distinct differences between the two drug
dosing regimens. Firstly, the anesthesiologist thinks in terms of target con-
centrations rather than drug infusion rates when using a TCI system. This
is merely a matter of scaling the input signal, but can be convenient as
anesthetic drugs are available in several dose concentrations. Propofol is e.g.
marketed both as 5 mg/ml and 10 mg/ml solutions. Secondly, and more
importantly, manual and TCI drug dosing exhibit different behaviors when
infusion rate and target concentration, respectively, are changed by the anes-
thesiologist. Upon a target concentration change, a TCI system computes an
optimal infusion profile to transition between the currently estimated drug
concentration and the new reference. There are slight differences between
existing TCI systems in how optimality is defined in this context. A repre-
sentative definition, used in [Shafer and Gregg, 1992] corresponds to reaching
the target without overshoot in minimal time.

TCI systems are commercially available on several markets apart from
the USA, where the dosing regimen has not yet obtained FDA23 approval.
23 FDA: The United States Food and Drug Administration.
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The oldest and commercially dominating TCI system is the Diprifusor [Glen,
1998], which provides TCI of propofol. The Stanpump TCI algorithm [Shafer
and Gregg, 1992] is available as open source software and has consequently
been adopted by several research studies. TCI systems for remifentanil have
also been suggested and clinically evaluated, see e.g. [Moerman et al., 2009].
However, the very fast redistribution and metabolism of remifentanil limits
the benefit of these systems.

It should be kept in mind that all TCI systems rely wholly on open-loop
patient models. Steady state and low frequency model errors can efficiently
be handled by the anesthesiologist as described above. However, meeting
the optimality condition upon target concentration (reference) changes can
only be guaranteed when the patient model is accurate. Currently available
patient models, described in Section 1.3, are based on biometric parameters
such as age and body mass. Large inter-patient variability in drug sensitivity
limits the accuracy of these models.

TCI and manual dosing of propofol have been compared in several stud-
ies, with varied conclusions. It was reported in [Servin, 1998] that the TCI
test group on average were subject to lower doses of propofol early during the
cases, while [Breslin et al., 2004] and [Russell et al., 1995] report the opposite.
During later parts of the cases [Servin, 1998] and [Breslin et al., 2004] re-
port comparable propofol use in both test groups, while substantially higher
propofol doses for the TCI test group were reported in [Russell et al., 1995].
Since both the manual and TCI dosing regimens dictate manual interaction
and due to other potential differences it is hard to draw a clear conclusion
from these studies, in favor of either drug dosing regimen. However, both
[Servin, 1998] and [Russell et al., 1995] report that a clear majority of the
involved anesthesiologist prefer the TCI over manual dosing. (No mention of
clinician preference is made in [Breslin et al., 2004].)

Closed-loop Control
In the closed-loop control regimen drug dosing is based on feedback from
a measure of clinical effect, as explained in the overviews [Bibian et al.,
2005] and [Absalom et al., 2011]. Two types of controllers are commonly
reported in the literature and schematically depicted in Figure 1.3; one in
which the controller sets the infusion rate of a computer controlled infusion
pump directly, shown in Figure 1.3(a), and one where the controller sets the
target of a TCI system around which it is cascaded, shown in Figure 1.3(b).
The latter architecture is de facto a limiting special case of the first and
there appears to be no clear advantage of being restricted to the augmented
process dynamics which the presence of the inner TCI system results in.

The anesthesiologist still plays an important role when a closed-loop con-
trolled drug dosing strategy is used. As closed-loop controllers are purely
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Figure 1.3 Two commonly used closed-loop control architectures in anes-
thesia drug delivery.

reactive, the feed-forward paths from planned setpoint changes and antici-
pated disturbances described previously are not present. This can be readily
solved by introducing a manually controlled feed-forward term in the control
signal (infusion rate or target concentration, depending on system).

A schematic sketch illustrating the closed-loop controlled dosing regimen
is shown in Figure 1.2(c). In this regimen, the controlling role of the anes-
thesiologist, frequently adjusting the infusion profile or target concentration,
is handled by a feedback controller. However, the expertise of the anesthesi-
ologist is still needed e.g. to predict and counteract disturbances.

There exists a large inter-patient variability in the sensitivity to anesthetic
drugs. There is also a significant intra-patient variability. For instance, loss
of blood may alter the sensitivity to anesthetic drugs. A robust closed-loop
controller can handle all these issues to some extent, but there will always be
outlier cases, requiring manual attention. There is also the possibility that
manual attention is needed to resolve complications originating either from
the surgery or the anesthesia itself, or from equipment failure.

To conclude, providing adequate anesthesia is a complex topic and it
would be naive to propose the replacement of a highly competent anesthesi-
ologist with a simple closed-loop controller. However, the controller can be
used to shift the focus of the anesthesiologist toward critical events.

The prospect of closed-loop controlled anesthesia, based on EEGmeasure-
ments, was introduced in the 1950s. This work was pioneered by a group led
by Bickford. Clinical trials making use of volatile anesthetics were conducted
on rabbits, cats, monkeys and humans, see e.g. [Soltero et al., 1951]. Several
clinical closed-loop studies involving human patients, volatile anesthetics and
EEG measurements have been conducted since. From an engineering view-
point the group led by Morari [Gentilini et al., 2001] has arguably been the
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most influential. Although outside the scope of this work, it should be men-
tioned that closed-loop controlled administration of neuromuscular blockades
have recently received significant attention; see e.g. [Mendonça et al., 2004].

In the TIVA setting, the use of EEG monitoring (BIS) as the measure-
ment for closed-loop control was assessed in [Morley et al., 2000] with the
conclusion that the BIS variable was a suitable signal for closed-loop con-
trol of DOH. Performance of closed-loop controlled propofol infusion systems
guided by EEG have been reported clinically acceptable in e.g. [Absalom and
Kenny, 2003]. Such a system was compared to manual dosing in [Liu et al.,
2006]. The conclusion was that ”automatic control of consciousness using
the BIS is clinically feasible and outperforms manual control”. Examples of
other comparison studies are [Struys et al., 2001] in which the closed-loop
controlled dosing was deemed clinically acceptable and resulted in an induc-
tion of longer duration, but less overshoot in the measured variable (BIS)
and [Puri et al., 2007] which reports adequate closed-loop anesthesia with
lower drug use as opposed to manual practice. A relatively recent addition to
this list of reports is [Hemmerling et al., 2010], concluding that ”the closed-
loop system for propofol administration showed better clinical and control
system performance than manual administration of propofol”. Lately, closed-
loop co-administration of propofol and remifentanil has drawn significant
research attention. The clinical feasibility of a SIMO control approach was
evaluated in [Liu et al., 2012], which concluded that ”automated control of
hypnosis and analgesia guided by M-Entropy is clinically feasible and more
precise than skilled manual control”. Due to the lack of reliable DOA sensors,
most studies to date are, however, focused on the control of DOH.

A selection of studies featuring clinically evaluated closed-loop controllers
for DOH using propofol, DOA using remifentanil or both, combined with
EEG monitoring, is presented in Appendix C.1. The reader is referred to
[Manberg et al., 2008] and [Bibian, 2006] for a historical survey of closed-
loop control studies not limited to the use of propofol and remifentanil for
controlling DOH and DOA, respectively. An up to date review of closed-loop
anesthesia, with a TIVA emphasis, is found in [Dumont, 2012].

Apart from reported clinical studies, there exist a multitude of publica-
tions evaluating the feasibility of various controller architectures in the EEG-
guided closed-loop controlled TIVA setting, utilizing propofol or remifentanil.
A selection of such simulation work is presented in Appendix C.2. Proposed
control strategies range from PI to NMPC to fuzzy.

Despite numerous clinical studies and a multitude of publications show-
casing simulations, closed-loop controlled anesthesia is yet awaiting broad
clinical acceptance. One legitimate reason for this is the concern of patient
safety. The safe functionality of any candidate system needs to be demon-
strated, preferably both in theory and practice, before it is made widely
available. This dictates a validation of models used in the synthesis of the
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control system and a quantifiable measure of robustness of the resulting sys-
tem together with a clinical study verifying the design. Furthermore, the user
interface of the device implementing the closed-loop controller is of great
importance since automation aims to decrease the workload of the anes-
thesiologist, not the other way around. Developing a system with the men-
tioned properties is a challenge dictating the collaboration between several
professional groups including anesthesiologists, control system engineers and
human-machine interface designers. Another aspect, not to be overlooked, is
the involvement of regulatory agencies [Manberg et al., 2008], which in most
countries is a prerequisite to clinical evaluation of medical systems. Finally,
once a prototype has been developed and successfully demonstrated, there
is the need of a substantial capital investment to turn it into a product and
reach broad clinical acceptance.

1.3 The Traditional Patient Model

As described in Section 1.2, both the TCI and closed-loop controlled drug
dosing regimens rely on patient models; TCI directly relies on a model while
the closed-loop approach relies on a model either indirectly to tune the con-
troller or directly if MPC, IMC or similar control techniques are pursued.
This section is dedicated to introduce the by far most common model struc-
ture used to describe the redistribution, elimination and effect of anesthetic
drugs. This model structure can be decomposed into a series connection of a
pharmacokinetic (PK) model relating drug infusion, distribution and elimina-
tion and a pharmacodynamic (PD) model, relating effect site concentration24

to clinical effect. The combined model is referred to as a PKPD model. A
comprehensive introduction to PKPD modeling is provided in the review
[Derendorf and Meibohm, 1999].

Pharmacokinetic (PK) Models
The pharmacokinetic (PK) model describes what the body does to the drug;
how it is redistributed and eliminated.

Model Structure The traditional model structure used to describe the
PK is the mammillary compartment model. For propofol and remifentanil
it is customary to use models with three, or sometimes two, compartments.
The basic idea behind the compartment model is to cluster tissues with
similar properties into compartments and model the drug flow between them,
alongside elimination and addition of drug. A schematic block diagram of

24 In some literature the PD model is defined as relating blood plasma, rather than effect
site, concentration to clinical effect.
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Figure 1.4 Amammillary compartment model with three compartments.

such a model with three compartments is shown in Figure 1.4. The notation
used in Figure 1.4 is explained throughout the remainder of this section.

Drug mass in compartment i is denoted mi ≥ 0 and the per time propor-
tion of drug migrating from compartment i to compartment j is described
by the rate constant kij ≥ 0:

ṁi =
n∑
j=1

kjimj −
n∑
j=0

kijmi + ui, (1.1)

where n is the number of compartments in the model. The compartment
corresponding to i = 0 is the environment and kj0 models elimination of
drug from compartment j. The per time mass of drug introduced into com-
partment i from the environment is described by ui ≥ 0. From (1.1) it is
evident that the compartmental model is a delay-free linear time-invariant
(LTI) system.

In the context of anesthesia the central compartment is supposed to model
the blood plasma, which is where drug is added in TIVA. Consequently,
ui = 0 ∀i 6= 1 and it is natural to introduce u = u1. The peripheral com-
partments only exchange drug with each other indirectly through the cen-
tral compartment. Furthermore, drug is assumed only to be eliminated from
the central compartment, mainly by metabolism and excretion, rendering
ki0 = 0 ∀i 6= 1. For the n = 3 compartment case, the application of these
constraints results in the state space representation

ṁ =


−(k10 + k12 + k13) k21 k31

k12 −k21 0

k13 0 −k31

m+


1

0

0

u. (1.2)

The dynamics of some anesthetic drugs, e.g. remifentanil, are commonly
described using only two compartments. The two compartment model is a
special case of (1.2) and its state space representation is therefore not explic-
itly given here.

In order for (1.2) to be a realistic model, it is necessary that there is no
net flow between compartments i and j, whenever they hold the same drug
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concentration, i.e., xi = xj , where

xi = mi

vi
. (1.3)

Here xi is the drug concentration in compartment i, which has volume vi.
Note that the compartment volumes, also referred to as volumes of distribu-
tion, are a theoretical construct and should not be thought of in terms of a
physiological volume. The mentioned net flow constraint can now be stated,
assuming equal concentrations xi = xj :

kjimj = kijmi ⇔ kjivjxi = kijvixj ⇔ kjivj = kijvi. (1.4)

Combining (1.1) and (1.4) yields

1
vi
ṁi =

n∑
j=1

vj
vi
kji

mj

vj
−

n∑
j=0

kij
mi

vi
+ 1
vi
ui

⇔ ẋi =
n∑
j=1

vj
vi
kjixj −

n∑
j=0

kijxi + 1
vi
ui

⇔ ẋi =
n∑
j=1

kij(xj − xi)− ki0xi + 1
vi
ui.

(1.5)

Note that the compartment volumes only enter (1.5) as an input scaling.
Consequently, the model (1.5) is fully parameterized by k10, k12, k13, k21,
k31 k10 and v1 (7 parameters) in the three compartment case and by k10,
k12, k21 and v1 (4 parameters) in the two compartment case. The state space
representation corresponding to (1.2) becomes:

ẋ =


−(k10 + k12 + k13) k12 k13

k21 −k21 0

k31 0 −k31

x+


1
v1

0

0

u. (1.6)

It could be noted here that (1.2) and (1.6) are both positive systems,
since their system matrices are Metzler. However, due to (1.4), only (1.6) is
guaranteed to describe a compartmental system [Luenberger, 1979].

Assuming the plasma concentration Cp = x1 is the output of (1.6), the
system has the following transfer function representation:

GCp,u(s) = 1
v1

(s+ k21)(s+ k31)
(s+ p1)(s+ p2)(s+ p3)

. (1.7)
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The poles −pi solve the characteristic equation
p1 + p2 + p3 = k12 + k13 + k21 + k31

p1p2 + p1p3 + p2p3 = k10(k21 + k31) + k31(k12 + k21) + k13k21

p1p2p3 = k10k21k31.

(1.8)

In some literature, the PK model is parameterized in terms of the clear-
ances ci, describing the drug volume per time, migrating from a specific
compartment. The clearances for the system (1.6) are:

c1 = v1k10

c2 = v2k21 = v1k12

c3 = v3k31 = v1k13,

(1.9)

where the rightmost equalities follow from (1.4).

Effect Dynamics It is possible to measure Cp in (1.7) by means of drawing
blood samples, which are subsequently analyzed. The achievable bandwidth
is not high enough for control purposes, but useful for identification of the PK
model parameters. When comparing the measured blood plasma concentra-
tion from such blood samples to DOH measurements from an EEG monitor,
it has been observed that the monitor response lags the blood plasma con-
centration. A contributing reason to this is that the dynamics between the
blood plasma and the effect site, which for propofol is the cerebellar cortex25,
are not modeled. It was suggested in [Sheiner et al., 1979] that the PK model
(1.7) should be augmented by the series connected lag link

GCp,Ce(s) = ke0

s+ ke0
, (1.10)

where Ce is referred to as the effect site concentration of the drug. Introduc-
ing the notation xe = Ce for the effect site concentration, the state space
representation of (1.10) becomes

ẋe = −ke0xe + ke0x1, (1.11)

where x1 is the primary compartment drug concentration. From the notation
of (1.11) it appears as if xe is the drug concentration in a compartment, which
is fed by the central compartment, and from which drug is eliminated to the
environment by rate constant ke0. Assuming this ”effect compartment” holds
drug mass me and has a volume ve, its dynamics are described by

ṁe = −ke0me + k1em1

⇔ 1
ve
ṁe = −ke0

me

ve
+ v1

ve
k1e

m1

v1

⇔ ẋe = −ke0xe + ke1x1,

(1.12)

25 Cerebellar cortex: The convoluted layer of superficial grey substance in the brain.
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where the last equivalence follows from (1.4). Equating (1.11) with (1.12)
yields ke0 = ke1. However, to fit into the compartment framework, a term
−k1ex1, describing the drug flow from the central compartment to the effect
compartment, would have to be added to the dynamics of ẋ1 in (1.6). Since
k1e = ve/v1 · ke1, it follows that k1e ≈ 0 when ve � v1. Consequently, the ef-
fect site model (1.10) fits into the compartment framework under the realistic
assumption that the effect compartment has negligible volume compared to
the central compartment. Under this assumption it also becomes irrelevant
whether the term −ke0xe in (1.11) corresponds to elimination of drug to the
environment or reflux to the central compartment. The latter would add the
influx term k1exe to the dynamics of ẋ1 in (1.6), which is negligible if ke1 ≈ 0.

In the literature, the effect dynamics are typically considered part of
the pharmacodynamics, described in the next section, rather than the PK.
This distinction is only semantic. However, in order to avoid confusion, it is
pointed out that the effect dynamics (1.10) are considered part of the PK in
the thesis. This choice is supported by the compartment model interpretation
given above. When referring to a two- or three compartment model, the effect
compartment is not counted toward this number. This omission is made to
be consistent with the literature.

It was suggested in [Bibian, 2006] that (1.10) possibly under-models the
true effect site dynamics, motivating the introduction of the model structure

GCe,Cp(s) = ke0

s+ ke0
e−sL. (1.13)

Furthermore, it was argued that the effect dynamics could possibly be of
higher order than (1.13), but that the Cp profiles available for identification
were not persistently exciting of an order permitting identification of ad-
ditional parameters. To justify the structure of (1.13), analysis of residuals
obtained when using (1.10) and (1.13), respectively, to identify effect dynam-
ics from clinical data were conducted. Residuals obtained with (1.13) were
significantly smaller and their distribution whiter.

Connecting (1.7) and the effect dynamics (1.13) yields the combined PK
model structure

GCe,u(s) = ke0

v1

(s+ k21)(s+ k31)
(s+ p1)(s+ p2)(s+ p3)(s+ ke0)

e−sL. (1.14)

This structure, possibly without the delay L, will be referred to as the tradi-
tional PK model. Some previously published alternatives to this structure as
well as their motivations are mentioned in Section 2.2. For now, let it suffice
to note that (1.14) has a total of nine parameters in the three compartment
case and seven parameters in the two compartment case.
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Chapter 1. Introduction

Pharmacodynamic (PD) Models
The pharmacodynamic (PD) model describes what the drug does to the body;
how the clinical effect is related to the drug concentration at the effect site.
The common definition is that the PD describes the relation between blood
plasma drug concentration Cp and clinical effect. As mentioned previously,
the effect dynamics are considered part of the PK in the thesis. Consequently,
the role of the PD becomes to describe the relation between the effect site
concentration Ce in (1.14) and the clinical effect E. For convenience the effect
is scaled so that E = 0 in the absence of drug and E = 1 is the maximal
achievable effect. The plasma concentration corresponding to E = 1/2 is
described by the parameter Ce,50. It is convenient to normalize the Ce with
respect to Ce,50, by introducing

v = Ce
Ce,50

. (1.15)

Clearly v = 0 in the absence of drug and v = 1 when the effect site concen-
tration is Ce = Ce,50.

