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Abstract

Voice Activity Detection (VAD), being in the focus of speech processing research for

many years, is nowadays a mature technology with application in several sectors. Em-

bedded VAD components in telecommunications systems (like in cellular telephony)

attempt to reduce power consumption of transmitters and bandwidth utilization. VAD

technology is also integrated in speech-processing systems, such as Speaker Identifica-

tion, Automatic Event Detection, and Automatic Speech Recognition, to prevent their

operation in the absence of speech, and thus reduce the error rates of each of these

systems.

The performance of VAD systems depends strongly on various factors, including the

discriminative ability of the classification criterion employed, the dynamics of the addi-

tive noise and the signal to noise ratio. Speech signals transmitted within reverberant

enclosures and captured using far-field microphones are subject to reverberation effects,

competitive sound sources, and speaker movement. Furthermore, speech distribution

varies with time and can be affected by several unpredictable factors including speaker’s

temper, mood, gender, age, and more. Thus, during the design phase of a VAD, special

considerations have to be taken in order to build a robust system able to operate under

variable and adverse conditions.

Given that for most of speech processing systems it is of crucial importance to have a

reasonable approximation for the probability density function (pdf) of speech, under-

standing the properties of speech distribution plays a very important role in the design

of speech processing systems. Within the framework of this work, variability of speech

distribution, when using far-field microphones, is analysed under the presence of noise

and reverberation.

Observations of how speech distribution is shaped by external interferences are then

used as the basis to develop an adaptive unsupervised VAD scheme. This VAD, in

contrary to other approaches employing fixed distribution assumptions, relies on ef-

fectively modelling the distribution of speech as convex combination of a Gaussian,

a Laplacian, and a two-sided Gamma distribution. The increased adaptability of the

system along with the encapsulated adaptive threshold allows the system to perform

remarkably under adverse complex phenomena.

Following recent technological trends, of incorporating microphone arrays in numerous

commercial applications (eg. mobile phones, VOIP terminals) and research environ-

ments (smart rooms), a multiple microphone VAD is also considered. The system

processes signals captured by far-field sensors in order to integrate spatial information

in addition to the frequency content available at a single sensor. The core of the system

resides on the modification of a multiple observation hypothesis, testing at each sensor

the probability of having an active speaker and then fusing the decisions. The VAD

operates without the need of Direction-of-Arrival (DOA) estimation and eliminates ad-

ditional delay imposed by previous multi-microphone VAD technologies.



The system developed for the multi-microphone VAD serves as the platform to merge

VAD with a very powerful analysis framework namely, the Empirical Mode Decomposi-

tion (EMD). This highly efficient method relies on local characteristics of time scale of

the data to analyse and decompose non-stationary signals into a set of so called intrinsic

mode functions (IMF). These functions are injected to the multiple microphone VAD

scheme in order to decide upon speech presence or absence. The outcome of this proce-

dure demonstrates significantly enhanced performance compared to single microphone

approaches.

Speech distribution information is also encapsulated in a supervised VAD scheme. Op-

erating in the far-field, the core of the system employs Hidden Markov Models the

states of which are modelled using Gaussian Mixture Models to cater for the dynamics

of captured speech. Given the bi-modality of speech production, a simple visual-VAD

is also developed to examine performance enhancement when fusing audio and video

information.

In the final part of the work, applications of VAD in the context of integration with other

signal processing systems are also considered. Performance benefits of combining the

multi-microphone VAD with DOA estimation are demonstrated. Optimization through

adaptation of speech shape characteristics in the embedded Time Delay Estimation

(TDE) scheme is also considered, the same way that was beneficial for the convex

combination based VAD. Towards this direction, the underlying assumption of Gaussian

distributed source is replaced by that of Generalized Gaussian distribution that allows

the evaluation of the problem under a larger set of speech-shaped distributions, ranging

from Gaussian to Laplacian and Gamma. The analysis performed, revealed a significant

research outcome.

Furthermore, performance enhancement when using VAD in combination with noise

reduction systems is also discussed in terms of residual suppression within silence in-

tervals. For this scope, a noise reduction architecture has been developed based on

cascading an one-pass scheme.

The final application of VAD, examined in the thesis, is in the area of biomedical

signal processing. A modification of one of the VAD systems developed, is employed

to provide preliminary detection of one of the major breathing-related sleep disorders,

apnea. The idea behind the development of this system is the capability of unobtrusively

monitoring patients at home, improving the reliability of detection of sleep disorders in

home environments, offering comfort and time saving to patients.



English-Danish Short Summary

This thesis considers far-field Voice Activity Detection (VAD) and its applications in

adverse acoustic environments. In the first part of the thesis, speech distribution vari-

ability under external interferences is investigated. The study forms the basis for the

development of an unsupervised VAD based on the convex combination of a set of

prime distributions, able to robustly operate under adverse conditions. The work con-

tinues with the design of a multi-microphone VAD that encapsulates spatial, apart from

frequency and time, information. The multi-microphone VAD is later used in combi-

nation with a powerful data analysis method towards achieving optimal performance.

The speech distribution information is also encapsulated in a supervised VAD scheme

employing Hidden Markov Models, the states of which are modelled using Gaussian

Mixture Models to cater for the dynamics of the captured speech. Additionally, a

visual-VAD is developed and fused with the audio-based one. In the last part of the

thesis, applications of VAD are discussed. Time Delay Estimation is investigated in

depth towards encapsulating speech distribution information. Noise reduction in com-

bination with VAD is also discussed. Finally, a modified VAD is employed, in the field

of biomedical signal processing, to provide preliminary detection of apnea.

Denne afhandling omhandler detektering af stemmeaktivitet (Voice Activity Detection

(VAD)) i fjernfeltet og dens anvendelse i ugunstige akustiske miljøer. I den første del

af afhandlingen undersøges talefordelings variabilitet under eksterne interferenser. Un-

dersøgelsen danner basis for udvikling af en ikke-overv̊aget VAD, der er baseret p̊a den

konvekse kombination af et sæt distributioner og i stand til robust at operere under

ugunstige betingelser. Arbejdet fortsætter med designET af et multi-mikrofon VAD-

system, der indkapsler rumlig information bortset fra frekvensen og tiden. Multimikro-

fonsystem VADen anvendes senere i kombination med en kraftfuld dataanalysemetode

til at opn̊a optimal ydelse. Talefordelings oplysninger er ogs̊a indkapslet i en overv̊aget

VAD anordning, der anvender Hidden Markov Modeller, hvis tilstande er modelleret

ved hjælp af Gaussiske miksturmodeller for at tage højde for dynamikken i den op-

tagede tale. Endvidere er en visuel-VAD udviklet og fusioneret med den lydbaserede

VAD. I den sidste del af afhandlingen er anvendelser af VAD diskuteret. Estimering

af tidsforsinkelser undersøges i dybden i forbindelse med at indkapsle distributionso-

plysningerne i talen. Støjreduktion i kombination med VAD er ogs̊a drøftet. Endelig

er en modificeret VAD anvendt inden for medicinsk signalbehandling for at give en

foreløbig detektering af apnø.
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Chapter 1

Introduction

1.1 Voice Activity Detection

Environmental characteristics, such as noise and reverberation, inhibit technical barriers to most

speech processing systems towards achieving ideal performance rates. In order to overcome such

adversities, numerous noise reduction and speech enhancement techniques have been developed,

operating on the basis of accurately estimating noise and speech statistics, obtained usually by

means of a Voice Activity Detector (VAD).

The VAD problem considers detecting the presence of speech in a noisy signal. VAD decision,

Fig.1.1, is normally based on a feature vector extracted on a short-time frame-by-frame basis to

allow operation in real-time. Those must be discriminative speech features suitable for detection.

The VAD module has to decide up two hypotheses; speech presence and speech absence, relying

on some rule or method for assigning current frame to a class. A decision smoothing algorithm

is usually employed, as a post decision filtering stage, in order to improve the robustness against

the noise by reducing the risk of the low-energy portion of speech at the end of an utterance being

falsely rejected or by rejecting false alarms.

Figure 1.1: Typical block diagram of VAD processes.

VAD accuracy is of paramount importance in modern telecommunication systems, where in

conjunction with comfort noise generator (CNG) and discontinuous transmission (DTX) modules,

play a critical role in enhancing the system performance. Actual speech activities normally occupy

40-60% of the time of a regular conversation in a telecommunication system and it has been esti-

mated that DTX with VAD decision could approximately double the transmission channels capacity

1



1. INTRODUCTION

(1, 2, 3). Voice activity detection (VAD) enables reallocating resources during the periods of speech

absence. Embedded VAD components in telecommunications systems (like in cellular telephony)

attempt to reduce power consumption of transmitters and bandwidth utilization (4). VAD technol-

ogy is also integrated in other speech-processing systems, such as Speaker Identification, Automatic

Event Detection, and Automatic Speech Recognition, to prevent their operation in the absence of

speech, thus reducing the error rate (5). In the field of Wireless Sensor Networks, that has been

traditionally focused on low duty-cycle applications, there is a growing need to support real-time

streaming of audio (using FF microphones) and/or low-rate video for use in emergency situations

and short-term intruder detection (surveillance) (6, 7). In these systems VAD is a fundamental

component which is used, to reduce transmission rate during the silent periods of the input signal

thus increasing the system capacity, reducing the co-channel interference and the transmitter power

consumption.

During the last decade, numerous researchers have developed different strategies for detecting

speech on a noisy signal. The different VAD systems developed can be classified in to the two

major categories of unsupervised and supervised methods, depending whether a priori information

is used in order to train system parameters. VAD approaches of the former class typically rely on

the continuous observation of a specific metric to decide on the content of an audio signal. Such

metrics are energy levels, zero-crossing rate, periodicity, linear prediction coding (LPC) parameters,

Higher-order Statistics (HOS) of the LPC residuals of the signal, power envelope dynamics, fractals

and mutual information (4, 8, 9, 10, 11, 12, 13). Recently introduced statistical VAD algorithms

attempt to mathematically formulate the problem, by employing the Likelihood Ratio Test (LRT)

as a decision criterion (14, 15, 16, 17, 18). The drawback of most of these solutions is that the

statistical characteristics of the employed models of speech and noise are assumed to be fixed and

a priori defined.

Supervised VAD systems like Hidden Markov Models (HMM), Neural Networks (NN) and

Suport Vector Machines (SVM) have been also proposed, that require a vast amount of training

data in order to optimise their parameters (1, 18, 19, 20).

The speech/non-speech classification task is not as trivial as it appears, and most of the VAD

algorithms fail when far field (FF), (instead of close talking) microphones are employed and/or

the level of background noise or reverberation increases. Furthermore, speech characteristics vary

with time and can be affected by several unpredictable factors including speaker’s temper, mood,

gender, age, and more and environmental characteristics. Thus, despite the fact that VAD has

been in the focus of speech processing research for many years, speech/non-speech detection is

still an open problem affecting numerous applications in several sectors. This broad application

spectrum of VAD and its critical role in system robustness makes the need for development of

2



1.2 Performance Metrics

accurate algorithms that can perform adequately under highly varying conditions and reverberant

environments imperative.

1.2 Performance Metrics

A VAD distinguishes speech from non-speech frames in the presence of background noise. In

general, VAD errors can be categorized into two main types of errors, notably clipping errors and

false detection errors. Clipping errors occur when speech frames are misclassified as noise frames,

which is intolerable in speech encoders due to its effect on speech intelligibility, while false detection

errors are due to misclassifying noise frames as speech frames.

The performance evaluation metrics are summarized in the following list (14, 21):

• Speech Detection Error Rate (Pc) : the ratio of the incorrect decisions at speech segments

over the total time of speech segments (voice clipping).

• Non-speech Detection Error Rate (Pf ) : the ratio of the incorrect decisions at non-speech

segments over the total time of non-speech segments (false alarm).

• Average Detection Error Rate (Pe) : the average error rate estimated as the mean of Pc and

Pf .

The above metrics can be decomposed in a set of more specialized ones (22), although, they

are not very often used in bibliography:

• Front End Clipping Error Rate (Pfe) : the ratio of the incorrect decisions at speech segments

over the total time of speech segments introduced in passing from noise to speech activity.

• Mid Clipping Error Rate (Pm) : the ratio of the incorrect decisions at speech segments over

the total time of speech segments Pm = Pc − Pfe.

• Late Non-speech Detection Error Rate (Pov) : the ratio of the incorrect decisions at non-

speech segments over the total time of non-speech segments due to the VAD flag remaining

active in passing from speech activity to noise.

1.3 Motivation and Research Objectives

The performance of a VAD, like for most of speech processing systems, is significantly downgraded

when far-field (FF) microphones are used, instead of the conventional close-talking (CT), due to

reverberation effects, competitive sound sources, and speaker movement that can significantly alter

3



1. INTRODUCTION

the statistical characteristics of captured speech. Thus, the primary objective of this work focuses

on the development of robust VAD systems and algorithms, able to operate with one or more FF

microphones within adverse environments. These algorithms should be able to cater for the varying

energy of speech signals captured with FF sensors, and ought to tackle the obstacles introduced by

the inherent reflections and the highly-intensive interfering noises.

The development will be based on evolving currently employed frameworks and newer tech-

niques. Time-frequency analysis will be considered, ranging from Fourier analysis to more recent

techniques like the Empirical Mode Decomposition. Statistical metrics like the Bayesian likelihood

ratio test, the zero-cross rate and the periodicity will be re-evaluated in this context and novel

criteria will be constructed.

Towards achieving VAD robustness, the effects on the characteristics of captured speech, im-

posed by phenomena such as noise, reverberation and speaker movement, have to be carefully

studied. Outcomes of this evaluation will serve as the basis for the development of VAD sys-

tems able of adaptively adjusting internal modelling parameters to match the characteristics of the

instantaneous input.

Moreover, part of the research will focus on microphone arrays and especially on the utilization

of spatial information from multiple and independent microphone in contrary to single microphone

based approach, which can only utilize time and/or frequency information. Direction-of-Arrival

estimation and its performance dependence on reverberation will be also reconsidered in the context

of VAD.

Also supervised classification methods like hidden Markov models (HMM), Gaussian Mixture

Models (GMMs) and other will be considered and assessed in this framework. In parallel, the

bi-modality of speech generation, in terms of audio and video information, extracted from a talking

person, will be investigated with the scope of merging the two fields towards achieving enhanced

performance.

The effect of the developed VAD algorithms on other speech processing applications fields will

be examined. Those will include speaker tracking, noise reduction and acoustic event detection.

Furthermore, within the framework of of this work, an other objective will be also to investigate

the possibility of encapsulating outcomes and techniques that demonstrated better performance for

VAD in other speech processing systems in order to improve their performance.

The algorithms developed, as part of this the work, will be designed in a real-time frame-by-

frame processing basis to allow for their integration in modern telecommunication systems, smart

rooms and other technologies. Thus, their performance will have to be always compared with that

of existing real-time technologies.
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1.4 Contributions

The efforts towards meeting the goals and research objectives, that were set in the beginning of

this work, resulted in a series of outcomes in the area of VAD and its applications. The basis of

the work was an extensive study on the effects of noise and reverberation on speech distribution

at various intensity levels and conditions. We demonstrate with simulations and experiments

that when far-field microphones are used instead of the conventional close-talking, reverberation

effects, competitive sound sources, and speaker movement can significantly alter the distribution

of captured speech. In contrary to previous studies, we depicted that captured speech with FF

microphones is not solely Gaussian, Laplacian, or Gamma distributed, given its non-stationarity

in time and its dependence on external interferences. This way we justified why speech processing

systems relying solely on the Gaussian or other fixed assumptions are expected not to perform

adequately under varying conditions. Fixed distribution assumptions can be accurate only under

specific conditions of reverberation and noise. Those outcomes, actually directed the whole research

effort into the development dynamically adaptive systems able to overcome such environmental

adversities and speech dynamics. Hopefully, this can inspire similar work from other researchers

on related fields.