The PD is typically modeled as a monotone continuous function

E = E(v), (1.16)

with the properties E(0) = 0, E(1) = 1/2 and E(v) → 1 as v → ∞. The
default choice for the structure of E(v) in the literature is the Hill function
(also known as the sigmoidal Emax function):

E = 1− 1
1 + vγ

, γ ≥ 1. (1.17)

The parameter γ is referred to as the Hill parameter or Hill degree. The Hill
function, for three values of γ, is shown in Figure 1.5.

When using a clinical monitor to obtain a measure y of E, it typically
holds that E0 = y(0) has a value 0 ≤ E0 � 1/2 and that y → E∞, where
1/2 � E∞ ≤ 1, as v → ∞. I.e., for a particular patient, the range of mea-
surements is confined to (E0, E∞) which fits inside (0, 1). In most literature
the bounds E0 and E∞ are attributed to the PD. However, it is more ap-
propriate to view them as a characteristic of the monitor. This is merely a
semantic difference but explains the absence of E0 and E∞ as parameters in
(1.17).

From clinical data it is hard to argue that there is no model structure
better suited for the task than (1.17). However, the Hill function is simple and
features characteristics which are observed in clinical practice; it has a linear
region around v = 1 and a saturating effect as v increases beyond the linear
region. Furthermore, (1.17) complies with receptor theory26 [Derendorf and
26 Receptor theory: the application of receptor models to explain drug behavior.
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Figure 1.5 The Hill curve, parameterized in γ, defines the clinical effect
E in terms of normalized effect site concentration v. Here curves for γ = 1
(blue), γ = 2 (red) and γ = 3 (green) are shown.

Meibohm, 1999]. The Hill function will be further discussed and analyzed in
Section 2.2.

Drug Interaction Models
Both the hypnotic drug propofol and analgesic drug remifentanil are com-
monly modeled within the above described framework. When the two drugs
are co-administered, they act synergistically on both hypnosis and analge-
sia. It was concluded in [Bouillon et al., 2002] that the PK of propofol is
not affected by remifentanil co-administration and that the effect of propo-
fol on the remifentanil PK is only relevant when propofol is administered
as boluses. Consequently, the synergy is attributed to the PD and modeled
as a generalization of the Hill function to a surface. I.e., the hypnotic ef-
fect Eh is a function of the normalized propofol and remifentanil effect site
concentrations:

Eh = Eh(vp, vr), (1.18)

where vr is defined in the same way as v = vp was in (1.15). While (1.18)
describes the PD interaction towards hypnosis, there exists a similar function
Ea of the same arguments, describing the PD interaction towards analgesia.
The thesis will only consider the interaction towards hypnosis, and conse-
quently the subscript will be omitted:

E = E(vp, vr). (1.19)

Different parameterizations have been suggested for the interaction surface
E(·). The most common one found in the literature is the one presented in
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[Minto et al., 2000]:

E(vp, vr) = 1− 1

1−
(
vp + vr
v50(θ)

)γ(θ) , (1.20)

where θ is the relative concentration of vr:

θ = vr
vp + vr

. (1.21)

An interpretation of this parameterization is that vp+vr is the concentration
of a virtual drug with Ce,50-value v50(θ). This virtual drug has a Hill-like PD,
where the Hill coefficient γ depends on the relative concentration of propofol
and remifentanil. It was suggested in [Minto et al., 2000] that a forth order
polynomial be used to model v50(·) and a second order one for γ(·). The
interaction surface is defined through the coefficients of these polynomials,
which are to be identified from clinical data.

An interaction plane, being a local linearization of the interaction surface
(1.20), was proposed in [Ionescu et al., 2011a] and used in the synthesis of
an MPC controller.

Another parameterization for the interaction surface was proposed in
[Kern et al., 2004]. It is an extension of (1.17), where v denotes the virtual
drug

v = vp + vr + αvpvr. (1.22)
This structure has only one parameter α, where α > 0 corresponds to a syn-
ergistic interaction. Another appealing feature, apart from the low number of
parameters, is that the interaction model exactly corresponds to the propofol
PD in the absence of remifentanil (vr = 0 ⇒ v = vp + vr + αvpvr = vp).
Values of α towards different effects, identified in a rigorous study, have been
published in [Kern et al., 2004].

Parameter Values
Assuming that the PK model structure (1.14) adequately describes the dy-
namic relation between drug infusion u and effect site concentration Ce, it
remains to identify a total of nine or seven parameters, depending on the
number of model compartments. Since remifentanil is rapidly metabolized
and redistributed as compared to propofol, several published PK models for
remifentanil make use of only two compartments, while three compartments
seem to be the choice of preference for propofol PK models.

Timed measurements of the central compartment concentration x1 can
be obtained by drawing blood samples, which in practice results in sparsely,
and often non-uniformly, sampled identification data. The peripheral com-
partments do not correspond to any particular tissues. Rather, the second
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compartment is usually designated to model vascular27 tissues, which equi-
librate rapidly, while the third compartment models non-vascular tissues,
which equilibrate slowly. A result of this approximative nature of these com-
partments is that their respective concentrations x2 and x3 cannot be directly
measured. Consequently, parameter identification relies solely on blood sam-
ple data.

Even if an effort is made to device experimental conditions with an input
(infusion profile) u which persistently excites the dynamics (1.6) and the
output x1 is sampled frequently enough to resolve the dynamic response, the
obtained model is only valid for the patient under current investigation. The
most common strategy to address inter-patient variability in identified model
parameters is to introduce a parameterization

(k10, k12, k13, k21, k31, v1) = f(biometric parameters), (1.23)

and minimize a monotonous function of the prediction error over the popu-
lation, when (1.6) is parameterized using (1.23). Here, the biometric param-
eters can for instance be patient age, height, (lean body) mass and gender.
There exists customized computer software, such as NONOMEM [Sheiner
and Beal, 1980] to perform the typically extensive computations, which are
needed to establish the possibly nonlinear function f(·) in (1.23). With the
large degree of freedom given by the many parameters and possible choices
of f(·) in (1.23), care must be taken not to over-fit the data.

A possible indicator of the combined large inter-patient variability and
over-parametrization in the propofol case is the existence of numerous pub-
lished candidates for f(·) in (1.23). Each such candidate is here referred to as
a PK model. For children, nine named PK models are enlisted in [Coppens
et al., 2011] and it is demonstrated, using clinical data, that they generally
perform poorly as predictors. Corresponding models for adults include the
ones proposed in [Schüttler and Ihmsen, 2000], and [Schnider et al., 1998].

The number of available PK models for remifentanil is smaller. One nat-
ural reason for this is that controlling analgesia using remifentanil TCI has
received considerably less attention than the corresponding control of hypno-
sis using propofol. Another contributing reason would be the very fast time
scales of remifentanil PK dynamics, which makes it hard to identify dynam-
ics beyond steady state using sparsely collected blood samples. Arguably the
most common remifentanil PK models are one with three compartments for
adults proposed in [Minto et al., 1997] and one with two compartments for
children proposed in [Rigby-Jones et al., 2007]. It was concluded in [Soltész
et al., 2012a] that these two models are similar in terms of primary compart-
ment volumes and clearance rates.

27 Vascular: indicative of a copious blood supply.
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A survey of five studies presenting values for the half-effect concentration
Ce,50 for propofol were presented in [Bibian, 2006] and it was concluded
that values vary significantly between studies. Similarly it was concluded
that variation in values of γ identified for each of the patients in one of the
studies vary significantly.

It was reported in [Dumont et al., 2009] that identification based on
data from 44 adult patients resulted in propofol γ-values in the range
1.1 ≤ γ ≤ 4.7, with only one occurrence of γ > 3. In [Coppens et al.,
2011] γ was identified using nine previously published propofol PK models,
using clinical data from 28 children. The result was 1.02 ≤ γ ≤ 2.07. It was
also concluded that using these PK models may not have provided accu-
rate estimates. Additional published reports generally confirm 1 ≤ γ < 3 for
propofol. This supports the choice of γ-values in Figure 1.5.

Values of γ for remifentanil (towards analgesia) are not explicitly consid-
ered in the thesis.

Although not providing a complete reference to published traditional PK
and PD models for propofol and remifentanil, the current section has served
to give an overview and indicate that the use of these models is not completely
uncontroversial. A further discussion of possible reasons for the variation
in published parameter values as well as the validity and adequacy of the
traditional model structure is given in Section 2.2.
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2
Models for Control

2.1 Equipment Models

Section 1.3 of the previous chapter presented the traditional PKPD models,
used to describe the uptake, redistribution, elimination and clinical effect of
anesthetic drugs. These models describe the patient or, in automatic con-
trol terms, the process. Any closed-loop control system has two additional
components, which need to be considered in modeling: the actuators and
the sensors. In this context, the sensor is the clinical DOH monitor and the
actuator is the intravenous infusion pump. While the patient model is the
main topic of this chapter, the first section is dedicated to modeling of the
actuator and sensor.

The Clinical Monitor
The BIS Monitor As mentioned in Section 1.1, there exist several com-
mercially available DOH monitors. The by far most wide-spread one is the
Bispectral Index (BIS) monitor (Aspect Medical Systems, Inc., Newton,
USA) [Johansen and Sebel, 2000]. The output of the BIS monitor, often
referred to as the BIS variable, the BIS value or simply the BIS, is a scalar
between 0 and 100. A BIS value of 0 corresponds to an iso-electric EEG, in-
dicating the highest possible DOH, also referred to as the fully anesthetized
state. In the absence of clinical effect, the monitor outputs a value close to
100, corresponding to the fully aware state. The mean BIS value in the ab-
sence of clinical effect varies slightly between patients, but typically lies in
the 90–100 range.

The BIS monitor employs a proprietary algorithm, resulting in time-
varying dynamic behavior. In particular, it features a piecewise constant,
but switching, output delay. The varying delay introduces an uncertainty
in the dynamics to be controlled and consequently dictates a more robust
and hence conservative controller tuning. A possible approach to forego this
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Figure 2.1 Photograph showing the NeuroSense NS-701 monitor and its
self-adhesive sensor. Image courtesy of NeroWave Systems Inc.

problem was suggested in [Ionescu et al., 2011b], where a real-time delay
estimator is used in a Smith predictor1 scheme.

The NeuroSense Monitor The NeuroSense NS-701 monitor (Neu-
roWave Systems Inc., Cleveland Heights, USA) [Bibian et al., 2010], shown
in Figure 2.1, was developed with closed-loop controlled anesthesia in mind.
It provides one surrogate DOH measure per cerebral hemisphere2 based on
a wavelet transform of the raw EEG, collected using a non-intrusive self-
adhesive sensor mounted on the forehead of the patient. The output of the
NeuroSense monitor is termed the wavelet-based anesthesia value for cen-
tral nervous system, abbreviated WAVCNS and further explained in [Bibian,
2006]. In terms of scale the WAVCNS is compatible with the BIS monitor
output, and the two monitors have equal steady state behavior [Zikov et al.,
2006]. For the sake of simplified notation, the WAVCNS measurements can be
affinely scaled to conform with (1.17). I.e., the measured effect y = E0 ≈ 0,
where E0 ≥ 0, corresponds to the fully aware state and y = E∞ = 1 corre-
sponds to the fully anesthetized state. It could be noted that E0 and E∞
are properties of the patient rather than the monitor. However, in the total
absence of drug, the clinical effect was defined to be E = 0 in (1.17) and
hence it becomes natural to introduce E0 as a patient specific property of
the monitor.

It is assumed throughout the thesis, unless otherwise explicitly stated,
that the WAVCNS signals – both raw and filtered versions – have been affinely
scaled to the interval (0, 1) such that zero corresponds to the 0 or E0 level3,
and one corresponds to the maximal clinical effect E∞ = 1.

1 The Smith predictor is a delay compensating controller structure proposed in [Smith,
1959].

2 Cerebral hemisphere: Either of the two symmetrical halves of the brain.
3 It should be clear from the context which of the two values are used at different occasions
throughout the thesis.
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The NeuroSense monitor provides its two synchronized raw WAVCNS sig-
nals uniformly sampled at 1 Hz. Modeling this behavior by a 1 s delay pro-
vides a model with a negative phase shift exceeding that of the actual mon-
itor. This is a sound model with closed-loop control in mind as it enforces
additional robustness of the controller. As the raw WAVCNS signals contain
high frequency noise at significant power, the NeuroSense monitor employs
an output low-pass filter, which is the zero-order hold sampled equivalent of
1/( 4

15Trs+1)2. The parameter Tr is, with a slight abuse of notation, referred
to as the trending rate and chosen from {5, 10, 15, 30, 60} s, either by the
user or automatically. The conversion factor between the trending rate and
second-order filter time constant (T = 4

15Tr) stems from the approximation
of a rectangular window FIR filter with width Tr by a second-order low-pass
filter with time constant T . In fact, the filter implementation in the monitor
introduces an additional unit delay. The dynamic relation between the effect
E in (1.17) and the NeuroSense monitor output y are hence described by the
zero-order hold sampled equivalent of the linear time-invariant (LTI) relation

y(s) = E0 + (1− E0)
1

(sT + 1)2 e
−2sE(s). (2.1)

(Note that there is no distinction, apart from context, between time- and
Laplace domain signals in the thesis.)

The NeuroSense monitor implements algorithms for artifact removal and
reconstruction of missing episodes of the measurement signal. These algo-
rithms depend on the trending rate and the developer of the monitor claims
that a trending rate of Tr = 60 s in (2.1) enables reconstruction of miss-
ing data episodes up to 20 s, which rarely occur. Conversely, if the trending
rate is Tr = 5 s, it is enough with a 2 s artifact presence to create a gap
in the monitor output y. It was further recommended by the developer that
the Tr = 30 s option should be chosen for the closed-loop control applica-
tion described in Appendix B.2, as it provides adequate low-pass filtering
without excessive negative phase shift, while enabling reconstruction of most
expected corrupted measurement signal episodes. Consequently, the clinical
closed-loop controlled study reported in [van Heusden et al., 2013b], [van
Heusden et al., 2013a] and [West et al., 2013] and simulations leading up to
it, employed the monitor model of (2.1) with Tr = 30 s.

It could be argued that the use of the raw WAVCNS signal

yraw(s) = E0 + (1− E0)e−sE(s). (2.2)

would provide larger flexibility in the controller design. Tailoring the mea-
surement signal filter would allow for a conscious trade-off between noise
suppression and negative phase shift. Furthermore, the Wiener structure4 of

4 Wiener system: An LTI system connected in series with a static output nonlinearity.

43



Chapter 2. Models for Control

the traditional patient model described in Section 1.3 would not be broken
by adding the LTI dynamics (2.2) in series after the output nonlinearity,
since the delay of (2.2) and the static nonlinearity do commute. However,
in order to omit filtering in the monitor, a replacement method for handling
corrupted measurement signal episodes needs to be implemented. Such a
method is proposed, and demonstrated in simulation, in Section 3.3.

As mentioned above, the NeuroSense monitor provides one WAVCNS sig-
nal per hemisphere. Let yl and yr denote the left and right hemisphere
WAVCNS signals, respectively. These signals are accompanied by signal qual-
ity indices (SQI), where the reliability ranges from 0 (unreliable) to 100 (re-
liable). In the thesis a linear scaling of the SQI is adopted, mapping the SQI
(0, 100)→ (0, 1). Let SQIl and SQIr denote the left and right SQI signals, re-
spectively. The NeuroSense monitor also outputs a per hemisphere signal de-
scribing the suppression ratio (SR), defined as the percentage of time during
the past 5 minutes that the corresponding EEG signal has had an amplitude
of less than 5 µV. Let SRl and SRr describe the left and right suppression
ratios, respectively. The iControl system described in Appendix B lets y be
either yl or yr, based on the switching heuristic of Algorithm 2.1.

if ( SQI_curr < .6) && ( SQI_alt > .6) {
switch to alt

} else {
if ( SQI_curr > .6 ) && ( SQI_alt > .6) {

choose side based on biggest SR value
}

}

Algorithm 2.1 The iControl hemisphere selection heuristic.

In Algorithm 2.1, SQI_curr and SQI_alt denote the currently selected
hemisphere and the alternative hemisphere, respectively. As the switching
might lead to discontinuities, the following scheme for constructing y is pro-
posed:

y = wlyl + wryr
wl + wr

,

wl = SQIl(1− SRl),
wr = SQIr(1− SRr).

(2.3)

The scheme in (2.3) is continuous in yl and yr as well as in the weights wl
and wr. It should, however, be noted that the particular weighting proposed
by (2.3) is also a heuristic with no direct clinical motivation.

The monitor setup used in the clinical study outlined in Appendix B is the
combination of (2.1) and the hemisphere selection heuristics of Algorithm 2.1,
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Figure 2.2 Representative raw (blue) and Tr = 30 s trended (red)
WAVCNS measurement noise, recorded prior to propofol infusion.

while all simulations and identification examples reported in the thesis are
based on a combination of (2.2) and (2.3).

The rawWAVCNS signal has a high measurement noise content. Figure 2.2
shows a representative raw WAVCNS signal from one of the cases in the
iControl study described in Appendix B. The signal was recorded before the
beginning of propofol infusion and its mean has been subtracted to better
illustrate the measurement noise. The corresponding Tr = 30 s trended signal
with subtracted mean is shown in red in the same figure. Representative
raw WAVCNS sequences from the iControl study, collected prior to propofol
infusion, with means subtracted, such as the blue one shown in Figure 2.2,
were concatenated to form a sequence with a temporal duration of 1 h. The
power spectrum of this sequence is shown i Figure 2.3.

The power spectrum shown in Figure 2.3 is essentially white, correspond-
ing to a signal obtained by drawing samples from a normal distribution with
standard deviation σ = 9 · 10−2. I.e., the raw WAVCNS measurement noise is
essentially white with a variance σ2 = 8 · 10−3. This white signal will serve
the purpose of monitor noise model in simulations throughout the thesis.

The Infusion Pump
The iControl system outlined in Appendix B.2 operates at a 5 s sampling
period, with zero-order hold behavior of the actuator. Due to the time scale
of the dynamics, disclosed in Section 2.2, there is no advantage in pursuing
faster actuation. Within the corresponding bandwidth, transients in dynamic
response and jitter of commercially available infusion pumps, such as the
Alaris used in iControl, are negligible. For this reason, no dynamic model for
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Figure 2.3 Power spectrum of concatenated raw WAVCNS signals with
means subtracted. The black line indicates the power spectral density of
the white noise model.

the actuator, i.e. the infusion pump, needs to be considered in the design and
analysis of closed-loop controlled anesthesia systems.

2.2 Propofol Patient Model

The Purpose of Modeling
Before attempting any modeling of the patient response to propofol, it is
important to specify how the model will be used, which in terms specifies
which characteristics of the behavior should be well-explained by the model.
The models proposed in this section are intended to be used as a basis for
the synthesis and evaluation of closed-loop DOH control systems, guided by
the output of the NeuroSense monitor explained in Section 2.1. The purpose
of modeling is therefore that of the PKPD models presented in Section 1.3,
i.e., to describe the dynamics between propofol infusion and clinical effect.

The complex nature of the human body makes it fair to assume that the
use of the traditional PKPD model structure corresponds to some extent of
under-modeling. Meanwhile, as explained below in this section, the available
input signal for identification is not capable of fully exciting the dynamics
of even a severely simplified model. Furthermore, it is well-known that there
exists a large inter-patient variability in the response to propofol, further
discussed in this section. This combination of under-modeling and insufficient
excitation for identifying model parameters dictates conservatism with the
aim to devise models upon which it is safe to base the design of a closed-loop
controller.
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The compartmental nature of the PK model is physiologically motivated.
Compartmental systems are positive; they have maximal gain at the zero
frequency, and they lack oscillatory modes. The exact value of the steady
state gain is not critical if the controller employs integral action. Likewise,
the high frequency fidelity of the model is of limited importance due to the
lack of oscillatory modes and the low high-frequency gain of the underlying
system. Instead, the modeling effort should focus on yielding a model which is
accurate around the intended cross-over frequency of the closed-loop system.
Since the system is safety critical, it is motivated to identify models which
over-estimate the negative phase shift of the system to be controlled.

Only induction phase data has been used for the identification of models
in the thesis and the publications listed in the preface, for reasons explained
further below. The success of this approach relies on that the model identified
from induction phase data is valid also during maintenance of anesthesia.
This assumption has not been thoroughly researched, but the traditional
PKPD models imply the assumption to be true.

The control objective during induction of anesthesia is essentially to track
a reference step. It can therefore be expected that models identified from
data sets which were obtained during closed-loop controlled induction of
anesthesia are suitable for synthesis of control systems similar to those used
to produce the identification data sets, despite the under-modeling mentioned
earlier [Anderson, 2002], [Lecchini et al., 2006].

Identifiability
Unmeasurable Disturbances From Section 1.1 it is evident that DOH
measurements collected once surgery has begun are corrupted by unmeasur-
able disturbances caused by the surgical stimulation. Without special caution
to assure the absence of, or compensate for, surgical stimulation, it is there-
fore not possible to obtain unbiased model parameter estimates later than
during the induction phase of anesthesia. Furthermore, relying on data sets
with input excitation beyond what the traditional drug dosing regimen pro-
duces would not allow for system identification from data sets collected in
previously conducted clinical trials.

Persistence of Excitation As mentioned in Section 1.3, the clinical re-
sponse to propofol is typically characterized using a PKPD model. The struc-
ture of the traditional PKPD model is that of a Wiener system. In this con-
text the LTI system is compartmental and can be represented by the transfer
function (1.14) with an additional linear scaling (1.15). The output nonlin-
earity has the parameterization (1.17). In the below discussion it will be
assumed that the clinical monitor has unit dynamics. Even in the resulting
absence of monitor parameters E0, E∞ and those of the monitor dynam-
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ics (2.1) or (2.2), this representation requires at least 8 parameters for its
characterization.

During TIVA with propofol it is customary for the anesthesiologist to dose
the drug as a nominal steady rate infusion, upon which drug boluses can be
superimposed. Typically, the procedure is initiated with such a bolus in order
to limit duration of the induction phase of anesthesia, for reasons explained in
Section 1.1. Consequent boluses are given in connection to sudden increases
in surgical stimulation, either proactively or reactively. Step-wise changes in
the nominal infusion rate are made if the anesthesiologist deems the DOH
to be inadequate. Data from a representative manually controlled induction
of anesthesia from the open-loop study described in Appendix B.1 is shown
in blue in Figure 2.4. The propofol infusion profile is shown in Figure 2.4(b)
and its resulting response in the DOH, as measured using the NeuroSense
monitor, with trending Tr = 30 s in (2.1), is shown in Figure 2.4(a). Note
that the infusion unit is mg/kg/min, i.e., normalized with respect to patient
mass. This is one of two customary units in which propofol infusion rates are
reported, the other being ml/h, which needs to be complemented with the
drug dose concentration in units of mg/ml.

In order to limit the duration of the induction phase of anesthesia, closed-
loop DOH control systems, such as iControl explained in Appendix B.2, typ-
ically mimic the manual control behavior in that induction of anesthesia is
initiated by a bolus followed by a slowly varying infusion rate. A represen-
tative induction phase data set from the iControl study is shown in red in
Figure 2.4. Although TCI data is not considered for identification in the
thesis, it can be mentioned that TCI inductions of anesthesia have similar
characteristics to manual and closed-loop controlled ones in that the input
is essentially a propofol bolus followed by a slowly varying steady infusion.

Since only induction phase data is available for modeling, the input profile
is essentially the sum of an impulse (the bolus) and a step (the continuous
rate infusion).

The degree of persistent excitation provides an estimate of how many
model parameters can be consistently identified using a certain input signal
[Åström and Wittenmark, 2008]. The impulse has degree of persistent exci-
tation zero, while the corresponding degree is one for the step. It is therefore
unlikely that even the 7 parameters of the LTI part of the patient dynamics
can be successfully identified from induction phase data.

An obvious approach to facilitate identifiability would be to alter the in-
put signal in order to better excite the dynamics to be identified. For an
open-loop system this can be achieved by a tailored infusion profile. In the
TCI and closed-loop control paradigms a custom reference profile, other than
a step, could be employed during the induction phase of anesthesia. In the
absence of major disturbances, an additional possibility for the closed-loop
case would be to conduct a low-amplitude relay feedback experiment [Häg-
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Figure 2.4 Representative induction profile for one manually controlled
case (blue) and one closed-loop controlled case (red). The black line marks
the DOH setpoint.

glund and Åström, 2002], [Soltész et al., 2010] during the maintenance phase
of anesthesia. This would yield the −180◦ phase shift angular frequency and
corresponding gain of the system, which would be valuable in the controller
synthesis. Although increasing the input excitation has obvious advantages
from an engineering perspective, it is not straightforward due to patient
safety and ethics concerns. An increased excitation of the patient dynam-
ics may well lead to changes in hemodynamic stability, with related adverse
effects [Monk et al., 2005]. Deviations from the traditional drug dosing pro-
tocol would also need to be explained to the anesthesiologist who is super-
vising the procedure. Studying similar supervised automated systems have
suggested that misconceptions regarding the intended behavior of the control
system are likely to cause the operator to switch the system to manual mode
[Dzindolet et al., 2003].

The lack of sufficiently exciting input signal has previously seen several
approaches. In [Soltész et al., 2013b] previously published formulas of the
form (1.23) are used to yield PK model parameters, based on biometric pa-
rameters, such as patient age and body mass, as explained in Section 1.3. The
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Figure 2.5 Block diagrams showing different approaches to overcome the
lack of identifiability.

resulting PK model is driven by the recorded infusion profile to produce an
estimated plasma concentration Cp. The FOTD dynamics between this Cp
and the measured clinical effect are subsequently identified. A block diagram
illustrating this fixed PK approach is shown in Figure 2.5(a). The FOTD sys-
tem can only provide negative phase shift. As a consequence, the approach
fails if the PK model obtained by (1.23) is slower than the PK dynamics of
the actual patient. Another approach, explained in [da Silva et al., 2010] and
shown in Figure 2.5(b) is to use a third-order LTI system with fixed pole
ratios to model the PK. This requires only the identification of the domi-
nant pole, steady state gain and nonlinearity parameter γ. A third approach,
evaluated in [van Heusden et al., 2013b] and shown in Figure 2.5(c), is to
approximate the PK model (1.14) with a FOTD system. In this approach,
the delay models the negative phase shift corresponding to the unmodeled
poles of (1.14).

Of the mentioned approaches, that in which the PK dynamics are mod-
eled by a FOTD system is clearly the one of lowest complexity. It is therefore
remarkable that full identification of its parameters from representative in-
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Figure 2.6 Representative raw WAVCNS profile yraw from closed-loop
controlled induction of anesthesia (blue) together with the responses ŷraw
of identified models (red, green) and setpoint (black).

duction phase data is not possible, even when the clinical monitor is assumed
to hold unit dynamics. To illustrate this, assume that the full model dynamics
are characterized by the parameter set {K,T, L, γ}, as shown in Figure 2.5(c).
A representative induction phase DOH measurement series from the iControl
study described in Appendix B.2 is shown in blue in Figure 2.6. Here, the
unfiltered WAVCNS profile yraw, corresponding to the monitor model (2.2) is
shown. The time t = 0 min marks the beginning of propofol infusion. The
relative timing of the DOH and propofol infusion profiles has been adjusted
to eliminate the delay of the monitor model (2.2) and the monitor param-
eter E0 was manually identified. Consequently, the unit monitor dynamics
assumption holds for this example.

The parameter space spanned by {K,T, L, γ} was gridded and the model
corresponding to each grid point was driven by the propofol infusion profile
resulting in the blue DOH profile shown in Figure 2.6. Subsequently, the
L2-norm difference between the measured and simulated DOH profiles was
computed. Figure 2.7 shows this difference for a section of {L, γ} space. (The
values of K and T at each grid point were chosen as those minimizing the
error at that grid point.) The figure shows that there is a deep and essentially
flat valley in this cost landscape. Two points are marked along the bottom
of this valley and the correspondingly colored simulated DOH profiles are
shown in Figure 2.6. The red point corresponds to a big value of γ and a
small value of L, while the green point corresponds to a small value of γ and
a big value of L. The relative output error L2-norm difference between the
two marked points is merely 0.8 %, while the monitor measurement noise
model presented previously in the thesis, typically results in relative output
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Figure 2.7 Minimal output error L2-norm between the induction phase
DOH profile in Figure 2.6 (blue) and simulations using FOTD–Hill models
at differnet points in {L, γ} space.

error L2-norm fluctuations of 5 %. It is therefore not possible to decide upon
a specific {L, γ} pair along the valley of Figure 2.7, based on a representative
DOH profile yraw such as the one shown in blue in Figure 2.6.

The unidentifiability along a path in {L, γ} space is not unexpected. Fig-
ure 1.5 shows the Hill function (1.17) for three values of its parameter γ.
The clinical effect E at low normalized drug concentrations v decreases as
the value of γ increases. The normalized drug concentration v is initially
low during induction of anesthesia, and consequently it is hard to determine
whether the delayed clinical response is caused by the delay L or the static
nonlinearity (1.17) with a large value of its parameter γ.

Due to the transient nature of the induction phase and its limited dura-
tion, it is not possible to confidently determine the steady state gain K of
the FOTD model. Particularily, there exists an ambiguity in {K,T} space,
similar to that in {L, γ} space; a small steady state gain cannot be entirely
distinguished from a slow time constant.

It should also be pointed out that there is typically no availability of
validation data, as only one induction of anesthesia is expected per patient
during any one particular procedure.
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Figure 2.8 Two closed-loop controlled infuion profiles (blue, red), to-
gether with setpoint (black), illustrating inter-patient variability in the sen-
sitivity to propofol.

Inter-Patient Variability
There exists a large inter-patient variability in the sensitivity to propofol
[Bibian et al., 2006]. This particularly hold true for children [Coppens et al.,
2011], [van Heusden et al., 2013b], for which the iControl system has been
evaluated as described in Appendix B.2. To illustrate this point, Figure 2.8
shows two inductions of anesthesia using propofol. Both cases are female
patients. The blue case is from an 8 year old, 31 kg, 135 cm patient while
the red case is from a 10 year old, 41 kg, 151 cm patient. Infusion rates
of propofol for each of the two cases are shown in Figure 2.8(b) and the
corresponding DOH profiles, using the Tr = 30 s trending option of the Neu-
roSense monitor, are shown in Figure 2.8(a). The infusion rates are given in
units of µg/kg/min, i.e. normalized with respect to body mass. Despite sim-
ilar biometric parameters and infusion profiles, the patient responses differ
significantly. This behavior is representative and poses a challenge in con-
troller synthesis. Possible approaches to handle this variability are discussed
in Section 3.3.
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Figure 2.9 The input u is unaffected by measurement noise n in the
open-loop scenario, but not in the closed-loop one.

Closed-Loop Bias
When model parameters are identified from induction phase data collected
during manually or TCI dosed anestheisa, the noise at the input and output
are not expected to be correlated. This is evident from the block diagram in
Figure 2.9(a). Under closed-loop control, the input–output signal pair can no
longer be considered uncorrelated in terms of noise, since there now exists a
path for noise through the controller as shown in Figure 2.9(b).

There are three main approaches to closed-loop identification, discussed
in [Forssell and Ljung, 1998]. The direct approach does not take the feedback
path into account, and is therefore succeptible to the aforementioned bias.
In the indirect approach, a model of the feedback path is used to obtain the
corresponding open-loop process parameters. Finally, the joint input–output
approach considers a system with the closed-loop reference and measure-
ment noise as inpupts, while the control signal and measurement signal are
considered outputs.

All models presented in the thesis and its underlying publications were
obtained using the direct approach in an output-error framework. This is
motivated by the simplicity of the direct approach relative to that of the
indirect and joint input–output ones. Furthermore, the direct approach does
not require knowledge of the closed-loop controller dynamics used during
the identification experiment. For the current application, use of the direct
approach was deemed valid since the process parameters to be identified are
determined by the low-frequency dynamics, which are on the time scale of
minutes. The influence of the aforementioned monitor noise model is therefore
negligible.
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Nonlinearity
The output nonlinearity model reported in essentally all publications de-
scribing PD models for anesthesia is the Hill function (1.17). The Hill func-
tion is obtained in receptor theory as the solution of a statistical ligand–
receptor binding problem [Phillips et al., 2012]. As such, the Hill function
is a concentration-dependent binding curve with essentially linear behavior
for low concentrations and a saturation effect as the concentration increases.
The mentioned receptor theory background has led to the adoption of the Hill
function to model the PD behavior of a multitide of clinical drugs, including
anesthetic ones.

The receptor theory problem yeilding the Hill function as its solution is
most likely a severe simplification of the effect site mechanics of propofol
and other anesthetic drugs. In the absence of the monitor dynamics (2.1), it
would therefore be desirable to model the dynamics between propofol infu-
sion and measured clinical effect by a more general Wiener system. A popu-
lar approach to Wiener system identification is to represent the static output
nonlinearity by the coefficients of a truncated Volterra series and simultan-
iously identify these and the parameters of the LTI dynamics [Hunter and
Korenberg, 1986]. It has already been demonstrated that simultaneous iden-
tification of LTI PK parameters and the parameter γ of the Hill nonlinearity
(1.17) is problematic. The additional parameters introduced by the truncated
Volterra series approach would contribute to further loss of identifiability.
Consequently, the Hill function representation of the patient model output
nonlinearity is adopted throughout the thesis; mostly for historic reasons and
due to the lack of a motivated alternative.

The presence of the Hill nonlinearity complicates the use of linear con-
troller synthesis and analysis methods. At least two methods to circumvent
this have been reported in the literature; exact and local linearization. Since
the Hill nonlinearity (1.17) is a monotone function of the normalized effect
site concentration v, it has an inverse:

v(E; γ) =
(

E

1− E

)1/γ
. (2.4)

It was suggested in [da Silva et al., 2012] and [Ionescu et al., 2008] that (2.4)
could be implemented in the controller as illustrated by the block diagram
in Figure 2.10. Here γ is the nonlinearity parameter of the patient, while
γ̂ is the parameter assumed by the controller. The strategy is termed exact
linearization, as it completely cancels the nonlinearity (1.17) when γ̂ = γ. The
exactly linearizing controller aims at controlling the estimated normalized
drug concentration v̂(y; γ̂), which is straight forward, using a linear controller.
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Figure 2.10 Block diagram showing an exactly linearizing closed-loop
controller.

Assuming that the measured and actual clinical effect are identical, i.e. y =
E, the error in the controlled variable v̂ becomes

ṽ = v − v̂ = v − vγ/γ̂ . (2.5)

As illustrated by Figure 2.7, there is no guarantee that γ̂ is close to γ, and
consequently it is hard to guarantee performance using the exact linearization
approach.

An alternative to exact linearization is local linearization, see e.g. [Du-
mont et al., 2009]. In the vicinity of a stationary operating point, represented
by the normalized effect site concentration vo, the Hill function (1.17) can
be well approximated by its linearization:

E(v) ≈ Eo + ∂E(v; γ)
∂v

∣∣∣∣
v=vo

∆v, (2.6)

Eo = E(vo; γ) = 1− 1
1 + vγo

, (2.7)

∂E(v; γ)
∂v

∣∣∣∣
v=vo

= γvγ−1
o

(1 + vγo )2 , (2.8)

∆v = v − vo. (2.9)

Note that the local and exact linearization approaches are identical at
the operating point defined by Eo, which corresponds to vo = 1. When using
the local linearization approach, the most common alternative has been to
choose the operating point corresponding to Eo = 1/2 and synthesize only
one controller based on the corresponding local linearization. This is the
method used in essentially all publications where linear control strategies
such as (linear) MPC or PID are evaluated in the anesthesia context. The
choice Eo = 1/2 is motivated by E = 1/2 being the by far most common
reference in DOH control systems.

One possible alternative would be to use several linearization points with
corresponding controllers. A method which resembles this approach is pre-
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sented in [Lin et al., 2004], where one set of linear models is used for the
DOH range E ≤ 0.3 and another set of models for the DOH range E > 0.3.

If the drug dosing control scheme implements integral action, it is feasible
to locally model the nonlinearity as the gain ∂E/∂v. The bias term Eo in
(2.6) is successfully compensated for by the integrator in the controller. This
is the case reported in most publications, including [Dumont et al., 2009].

In the thesis and its underlying publications, all controllers have been
synthesized for the operating point corresponding to (vo = 1, Eo = 1/2). I.e.,
the Hill function has been replaced by the series gain

∂E

∂v

∣∣∣∣
v=1

= γ

4
, (2.10)

in the patient model used for control synthesis and the integrator of the
controller has been responsible to correct the bias Eo. However, the full
nonlinear models have been used in all simulations conducted to evaluate
controller performance.

When v > 1 it holds that
γ

4
>

γvγ−1
o

(1 + vγo )2 , ∀γ > 1. (2.11)

Hence, the model (2.10), used for controller synthesis, underestimates the
process gain in the region corresponding to a large DOH. In addition, zero
gain results from local linearization at Eo = 0 for γ > 1 and as Eo → 1.
These low gain regions will make the closed-loop controller act restrictively
when v > 1 and when v ≈ 0. This mitigates the risk of overdosing due to
the unavailability of a negative valued control signal. Loss of stability due
to under-actuation is not a major concern, since the uncontrolled process is
inherently stable.