The first offspring of this study is a statistical voice activity detector, which relies on the mod-

elling of the distribution of speech as a convex combination of a Gaussian, a Laplacian, and a

two-sided Gamma distribution. The decision criterion of the proposed algorithm is the weighted

sum of three likelihood ratio tests, each one corresponding to one of the fundamental core distribu-

tions. The computation of the corresponding weights has been based on the statistical distances of

the instantaneous input samples from the Gaussian, the Laplacian, and the two-sided Gamma dis-

tribution, estimated using the Kolmogorov-Smirnov test. Experiments performed using artificially

reverberated and contaminated with additive noise anechoic audio data revealed that the specific

voice activity detector outperforms the existing systems in terms of error rate and that it produces

reliable results even under adverse noise conditions and reverberation effects. The result justified

our initial hypothesis, that speech distribution can be better modelled as linear combination of a

set of primal distributions rather than any other single distribution approach.

In the next step, we considered the encapsulation of spatial information, embedded in signals

captured by far-field microphone arrays, in a VAD scheme. The developed scheme is taking ad-

vantage of the spatial information provided by multiple sensors without the need of knowledge of

direction-of-arrival estimates like previous approaches. Simulations performed demonstrated that

the proposed system remains more robust than a set of related counterparts without imposing

additional delay in the system or being subject to reverberation.
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The multi-microphone VAD served as the platform to merge our results with a very power-

ful analysis framework namely Empirical Mode Decomposition (EMD). This highly efficient signal

decomposition method significantly enhanced the performance of VAD acting as a speech enhance-

ment technique prior to voice detection. The outcome of this procedure demonstrates significantly

enhanced performance compared to single microphone approaches.

In the area of supervised voice activity detection, a system based on the modelling capabilities

of hidden Markov models has been developed. Gaussian Mixtures modelling has been employed

per model state to cater for the variable distribution of speech in respect to the outcomes of the

research on speech distribution. Given the bi-modality of speech generation process, conveying

both audio and visual information, an Audio-Visual VAD that combines the advantages of both

modalities has also been considered. Although the developed system wasn’t based on two optimal

modalities of video and audio, fusing of different VAD schemes showed that there is a noticeable

increment in performance even under extremely adverse conditions.

Following the study plan we then concentrated on exploring applications of VAD. The per-

formance benefits of combining the developed multi-microphone VAD with a direction-of-arrival

(DOA) estimation scheme were demonstrated on the basis that speech emission is a discontinuous

sound source. This has been done in order to overcome instabilities of audio tracking based on

DOA when the speaker of interest is not emitting speech. The employed DOA system was based on

information theoretical TDE system. The optimization of this TDE scheme was also considered in

the context of encapsulating speech shaped distributions in the underlying assumption of the speech

model employed. Thus, we investigated how the performance of a robust information-theoretical

TDE algorithm, changes as we switch between different underlying assumptions for the distribution

of speech in respect to the instant input. The analysis performed, revealed a significant research

outcome. The employed marginal MI criterion based TDE is not depended on the underlying as-

sumption of the distribution of speech when that belongs to the family of Generalized Gaussian

distribution, exploiting the invariance property of MI. To support the analysis, closed forms of the

multivariate and univariate differential entropies for the Generalized Gaussian distribution were

derived, that encapsulate the entropies of other well known distributions like Gaussian, Laplacian

and Gamma.

Additionally, performance enhancement when using VAD in combination with noise reduction

systems has been also documented in terms of residual suppression within silence intervals. For this

scope an efficient noise reduction architecture has been developed based on cascading an one-pass

scheme.

Finally, we steered our focus in acoustic event detection. More specifically an automated Sleep

Apnea detection system utilizing snore sound analysis has been presented. The core of the pro-
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cessing algorithm employed was based partially on the convex combination of multiple statistical

models VAD aiming to a computationally lightweight system that could be potentially used to

monitor patients at home. This way prognosis, treatment procedure and offering the maximum

comfort to patients is improved. Conducted experiments using the system in various conditions

have indicated increased accuracy in detecting snoring against background noise and indication of

apneic events compared to other obtrusive methodologies.

1.5 Dissertation Outline

Following the research contributions agenda, in the first part of the thesis, Chapter 2 deals with the

investigation of speech distribution variability under external interferences. The study forms the

basis for the development of an unsupervised adaptive VAD based in the convex combination of a

set of prime distributions detailed in Chapter 3. Following the schema of Fig.1.2, in Chapter 4 the

work continues with the design of a multi-microphone VAD that incorporates spatial information.

The multi-microphone VAD is later used in combination with Empirical Mode Decomposition in

Chapter 5. Speech distribution information is also encapsulated in a supervised VAD scheme

employing Hidden Markov Models and Gaussian Mixture Models to cater for the dynamics of

captured speech distribution in Chapter 6. A visual-VAD is developed in the context of fusing

the two modalities of speech generation. In the last part of the thesis, applications of VAD are

discussed. In Chapter 7, Time Delay Estimation is investigated in depth, towards encapsulating

speech distribution information. In Chapter 8, noise reduction in combination with VAD is also

discussed. Finally, in Chapter 9 a modified version of the VAD presented in Chapter 3 is employed

in the field of biomedical signal processing to provide preliminary detection of apnea.

More specifically, in Chapter 2, we review variability of speech distribution, when using far-

field microphones, under the presence of noise and reverberation. Given that for most of speech

processing systems it is of crucial importance to have a reasonable approximation for the probability

density function (pdf) of speech, understanding the properties of speech distribution plays a very

important role in the design of speech processing systems.

Chapter 3 the utilization of Likelihood Ratio Test (LRT) in Voice Activity Detection is explored.

The basic LRT VAD algorithm under the assumption of Gaussian distributed noise and speech is

presented. Problems emerging from the Gaussian assumption will be discussed in respect to the

observations and conclusions inferred in Chapter 2. In addition, a robust VAD scheme based on

these observations will be developed. The proposed VAD employs a convex combination scheme

comprising three statistical distributions - a Gaussian, a Laplacian, and a two-sided Gamma -

to effectively model captured speech. The mechanism according which the contribution of each

7
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Figure 1.2: Dissertation technology connectivity.

distribution to this convex combination is automatically adjusted based on the statistical charac-

teristics of the instantaneous audio input is also indicated. To further improve the performance

of the system, an adaptive threshold is introduced, while a decision-smoothing scheme caters to

the intra-frame correlation of speech signals. Extensive experiments under realistic scenarios are

presented to support the proposed approach of combining several models for increased adaptation

and performance.

Chapters 4 considers employing microphone arrays in VAD. The system developed processes

signals captured by far-field sensors in order to integrate spatial information in addition to the

frequency content available at a single channel sound capturing. The core of the system resides

on the modification of a multiple observation hypothesis, testing at each sensor the probability

of having an active speaker and then fusing the decisions. The VAD operates without the need

of DOA estimation and eliminates additional delay imposed by previous multi-microphone VAD

technologies.

In Chapter 5 the system developed as a multi-microphone VAD serves as the platform to merge

VAD with a very powerful analysis framework the Empirical Mode Decomposition (EMD). This

highly efficient method relies on local characteristics of time scale of the data to analyse and decom-

pose non-stationary signals into a set of so called intrinsic mode functions (IMF). These functions

are injected to the multiple microphone VAD scheme in order to decide upon speech presence or ab-

sence. The outcome of this procedure demonstrates significantly enhanced performance compared

to single microphone approaches.
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1.5 Dissertation Outline

Chapter 6 presents a supervised VAD system that operates in the far-field. The core of this

system consists of two left-right Hidden Markov Models that operate in the feature domain. Taking

into consideration the observations emerged from Chapter 2 for the distribution of speech the

observation probability distribution function of each state is modelled using Gaussian Mixture

Models. An adaptive threshold is derived, that allows for optimum performance even in the case

of varying noise statistics. Furthermore, to cater for the inter-frame correlation, especially in the

case of speech presence, a hang-over scheme is employed. Furthermore, given speech generation is a

bi-modal process conveying both, audio and visual information, an audiovisual VAD that combines

the advantages of both modalities is considered.