In the region 0 ≤ vo ≤ 1, which is traversed during induction of anesthe-
sia, the gain is initially zero at Eo = 0, then increases to reach its maximal
value at

vo =
(
γ − 1
γ + 1

)1/γ
. (2.12)

Evaluating (2.10) at γ = 1.5 gives the series gain 0.38. The corresponding
gain at vo = 0.34 from (2.12) is 0.61. This means that the local linearization
results in a 61 % (the relative difference between 0.38 and 0.61) worst case
under-estimation of the process gain. Closed-loop controllers for induction of
anesthesia designed using the local linearization approach need to take this
gain ”uncertainty” into account.

Note that the parameter E0, describing the measured effect in absence
of drug, has been omitted in this section. This has been done to simplify
notation. However, since E0 > 0 merely corresponds to an affine scaling of
the measurement, this has resulted in no loss of generality.
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Figure 2.11 Block diagram illustrating the path through which surgical
stimulation d affects the DOH.

Surgical Disturbance Model
In order to evaluate prospective controllers in simulation, it is of importance
to realistically mimic the disturbances arising from surgical stimulation. As
mentioned in Chapter 1, surgical stimulation mainly acts as an additive out-
put disturbance, lowering the DOH. It is hence introduced through the same
path as the measurement noise described in Section 2.1 and illustrated in
Figure 2.11. Two disturbance profiles, describing surgical procedures, have
been proposed previously in the literature. They are briefly explained below
and a third, simpler profile is proposed and subsequently used throughout
the thesis.

The surgical stimulation profile shown in Figure 2.12(a) was suggested
in [Struys et al., 2004]. The negative spikes from left to right are explained
to represent: arousal due to laryngoscopy5 or intubation, incision6 followed
by a period of no stimulation, abrupt stimulation and short-lasting larger
stimulation (three occurrences). The base-level step represents the onset of
continuous normal surgical stimulation.

The surgical stimulation profile shown in Figure 2.12(b) was proposed in
[Dumont et al., 2009]. It consists of an initial step, representing the arousal
caused by incision. The subsequent decaying exponential represents how the
offset slowly decreases and settles to a level at which normal surgical stimula-
tion might occur. Eventually, the stimulation is withdrawn altogether, which
is represented by the second decaying exponential.

In the thesis the simple output disturbance profile shown in Figure 2.12(c)
is used to evaluate controllers in simulation. It consists of a double step, which
allows the system to settle and gives a picture of the closed-loop reaction
which is easy to characterize in automatic control terms such as overshoot
and settling time. From its response it is also possible to anticipate how the
system would react to the previously published profiles.

Models used in the iControl Study
The iControl study made use of patient models which were identified from
data collected during open- and closed-loop controlled anesthesia. This model

5 Laryngoscope: a tubular endoscope that is inserted into the larynx through the mouth.
6 Incision: a cut into a body tissue or an organ.
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(a) Profile suggested in [Struys et al., 2004].
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(c) Profile used in the thesis.

Figure 2.12 Additive output disturbance profiles used to evaluate closed-
loop DOH controllers in simulation.
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Figure 2.13 The LTI monitor dynamics break the Wiener structure of
the model to be controlled.

development work was foremost conducted by Klaske van Heusden at The
University of British Columbia, Vancouver, Canada, with partial involvement
of the author. Essential characteristics of these models and their identification
is presented here, whereupon a slightly modified identification approach is
described.

Details on the clinical protocol under which data was collected are given
in Appendix B and [van Heusden et al., 2013b]. Only data from the initial
10 min after the start of propofol infusion were used for identification, since
nociceptive stimulation is typically present during the subsequent mainte-
nance phase of anesthesia. A manual procedure was used to discard data sets
showing signs of disturbances during these initial 10 min, which could not be
related to the input using the proposed model structures.

The measurements used for identification were filtered with the Tr = 30 s
trending option of the NeuroSense monitor. The trended signal was used in
order to utilize the artifact removal algorithm of the NeuroSense monitor,
see Section 2.1. The Wiener model structure consisting of LTI PK dynam-
ics with a static output nonlinearity was consequently broken, as shown in
Figure 2.13. The fact that the nonlinearity (1.17) and the LTI monitor dy-
namics (2.1) do not commute, was disregarded and the monitor dynamics
were partially compensated for by filtering the identification input signal,
i.e. the propofol infusion rate, with (2.1).

Identification was subsequently conducted using the output-error frame-
work in a direct approach. The identifiability issue was tackled by initially
identifying an LTI model between input and measurement and subsequently
fit the Hill function parameter γ to minimize the residual. This approach
tends to over-estimate the delay L (negative phase shift) and under-estimate
the Hill parameterγ (output dependent gain), which is sound from a control
synthesis perspective as it eventually results in more conservative controllers.

Two identification approaches were considered; the fixed PK dynamics
approach illustrated in Figure 2.5(a) and the FOTD approach shown in Fig-
ure 2.5(c). Both approaches are explained in [van Heusden et al., 2013b] and
it was concluded that the two approaches produce equally satisfactory results
when applied to the available data.
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A Simplistic Approach to Modeling
This section presents an identification procedure similar to the one in [van
Heusden et al., 2013b], but not requiring manual data processing. Developing
such a scheme is fundamental in order to automate tuning of the closed-loop
controller. While the ideas behind the proposed identification scheme are
motivated, the resulting models have not yet been verified to the extent of
those presented in [van Heusden et al., 2013b].

It was concluded in [van Heusden et al., 2013b] that the FOTD model
structure shown in Figure 2.5(c) did perform as well as other evaluated struc-
tures. Consequently, it is chosen here for its simplicity in terms of its few
parameters: E0, K, T , L and γ.

The parameter E0, describing the clinical effect in absence of drug, was
estimated by Ê0, defined as the mean value of the measurement signal be-
tween the beginning of the measurement series and the start of propofol in-
fusion. The Tr = 30 s trending option of the NeuroSense monitor, explained
in Section 2.1, was enabled to utilize the artifact removal properties of the
monitor.

As previously discussed, the pair {L, γ} is not identifiable using represen-
tative induction phase data. It has also been pointed out that it is desirable
to under-estimate γ in order to simultaneously over-estimation of L, which
in terms yields a more conservative controller tuning. The nonlinearity pa-
rameter γ from (1.17) was therefore fixed to its smallest possible value γ = 1,
yielding the output nonlinearity

E = 1− 1− E0

1 + v
, (2.13)

shown, for E0 = 0, in blue in Figure 1.5.
Rather than using the initial 10 min following the beginning of propofol

infusion for identification, the definition of induction phase duration from
[Liu et al., 2006] was adopted. Identification was consequently performed on
data collected during the time elapsed from the start of propofol infusion to
the moment when the trended measurement signal y rises to and remains
above 80 % of its setpoint for 30 s.

The raw NeuroSense output yraw (cf. blue signal in Figure 2.2) is filtered
through the inverse of (2.13),

v̂ = 1− Ê0

1− yraw
− 1, (2.14)

to obtain the estimate v̂ of v.
Note that the expression in (2.14) is only valid for yraw ≥ Ê0. This and

similar aspects, such as potential division by zero in (2.3), require attention
when producing code for simulation or clinical studies, but are not explicitly
addressed in the presentation of the thesis.
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The {L, T} parameter space is gridded, with a resolution7 equal to the
sample time of the system, which is 1 s. The lower bound for the delay
parameter estimate L̂ was chosen to be 0 s, whereas the upper bound was set
to the time at which the measurement y rises to and remains above 20 % of
the setpoint for 30 s. The corresponding limits for the time constant T̂ were
chosen as 1 s (the sample time of the system) and half the duration of the
considered data set, respectively.

At each grid point a 1 s zero-order hold discretization of e−L̂s/(sT̂ +
1) is driven by the recorded propofol infusion profile u to produce v̂′. The
optimal parameter value of the gain K̂ for the grid point is subsequently
determined by least squares applied to v̂ and v̂′. The obtained gain is used
to construct v̂ = K̂v̂′. Applying the output scaling defined through Ê0 and
the nonlinearity (2.13), the model output

ŷraw = 1− 1− Ê0

1 + v̂
(2.15)

is obtained. It would now be possible to select the grid point minimizing the
output error between ŷraw and yraw. However, this would not utilize the arti-
fact removal algorithm of the NeuroSense monitor, mentioned in Section 2.1.
Instead, ŷraw is filtered by the Tr = 30 s linear trending filter used in the
NeuroSense monitor to produce ŷ. The error, here defined by the L2-norm8

of y− ŷ is computed at each grid point and the parameters set {K̂, T̂ , L̂} cor-
responding to the minimum is selected. One example of the involved signals
is shown in Figure 2.14.

The outlined identification procedure was applied to data from the 94
closed-loop controlled cases further described in Section 3.2. (Profiles from
23 of these cases are shown in Figure 3.12. The remaining 71 profiles are
shown in Figure 3.15.)

Rather than manually selecting data sets for inclusion or exclusion, the
decision was based on reliability of the identified model, as outlined below.

Only the part of the data set corresponding to the time after the identified
delay L̂ is actively used in the identification of the time constant T̂ . Hence,
identified values T̂ , which are large compared to the duration of this part of
the data set indicate that either the experiment duration or input excitation
was insufficient. Consequently, models identified from data sets with duration
tind were discarded if tind−L̂ < T̂ . This resulted in the exclusion of 24 models.
For the same reason, models where T̂ was found to be optimal at its upper
grid bound were removed, resulting in the exclusion of an additional 14 cases.

7 The actual implementation exploits local smoothness of the cost function to iteratively
refine the grid and hence speed up the identification.

8 The norm is scaled by the reciprocal square root of the data set duration, in order not
to favor short data sets.
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Figure 2.14 Signals involved in process model identification: yraw (blue),
ŷraw (red), y (green) and ŷ (black).

The presence of artifacts in yraw or of disturbances caused by surgical
stimulation in y both increase the output error. Consequently, models re-
sulting in an output error above a heuristically determined threshold were
discarded. Both the L1 and L2 norms of the difference between y and ŷ
were thresholded in order to capture both average and worst-case deviations.
The threshold values were adjusted based on the first 47 data sets and the
adequacy of the resulting values was confirmed by application on the remain-
ing 47 data sets. The established thresholds corresponded to the exclusion of
cases with maximal and root means square error exceeding 7 % and 15 %, re-
spectively. The thresholds resulted in exclusion of 4 and 11 cases, respectively.
Parameter values of the remaining 41 models are enlisted in Appendix A
while histograms showing their distribution are shown in Figure 2.15.

As can be seen in Figure 2.15, there exists a large inter-model variability
in the parameter values. With the given data it is hard to tell whether this
entirely reflects the inter-patient variability of the underlying dynamics or
if parts of it are caused by insufficient excitation during the identification
experiment.

The described identification scheme could be used to individualize the
closed-loop controller tuning upon induction of anesthesia in cases where a
valid model is identified. For the existing 94 data sets, this would have been
possible in 41 cases, i.e., in 44 % of all cases. The topic of individualized
control is further discussed in [Soltész et al., 2013b] and Section 3.3.
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Figure 2.15 Distribution of identified model parameters.
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2.3 Remifentanil Patient Model

As mentioned in Section 1.1, there exist no reliable method to directly mea-
sure the DOA. However, the DOA and DOH are related as described in
Section 1.3.

Pharmacokinetic interaction between propofol and remifentanil has been
investigated in healthy adults [Bouillon et al., 2002]. It was concluded that
the pharmacokinetics of propofol are not changed by remifentanil, that the
central compartment clearance and elimination rate of remifentanil are de-
creased in the presence of propofol and that the effect of propofol on the
concentration–time course of remifentanil is only clinically relevant when
bolus doses of remifentanil are administered. No similar study has been con-
ducted in children. The approach taken in the thesis and in previous closed-
loop controlled studies, see Appendix C, is to neglect any PK interaction
between the two drugs.

There exist several published compartment models, describing the phar-
macokinetics of remifentanil in terms of biometric parameters, as explained
in Section 1.3 and illustrated in (1.23). The work leading up to the thesis has
not considered identification of custom remifentanil PK models. The reasons
for this are foremost the mentioned absence of reliable DOA monitors, in
combination with the insufficient input signal excitation resulting from the
clinical remifentanil dosing protocol of the iControl study, described in Ap-
pendix B.2. The model used for simulations in the underlying work [Soltész
et al., 2012a] is a remifentanil PK model for children, originally published in
[Rigby-Jones et al., 2007]9. Similar models for the adult population include
[Minto et al., 1997] and [Egan et al., 1996].

Comparing the speed (e.g. rise time) of the identified propofol patient
models of Section 2.2 or previously published counterparts, with those of
published remifentanil PK models show that the dynamics of remifentanil are
an order of magnitude faster than those of propofol. The comparatively in-
stantaneous dynamics of remifentanil makes the drug easier to dose in closed-
loop. Particularly, the absence of a prolonged lag allows for more aggressive
controller design in the presence of representative inter-patient variability.

One aspect, which cannot be overlooked, is the documented PD inter-
action between propofol and remifentanil, described in Section 1.3. In fact,
it is this synergistic interaction that enables joint control of the DOH and
the DOA, in the absence of a DOA monitor, as explained in Section 1.1.
The thesis utilizes the interaction model originally published in [Kern et al.,
2004] and explained in Section 1.3. The interaction parameter in (1.22) is
assumed to be α = 5.1 as reported in [Kern et al., 2004]. Similarly a plasma

9 Several models are presented in [Rigby-Jones et al., 2007]. The one used in [Soltész et al.,
2012a] is the Rigby-Jones model with patient weight as its only biometric parameter.
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Figure 2.16 PD interaction surface relating the normalized effect site
concentrations vp and vr to the clinical effect towards DOH, E.

concentration of Cre,50 = 12.5 ng/ml is used to compute vr. Note that this Ce
value is with respect to DOH, rather than DOA. Values for the parameter
γ are adopted from the propofol model. This makes the PD interaction sur-
face model (1.22) collapse into the Hill PD for propofol (1.17) in the absence
of remifentanil, i.e., when v = vp. An example of the PD interaction surface
arising from combining (1.22) and (1.17) is shown in Figure 2.16 for clinically
relevant ranges of vp and vr and γ = 1.5.
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3.1 Performance Measures

The control objective being discussed in this chapter is setpoint tracking of
the DOH, in the presence of model uncertainties and disturbances, which
were described in Chapter 2.

The current practice for performance assessment of EEG-guided DOH
control systems is the computation of four measures introduced in [Varvel
et al., 1992]. These Varvel measures were proposed to evaluate the perfor-
mance of anesthesia systems, however not the EEG-guided variety outlined
in Section 1.2. Despite this, they have become the gold standard in clinical
evaluation as is evident from several studies in which DOH measures de-
rived from the EEG were used to control hypnotic drug infusion rate, see
Appendix C.1.

This chapter will begin with a discussion of how to evaluate closed-loop
controlled anesthesia system, before moving on to clinical and simulation
results as well as possible extensions of an existing system towards control
of the DOA.

Objectives
The rationale behind introducing performance measures is to map the n-
dimensional DOH error vector, where n is the number of available samples,
to an m-dimensional (m � n) space in which each dimension has a dis-
tinct interpretation, strongly coupled to the performance of the system. As
mentioned above, m = 4 for the Varvel measures. Ultimately it would be
desirable to set m = 1 and describe performance of the control system by
only one scalar. This was attempted in [Liu et al., 2006] by introducing the
global score, discussed further below.

The control objectives differ between temporal phases of anesthesia, which
suggests the use of different performance measures for each temporal phase
and calls for a systematic method to determine the transition between sub-
sequent phases.
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The clinical objective during induction of anesthesia is to make a fast tran-
sition to the DOH setpoint, with limited overshoot and short settling time,
as discussed in Section 1.1. Limiting the induction phase duration is partic-
ularly motivated for anxious patients. A more rapid induction of anesthesia
may also alleviate the discomfort associated with the infusion of propofol in
conscious patients. Furthermore, limiting the duration of the induction phase
results in an increased availability of the operating room and its staff. Mean-
while, limiting the overshoot is critical during maintenance of procedures
which require spontaneous breathing, since a high DOH generally results in
apnea. Avoiding a DOH overshoot is also critical in some patient groups such
as the elderly, in order to avoid the associated potential for hypotension.

During maintenance of anesthesia, it has been recommended that the
DOH measurement y, introduced in Section 2.1, should lie in the (0.4, 0.6)
range, with a setpoint of r = 0.5 [Kelly, 2003], [Agrawal et al., 2010]. Too
large an y could result in awareness with recall [Liu et al., 1991], which is
likely to cause the patient considerable psychological stress, while excessively
low DOH values result in hypotension and an increase in long-term mortality
[Monk et al., 2005]. Furthermore, variability in the DOH, which induces
significant changes in blood pressure, are potentially harmful for the patient.
In order to maintain hemodynamic stability, it is therefore of interest to
quantify such variability.

Finally, it is desirable to minimize the duration of the emergence phase
of anesthesia, resulting in faster recovery for the patient and increased avail-
ability of the operating room. Since no control signal is available during the
emergence phase, it is only possible to affect its duration by control actions
taken during the maintenance phase of anesthesia. The possibility to do so
relies on individual control of propofol and remifentanil (or another drug
pair with similar interaction properties). E.g., an increase of analgesic drug
and corresponding decrease of hypnotic drug toward the end of the main-
tenance phase of anesthesia will achieve a decrease in emergence duration,
while increasing the DOA.

The Varvel Measures
The Varvel measures were introduced to assess the estimation performance of
TCI systems. Their intended purpose is to describe the fit between measured
(blood sample) and estimated (PK model) plasma concentrations. This can
be conducted either for an individual or a population. The individual case
will be considered next.

The Varvel measures are based on the median of the relative error and its
modulus, respectively. The original motivation for use of the median rather
than the mean was the asymmetric appearance of data sets available to the
authors of [Varvel et al., 1992]; most PK estimation errors were close to
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Figure 3.1 Two tentative maintenance phase DOH profiles (blue), with
corresponding setpoint (black) and resulting median error (red).

the median, with few but distant outliers. This motivation, justified in the
intended context, results in an unfortunate choice when adopted for EEG-
guided DOH control. As mentioned above, y ∈ (0.4, 0.6) is considered ade-
quate. This suggests that a maintenance phase like the one in Figure 3.1(a)
should be desirable to the one in Figure 3.1(b), while basing the error metric
on the median has the opposite outcome. It can be argued that median-based
measures provide inherent filtering and artifact removal. However, they make
no distinction between artifacts, noise and momentary large errors which in-
deed reflect the DOH of the patient.

The Varvel performance measures are MDPE, MDAPE, divergence and
wobble. They are defined, explained and discussed below. Denote by Cm the
sample vector of measured plasma concentrations and by Cp, the correspond-
ing estimates. The times corresponding to entries of Cm and Cp are in t and
in the unit of hours. All vectors hold N elements.

The (relative) percentage performance error (PE) is defined as

PE = 100Cm − Cp
Cp

. (3.1)
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The division in (3.1) is to be interpreted as element-wise, making PE a vector
quantity. PE is not reported as one of the Varvel measures, but rather used
as the basis for their computation.

The definition (3.1) has been applied to EEG-guided DOH control in
numerous publications by exchanging Cm for y and Cp for r. Some of these
publications are listed in Appendix C. Such previous publications have made
use of the BIS DOH scale, where the fully aware state corresponds to a value
of 100 and the fully anesthetized state corresponds to a value of 0. This results
in less error penalty whenever the DOH setpoint is closer to the fully aware
state. However, the risk of the patient becoming aware requires particularly
tight control in this region.

The median performance error (MDPE) is the median value of the PE
between all samples:

MDPE = median(PE). (3.2)

As such it captures the bias of the estimator, but not its variability.
The median absolute performance error (MDAPE) is defined as

MDAPE = median(|PE|). (3.3)

As opposed to the MDPE, the MDAPE does not convey information regard-
ing the error bias, but rather the representative error magnitude.

Divergence is the slope of the linear regression of |PE| against t:

divergence = tT |PE| −Nt|PE|
tT t−Nt2

, (3.4)

where the bars denote the mean operator. The unit of divergence is percent
per hour and the measure aims at describing whether the error increases or
decreases over time. An unstable control system will result in a positive di-
vergence. Beyond concluding instability, the divergence is of little practical
use. Three different y-profiles are plotted in solid together with a common
setpoint of r = 0.5 in Figure 3.2. The respective divergences of these pro-
files are −26, −2 and 32 percent per hour, proportional to the slopes of the
dashed lines. It is of arguable clinical significance when during the mainte-
nance phase the error spike occurs, yet its temporal location strongly affects
the divergence, while leaving all other of the Varvel measures unaffected.

Wobble is the last of the Varvel measures. It was introduced to capture
variability in the estimator. Wobble is defined as the median absolute devi-
ation between PE and MDPE:

wobble = median(|PE−MDPE|). (3.5)

Wobble measures variability in the DOH. As such it is strongly affected by
filtering of the measurement signal. In order to compare systems in terms
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Figure 3.2 The solid lines show tentative DOH profiles, with the hor-
izontal black line as setpoint. The divergence for each of these profiles is
proportional to the slope of the correspondingly colored dashed line.

of wobble it is therefore essential that the same filtering is used. This is
problematic when using the BIS monitor, as it uses a proprietary filtering
algorithm and switches between several filters [Ionescu et al., 2011b].

The global score (GS) is not one of the Varvel measures, but was intro-
duced in [Liu et al., 2006] as an attempt to score EEG-guided DOH control
systems with one scalar:

GS = MDAPE + wobble
fraction of time y ∈ (0.4, 0.6)

. (3.6)

Apart from characterizing performance by means of a singe scalar, the GS
takes the clinical feasibility bounds from [Kelly, 2003] into account. Expand-
ing the numerator of (3.6) results in

median|PE|+ median|PE−median(PE)|. (3.7)

While the idea of one scalar performance measure is appealing, it is hard to
intuitively interpret (3.7) and the clinical relevance of the GS has never been
established.

It was concluded in [Varvel et al., 1992] that the population distribu-
tion of individually computed MDPEs and divergences are quite symmet-
ric, while the corresponding MDAPEs and wobbles are slightly asymmetric.
Consequently, different approaches for combining the individual measures to
correspond to populations were discussed. The two-stage approach defines
the population measures as the mean values taken over the population. A
modification of the two-stage approach is the pooled-data approach, where
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each individual is weighted by the reciprocal number of available samples.
This is further elaborated in the variance-weighted approach, in which in-
dividuals are weighted by the reciprocals of the variances of the measures.
Details of these pooling strategies are found in [Varvel et al., 1992], in which
the authors recommend the variance-weighted approach but conclude that
all approaches yield similar results.

Proposed Performance Measures
Below, performance measures more adequate for the evaluation of EEG-
guided DOH control than the Varvel ones are proposed. As suggested above,
it is relevant to use different measures of performance during the induction
and maintenance phases of anesthesia. In fact, most closed-loop studies re-
porting the Varvel measures do so for maintenance phase data only.

Here it will be assumed that a vector Y , holding N DOH measurements,
is available, together with the corresponding setpoint vector R. The not nec-
essarily uniformly sampled time stamps of entries in Y and R are stored in
T (unit: s). The vectors are assumed to be adjusted so that the first sample
in T corresponds to the start of hypnotic drug administration. To simplify
notation, the sections of {T,R, Y } corresponding to the temporal phases of
anesthesia being considered will be denoted {t, r, y}, each holding n elements.

Induction Phase Measures Two performance measures, reflecting the
objectives outlined above, are proposed below.

Induction Duration (ID) is adopted from [Liu et al., 2006], where it was
defined as the time elapsed from the start of hypnotic drug administration
to the first moment when y rises to and remains above 0.4 for 30 consecutive
seconds. This definition does not punish large drug boluses which rapidly
achieve the desired goal but result in excessive overshoots. Furthermore, it
only considers the setpoint r = 0.5, To account for this, staying above 0.4 is
replaced by staying within r ± 0.1 and an additional measure for character-
izing overshoot is introduced.

The overshoot (OS) is defined as

OS = 100 ·max
k

yk − rk
1− rk

. (3.8)

I.e., an overshoot of 100 % corresponds to y = 0, while an overshoot of 0 %
corresponds to y = r. It is possible that the maximum overshoot occurs after
the end of induction, as defined by ID. This can for instance be the case if
there is a slow integrator in the controller, which builds up during the in-
duction phase. It seems hard to device a robust, control system independent,
rule to decide how much of the maintenance phase should be included in
the evaluation of (3.8). The conservative approach in the thesis has therefore
been to include the entire maintenance phase. As a consequence, OS is not
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Figure 3.3 Graphical illustration of induction duration ID (red) and
overshoot OS (green) using clinical DOH data (blue) with setpoint in black.

an induction phase specific measure. However, for most cases the maximum
overshoot occurs during, or shortly after, the induction phase.

The definitions of ID and OS are illustrated in Figure 3.3 on clinical data
from the iControl study described in Appendix B.2.

Maintenance Phase Measures The trapezoidal approximation of the
integrated error (IE) is introduced to replace MDPE:

IE =
n−1∑
k=1

tk+1 − tk
tn − t1

(rk+1 − yk+1) + (rk − yk)
2

. (3.9)

The IE is normalized with respect to the maintenance phase duration. As
opposed to the median, the IE punishes outliers (linearly). Furthermore, it
is used as minimization criterion in existing controller synthesis strategies,
of which [Garpinger and Hägglund, 2008] presents one example within PID
control.

Since the IE only conveys information about the average error, its sole
use as performance measure can be misleading; an error distribution which
is balanced with respect to zero results in a small IE. This can be the case
when e.g. the closed-loop system exhibits oscillatory behavior due to poor
tuning. A measure replacing the MDAPE is therefore needed and readily
obtained by taking the modulus of the sample-wise error in (3.9), yielding
the integrated absolute error (IAE):

IAE =
n−1∑
k=1

tk+1 − tk
tn − t1

|rk+1 − yk+1|+ |rk − yk|
2

. (3.10)
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Variability in y can be quantified by the relative difference between the
IAE and the IE. This is done by introducing the variability index (VI):

VI = IAE− IE
IAE

. (3.11)

The VI does not need to be explicitly reported as it is readily computable
from the reported IE and IAE.

It is of interest to report how well the system manages to keep y within
the clinically feasible range, i.e. within r±0.1. Since the sign of the error is of
clinical significance (when the error exceeds ±0.1), it is justified to give sep-
arate measures for the percentage of time during maintenance that the error
e = r− y exceeds +0.1 (E+) and falls below −0.1 (E−), respectively. In case
of sparse or nonuniform sampling, linear interpolation between consecutive
samples can be used to determine the time instants when the maintenance
phase control error crosses ±0.1. respectively.

Emergence Phase Measure The emergence phase of anesthesia is de-
fined to begin when administration of the hypnotic drug is terminated, see
Section 1.1. The duration of the emergence phase can be robustly quanti-
fied by introducing the emergence phase rise time (ER), here defined as the
63 %, or 1− e−1 rise time, commonly reported in other control applications.
Note that the standard control nomenclature is somewhat confusing as the
measurement signal is actually decreasing during the rise time.

This time is defined as that between end of hypnotic drug administration,
at which instance the DOH setpoint was r1 and the first time at which y
crosses r1 − (1− e−1)(r1 −E0). If the awake baseline level E0 is not known,
the default E0 = 0 may be used. The ER is illustrated in Figure 3.4.

Population Measures Since all the proposed performance measures are
unaffected by the duration, in terms of time or samples, of the underlying
data, it becomes natural to weight each case equally in the population statis-
tic.

Which statistic to use depends on the clinical aim. The median of each
measure is adequate if the aim is to evaluate a system which should perform
well in the majority of cases, but where a few cases of poorer performance
are acceptable. At the other end of the scale, the worst case of each measure
could be reported. In terms of conservatism, the mean lies between these two.

In order to produce comparability between studies it is suggested that
at least the population mean ± standard deviation of ID, OS, IE, IAE, E±
and ER be reported. A convenient way to report these statistics together
with worst case and median is the use of the modified box plot shown in
Figure 3.5.
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Figure 3.4 The 63 % emergence phase rise time (ER) (red), illustrated
using DOH data from the iControl study (blue) with setpoint in black.
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Figure 3.5 This modified box plot shows an example of how the worst
case (whisker), standard deviation (box), mean (solid line) and median
(dashed line) of ID, OS, IE, IAE, (VI), E± and ER can be reported in
a comprehensive manner.

Reported Performance Measures
The proposed performance measures are reported in favor of the Varvel ones
in connection to simulations presented in the thesis, which have not been
previously published. Despite their shortcomings, the Varvel measures have
become the gold standard for evaluation of closed-loop controlled anesthesia
delivery systems. For this reason, they have been reported in the publications,
enlisted in the Preface, upon which the thesis is based.

3.2 The iControl Study

Controller Tuning
This section describes the controller tuning procedure used in the iControl
study. Details of the study, such as study population, clinical protocol, con-
troller structure and parameters, are found in Appendix B. A photograph
of the iControl closed-loop anesthesia system is shown in Figure 3.6 and a
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Figure 3.6 The iControl closed-loop anesthesia system.

screen dump of a its touch screen user interface is shown in Figure 3.7. The
working environment of the anesthesiologist is shown in Figure 3.8, with the
iControl device to the right.

The main challenges in tuning the propofol delivery controller were to
provide adequate robustness to handle the inter-patient variability to drug
sensitivity and attenuate disturbances caused by surgical stimulation and
measurement noise, while maintaining reasonable setpoint tracking perfor-
mance.

As outlined in Appendix B.2, the study population consisted of children,
for which validity of available PKPD models have been debated [Coppens
et al., 2011]. Consequently, a system identification study was performed in
order to obtain models upon which to base the controller tuning. This study is
outlined in Section 2.2 and Appendix B. A full presentation, including listing
of model parameters is found in [van Heusden et al., 2013b]. For additional
detail on the first part of the study, see [Soltész et al., 2012b].
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Figure 3.7 The iControl touch screen interface. The screen dump was
taken while running in simulation mode.

The initial controller tuning was based on 14 patient models identified
from open-loop data obtained during surgeries. Figure 3.9 shows the Bode
plots of these models linearized around the nominal setpoint Eo = r = 0.5.
Tuning of the PID and filter parameters leading to the version used during
the initial 23 clinical closed-loop cases was performed based on these models.
The robust PID tuning was seeded with the integrated absolute error (IAE)
minimizing algorithm described in [Garpinger and Hägglund, 2008] applied
to the linearized models. Subsequently, a manual iterative robust tuning pro-
cedure was performed. The resulting open-loop Bode plots were drawn for
each available model combined with the tentative controller, as shown in
Figure 3.10. In parallel, the behavior of the underlying nonlinear system in
closed-loop was characterized by simulation, as shown in Figure 3.11. The
figure shows simulated y-profiles for the 14 models; simulated induction of
anesthesia is shown in Figure 3.11(a), the response to surgical stimulation,
modeled by the output disturbance profile of Figure 2.12(c), is shown in Fig-
ure 3.11(b). Figure 3.11(c) shows the influence of sensor noise. Note that
Figure 3.11(b) also reveals the behavior at setpoint steps as the setpoint and
output disturbance signals enter the system at the same location.
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Figure 3.8 The working environment of the anesthesiologist. The photo-
graph is taken in one of the operating rooms of the BC Childrens Hospital,
Vancouver, Canada.
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Figure 3.9 Bode plots of patient models obtained from open-loop data,
linearized around Eo = 0.5. The input and output are propofol infusion
(µg/kg/min) and y ∈ (0, 1), respectively.
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Figure 3.10 Open-loop Bode plots obtained by combining the initial
controller tuning from Appendix B.2 with each of the 14 models identified
from clinical open-loop data.

Due to the limited number of available models, the initial tuning was
deliberately conservative. Gain margins of the linearized system were in the
(4.0, 25.2) range, with a mean of 8.3, phase margins were in the (52◦, 72◦)
range, with a mean of 65◦ and the peak sensitivity Ms was in the (1.1, 1.5)
range, with a mean of 1.2. The variation in these robustness measures fur-
ther indicate the presence of large inter-patient variability in the response
dynamics to propofol.

Clinical Outcome – Phase One
The clinical outcome of the initial 23 closed-loop cases of the iControl study
are reported in [Soltész et al., 2012b]. Figure 3.12 shows the DOH measure-
ment profiles together with the infusion profiles of these cases. Induction
phase data is shown in blue, maintenance phase in red and emergence phase
in green. The black triangles mark the beginning and end of of each mainte-
nance phase.

In some cases, the anesthesiologist decreased the DOH setpoint toward
the end of the procedure, in order to shorten duration of the emergence phase.
This motivates plotting the error e in favor of the measurement signal y. Error
profiles corresponding to Figure 3.12 are therefore shown in Figure 3.13.

At some occasions, high amplitude spikes are present in the control signal.
Some of these are the result of manually superimposed boluses, which are
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Figure 3.11 Simulated closed-loop anesthesia for the 14 available patient
models, used in the robust PID tuning procedure (blue). The setpoint and
additive output disturbance profiles are shown in black and green, respec-
tively.
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Figure 3.12 Outcome of the initial 23 closed-loop controlled cases. In-
duction, maintenance and emergence phase data is shown in blue, red and
green, respectively. Black triangles mark the beginning and end of each
maintenance phase.
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Figure 3.13 Maintenance phase error e during the initial 23 closed-loop
controlled cases. The dashed black lines mark the ±0.1 error interval. The
end of each data set is marked with a black triangle.
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given by the anesthesiologist, who can act as a feed-forward controller from
anticipated increases in nociceptive stimulation. The other source for spikes
is the switching from closed-loop controlled to TCI mode, which occurs when
e.g. the measurement signal quality is below a threshold. A potential strategy
for avoiding these spikes is outlined in Section 3.3.

Out of the 23 newly available data sets, 14 were manually deemed suit-
able for system identification, which extended the available patient model
pool size from 14 to 28. Details of the identification of these models are
found in [van Heusden et al., 2013b]. The DOH measurements from induc-
tion of anesthesia for three of the 14 closed-loop cases used for identification
are shown in Figure 3.14(a) (solid) together with the ones obtained through
noise-free closed-loop simulations (dashed). Corresponding propofol infusion
profiles are shown in Figure 3.14(a). The identified models were driven in
closed-loop using the same controller and setpoint profiles as in the corre-
sponding clinical cases. Due to the presence of disturbances it is not feasible
to compare such simulations with clinical data beyond induction of anesthe-
sia and there might be slight discrepancies caused by unmodeled disturbances
also during the induction phase. As can be seen in Figure 3.14(b), there is a
discrepancy between the actual (solid) and simulated (dashed) infusion pro-
files. The good model fits (similar to the one shown in Figure 2.6) together
with the temporal irregularity of the discrepancies suggest that they are due
to disturbances rather than model error. Thus, care should be taken when
relying on identified models, even when the identification data was collected
during induction of anesthesia.

In general, it holds that the clinical and simulated inductions were simi-
lar. However, the overshoot upon induction was slightly larger for the clinical
cases. This can be attributed to the difference in identification input char-
acteristics, combined with the identifiability issues reported in Section 2.2.
I.e., the open-loop cases typically had a higher initial propofol infusion rate,
resulting in a fast response.

Controller Re-tuning
With the availability of 14 additional models from the closed-loop study and
validated safety of the system, the controller was re-tuned. The tuning pro-
cedure was not changed, but now incorporated both the 14 initially available
models from open-loop experiments and the additional 14 models from the
conducted closed-loop experiments. The tuning objective was to decrease
duration of induction while improving disturbance attenuation.

Gain margins with the final re-tuned controller applied to the 28 lin-
earized patient models were in the (1.9, 16.5) range with a mean of 3.6. The
phase margins were in the range (29◦, 70◦) with a mean of 49◦ and the corre-
sponding values for the maximal sensitivity magnitude were (1.1, 2.4) and 1.5,
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Figure 3.14 Induction phase y-profiles and corresponding infusion rate
u-profiles for three of the 14 initially modeled closed-loop cases are shown
(solid) together with simulated outcomes (dashed). The common setpoint
is shown in black.

respectively. The worst case here was caused by an outlier yielding a notably
high value. It was, however, deemed acceptable based on the conservatism
inherent from the system identification procedure described in Section 2.2.

In order to compare the old and new tuning, the robustness measures of
the new tuning as applied to the initially available 14 models are relevant.
These are: gain margin range (2.1, 25.2) with mean 4.6, phase margin range
(38◦, 72◦) with mean 56◦ and maximal sensitivity magnitude range (1.1, 2.1)
with mean 1.4.

Clinical Outcome – Phase Two
The re-tuned controller was evaluated in 79 cases, of which 8 cases were con-
ducted with candidate tunings and the remaining 71 with the final version
reported in Appendix B.2. Figure 3.15, corresponding to Figure 3.12, shows
the measured variable y together with the control signal u, for each of these
cases. The maintenance phase errors e = r − y are compiled in Figure 3.16,
corresponding to Figure 3.13. Figure 3.17 shows three relatively long last-
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ing cases from the set of 71 shown in Figure 3.15. Each case is drawn in a
separate color and the correspondingly colored triangle marks the end of the
maintenance phase for the case.