In the final part of the work, applications of VAD are also considered. Chapter 7 illustrates

performance benefits of combining the multi-microphone VAD with Direction-of-Arrival (DOA)

estimation. Optimization through adaptation of speech shape characteristics in the embedded Time

Delay Estimation (TDE) scheme is also considered, the same way that was beneficial for the convex

combination based VAD. Towards this direction, the underlying assumption of Gaussian distributed

source is replaced by that of Generalized Gaussian distribution that allows the evaluation of the

problem under a larger set of speech-shaped distributions, ranging from Gaussian to Laplacian and

Gamma.

In Chapter 8, performance enhancement when using VAD in combination with noise reduction

systems is also discussed in terms of residual suppression within silence intervals. For this scope an

efficient noise reduction architecture has been developed based on cascading an one-pass scheme.

The last application considered, is related to Acoustic Event Detection in the field biomedical

signal processing. In Chapter 9 a modification of the VAD developed in Chapter 3 , is employed

to provide preliminary detection of one of the major breathing-related sleep disorders, apnea.

Finally, Chapter 10 summarizes the thesis and concludes with some future research directions

in the field of Voice Activity Detection.
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Chapter 2

Speech Characteristics

2.1 Introduction

In this Chapter we discuss the variability of speech distribution, under the presence of noise and

reverberation. Understanding the properties of speech distribution plays a very important role in

the design of speech processing systems. For most of such systems it is of crucial importance to

have a reasonable approximation for the probability density function (pdf) of speech itself and the

noise present.

The assumption of gaussianity of the speech source is a very common practice, despite the

fact that has already been shown (23, 24) that in several feature domains including time, Fourier

Transform (FT), Discrete Cosine Transform (DCT), and Karhunen Loeve Transform (KLT), dis-

tributions of clean speech, with SNR down to 20dB, are very well approximated by Laplacian (LD)

and two-sided Gamma distributions (TΓD). Furthermore, it has been also shown that the distribu-

tion of speech, captured with far-field microphones, is highly varying, depending on the noise and

reverberation conditions.

Thus, the performance of systems relying on fixed distribution assumptions is expected to

fluctuate depending on the specific underling assumption for the speech distribution. In addition,

speech distribution varies with time and can be affected by several unpredictable factors including

speaker’s temper, mood, gender, age and environmental characteristics.

2.2 System Model

Speech signals captured within reverberant enclosures using FF microphones are subject to super-

position of reflected versions of the source signal. The captured speech signal can also be affected

by competitive sound sources and background noise. Source movement also affects the character-

istics of the captured signal. Assuming a single speaker, the speech signal captured by a distant

13



2. SPEECH CHARACTERISTICS

microphone at time t is given by

x(t) = h(t) ∗ s(t) + n(t) (2.1)

where s(t) denotes the source speech signal at time t, h(t) the corresponding acoustic impulse

response, n(t) the additive noise, and ∗ denotes convolution (Fig. 2.1). The impulse response, h(t),

is the recording of the reverberation that is caused by an acoustic enclosure when an impulse is

played, characteristic for every different receiver location (Fig. 2.2).

Figure 2.1: System model.
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Figure 2.2: Example of an office room’s impulse response.

In most speech-processing systems, it is important to have a reasonable approximation for the

probability density function (pdf) of speech and noise. It has been shown that the pdf of source

speech samples in the time domain and short-time frequency domain (when using frame lengths

14



2.3 Source Speech Distribution

close to 32 msec) is much better modelled by a Laplacian or a Gamma density function than a

Gaussian one (23).

To evaluate the distribution of captured speech under diverse conditions when using distant

microphones, a series of recordings were performed using a close-talking microphone in the small

Anechoic Chamber of AAU (25) to collect clean speech samples. For the anechoic data collection,

13 participants (7 males and 6 females) were recorded at 16kHz, speaking at their mother-languages

for approximately 15 min each, reading sentences and words presented to them with random pause

intervals. Eight different languages appear in the data set (Arabic, Bulgarian, Chinese, Greek,

Italian, Portuguese, Urdu, and Turkish). The participants were also recorded speaking English for

15 additional minutes under the same pattern. Speech intervals occupy half of the recording time.

The recordings have been annotated manually.

Figure 2.3: Inside the small anechoic chamber at Aalborg University

2.3 Source Speech Distribution

The distribution of the source speech (assumed to be anechoic and noiseless) varies depending on the

duration of the time window used in its analysis. More specifically, when long-time window is used,

the histogram of source speech amplitude in the time domain is approximated by a TΓD. As the

duration of time window is further reduced, the distribution of source speech is better approximated

by LD (23, 24). Furthermore, when segments of source speech shorter than 10 msec are analysed,

the distribution that best fits the histogram of speech will be subject to the pronounced vowels,

consonants and phonemes.
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Figure 2.4: Source Speech Amplitude distribution and the three theoretical pdfs with the same mean
and variance.

The histogram of the amplitude of source speech in the time and frequency domain is presented

in Figs. 2.4 and 2.5, respectively. These have been derived from a source speech signal segment

approximately 3 min long. For the derivation of the STFT, source speech has been segmented using

a time window of 40 msec and 75% overlap.
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Figure 2.5: Source Speech Amplitude Distribution of frequencies. Histograms have been normalized
to their maximum value per frequency bin.
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2.4 Effect of Noise

The distribution of source speech in the frequency domain is approximated by a TΓD pdf for

most of the frequency bins (Fig. 2.5). Apparently, there is a connection between the distribution

of speech in time domain and in the frequency domain.

2.4 Effect of Noise

To assess the effect of additive noise on the statistics of captured speech, Additive White Gaussian

Noise (AWGN) was artificially added to the source speech signals. The distribution of noisy speech

was evaluated for several SNR values and the results are presented in Figs. 2.6 and 2.7 for the time

and frequency domain, respectively.

From Fig. 2.6, it is observed that in the presence of 0 dB of AWGN, the distribution of captured

speech becomes GD. The effect of AWGN on the statistics of the amplitude of captured speech in

the frequency domain is similar: the more the SNR increases, the more their distribution becomes

GD-shaped. Indeed, for 20 dB of AWGN, the distributions of higher-frequency amplitudes of

captured speech are being shaped to LD (Fig. 2.7) whereas for 15 dB, this is also obvious for

amplitude of mid-frequency components. Further reduction of SNR leads to transformation of low-

and mid-frequency amplitudes. Transition from TΓD to LD and GD is finalized for SNR of 0 dB

or less.
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Figure 2.6: Noisy Speech Amplitude Distribution for SNR of 0 dB and three theoretical pdfs sharing
the same mean and variance.
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2. SPEECH CHARACTERISTICS

Figure 2.7: Amplitude distribution of captured noisy speech in frequency domain. Histograms have
been normalized to their maximum value. The distributions of frequencies tend to be better approxi-
mated by GD as noise intensity increases. Higher frequencies are affected more than the lower ones due
to less energy.

To quantify the effect of AWGN on the pdf of captured speech, the distance of its time amplitude

histogram for the TΓD, the LD, and the GD was estimated using the KS distance test. KS-test

is based on estimating the maximum distance T between the empirical cumulative distribution

function (cdf) FX and the theoretical distribution F evaluated at the instant sample points X

(26):

T (X) = max|FX − F | (2.2)

The most attractive feature of this test is that it does not depend on the underlying cdf being

tested. In addition, it is an exact test, contrary to other (like chi-square) tests that depend on

an adequate sample size for the approximations to be valid. Fig. 2.8 is derived by employing the
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2.4 Effect of Noise

KS-test on the current captured speech input in time domain to estimate against the TΓD, LD,

and GD for various SNR values.
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Figure 2.8: KS-test distance estimation of amplitude distribution from the three theoretical pdfs in
time domain as SNR drops.

From Fig. 2.8 it is observed that the statistics of the captured speech tend to be better approx-

imated by GD as SNR decreases. TΓD is closer to the distribution of captured speech only for high

SNR values. As the SNR drops below 15dB the LD is closer to the statistics of the noisy signal.