Closed-Loop Performance
The combined performance of the cases using the initial and re-tuned con-
trollers described above are reported in terms of the Varvel measures in
[van Heusden et al., 2013b]. The same publication also showcases the per-
formance of individual representative cases. The performance measures pro-
posed in Section 3.1 and [Soltész et al., 2013a] have been computed for the 102
closed-loop cases and are reported as modified box plots in Figure 3.18. See
[van Heusden et al., 2013a] for a listing of the Varvel measures. Spontaneous
breathing was successfully maintained in most cases. During 11 out of the
102 cases, episodes of apnea or airway obstructions were, however, recorded.
Details on these cases are found in [West et al., 2013]. Results are further
discussed in Chapter 4.

3.3 Simulation Studies

Anesthesia Simulator
The development and verification of the control system described in the the-
sis relied on the ability to evaluate patient models and controllers in a sim-
ulation environment. For this purpose, an application-specific simulator was
developed in the Simulink language, tightly integrated with Matlab (The
MathWorks Inc., Natwick, USA). The simulator was designed in a modular
fashion and allowed for straight forward loading of patient models for propo-
fol and remifentanil, output disturbance and noise models, reference profiles
and closed-loop controllers. The top layer of the Simulink model hosting the
simulator is shown in Figure 3.19.

In this section, the simulator has been utilized to demonstrate concepts
not yet implemented in the iControl system, but with future potential.

Individualized Control
So far, all controllers considered in the thesis have been tuned based on the
availability of batches of patient models. It was mentioned in Section 2.2
that parameters of patient models identified from maintenance phase data
are likely to be biased by unmeasurable output disturbances. This makes
the application of continuously adaptive control schemes potentially riskful
due to the possibility of parameter drift caused by such bias. However, it
is possible to obtain models from induction phase data, which is often not
influenced by such disturbances. This was how the model batches used to
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Figure 3.15 Outcome of the 71 closed-loop controlled cases, facilitat-
ing the re-tuned controller. Induction, maintenance and emergence phase
data is shown in blue, red and green, respectively. Black triangles mark the
beginning and end of each maintenance phase.
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Figure 3.16 Maintenance phase error e during the 71 closed-loop con-
trolled cases, facilitating the re-tuned controller. The dashed black lines
mark the ±0.1 error interval. The end of each data set is marked with a
black triangle.
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Figure 3.17 Three relative long cases (blue, red, green), from the total
of 71 cases shown in Figure 3.15. Correspondingly colored triangles mark
the end of each maintenance phase. Setpoint profiles are drawn in black.

tune the iControl system were obtained [van Heusden et al., 2013b]. A similar,
but fully automated, identification procedure to that in [van Heusden et al.,
2013b] was proposed and demonstrated in Section 2.2. Although a more
exciting identification input would be much desired in order to avoid the
issues explained in Section 2.2, it is possible to identify at least a subset of
the process model parameters based on available data.

The idea briefly presented here, and elaborated in [Soltész et al., 2013b]
and [Soltész et al., 2011], is to make use of two controller tunings. The con-
troller used for induction of anesthesia is not different from the ones which
have been previously mentioned and discussed. However, if the automated
identification method, such as the one proposed in Section 2.2, yields a valid
model upon induction of anesthesia, the controller is re-tuned based on this
model. This re-tuning of the controller can be automatically conducted, us-
ing available robust tuning tools. In [Soltész et al., 2013b] it was done by
minimizing the IAE under a maximum sensitivity magnitude constraint.
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Figure 3.18 Performance of the iControl system during the 102 cases
reported in [van Heusden et al., 2013b]. The modified box plots are explained
in Figure 3.5.

Figure 3.19 Top layer of the Simulink model used to evaluate patient
models and controllers in simulation.
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Figure 3.20 Simulations demonstrating the concept of individualized
control on 44 PKPD models. Blue and green lines show performance of
nominal and individualized controller, respectively. The red line shows the
added output disturbance. The setpoint profile is drawn in solid black. Be-
ginning and end of the maintenance phase is marked by vertical dashed
black lines.

The re-tuned controller is tailored for the current patient and can there-
fore be made more aggressive than the induction phase controller, without
compromising robustness.

Once the new controller is synthesized it only remains to initiate its state
(integrator and measurement signal filter) to obtain a smooth, or bumpless,
transfer at the instance of switching.

In [Soltész et al., 2013b] the proposed scheme was demonstrated on a
batch of 44 propofol PKPD models, previously published in [Dumont et al.,
2009]. The blue lines in Figure 3.20 shows the simulated DOH measurements
obtained when using a controller tuned to accommodate the entire batch of
44 models, while the green lines show the outcome from using the proposed
individualization scheme. At t = 20 min the process model identification and
controller re-tuning take place, while an additive output disturbance profile
(red) from [Dumont et al., 2009] is applied to mimic a surgical procedure.
One can clearly see that the individualized controllers attenuate the distur-
bance more efficiently. Note that only green lines have been drawn during the
induction phase of anesthesia, here defined as up to t = 20 min, as there is
no difference in tuning between the batch and individualized scheme during
this temporal phase.

Although the exact performance gain of the proposed scheme depends
highly on the involved models, the simulation result from [van Heusden et al.,
2013b] shown in Figure 3.20 gives a clear indication of what can be achieved.
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Here the IAE caused by the disturbance profile is decrease on average by
25 %.

Smooth Mode Switches
When switching back and forth between manual, TCI and closed-loop mode,
it is desirable to have a smooth transition both in the measurement y and
control signal u. One reason for this is that a system with discontinuous
behavior can be perceived as irrationally acting by the supervising clinician.

Apart from the possibility of manual mode switches, switching from
closed-loop to TCI mode is set to occur automatically in the iControl system
if the signal quality falls below a threshold or if the measurement signal is
lost altogether. The iControl system defines signal quality in terms of the
SQI and the SR, introduced in Section 2.1.

The model on which TCI is based in the iControl system is driven by
the infusion rate u, but is not affected by the measurement y even at times
when the latter signal is available and reliable. Due to inter-patient vari-
ability in propofol sensitivity combined with unmeasurable disturbances, it
is therefore likely that the state of the TCI model drifts from the state of
the actual patient. Furthermore, the TCI algorithm, adopted from the open
source Stanpump TCI [Shafer and Gregg, 1992], is such that it tries to tran-
sition the model output to the setpoint in minimum time without overshoot.
This essentially corresponds to a bang-bang controller, which yields a bolus
at the instance the system is switched from closed-loop or manual mode to
TCI if y < r. This behavior explains some of the spikes in Figure 3.12(b)
and Figure 3.15(b) (in which the remaining spikes represent manually issued
boluses).

An alternative proposed here is to let the input–output pair {u, y} drive
the discretized equivalent of the state observer:

˙̂v(t) =− 1
T̂
v̂(t) + K̂

T̂
u(t− L̂)+

Ko

(
1− Ê0

1− yraw
− 1− v̂(t)

) (3.12)

ŷraw(t) =1− 1− Ê0

1 + v̂(t)
. (3.13)

The first two terms within the rightmost bracket of (3.12) are the inverse of
the Hill function (1.17) with parameter γ = 1, see (2.14). It was concluded
in Section 2.2 that the use of such exact linearization can lead to large errors
if there is a mismatch between γ̂ and γ, see (2.5). However, parameters of
the FOTD models used in (3.12) and described in Section 2.2 are obtained
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Figure 3.21 Block diagram showing the use of a observer with variable
gain, designed to handle signal quality changes and mode switches.

under the structural assumption that γ = 1, which justifies the inversion of
the Hill function in (3.12).

The behavior of the observer is characterized by its gain parameter Ko.
When Ko = 0, the output ŷraw depends entirely on the model and does not
take the measurement yraw into account. In the other extreme case, when
Ko → ∞, it holds that ŷraw = yraw, i.e. the measurement signal is used as
estimate and the model is ignored.

It is convenient to introduce the parameter K ′o:

Ko = 1
K ′o
− 1, (3.14)

which, with a slight abuse of notation, maps the K ′o range (0, 1) to the Ko

range (∞, 0).
The idea proposed here is to use ŷraw as measurement signal for the same

controller in both closed-loop and TCI mode, as shown in the block dia-
gram of Figure 3.21. Switching to TCI mode is conducted simply by setting
K ′o = 1, while pure closed-loop mode corresponds to K ′o = 0. Furthermore, it
is possible to use values 0 < K ′o < 1 when in closed-loop mode with limited
signal quality. One candidate way of achieving this is to let K ′o be a mono-
tone function of the signal quality indices SQIl and SQIr combined with the
suppression ratios SRl and SRr:

K ′o =
(
SRl + SRr

2

)(
1− SQIl + SQRr

2

)
. (3.15)

Figure 3.22 shows an example with clinical data {u, y} up to time t =
30 min, during which it is assumed that SQIl = SQIr = 1 and SRl = SRr =
0. At time t = 30 min, the measurement yraw is assumed to be lost. The
observer gain parameter is consequently set to K ′o = 1 and the feedback
loop is now closed over the patient model characterized by {K̂, T̂ , L̂}. Since
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Figure 3.22 The figure shows data form a clinical case until time t =
30 min, where the measurement signal is assumed to be lost and is replaced
by the observer output.

the scheme has not been clinically evaluated, the result for t > 30 min in
Figure 3.22 is the outcome of a simulation. The section shown in green in
Figure 3.22(a) shows the estimate ŷraw, which explains the lack of noise seen
in the measurements yraw (blue) and y (red).

It should be mentioned that the scheme presented in this section has
only been conceptually demonstrated. In particular, more effort needs to be
put into the investigation of its behavior in the 0 < K ′o < 1 region, before
involving it in a clinical trial.

Integrator Anti-Windup
The clinical results shown in Figure 3.12 and Figure 3.15 indicate a slow set-
tling time of the control error upon induction of anesthesia. A contributing
reason to this is that the integrator of the controller builds up during the
initial assumed model delay L and the subsequent traversal of the nonlinear-
ity (1.17). This can be seen for one of the clinical cases in Figure 3.23. The
measurement y is shown in Figure 3.23(a). The corresponding control signal
is shown in Figure 3.23(b) (blue) together with its integrator term (red).
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(a) DOH measurement y (blue) with setpoint (black).
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(b) Propofol infusion rate u (blue) and integral term of the control signal (red).

Figure 3.23 One case from the clinical study, showing how integrator
build-up results in slow settling upon induction of anesthesia.

Standard integrator anti-windup strategies such as e.g. conditional in-
tegration mentioned in Appendix B.2, and dynamic tracking [Åström and
Hägglund, 2006], are based on actuator saturation and hence do not prevent
this behavior. A simple improvement to the system can be made by only
activating integrator updates once a threshold clinical effect ymin has been
reached for the first time. This is illustrated in Figure 3.24 through a a sim-
ulation example, based on a patient model identified from the data shown
in Figure 3.23. The nominal measurement and control signals are shown in
blue in Figure 3.24(a) and Figure 3.24(b), respectively. The corresponding
outcome achieved by only activating the integrator once y > ymin = 0.21
are shown in red. The integrator state is shown in green and black in Fig-
ure 3.24(b) for the nominal and proposed strategy, respectively.

For the strategy to be successful, it is essential that the clinical effect
y indeed reaches the threshold value ymin. In the example of Figure 3.24
this was ensured by dimensioning the initial bolus, described in Section 1.1,
based on the 41 patient models identified from clinical data in Section 2.2.
These models are normalized by patient body mass. Knowing the mass of the
current patient, the bolus was designed to precisely bring the patient to 80 %
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(b) Propofol infusion rate u and corresponding integral term.

Figure 3.24 A simulation showing the benefit of threshold-triggered in-
tegration. Measurement y and input u are shown in blue and red for the
nominal and proposed strategies, respectively, with setpoint (black). The
integrator state is correspondingly shown in green and black.

of the reference clinical effect assuming the most propofol sensitive model of
the batch. I.e., for a reference of r = 0.5, the bolus was dimensioned to bring
the most propofol sensitive model to y = 0.4. The threshold ymin was selected
to be 80 % of the maximum clinical effect, which the bolus would result in
assuming the least propofol sensitive patient model. The strategy will always
be feasible assuming that the full propofol sensitivity variability is captured
by the model population, with a margin of 20 %. In case this criterion is not
met, the integrator is activated regardless of y, 3 min after the beginning of
propofol infusion.

3.4 Control of Analgesia

Background
To this point, the focus of the thesis has been control of the DOH using
propofol. It has been assumed that an adequate DOA can be achieved by
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manual dosing of remifentanil, or another analgesic drug. There is a PD in-
teraction between propofol and remifentanil, for which models were presented
in Section 1.3 and further detailed in Section 2.3. No explicit attention was
given to this interaction in the iControl study presented in Appendix B.2
and Section 3.2. Instead, the effect of remifentanil on the DOH was regarded
as an output disturbance, similar to the ones caused by surgical stimulation.
This was acceptable in the context of the study, as identical remifentanil
dosing protocols were used during data collection for identification and the
subsequent closed-loop controlled trials.

Directly controlling the DOA is problematic, as there exist no reliable
monitors for it, which has already been mentioned in Section 1.1. However, it
was outlined in Section 2.2 that changes in the surgical stimulation level, and
hence the DOA, can be realistically modeled as additive output disturbances
on the DOH. Such changes typically occur rapidly, while changes in the DOH
caused by the infusion or metabolism of propofol occur at a much slower time
scale determined by the propofol PK dynamics explained in Section 2.2. To
illustrate this, the Bode magnitude curves for one representative propofol
(blue) and remifentanil (red) PK model have been drawn side by side in
Figure 3.25, together with their −3 dB bandwidths (dashed). The propofol
PK is from a model identified using data from one of the iControl cases,
published in [Soltész et al., 2012a]. The remifentanil PK was computed from
biometric parameters of the same patient, using a formula for children with
body mass as its only parameter and previous published in [Rigby-Jones et
al., 2007]. For ease of comparison, both models have been scaled to unity
static gain. The separation in time scale, apparent in Figure 3.25, makes it
possible to detect changes in the DOA from the DOH signal y.

Due to the PD interaction, the DOH can be affected by altering the in-
fusion rate of either drug. Remifentanil can be regarded as a fast actuator
in this context, as it acts and is metabolized at a much faster time scale
than propofol; seconds rather than minutes. While propofol has a large clin-
ically feasible range in terms of vp, the normalized effect site concentration
vr for remifentanil is confined to a narrower clinically feasible range. Conse-
quently, when controlling the DOH, propofol can be viewed as a slow actuator
with a wide range, and remifentanil as a fast actuator with narrow range.
The fast actuator can be utilized to counteract disturbances in y, which are
too rapid to be suppressed by the slow actuator. As mentioned above, such
rapid changes in the DOH are most likely caused by underlying changes in
the DOA. Correcting for them using the remifentanil infusion rate therefore
makes sense; a rapid negative change in y indicates an inadequate level of
analgesia and it is appropriate to counteract it with a momentary increase
in remifentanil infusion rate and vice versa.

There have been previous attempts to simultaneously control the DOH
and DOA using propofol and remifentanil, respectively. In [Liu et al., 2012]

94



3.4 Control of Analgesia

10−3 10−2

0.1

1

(rad/s)

no
rm

al
iz

ed
m

ag
ni

tu
de

Figure 3.25 Bode magnitudes of one representative propofol PK model
(blue) and one representative remifentanil PK model (red), both normalized
to unity gain.

a rule-based approach, mimicking the behavior of an anesthesiologist is em-
ployed. A simulation study utilizing an MPC for the two drugs was presented
in [Ionescu et al., 2011a]. Results from simulations using a fuzzy approach
are presented in [Mahfouf et al., 2005].

The following section presents a control architecture for simultaneous
control of the propofol and remifentanil infusion rates, based on a modified
mid-ranging controller structure [Allison and Isaksson, 1998]. Advantages of
the proposed architecture include modularity, in that the remifentanil loop
is a pure addition to the existing propofol control system, and the possibility
to gradually move from open- to closed-loop controlled remifentanil infusion,
by increasing a single gain parameter.

Architecture and Tuning
With the availability of the measured DOH, propofol and remifentanil infu-
sion rates and PK models as well as the PD interaction model, it is possible
to construct a soft sensor for the DOA signal. Precise reconstruction is not
feasible due to the sensitivity caused by the approximate nature of existing
process models, as explained in Section 2.2. The approach taken in [Soltész
et al., 2012a] and reviewed here, is rather to relate the high-frequency con-
tent in the DOH measurement y to changes in the DOA and consequently
use it dose remifentanil. This single input, multiple output (SIMO) approach
is justified by the previous discussion and its aim is to yield a mid-ranging
control behavior, where propofol is the slow actuator with large range, while
remifentanil is the fast actuator with narrow range. A block diagram illus-
trating how this can be achieved is shown in Figure 3.26. The signal yf is a
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Figure 3.26 Block diagram showing the DOH control system structure
used in iControl, augmented with the remifentanil controller proposed in
the current section.

band-pass filtered version of the DOH measurement y. Its role is to reflect
changes in the DOA and it can therefore be regarded as the output of a sim-
ple DOA soft sensor. Since the remifentanil controller only acts on transient
changes in the DOA, the steady state behavior is not of particular interest.
At the same time, there is no model which can be used to produce reliable
DOA predictions. Consequently, a simple proportional controller is used.

The remifentanil controller is a pure augmentation to the existing DOH
control system, which has not been modified in any way. The parameters
introduced by the remifentanil controller are those of the band-pass filter
FB , the reference low pass filter FR, the nominal remifentanil infusion rate
uor, the remifentanil infusion rate lower bound umin

r and upper bound umax
r

and the controller gain Kr. The following values were assigned to the infusion
rate parameters, based on advice from the clinical principal investigator of
the iControl study: (umin

r , uor, u
max
r ) = (0.01, 0.03, 0.30) µg/kg/min. In fact

uor = 0.03 µg/kg/min was the infusion rate used during the study outlined
in Appendix B.2.

In order to get an estimate, although somewhat optimistic, of what can be
achieved with this structure, assume that remifentanil has an instantaneous
PK model, i.e. a pure static gain. Looking at Figure 3.25, this is not an un-
realistic approximation. The PD interaction is governed by the Hill function
(1.17) applied to the virtual drug with normalized effect site concentration
according to (1.22), where α = 5.1 and Cre,50 = 12.5 ng/ml in accordance
with [Kern et al., 2004]. Based on this, Figure 3.27 shows the changes in
DOH which can be achieved by changing the remifentanil infusion rate from
uor (blue) to umin

r (red) and umax
r (green). Note that the span (vertical dis-

tance between green and blue line) varies with the DOH, due to the nature
of the PD interaction surface. The propofol related parameter values γ = 1.5
and E0 = 0.12, being representative for models identified during the iControl
study, were used.