For SNR values below 0dB the distribution of the captured speech is again better approximated

by GD.

The distribution of frequency components is also affected by additive noise in a similar manner,

which is justified by the fact that time and spectrum are linearly dependent. Figs. 2.9, 2.10 and

2.11 present the effect of additive noise on the statistics of spectral amplitudes for noisy speech.

These graphs show that the distribution of spectral amplitude of captured speech is closer to TΓD

for high SNR; as the SNR decreases below a frequency-dependent threshold which is close to 20

dB, it is better approximated by LD. Further SNR reduction leads to Gaussian-shaped distribution

of captured speech frequency amplitudes.
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Figure 2.9: Gaussian KS-test distance estimation in frequency domain vs. SNR.
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Figure 2.10: Laplacian KS-test distance estimation in frequency domain vs. SNR.
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Figure 2.11: TΓD KS-test distance estimation in frequency domain vs. SNR.

2.5 Effect of Reverberation

To evaluate the effect of reverberation on the statistics of captured speech, the Image Model for

Small room Acoustics (27) has been employed for increasing rate of reverberation time T60 on

source speech signal (28) for [4.4, 5.8, 2.6]m room dimensions. The distribution of amplitude for

reverberant speech in time and frequency domain is depicted in Figs. 2.12 and 2.13, respectively.
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Figure 2.12: Reverberant Speech Amplitude Distribution T60 = 2.2 sec and the three theoretical
distributions with same mean and variance.
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As the reverberation time increases over T60 > 0.3sec, the distribution of time amplitude of

captured speech becomes LD. Similarly, the distribution of frequency amplitudes is also affected

by reverberation. Contrary to the case of AWGN though, the effect of reverberation on captured

speech is evident only for high values of T60. Only for reverberation times greater than 0.7 sec, the

distribution of most of the captured reverberant speech frequency amplitudes is better modelled

by LD.

Only for values of T60 greater than 2.2 sec, the distribution of spectral amplitude becomes GD,

which is a scenario not frequently met in real life. Figure 2.14 shows that for low reverberation

times, the distribution of captured speech is better approximated by TΓD. As the T60 increases

above 0.1 sec, the LD is closer to the distribution of captured speech.

Figure 2.13: Effect of reverberation on the spectral amplitude of captured speech for various values
of T60. Histograms have been normalized to their maximum value.
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Figure 2.14: KS-test distance estimation vs. T60 in time domain

The effect of reverberation on the distribution of the spectral amplitude of captured speech is

similar, as can be observed from Figs. 2.15-2.17.
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Figure 2.15: Gaussian KS-test distance of frequency distribution vs. T60
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Figure 2.16: Laplacian KS-test distance of frequency distribution vs. T60
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Figure 2.17: TΓD KS-test distance of frequency distribution vs. T60

Notice that extremely long reverberation times are required for the distribution of captured

speech to become GD. This can be justified by central limit theorem (CLT); a large number of

echoes with varying delays and attenuation should be present for the source signal to become GD

at the receiver side as the continuous addition of data of different distributions will eventually lead

into a GD shape distribution. In theory, this can be observed for unrealistic large values of T60.
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2.6 Effect of Simultaneous Noise and Reverberation

2.6 Effect of Simultaneous Noise and Reverberation

Under a realistic situation, reverberation coexists with additive noise sources in the same enclosure

making the detection of speech signals using far-field microphones even more difficult. Even low

reverberation times (T60) when combined with AWGN can cause severe effects on the performance of

VAD systems. This is illustrated in Fig. 2.18 where the distance of the captured speech distribution

from the GD was estimated for different values of SNR and T60. The experiment has been performed

by initially convolving source speech with the room impulse response and then adding noise as

dictated by eqn. (1).
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Figure 2.18: Gaussian KS-test distance vs. T60 vs. SNR

The simulation performed, the results of which are depicted in Fig. 2.18, reveals that when

combined phenomena occur the distribution of speech approaches GD even faster. The height of ks-

distance curves for different values of SNR reduces with the increasing reverberation time. The same

attribute holds for reverberation curves as the noise increases. As expected, the effect of additive

noise on the distribution of captured speech is more profound than the effect of reverberation, as

the slope of the plot is steeper towards T60 axis than towards SNR.
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2.7 Distance Effect

When working with unobtrusive far-field microphones, mounted on fixed positions on the wall, even

the slightest movement of the speaker can affect the shape of the distribution of captured speech.

Fig. 2.19 shows how this distribution approaches Gaussian as the speaker moves away from the

microphones. Such a movement causes the SNR of the direct speech signal to drop (due to air

attenuation) and the distribution of the reflected speech replicas to be altered. The situation is

even more adverse when the fixed microphones are placed near the modes of the enclosure.
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Figure 2.19: Gaussian KS-test distance vs. T60 vs. distance from mics

2.8 Conclusions

In this Chapter the effects of noise and reverberation on speech distribution have been explored

for various intensity levels. We demonstrated that when far-field microphones are used instead

of the conventional close-talking, reverberation effects, competitive sound sources, and speaker

movement can significantly alter the distribution of captured speech. It becomes apparent that

captured speech is not solely GD, LD, or ΓD distributed, given its non-stationarity in time and

its dependence on external interferences. Speech processing systems relying solely on the Gaussian

or other assumptions are expected not to perform adequately under varying conditions. Fixed

distribution assumptions can be accurate only under specific conditions of reverberation and noise.

Thus, in order for a system to be able to operate under variable conditions, encapsulating speech
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2.8 Conclusions

distribution dynamics is of critical importance. Outcomes of studying how the distribution of

speech is shaped by factors such as those examined here, are used later on as the design basis of

systems described in detail in the following Chapters.
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Chapter 3

Employing Likelihood Ratio Test for
Voice Activity Detection

3.1 Introduction

In this chapter the utilization of Likelihood Ratio Test (LRT) in Voice Activity Detection will

be explored. The basic LRT VAD algorithm under the assumption of Gaussian distributed noise

and speech is presented. Problems emerging from the Gaussian assumption will be discussed in

respect to the observations and conclusions inferred in Chapter 2. In addition, a robust VAD

scheme based on these observations will be developed. The proposed VAD employs a convex

combination scheme comprising three statistical distributions - a Gaussian, a Laplacian, and a

two-sided Gamma - to effectively model captured speech. The mechanism according to which

the contribution of each distribution to this convex combination is automatically adjusted based

on the statistical characteristics of the instantaneous audio input is also presented. To further

improve the performance of the system, an adaptive threshold is introduced, while a decision-

smoothing scheme caters to the intra-frame correlation of speech signals. Extensive experiments

under realistic scenarios are presented to support the proposed approach of combining several

models for increased adaptation and performance. Finally, an important observation regarding the

behaviour of LRT-based VAD algorithms in the presence of reverberation is also presented.

3.2 Binary Hypothesis VAD

Assuming a single speaker, the speech signal captured by a distant microphone at time t is given

by

x(τ) = h(τ) ∗ s(τ) + n(τ) (3.1)

where s(τ) denotes the source speech signal at time τ , h(τ) the corresponding acoustic impulse

response, n(τ) the additive noise, and ∗ denotes convolution.
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3. EMPLOYING LIKELIHOOD RATIO TEST FOR VOICE ACTIVITY
DETECTION

Voice activity detection can be expressed as the likelihood ratio of two hypotheses stating speech

presence and absence (17). Assuming additive noise the two hypotheses H1 and H0 that indicate

speech presence and speech absence are accordingly:

H0 : speech absence : X(t) = N(t) (3.2)

H1 : speech presence : X(t) = S(t) +N(t) (3.3)

whereX(t) = [X0(t),X1(t), ...,XK−1(t)]
T , S(t) =

[
S0(t), S1(t), ..., SK−1(t)

]T
,N(t) = [N0(t), N1(t),

..., NK−1(t)]
T are the noisy captured speech, reverberated speech, and noise frequency components.

Here N(t) is assumed to encapsulate the reverberation effects.

Real and imaginary parts of noise and speech frequency spectrum are in general assumed to

be zero mean Gaussian distributed. The probability densities for the noise and speech components

with k denoting the frequency bin are given by

fG
n (Nk(t)) =

1√
2πσ2

n,k

e
−Nk(t)2

2σ2
n,k (3.4)

fG
s (Sk(t)) =

1√
2πσ2

s,k

e
−Sk(t)2

2σ2
s,k (3.5)

where σ2
n,k, σ

2
s,k the slowly varying variances of the Gaussian distributed noise and speech respec-

tively. The probability density functions conditioned on H0 and H1 are given by

p(X(t)|H0) =
K−1∏
k=0

1

πλn,k
exp

{
−|Xk(t)|2

λn,k

}
(3.6)

p(X(t)|H1) =

K−1∏
k=0

1

π [λn,k + λs,k]
exp

{
− |Xk(t)|2
λn,k + λs,k

}
(3.7)

where λn,k and λs,k denote the variances of Nk, Sk respectively.

3.2.1 Employing Likelihood Ratio Test (LRT) in VAD

In the case of single microphone VAD scheme the likelihood ratio for the kth frequency bin is

defined as

Λk ≡ p(Xk(t)|H1)

p(Xk(t)|H0)
=

1

1 + ξk
exp

{
γkξk
1 + ξk

}
(3.8)

where ξk ≡ λs,k/λn,k and γk ≡ |Xk(t)|2/λn,k the a priori and a posteriori signal to noise ratios

(29).
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3.2 Binary Hypothesis VAD

The decision criteria is based on evaluating the geometric mean of the likelihood ratios for the

individual frequencies and is given by

log Λ =
1

K

K−1∑
k=0

log Λk

H1

≷
H0

η (3.9)

and elaborating on eqn.3.8

log Λ =
1

K

K−1∑
k=0

{γk − log (γk)− 1}
H1

≷
H0

η (3.10)

where η denotes the threshold of decision.

Figure 3.1: Likelihood Ratio Test based VAD system model.

The performance of such VAD systems is significantly downgraded if far-field microphones are

used instead of the conventional close-talking ones due to reverberation effects, competitive sound

sources, and speaker movement that can alter the shape of speech distribution as shown in Chapter

2. Furthermore, speech distribution varies with time and can be affected by several unpredictable

factors including speaker’s temper, mood, gender, age, and more.

Towards the direction of encapsulating speech shaped distribution in a VAD scheme Gazor (24)

implemented an LRT-based VAD that combined a Laplacian speech model along with a Gaussian

noise model. Furthermore Shin et al. extended the work on speech statistical modelling to a VAD

that is based on the GΓD model (30, 31). The core of the system was based on the LRT of two

GΓD modelling speech and noise. The parameters of each distribution were tuned based on the

statistics of the input. Authors in (32) enriched this work using it in conjunction with the Bayesian

Information Criterion. Nevertheless, the core of the system in (30) was not completely autonomous

since a set of parameters had to be tuned manually for different noise conditions.
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DETECTION

Chang et al. (14) extended the concept by introducing a VAD able to switch between a set of

statistical models. The switching mechanism (that relies on the evaluation of Kolmogorov-Smirnov

(KS) test of three theoretical distributions against the distribution of the current input) enabled

the adaptation to environmental changes by modifying the employed LRT.

Although, based on the observations of Chapter 2 it becomes apparent that speech distribution

is not solely Gaussian, Laplacian, or Gamma, given its nonstationarity in time and its dependence

on external interferences. A weighted sum of a set of distributions would be more accurate in

representing the instant distribution of captured speech. Such an approach allows better modelling

of speech distribution in frequency and time as environmental characteristics evolve.

3.3 Convex Combination of Multiple Statistical Models for VAD

To overcome problems of adaptability to the non-stationarity of speech a VAD system able to

adapt to varying conditions of noise and reverberation has been developed. The speech modelling

is supported study on statistical speech characteristics and their dependence on external noise and

reverberation when using far-field sensors. The core of the system is a convex combination of three

distributions, a Gaussian (GD), a Laplacian (LD), and a two-sided Gamma Distribution (TΓD)

(23, 24). Each distribution is selected to model captured speech under different scenarios and the

assumption of GD noise. The participating pdfs are presented below.

3.3.1 Probability Distribution of Noise

Following earlier approaches, it is assumed that both the real and the imaginary parts of noise

frequency components are zero mean following GD. The pdf of Nk(t) for the case of noise with k

denoting the frequency bin is given by

fG
n (Nk(t)) =

1√
2πσ2

n,k

e
−Nk(t)2

2σ2
n,k (3.11)

where σ2
n,k is slowly varying with time variance factor of the Gaussian assumed distributed noise

for the kth frequency component. The imaginary part follows a similar distribution.

3.3.2 Probability Distribution of Speech

Embarking on the outcomes of the analysis of Section II, it is assumed that both the real and the

imaginary parts of the frequency distribution of captured speech are better modelled as a mixture

of a TΓD, a LD, and a GD. These pdfs are given by
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GD : fG
s (Sk(t)) =

1√
2πσ2

s,k

e
−Sk(t)2

2σ2
s,k (3.12)

LD : fL
s (Sk(t)) =

1

2αs,k
e
−|Sk(t)|

αs,k =
1√
2σs,k

e
−

√
2|Sk(t)|
σs,k (3.13)

TΓD : fΓ
s

4
√
3

2
√
πσs,k

4
√
2
|Sk(t)|−

1
2 e

−
√

3|Sk(t)|√
2σs,k (3.14)

for the kth frequency component, where σ2
s,k and as,k are the slowly varying variance and scale

factors of the Gaussian- and Laplacian-distributed speech, respectively. The scale factor as,k is

related to variance σ2
s,k through

σ2
s,k = 2a2s,k (3.15)

3.3.3 Conditional Distributions

Using the predefined statistical models of voice and assuming Gaussian noise, the conditional pdfs

of speech absence can be expressed as

H0 : fX|H0
(Xk(t)) =

1√
2πσ2

n,k

e
−Xk(t)2

2σ2
n,k (3.16)

Given the three different models of speech, a set of speech presence hypotheses is derived

Case 1 : H1 for Gaussian speech model

H1 : f
(G)
X|H1

(Xk(t)) =

=

∫ ∞

−∞

1

2πσs,kσn,k
e
−Sk(t)2

2σ2
s,k

− (Xk(t)−Sk(t))2

2σ2
n,k dSk(t)

=
1√

2πσs,kσn,k
√

1
σn,k

2 + 1
σn,k

2

e
− Xk(t)2

2(σn,k
2+σs,k

2)

(3.17)
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Case 2 : H1 for Laplacian speech model

H1 : f
(L)
X|H1

(Xk(t)) =

=

∫ ∞

−∞

1
√
2σs,k

√
2πσ2

n,k

e
−

√
2|Sk(t)|
σs,k

− (Xk(t)−Sk(t))
2

2σ2
n,k dSk(t)

=

∫ 0

−∞

1
√
2σs,k

√
2πσ2

n,k

e

√
2Sk(t)

σs,k
− (Xk(t)−Sk(t))

2

2σ2
n,k dSk(t)

+

∫ ∞

0

1
√
2σs,k

√
2πσ2

n,k

e

−√
2Sk(t)

σs,k
− (Xk(t)−Sk(t))

2

2σ2
n,k dSk(t)

=
1

2
√
2σs,k

e

σn,k
2

σn,k
2×

[
e

√
2Xk(t)

σs,k erfc

(√
2σn,k

2 + σs,kXk(t)√
2σn,kσs,k

)

+ e
−√

2Xk(t)

σs,k erfc

(√
2σn,k

2 − σs,kXk(t)√
2σn,kσs,k

)]

(3.18)

Case 3 : H1 for TΓD speech model

H1 : f
(Γ)
X|H1

(Xk(t)) =

=

∫ ∞

−∞

4
√
3

4π 4
√
2
√
σs,kσn,k

|Sk(t)|−
1
2

× e
−

√
3|Sk(t)|√
2σs,k

− (Xk(t)−Sk(t))2

2σ2
n,k dSk(t)