A tuning strategy for the band-pass filter FB = FHFL, where FH is a
high-pass filter and FL is a low-pass filter, and the remifentanil controller
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Figure 3.27 Upper bound on achievable DOH variation, which can be
obtained by changing the remifentanil infusion rate from uor to umin

r (red)
and umax

r (green), respectively. The bound is plotted as a function of the
nominal DOH (blue) corresponding to uor.

gain Kr was proposed in [Soltész et al., 2012a]. The strategy is systematic,
model based and is here illustrated on the set of 28 propofol patient response
models identified from the initial cases of the iControl study. This model
set consists of the 14 models identified from open-loop data ant the first 14
models identified from closed-loop data, as further described in Appendix B.

The Bode magnitude of the corresponding propofol loop sensitivity func-
tions, linearized around Eo = 0.5 are shown in Figure 3.28. The vertical line
at ωFH ≈ 3.1 · 10−3 rad/s marks the average −3 dB bandwidth among the
models. Disturbance frequencies below ωFH are adequately attenuated by the
propofol loop, motivating the use of the following high-pass filter:

FH(s) = sTFH
sTFH + 1

, TFH = 1
ωFH

= 325 s. (3.16)

The filter in (3.16) sees to it that frequency content of the control error
beyond what the propofol loop can handle is directed to the remifentanil
controller.

With FH determined and the low pass filter temporarily omitted, i.e.
FB = FH , the gain Kr was chosen to yield a minimal gain margin of 2.0
among the models. This resulted in a corresponding phase margin of 56◦.

Next, the low-pass filter FL was designed to attenuate high-frequency
components of y, which are most likely a result of measurement noise. The
filter FL is assumed to have the simple first-order structure

FL(s) = 1
sTFL + 1

, TFL = 1
ωFL

. (3.17)
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Figure 3.28 Sensitivity magnitudes and average −3 dB bandwidth of the
28 propofol control loops.
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Figure 3.29 Sensitivity magnitudes and average −3 dB bandwidth of the
28 remifentanil control loops.

In a real implementation it would be wise to use a second-order filter, based
on the findings reported in [Larsson and Hägglund, 2011]. However, in order
to be consistent with [Soltész et al., 2012a], the structure of (3.17) will be
used here. Figure 3.29 shows the Bode magnitudes of the 28 remifentanil
loop sensitivity functions, with the average −3 dB magnitude marked. The
corresponding angular frequency ωFL ≈ 3.4 · 10−2 rad/s was chosen as the
corner frequency of (3.17).

Finally, the reference filter FR of the remifentanil loop was designed. The
high frequency content of a setpoint step could saturate the remifentanil

98



3.4 Control of Analgesia

10−3 10−2 10−1
0.1

1

(rad/s)

|Tp|

Figure 3.30 Complementary sensitivity magnitudes and average −3 dB
bandwidth of the 28 propofol control loops.

control signal, momentarily reducing disturbance rejection ability. In order
to avoid this, the reference is low-pass filtered by FR before entering the
remifentanil controller. Here FR is chosen to have the same simple structure
as FL:

FR(s) = 1
sTFR + 1

, TFR = 1
ωFR

. (3.18)

Figure 3.30 shows the complementary sensitivity Bode magnitudes corre-
sponding to the sensitivity magnitudes in Figure 3.28 and their average−3 dB
bandwidth. The average −3 dB bandwidth ωFR ≈ 8.4 ·10−3 rad/s was chosen
as corner frequency of the reference low-pass filter (3.18), to block reference
frequencies above what the propofol loop is expected to handle.

An alternative to the proposed strategy goes under the name habituating
control and is thoroughly explained in [Henson et al., 1995]. It yields the
same control structure topology, but the remifentanil and propofol control
loops are simultaneously tuned in a model-matching fashion. The strategy is
straight forward to apply and constitutes a good alternative if the constraint
of keeping the propofol loop untouched is removed.

Simulation Example
The proposed controller structure and tuning were evaluated on simulated
patients in [Soltész et al., 2012a]. Figure 3.31 shows a representative outcome
of how the system handles output disturbances and measurement noise. The
blue lines are from simulations with the controller used in the iControl study,
while the red lines were obtained using the proposed SIMO controller. Fig-
ure 3.31(a) shows the reaction to the double step output disturbance profile
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suggested in Section 2.2. The corresponding propofol and remifentanil in-
fusion rates are shown in Figure 3.31(b) and Figure 3.31(c), respectively.
Dark solid lines are from noise free simulations, while the lighter lines were
obtained using the measurement noise model of Section 2.1. Note that the
controller is more efficient in attenuating the initial positive output distur-
bance step than the subsequent negative one. This is because the nominal
remifentanil infusion rate uor lies closer to umin

r than to umax
r .

Further details on the performance of the proposed controller, evaluated
in simulation, are found in [Soltész et al., 2012a].
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Figure 3.31 Simulated response to output disturbance double step
(green) using the iControl setup (blue) and proposed SIMO controller (red).
The dashed green line marks the DOH reference r.
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4
Discussion

4.1 Summary

The thesis has described the basic concepts and terminology of closed-loop
controlled anesthesia in human patients. Models needed for the synthesis of
safe controllers have been obtained from clinical data and a control system
for the hypnotic depth component of anesthesia, guided by the NeuroSense
EEG monitor and utilizing the intravenous drug propofol for actuation, has
been described. This control system was clinically evaluated during the iCon-
trol study conducted at the University of British Columbia and the British
Columbia Childrens Hospital, Vancouver, Canada.

One of the main benefits of closed-loop dosing of intravenous anesthetic
drugs is that it lets the anesthesiologist focus on major events, rather than
fine adjustments of the drug infusion rates. This has a potential of decreasing
the use of drug as compared to current practice, resulting in faster recovery
and a decrease in inter- and postoperative complications.

The evaluation of the closed-loop control system in the iControl study
demonstrated that a PID controller is sufficient to provide adequate dos-
ing of propol and its ease of operation was verified by the fact that several
anesthesiologists found its use to be straight forward after only a brief intro-
duction.

The control system used in the iControl study was deliberately designed
to be simple and conservatively tuned. While providing adequate anesthesia,
there is room for several improvements. A few such improvements have been
demonstrated in simulation in the thesis and its underlying publications. The
major one is a scheme for individualizing the controller tuning to the current
patient upon induction of anesthesia. Minor improvements demonstrated in
simulation include strategies for smooth switches between the manual, TCI
and automatic operation modes of the system and a method to avoid inte-
grator windup during induction of anesthesia.

It was shown that a representative closed-loop controlled induction of
anesthesia does not provide sufficient excitation of the patient dynamics for
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identification of a full model. The data typically allows for identification of a
model of high precision (small output error) but low accuracy (poor predic-
tive performance). As a response to this observation, an approach yielding
deliberately conservative models was taken.

A strategy for additional closed-loop control of the analgesic component
of anesthesia was suggested and demonstrated using realistic simulations.
The strategy relies on a simple soft sensor approach and achieves a mid-
ranging control behavior utilizing the analgesic drug remifentanil. Its ad-
vantages include increased disturbance rejection bandwidth of the hypnotic
depth control loop and a decrease in the use of propofol.

A comprehensive reference to research groups which have been active on
the EEG-guided closed-loop controlled total intravenous anesthesia scene is
provided in one of the appendices. The other appendices hold technical detail
related to conducted and ongoing clinical studies and identified patient model
parameters.

It has been the intention of the author to make the thesis accessible
to anyone with an undergraduate degree in control engineering or similar.
Detail beyond what is presented in the thesis can be found in the underlying
publications. These are listed in the Preface together with a description of
which contributions were made by the author.

4.2 Future Work

There are several areas of future work with clinical potential, both technical
and clinical. Some of these, which are anticipated to have the largest positive
impact, are listed and described below.

It was shown that current clinical protocol does not provide adequate
excitation for consistent model parameter identification, even when low-order
models are used. Although it is not clinically feasible to excite the patient
dynamics excessively by the introduction of e.g. random input signals, low
amplitude signals can be superimposed on the nominal drug infusion rates.
One way to achieve this is to use relay experiments, but there are also other
possibilities.

The current work relies on that patient dynamics are similar during induc-
tion and maintenance of anesthesia. However, this has never been thoroughly
investigated. Doing so is complicated by the lack of excitation combined with
the presence of unmeasurable disturbances during the maintenance phase of
anesthesia. However, a mechanism to detect disturbance-free episodes, com-
bined with a superimposed exciting signal as proposed above, could help to
provide a clearer picture.

Also related to increasing the excitation of the input is the clinical eval-
uation of controller individualization. The scheme for this proposed in the
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thesis is based on re-tuning the controller upon induction of anesthesia. This
concept of individualization has been demonstrated feasible in simulation and
one direction of future work would be to bring it to clinical practice. With
the addition of low-amplitude excitation during maintenance of anesthesia, it
might be feasible to conduct more than one controller re-tuning during long
surgeries, where patient dynamics may change due to e.g. loss of blood.

One possible strategy for controlling the depth of analgesia using the high
frequency content of the hypnotic depth measurement was demonstrated in
simulation. A clinical study utilizing a similar approach has been initiated at
the University of British Columbia. However, it is still at an early stage and
therefore not reported in the thesis, with the exception for a brief mention
in Appendix B.3.

A future challenge not touched upon in the thesis is the utilization of the
data rich environment of the operating room. For instance, the iControl sys-
tem records and logs blood pressure, heart rate from the electrocardiogram,
blood oxygen saturation, and electromyogram. During surgeries where the
patient breathes spontaneously, the breathing pattern is available as an ad-
ditional signal. These signals are currently not utilized by the control system,
but could be potentially useful. In particular, changes in the electromyogram
indicate possible artifacts in the hypnotic depth measurements while heart
rate variability has previously been shown to correlate with changes in the
level of nociception.

Furthermore, some minor clinical improvements could be anticipated by
implementing the structures and strategies proposed in Section 3.3.

In a broader perspective, work needs to be done to promote the benefits of
closed-loop controlled dosing of anesthetic drugs. Currently, the regimen has
been successfully evaluated in several clinical studies, but there are no wide-
spread units for it on the market. The foremost challenges here are regulation
and clinical acceptance. Firstly, any unit to be used in everyday practice must
pass the requirements dictated by the applicable regulatory agency. Secondly,
the unit needs to gain clinical acceptance. Successful clinical studies are key
in the certification process, while a close collaboration between clinicians and
engineers is needed to assure that the systems are sound both clinically and
engineering-wise.
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Nomenclature

Symbols

Symbol Description Unit or range

Cre,50 The Ce,50 for remifentanil towards DOH. ng/ml

Ce Effect site drug concentration. [mass]/[volume]

Cm Measured blood plasma drug concentration. [mass]/[volume]

Cp (Estimated) blood plasma drug
concentration.

[mass]/[volume]

Ce,50 Effect site drug concentration corresponding
to the effect half-way between E0 and E∞.

[mass]/[volume]

E+ Percentage of time when maintenance phase
e > 0.1.

%

E− Percentage of time when maintenance phase
e < −0.1.

%

E0 Patient specific clinical effect in absence of
drug.

≈ 0

E∞ Patient specific maximal clinical effect. ≈ 1

Ea Analgesic effect. (0,1)

Eh Hypnotic effect. (0,1)

Eo Value of E at operating point. ≈ 0.5

E Clinical effect. (0,1)

FB DOA soft sensor band-pass filter.

FH High-pass component of F .
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Symbols

Symbol Description Unit or range

FL Low-pass component of F .

FR Remifentanil controller reference filter.

K ′o Observer gain parameter.

Ko Observer gain.

Kr Remifentanil controller gain.

K Gain.

L Delay. s

Ms Maximum sensitivity.

N Generic dimension, e.g. vector length.

R Vector of samples of r. (0,1)

Sp Propofol loop sensitivity function.

Sr Remifentanil loop sensitivity function.

TF Time constant of F . s

Tp Propofol loop complementary sensitivity
function.

Tr Trending rate of the NeuroSense monitor. s

T Vector containing samples of t. s

T Time constant. s

Y Vector containing samples of y. (0,1)

∆v Deviation of v from operating point vo:
∆v = v − vo.

∆y Difference in y caused by output
disturbance.

α PD interaction model parameter. >1

γ Parameter (or degree) of Hill function. ≥ 1

Ê0 Estimate of v. ≈ 0

K̂ Estimate of K.

L̂ Estimate of L. s

T̂ Estimate of T . s
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Symbols

Symbol Description Unit or range

γ̂ Estimate of γ. >1

v̂′ Model output v̂ scaled by model gain.

v̂ Estimate of v.

ŷraw Model output corresponding to yraw. (0,1)

ŷ Model output corresponding to y. (0,1)

ωF Corner frequency of F . rad/s

θ Relative normalized remifentanil
concentration: θ = vr/(vp + vr).

ṽ Estimation error for v: ṽ = v − v̂.

ci Clearance of compartment i. [volume]/[time]

d Additive output disturbance.

e Control error: e = r − y.

f A function with biometric parameters as
arguments and PK parameters as values.

i, j, k Generic vector or matrix indexing numbers.

ke0 PD parameter, corresponding to a pole at
−ke0.

1/[time]

kij Equilibration rate constant relating
compartment i to j.

1/[time]

mi Drug mass in compartment i. [mass]

m Vector of drug masses for compartmental
model.

[mass]

n Measurement noise.

n Generic dimension, e.g. number of states or
vector length.

pi System pole at −pi. 1/[time]

r Setpoint for y. (0,1)

s The Laplace variable.

tind Induction duration. s

t Time variable. [time]
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Symbols

Symbol Description Unit or range

ui Drug infusion rate into compartment i. [mass]/[time]

uor Nominal value of ur. [mass]/[time]

umax
r Upper bound of ur. [mass]/[time]

umin
r Lower bound of ur. [mass]/[time]

ur Remifentanil infusion rate. [mass]/[time]

u Drug infusion rate. [mass]/[time]

vi Volume of compartment i. [volume]

vo Value of v at operating point.

vp Normalized propofol Ce.

vr Normalized remifentanil Ce, with respect to
DOH.

v50 Ce,50 of virtual drug modeled as vp + vr.

v Normalized effect site concentration:
v = Ce/Ce,50.

wl Weight used to blend yl and yr into y. (0,1)

wr Weight used to blend yl and yr into y. (0,1)

xi Drug concentration in compartment i. [mass]/[volume]

x Vector of drug concentrations for
compartmental model.

[mass]/[volume]

yf DOA soft sensor output. (0,1)

yk Sample number k in Y . (0,1)

yl Left hemisphere y-value. (0,1)

yr Right hemisphere y-value. (0,1)

ymin Threshold at which the controller integrator
is activated.

(0,1)

yraw Untrended measured effect y from the
NeuroSense monitor.

(0,1)

y Measured clinical effect E. (0,1)

SQI_alt Currently un-selected SQI signal.

SQI_curr Currently selected SQI signal.
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Symbols

Symbol Description Unit or range

SQI Signal quality index. (0,1)

SQIl SQI of yl. (0,1)

SQIr SQI of yr. (0,1)

SR Suppression ratio. (0,1)

SRl SR of yl. (0,1)

SRr SR of yr. (0,1)

120



Acronyms

Acronyms

Acronym Description

WAVCNS Wavelet-based anesthesia value for central nervous system.

AEP Auditory evoked potential.

ASA American Society of Anesthesiologists [physical status].

BIS Bispectral index.

DOA Depth of analgesia.

DOH Depth of hypnosis.

EEG Electroencephalogram.

EMG Electromyogram or electromyograph.

ER Emergence phase rise time.

FDA The United States Food and Drug Administration.

FIR Finite impulse response [filter].

FOTD First-order time delay [system].

GS Global score.

IAE Integrated absolute error.

ID Induction duration.

IE Integrated error.

LTI Linear time invariant [system].

MAP Mean arterial pressure.

MDAPE Median absolute performance error.

MDPE Median performance error.

OS Overshoot.

PD Pharmacodynamic [model].

PE Performance error.

PI Proportional and integrating [controller].

PID Proportional, integral and derivative [controller].
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Acronyms

Acronym Description

PK Pharmacokinetic [model].

PKPD Combined pharmacokinetic and pharmacodynamic [model].

SE State entropy.

SIMO Single input, multiple output [system].

SOTD Second-order time delay [system].

SQI Signal quality index.

SR Supression ratio.

SSI Surgical stress index.

TCI Target controlled infusion [drug delivery system].

TIVA Total intravenous anesthesia.

UPS Uninterruptible power supply.

VI Variability index.
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A
Patient Parameters

Parameters of 41 identified models, relating the infusion rate of propofol
u (µg/kg/min) to measured clinical effect E ∈ (E0, 1) in children, are enlisted
in Table A.1. Note that no clinical monitor model is included. The models
are characterized by delay L (s), lag T (s) and gain K (1/(µg/kg/min)).
The parameter of the output nonlinearity (1.17) has the value γ = 1 for all
models, which is why it is not listed in the table. The identified parameters
are the result of a fully automated schema proposed in Section 3.3. Although
conceptually feasible, the results of the scheme will require further investi-
gation before being incorporated in the tuning procedure of a closed-loop
controlled system for clinical evaluation.
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Appendix A. Patient Parameters

Table A.1 Identified patient model parameters for propofol:
gain K (1/(µg/kg/min)), time constant T (s) and delay L (s).

103 ·K T L

0.3 11 51

0.5 11 84

0.8 121 41

0.9 178 45

0.9 142 58

1.0 82 41

1.0 174 49

1.0 158 69

1.0 86 61

1.0 184 116

1.1 125 42

1.1 178 121

1.1 229 89

1.1 181 149

1.2 171 42

1.2 138 40

1.2 152 81

1.2 164 73

1.3 18 9

1.3 131 79

1.4 140 53

103 ·K T L

1.4 96 93

1.4 148 90

1.4 91 56

1.4 139 55

1.5 160 37

1.5 165 71

1.5 241 132

1.6 128 57

1.6 15 147

1.6 129 72

1.6 112 107

1.7 185 82

1.7 143 91

1.8 124 124

1.9 79 224

1.9 176 165

2.0 160 138

2.0 126 101

2.3 169 145

2.5 94 161
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B
Clinical Studies

B.1 NeuroSense Data Ethics

The closed-loop controlled iControl study, presented in Appendix B.2 below,
was preceded by the collection of open-loop data from 30 children undergoing
elective surgery. The use of this data for modeling was granted by the Uni-
versity of British Columbia Children’s and Women’s Research Ethics Board
(H11-02952, NeuroSense Data Ethics). Propofol and remifentanil was man-
ually administered as initial boluses followed by continuous infusions. Dose
adjustments were guided by the NeuroSense monitor. The initial propofol bo-
lus and subsequent infusion rate were manually recorded and synchronized
with the recorded log from the NeuroSense monitor. Out of the 30 collected
data sets, 16 showed strong responses to stimulation, or other responses not
explained by the intended model structure, early during the induction phase
of anesthesia. Consequently, these data set were discarded and the remaining
14 data sets were kept for identification purposes, covering an age span of
6–16 years and a weight span of 22–71 kg.