=
4
√
3

4π 4
√
2
√
σs,kσn,k

e
−Xk(t)2

2σ2
n,k ×

[∫ 0

−∞

e

(
Xk(t)Sk(t)−2Sk(t)2

σn,k
2 +

√
3Sk(t)

2σs,k

)

√−Sk(t)
dSk(t)

+

∫ ∞

0

e

(
Xk(t)Sk(t)−2Sk(t)2

σn,k
2 −

√
3Sk(t)

2σs,k

)

√
Sk(t)

dSk(t)

]

(3.19)
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The value of the first integral of eqn. (3.19) when

√
3σ2

n,k

σs,k
> 2Xk(t) becomes:

∫ 0

−∞

e

(
Xk(t)Sk(t)−2Sk(t)2

σn,k
2 +

√
3Sk(t)

2σs,k

)

√−Sk(t)
dSk(t) =

=
π
√

−σs,kN (+)

2
√
2σs,k

e
N(+)2

D

×
(
Ja

[
−1

4
,
N (+)2

D

]
+ Ja

[
1

4
,
N (+)2

D

])
(3.20)

where N (±) =
√
3σn,k

2 ± 2σs,kXk(t), D = (4σn,kσs,k)
2 and Ja, the modified Bessel function of the

first kind.

If
√
3σn,k

2

σs,k
≤ 2Xk(t), the value of the first integral of eqn(3.19) becomes:

∫ 0

−∞

e

(
Xk(t)Sk(t)−2Sk(t)2

σn,k
2 +

√
3Sk(t)

2σs,k

)

√−Sk(t)
dSk(t) =

=
1

2
e

N(+)2

D σn,k

√ √
3

σs,k
+

2Xk(t)

σ2
n,k

Ya

[
1

4
,
N (+)2

D

] (3.21)

where Ya denotes the modified Bessel function of the second kind.

The value of the second integral of eqn. (3.19) when
√
3σn2

σs,k
< 2Xk(t) becomes:

∫ ∞

0

e

(
Xk(t)Sk(t)−2Sk(t)2

σn,k
2 −

√
3Sk(t)

2σs,k

)

√
Sk(t)

dSk(t) =

=
π
√

−σs,kN (−)

2
√
2σs,k

e
N(−)2

D

×
(
Ja

[
−1

4
,
N (−)2

D

]
+ Ja

[
1

4
,
N (−)2

D

])
(3.22)

If
√
3σn2

σs,k
≥ 2Xk(t), the value of the second integral of eqn(3.19) becomes:

∫ ∞

0

e

(
Xk(t)Sk(t)−2Sk(t)2

σn,k
2 −

√
3Sk(t)

2σs,k

)

√
Sk(t)

dSk(t) =

=
1

2
e

N(−)2

D σn,k

√√
3

σs,k
− 2Xk(t)

σ2
n,k

Ya

[
1

4
,
N (−)2

D

] (3.23)
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3.4 Forming the LRTs based on the Distribution of Speech

Embarking on the likelihood ratio of the two hypotheses, for the distribution of speech and noise,

a decision statistic is defined by substituting the appropriate speech and noise pdf in the general

LRT. This is defined as

Λk ≡ fXk(t)|H1
(Xk(t))

fXk(t)|H0
(Xk(t))

(3.24)

where fXk(t)|H1
(Xk(t)) is the hypothesis of speech presence H1 and fXk(t)|H0

(Xk(t)) is the hy-

pothesis of speech absence H0 under the assumption of Gaussian distributed noise both defined in

Section III C. For the case of Gaussian distributed speech, eqn. (3.24) becomes

ΛG
k =

f
(G)
Xk(t)|H1

(Xk(t))

fX|H0
(Xk(t))

=

∫∞
−∞

1
2πσs,kσn,k

e
−Sk(t)2

2σ2
s,k

− (Xk(t)−Sk(t))2

2σ2
n,k dSk(t)

1√
2πσ2

n,k

e
−Xk(t)2

2σ2
n,k

(3.25)

When speech distribution follows LD, the LR becomes

ΛL
k =

f
(L)
Xk(t)|H1

(Xk(t))

fX|H0
(Xk(t))

=

∫∞
−∞

1√
2σs,k

√
2πσ2

n,k

e
−

√
2|Sk(t)|
σs,k

− (Xk(t)−Sk(t))2

2σ2
n,k dSk(t)

1√
2πσ2

n,k

e
−Xk(t)2

2σ2
n,k

(3.26)

Finally for the case of TΓD distributed speech the LR becomes

ΛΓ
k =

f
(Γ)
Xk(t)|H1

(Xk(t))

fX|H0
(Xk(t))

=

∫∞
−∞

4√3
4π 4√2

√
σs,kσn,k |Sk(t)|

e
−

√
3|Sk(t)|√
2σs,k

− (Xk(t)−Sk(t))2

2σ2
n,k dSk(t)

1√
2πσ2

n,k

e
−Xk(t)2

2σ2
n,k

(3.27)
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3.4.1 The Convex Combination Scheme

Since speech is a dynamically changing signal, whose characteristics are highly altered when prop-

agated within dynamic environments, its distribution cannot be solely Laplacian, Gaussian, or

Gamma. It is rather a combination of these distributions. Thus, instead of forcing the system to

generate decision under single model hypothesis (14), a linear combination of GD, LD, and TΓD

is proposed

ΛConvex
k ≡wGΛ

G
k + wLΛ

L
k +wΓΛ

Γ
k

=wG

f
(G)
Xk(t)|H1

(Xk(t))

fX|H0
(Xk(t))

+ wL

f
(L)
Xk(t)|H1

(Xk(t))

fX|H0
(Xk(t))

+ wΓ

f
(Γ)
Xk(t)|H1

(Xk(t))

fX|H0
(Xk(t))

=
wGf

(G)
Xk(t)|H1

(Xk(t)) + wLf
(L)
Xk(t)|H1

(Xk(t)) + wΓf
(Γ)
Xk(t)|H1

(Xk(t))

fX|H0
(Xk(t))

(3.28)

where wG, wL, wΓ, are the weights of the employed Gaussian, Laplacian and TΓD models respec-

tively, derived through the evaluation of the KS-test. Elaborating eqn. (3.28) yields

ΛConvex
k ≡

∫∞
−∞

(
wGf

G
s + wLf

L
s + wΓf

Γ
s

)
fG
n dSk(t)

fX|H0
(Xk(t))

(3.29)

The decision rule that is used to determine voice presence is established as the geometric mean

of the LRs of every frequency bin. Notice that both the real and imaginary parts of DFT are taken

into consideration. This is done by combining the corresponding LRs using a geometric mean.

Thus, decision is drawn based on

D =
1

K

K−1∑
k=0

log ΛConvex
k

H1

≷
H0

θ (3.30)

where K denotes the total number of frequency bins and θ the decision threshold.

3.4.2 Estimating the Weights for the Convex Model

To develop a set of weights for each pdf in the mixture model of eqn. (3.29), which will reflect

the participation of each distribution in the convex combination, the KS-test distance of the input

from the three theoretical distributions is evaluated for every frequency bin presented in Chapter

2 . The weights for each distribution in the convex combination will be
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wG,k =
(
nk · T̂G,k

)−1
GD weight (3.31)

wL,k =
(
nk · T̂L,k

)−1
LD weight (3.32)

wΓ,k =
(
nk · T̂Γ,k

)−1
TΓD weight (3.33)

where nk is a normalization factor for the weights so that they all sum to 1, given by

nk = T̂−1
G,k + T̂−1

L,k + T̂−1
Γ,k (3.34)

and T̂G,k, T̂L,k, T̂Γ,k the smoothed estimates of the KS distances for each distribution in the convex

combination. They are estimated by

T̂t = λT T̂t−p + (1− λT )Tt (Xm) (3.35)

with λT being the memory parameter. Parameters m and p denote the memory and step sizes, re-

spectively. They are set to 20 and 10, respectively, as proposed by (14) to achieve fast convergence

without dramatically increasing the computational load. The KS distance T of the captured speech

signal from each distribution is evaluated on the recent input dataXm = {X(t),X(t − 1), ...X(t −m)}
every p frames for m previous values. The distance of the input from each distribution is defined

as

TG,k = max (|FX,k − FG,k|) KS distance from GD (3.36)

TL,k = max (|FX,k − FL,k|) KS distance from LD (3.37)

TΓ,k = max (|FX,k − FΓ,k|) KS distance from TΓD (3.38)

where FX,k is the empirical cdf of the current input for the kth frequency bin and FG,k,FL,k,FΓ,k,

the theoretical cdfs.