B.2 iControl Testing

This section presents clinical and technical data related to the closed-loop
study referred to as iControl. The study was approved by the University
of British Columbia Children’s and Women’s Research Ethics Board (H10-
01174, iControl Testing), which authorized a total of 125 cases.

Study Population
The study was conducted at the British Columbia Children’s Hospital
(BCCH), Vancouver, Canada. Out of 115 candidates, 108 subjects conformed
with the inclusion criteria given below, and were hence enrolled for the study
between 2011-08-02 and 2012-09-06. These subjects were children covering an
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Appendix B. Clinical Studies

age span of 6–17 years and a weight span of 19–75 kg. Their American Soci-
ety of Anesthesiologists (ASA) physical status was either I (a normal healthy
patient) or II (a patient with mild systemic disease). All enrolled subjects
were within the 5–95 percentile of weigh-for-age. Exclusion criteria included
any contradiction to the administration of lidocaine, propofol or remifentanil
and any chronic opioid analgesic or sedative drug therapy. Further exclusion
criteria were suspected EEG abnormality, anticipated difficult airway, sig-
nificant or uncontrolled reflux, delayed gastric emptying or requirements for
endotracheal intubation.

Six of the 108 enrolled subjects were excluded from the study. Two of
these were not subject to closed-loop controlled anesthesia due to insufficient
measurement signal quality upon mounting of the NeuroSense electrodes.
In one case it was not possible to gain intravenous access and a volatile
anesthetic was consequently used for induction of anesthesia. One case was
removed due to a practical issue with the infusion pump. In two cases signal
quality from the monitor deteriorated and the system was switched to TCI
mode by the anesthesiologist. Consequently, the study comprises 102 closed-
loop controlled cases.

Clinical Protocol
Informed and written parental or guardian consent was obtained for all cases
and patient assent for all subjects who were 7 years of age or older. Upon ar-
rival in the operating room, biometric patient parameters (age, gender, body
height, body mass) were entered into the iControl system by touch screen
interface. The forehead of the patient was cleaned with an alcohol scrub upon
which the NeuroSense sensor was applied. Signal quality was deemed ade-
quate if the monitor displayed a sensor impedance of less than 10 kΩ. Apart
from the NeuroSense, standard patient monitoring devices including elec-
trocardiogram, non-invasive blood pressure measurement and pulse oximeter
were applied and their output logged by the iControl system, explained be-
low. An intravenous cannula was inserted, secured with tape and flushed with
0.5 mg/kg1 lidocaine2.

Remifentanil, with a concentration of 10 µg/ml (except one case where
5 µg/ml was used), was administered manually as an initial 0.5 µg/kg bolus at
200 ml/h, followed by a steady rate infusion at 0.03 µg/kg/min. A Graseby
3400 Anesthesia pump (Smiths Medical, Ashford, UK), not electronically
connected to the iControl system, was used for remifentanil delivery.

Closed-loop administration of propofol using the iControl system was ini-
tiated, by press of a touch screen button. The upper and/or lower endoscopic

1 In this context mg/kg refers to mg of drug per kg of patient.
2 Lidocaine: a local anesthetic. Flushing the intravenous cannula with lidocaine helps in
alleviating the pain associated with propofol infusion in aware patients.
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B.2 iControl Testing

investigation was initiated upon permission from the anesthesiologist.
The initial 25 cases were performed by anestesiologist Dr. J. M. Anser-

mino, who is one the principal investigators of the study and co-author of
related publications [Soltész et al., 2012b], [van Heusden et al., 2013a], [West
et al., 2013] and [van Heusden et al., 2013b]. Subsequent cases were performed
by eleven different pediatric anesthesiologists. They received no formal train-
ing for the system, but most had experience of the interface from a previous
usability study.

Throughout the cases, the anesthesiologist had the possibility to admin-
ister propofol boluses, change the setpoint or switch the system to either
TCI or manual mode, by means of the touch screen interface. All such events
were entered into the iContol log. The interface was additionally used to
enter timed events into the log. Such events included loss of eyelash reflex,
insertion of mouth gag and endoscope, patient movement and episodes of ap-
nea. Technical complications resulting in the exclusion of cases as mentioned
above, were also entered into the log by means of this mechanism.

Apart from the anesthesiologist, a research assistant was present dur-
ing each case, ensuring that the protocol was followed and that all events
mentioned above were adequately logged and documented.

The iControl System
The iControl system is a closed-loop controlled TIVA system. DOH is mea-
sured using the NeuroSense NS-701 Monitoring System (NeuroWave Systems
Inc., Cleveland Heights, USA). Propofol is delivered using an Alaris TIVA
pump (CareFusion, San Diego, USA). Apart from the clinical monitor and
infusion pump, the system comprises a touch screen interface unit, a unit
which runs the closed-loop controller software and an uninterruptible power
supply (UPS)3.

Apart from the PID controller and filter algorithms the system integrates
safety features such as infusion rate bounds and automatic fall-back to TCI
mode in case of inadequate signal quality. The anesthesiologist is notified by
means of audible and visible alarms.

The touch screen display plots current and past measurements, infusion
rates as well as estimated plasma (Cp) or effect site (Ce) drug concentrations.
Case log and safety messages are displayed and buttons, enabling the user
to perform the actions presented in the previous section, are part of the
interface.

The system has undergone rigorous safety testing, risk analysis and a
usability evaluation. It is authorized for investigational testing (class III) by
Health Canada (application number: 168968).

3 UPS: an uninterruptible power supply provides emergency power when the input power
source, typically mains power, fails.
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Controller Versions
A parallel form PID controller with h = 5 s sampling period was used
throughout the study. All parameters in this section are given in continuous
time. Zero-order hold sampling was used to obtain the values implemented
in the actual controller, unless where otherwise stated.

The controller tuning used for the 23 first cases included in the study,
based on the 14 available models mentioned in Appendix B.1, was K =
5.4m h/ml, Ti = 225 s and Td = 33 s. The input to the controller is the
monitor output y ∈ (E0, E∞), explained in Section 1.3. The output of the
controller is the infusion rate u in ml/h of a 10 ml/mg propofol solution. The
gain of the controller is scaled by the patient mass m, measured in kg. The
reference was filtered using a first-order low-pass filter with a time constant
of 25 s. The measurement signal was filtered using a second-order filter with
corresponding continuous time poles at −1/T , where T = 15 s. There was no
path from the reference to the derivative term and integrator anti-windup was
established by means of conditional integration, halting when the actuator
was saturated. This controller tuning is referred to as version 1.

The derivative term was filtered using a backward difference4 (with sam-
pling period h = 5 s) discretization of the low-pass filter 1/(1+sT+(sT )2/2),
where T = 15 s, corresponding to a relative damping of 1/

√
2. During in-

cluded cases 1–10, an initial bolus was obtained by initializing the derivative
term low-pass filter state to yield an initial output of 10.8m ml/h. This tun-
ing is referred to as version 1a. For included cases 11–23, this was changed to
correspond to an initial output of 16.2m ml/h, and the corresponding tuning
is referred to as version 1b.

Out of the 23 initial cases, data sets from 14 were adequate for model
identification. Based on these and the 14 models mentioned in Appendix B.1,
i.e. a total of 28 models, the controller was re-tuned prior to case 24. The
new controller parameters, referred to as version 2, were K = 6.6m h/ml,
Ti = 180 s and Td = 60 s. The initialization of the derivative filter state to
produce a bolus was replaced in favor of an initial 600 ml/h bolus with a
duration of 15 s. The reference filter was changed to have a time constant of
180 s but with an initial state corresponding to an output of 9/20r at time
0+, where r is the setpoint.

The version 2 cases are further divided into version 2a and version 2b.
Version 2a covers included cases 24–26 and was disclosed above. In Version
2b, the reference filter was removed altogether. For included cases 28 and
onward, the body mass m for patients who had turned 16 was replaced by
the lean body mass [Hume, 1966].

4 The derivative filter is adopted from an implementation used in [Liu et al., 2007]. This
explains why backward difference discretization is used here, whereas zero-order hold
is used for all other discretizations within the controller.
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B.3 iControl-RP

In addition to the mentioned versions, minor adjustments were made
during 8 cases as mentioned in [van Heusden et al., 2013a] and [West et al.,
2013] in order to fine-tune the controller.

B.3 iControl-RP

The closed-loop control of DOA, see Chapter 3, is being evaluated in a clinical
study, using the iControl-RP system, which is an extension of the iControl
system of Appendix B.2 (”RP” is short for ”remifentanil – propofol”). The
study has received Investigational Testing Authorization from Health Canada
(Class IV, application number: 206188) and approval from the Fraser Health
Research Ethics Board (Closed-Loop Control Of Anesthesia: Controlled De-
livery Of Remifentanil And Propofol, FHREB File #: 2012-056). The ap-
proval is valid for 150 subjects, divided into two phases. Remifentanil is
delivered by TCI during the initial 50 cases, upon which a closed-loop deliv-
ery scheme is to be evaluated. The first case was successfully conducted on
February 22, 2013.

Results from the iControl-RP study are not presented in the thesis, as
the study was not completed by the date of publication. However, the study
is mentioned here for completeness and referred to in Chapter 3.
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C
Prior Art

This appendix reviews prior art, divided by category into Table C.1 in Ap-
pendix C.1, listing reported clinical studies and Table C.2 in Appendix C.2,
listing simulation work. Inclusion criteria, motivated by the context of the
thesis, are the use of propofol as the main hypnotic drug if DOH was closed-
loop controlled, the use of remifentanil as the main analgesic drug if DOA
was closed-loop controlled and the use of an EEG monitor as the main source
of measurement signal for the closed-loop controller. An attempt has been
made to cover all research groups1 which have reported work matching these
criteria. In the interest of space, the survey has been limited to one publica-
tion per research group in each category.

Note that only groups considering EEG-guided closed-loop control using
propofol or remifentanil are listed. Additionally, there exist several groups,
including those of Morari (Switzerland) [Gentilini et al., 2001], Ejaz (USA)
[Ejaz and Yang, 2004], Bhatt (India) [Bhatt, 2009] and Beck (USA) [Ralph
et al., 2011], who have researched closed-loop controlled anesthesia using
volatile drugs.

C.1 Clinical Studies

A survey of closed-loop controlled anesthesia studies (including one on an-
imals), as outlined above, is provided in Table C.1. The table contains one
horizontal section per publication. A reference to the publication is listed to-
gether with geographical location of the research group and the name of the
group leader in the first column. The second column indicates which hypnotic
or analgesic drugs were closed-loop controlled in the study and which EEG
monitor or monitoring technique was used. The type of controller (and tun-
ing, when reported) are given in column three. It is also indicated in the third

1 As research group constellations vary over time, Table C.1 in Appendix C.1 and Ta-
ble C.2 in Appendix C.2 might not accurately represent the research scene at all past
times.
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C.1 Clinical Studies

column whether induction was performed manually2, by TCI or in closed-
loop and whether the controller was cascaded around an inner TCI loop or
controlling drug infusion directly. The method by which control performance
was evaluated is displayed in column four. The Varvel method refers to a set
of measures introduced in [Varvel et al., 1992] and further discussed in Sec-
tion 3.1. Patient demography, the number of patients receiving closed-loop
controlled anesthesia, their ASA3 status, types of surgery are reported in col-
umn five. This last column also lists, when available, whether patients were
breathing spontaneously or mechanically ventilated and, if not closed-loop
controlled, how analgesia was provided.

Groups are listed in chronological order of their cited work. This work is
not necessarily the most representative of each research group, but serves the
purpose of providing one reference from which it is possible to trace other
contributions.

2 Fixed, computer controlled induction profiles which are not based on PK models are
referred to as manual in this context.

3 ASA is the American Society of Anesthesiology. They provide a patient physical clas-
sification by systemic disease from I (normal, healthy) to VI (brain-dead).

131



A
ppendix

C
.

Prior
A
rt

Table C.1 Examples of clinical studies in which propofol or remifentanil infusion
was closed-loop controlled, guided by EEG measurements.

Group,
Nationality,
Publication

Closed-loop drugs,
Monitor

Controller
(Tuning),
Induction,
TCI

Evaluation Comments

Schüttler, Schwilden
Germany,
[Schwilden et al., 1989]

Propofol,
Median EEG
frequency

Model-based
(Adaptive),
Manual induction,
No TCI cascade

Custom Adults (11), ASA I-II. No
surgery (volunteer study).

Roy,
United States,
[Huang et al., 1999]

Propofol
AEP

Fuzzy
(Neural),
Manual induction,
TCI cascade

Custom Mongrel dogs (2). No
surgery. Mechanical venti-
lation. Nitrous oxide was
co-administered.

Kenny,
United Kingdom,
[Kenny and Mantzaridis, 1999]

Propofol,
AEP

PI
(Tuning not disclosed),
Closed-loop induction,
TCI cascade

Mean and
std errors,
Questionnaire

Adults (100), ASA I-II. Body
surface surgery. Spontaneous
breathing. Nitrous oxide was
co-administered.

Short,
Hong Kong,
[Morley et al., 2000]

Propofol,
BIS

PID
(Ziegler-Nichols),
Manual induction,
No TCI cascade

Custom Adults (30), ASA I-II. Mostly
gynecological surgery. Mechan-
ical ventilation.

Continued on next page
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Table C.1 Continued.

Group,
Nationality,
Publication

Closed-loop drugs
Monitor

Controller
(Tuning),
Induction,
TCI

Evaluation Comments

Absalom,
United Kingdom,
[Absalom et al., 2002]

Propofol,
BIS

PID
(Tuning not disclosed),
TCI induction,
TCI cascade

Varvel Adults (10), ASA I-II. Hip
or knee surgery. Spontaneous
breathing.

Puri,
India,
[Puri et al., 2007]

Propofol,
BIS

Rule-based
(Adaptive),
Closed-loop induction,
No TCI cascade

Varvel,
Patient
interview

Adults (20), ASA I-III. Gall-
bladder, upper and lower
gastrointestinal and hernia4

surgery. Mechanical ventila-
tion.

Fukuda,
Japan,
[Sawaguchi et al., 2008]

Propofol,
BIS

MPC
(Adaptation
during induction),
Manual induction,
No TCI cascade

Varvel,
Custom

Adults (160), ASA I-II. Var-
ious surgery. Mechanical ven-
tilation. Analgesia by manual
fentanyl infusion.

Struys,
Benelux,
[de Smet et al., 2008]

Propofol,
BIS

Nonlinear
(Model-based),
Closed-loop induction,
TCI cascade

Varvel,
Emergence
time

Adult women (20), ASA I-II.
Ovum5 removal. Spontaneous
breathing.

Continued on next page

4 Hernia: a bulge or protrusion of an organ through the structure or muscle that usually contains it.
5 Ovum: The female reproductive cell.
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Table C.1 Continued.

Group,
Nationality,
Publication

Closed-loop drugs
Monitor

Controller
(Tuning),
Induction,
TCI

Evaluation Comments

Hemmerling,
Canada,
[Hemmerling et al., 2010]

Propofol,
BIS

PID-like
(Tuning not disclosed),
Manual induction,
No TCI cascade

Varvel,
Custom

Adults (20), ASA I-III. Vari-
ous surgery. Mechanical venti-
lation.

Haddad,
United States,
[Haddad et al., 2011]

Propofol,
BIS

Neuroadaptive
(Online training),
Closed-loop induction,
No TCI cascade

Varvel,
Custom

Adults (15), ASA status not
disclosed. Type of surgery not
disclosed. Spontaneous breath-
ing or mechanical ventilation
not disclosed

Janda,
Germany,
[Janda et al., 2011]

Propofol,
BIS

Fuzzy PID
(Heuristic tuning),
Manual induction,
No TCI cascade

Varvel,
Manual
assessment

Adults (22), ASA I-III.
Intra-abdominal or ortho-
pedic surgery. Mechanical
ventilation.

Liu,
France,
[Liu et al., 2012]

Propofol and
remifentanil,
M-entropy

PID
(Tuning not disclosed),
Closed-loop propofol
and TCI remifentanil
induction,
TCI cascade

Varvel Adults (30), ASA I-IV. Vari-
ous surgery. Mechanical venti-
lation.

Continued on next page
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Table C.1 Continued.

Group,
Nationality,
Publication

Closed-loop drugs
Monitor

Controller
(Tuning),
Induction,
TCI

Evaluation Comments

Dumont,
Canada,
[West et al., 2013]

Propofol,
NeuroSense

PID
(Robust),
Closed-loop induction,
No TCI cascade

Varvel,
Custom

Children (102), ASA I-II. Gas-
troscopy. Spontaneous breath-
ing.

Grisales,
Colombia,
[Oquendo et al., 2013]

Propofol,
BIS

PID-like
(Tuning not disclosed),
TCI induction,
No TCI cascade

None Woman (1) ASA I. prosthetic
mammary implantation. Me-
chanical ventilation.
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C.2 Simulation Studies

A survey of simulated closed-loop controlled anesthesia studies is provided
in Table C.2. The concept and format are identical to those of Table C.1 in
Appendix C.1. However, the last column, Comments, of Table C.1 is omitted
from Table C.2, as its content was specific to clinical evaluations.

Table C.2 Examples of simulation studies in which propofol or remifentanil
infusion was closed-loop controlled, guided by EEG measurements.

Group,
Nationality,
Publication

Closed-loop drugs,
Monitor

Controller
(Tuning),
Induction,
TCI

Evaluation

Linkens, Nunes,
United Kingdom,
[Mahfouf et al., 2005]

Propofol and
remifentanil,
AEP

PI and fuzzy
(Custom),
Manual induction,
No TCI cascade

Custom

Ionescu, de Keyser,
Belgium,
[Ionescu et al., 2008]

Propofol,
BIS

MPC
(Custom),
Closed-loop induction,
No TCI cascade

Varvel,
Custom

Wen,
Australia,
[Abdulla and Wen, 2012]

Propofol,
No monitor model

Dead beat,
Closed-loop induction,
No TCI cascade

Custom

Mendonça, da Silva
Portugal and Sweden,
[da Silva et al., 2012]

Propofol and
remifentanil,
BIS

LQG,
Closed-loop induction,
No TCI cascade

Varvel,
Custom

Brown
USA,
[Liberman et al., 2013]

Propofol,
Custom

PI
(IMC),
Closed-loop induction,
No TCI cascade

Custom

Wang
China,
[Fang et al., 2013]

Propofol and
remifentanil,
BIS

PID and MPC
(IMC, not disclosed),
Closed-loop induction,
No TCI cascade

None
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