3.5 SNR Estimation

An essential intermediate step toward the evaluation of the individual models of the convex LRT is

the estimation of the a priori SNR. Thus, the values of speech and noise power spectrum have to

be continuously tracked. The most popular way to do this is to apply the Decision Directed (DD)

algorithm (29). The authors in (14) presented an alternative method, namely Predicted Estimation

(PD). This can overcome the limitations of DD within speech activity intervals. According to

PD method, the a priori SNR is estimated on the power spectrum of noise λn,k(t) = σn,k(t)
2 and

speech λs,k(t) = σs,k(t)
2 which are given by
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λ̂n,k(t+ 1) = ζnλ̂n,k(t) + (1− ζn)E
[
|Nk(t)|2 |Xk(t)

]
λ̂s,k(t+ 1) = ζsλ̂s,k(t) + (1− ζs)E

[
|Sk(t)|2 |Xk(t)

]
(3.39)

where λ̂s,k(t), λ̂n,k(t) are estimates of λs,k(t), λn,k(t) and ζn ,ζs are smoothing parameters both set

to 0.99. Following similar considerations as in (14), the expectations in eqn(3.39) can be further

analyzed as:

E
[
|Nk(t)|2 |Xk(t)

]
=E

[
|Nk(t)|2 |Xk(t),H0

]
p (H0|Xk(t))

+ E
[
|Nk(t)|2 |Xk(t),H1

]
p (H1|Xk(t))

E
[
|Sk(t)|2 |Xk(t)

]
=E

[
|Sk(t)|2 |Xk(t),H0

]
p (H0|Xk(t))

+ E
[
|Sk(t)|2 |Xk(t),H1

]
p (H1|Xk(t)) (3.40)

where the expectations in speech absence periods are

E
[
|Nk(t)|2 |Xk(t),H0

]
= |Xk(t)|2

E
[
|Sk(t)|2 |Xk(t),H0

]
= 0 (3.41)

and in the expectations within speech presence intervals

E
[
|Nk(t)|2 |Xk(t),H1

]
=

λ̂s,k(t)

1 + ξ̂PD
k (t)

+
|Xk(t)|2(

1 + ξ̂PD
k (t)

)2

E
[
|Sk(t)|2 |Xk(t),H1

]
=

λ̂s,k(t)

1 + ξ̂PD
k (t)

+
|Xk(t)|2

(
ξ̂PD
k (t)

)2
(
1 + ξ̂PD

k (t)
)2 (3.42)

Combining eqn. (3.40), (3.41), and (3.42), the power spectrum of noise and speech are given by
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λ̂n,k(t+ 1) = ζnλ̂n,k(t) + (1− ζn)

[
p (H0|Xk(t)) |Xk(t)|2+⎛

⎜⎝ λ̂s,k(t)

1 + ξ̂PD
k (t)

+
|Xk(t)|2(

1 + ξ̂PD
k (t)

)2
⎞
⎟⎠ p (H1|Xk(t))

]
(3.43)

λ̂s,k(t+ 1) = ζsλ̂s,k(t) + (1− ζs)×⎛
⎜⎝ λ̂s,k(t)

1 + ξ̂PD
k (t)

+
|Xk(t)|2

(
ξ̂PD
k (t)

)2
(
1 + ξ̂PD

k (t)
)2

⎞
⎟⎠ p (H1|Xk(t)) (3.44)

respectively, where the a priori SNR ξ̂PD at time instant t is estimated as

ξ̂PD
k (t) ≡ λ̂s,k(t)

λ̂n,k(t)
(3.45)

and the speech absence probability is

p (H0|Xk(t)) =
1

1 + P (H1)
P (H0)

ΛConvex
k

(3.46)

The speech presence probability is therefore given by

p (H1|Xk(t)) = 1− p (H0|Xk(t)) (3.47)

Notice that similar to earlier approaches, the proposed algorithm takes also into account both

the real and the imaginary parts of the spectrum, by computing the geometrical mean in eqn.

(3.30) using both parts of the complex spectrum. Thus, |Xk(t)|2 depends on the complex part that

is evaluated at every iteration that is either
∣∣XR

k (t)
∣∣2 or ∣∣XI

k(t)
∣∣2. The estimation of the variance of

noise λn,k(t) = σn,k(t)
2 and speech λs,k(t) = σs,k(t)

2 is performed separately for real and imaginary

frequency parts DFT based on eqn. (3.39).

3.6 Adaptive Estimation of Threshold

The LRTs employed here introduce, by definition, a bias towards speech detection H1 (16). This

is attributed to the fact that the model of noise (GD) is present both at the numerator and the

denominator of the ratio in eqn. (3.25), (3.26), and (3.27). This bias introduces an offset, which

tends to increase as SNR drops (higher noise). As proposed in (16), this could be tackled by
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introducing a weight α to cope with the bias

p(Xk(t)|Hn = H1)

p(Xk(t)|Hn = H0)

H1

≷
H0

α
P (Hn = H0)

P (Hn = H1)
(3.48)

where Hn denotes the correct hypothesis in the current frame and α ≥ 1 a small number catering

to the offset.

Using this method, to cope with the offset requires the calculation of a different α value for

several SNR conditions to be able to use a fixed threshold. Nevertheless, the proposed system can

perform with a fixed threshold (for θ = 0.065) for high SNR values down to 10dB. To overcome

the bias for lower SNR values and to enhance the overall performance of the system an adaptive

threshold is introduced. The value of the threshold is initialized to

θ̂(t) ≡ max

[
1.2 ·Nbuf ,

max (Nbuf ) +Nbuf

2

]
(3.49)

where Nbuf is a buffer holding past values of D and Nbuf its mean (8). After initialization, the

computation of the threshold is performed by

θ̂(t) ≡ 1.2 · (Nbuf + 3 · σNbuf

)
(3.50)

where σNbuf
is the standard deviation of the values in Nbuf , which is updated with values of D eqn.

(3.30) smaller than that of θ̂(t). For smoothing the threshold estimate ˆθsm, a forgetting factor λθ

is introduced

ˆθsm(t+ 1) = λθ · θ̂(t) + (1− λθ) θ̂(t+ 1) (3.51)

To further enhance the performance of the system and to cater to decisions that lack rational

justification (i.e. very short speech segments), a hang-over scheme is employed. This is implemented

as a state machine that has two major transition states (speech presence, speech absence) and

several intermediate ones (15).

For transition from speech presence to speech absence state, at least s0 = 10 consecutive

indications of silence should be detected, while s1 = 4 consecutive speech detections are required

for the opposite. This lowers the probability of false rejections, by reducing the risk of the low-

energy portion of speech at the end of an utterance being falsely rejected. This hangover scheme

comes at a cost: it introduces a bias over speech detection.
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Figure 3.2: Decision based on the adaptive threshold. a) Decision and annotation limits, b) Response
of the adaptive threshold given the likelihood ratio of CCMSM on c) Speech samples at 15 dB of babble
noise.

3.7 Performance Discussion

Convex combination of multiple statistical models (CCMSM) VAD performance was compared to

that of its core constituting single LR (GD, LD, TΓD) models as defined in Section 3.4, to the MSM

VAD of (14), to the GΓD VAD of (30), and to the standardized G.729 annex B VAD. Additionally,

the performance of a modified version of the proposed algorithm (SWMSM) that uses the switching

scheme of (14) is also presented to assess the effectiveness of the convex combination scheme. A

version of (14) with the Gaussian model of noise (MSM-G) is used to show that the reason for

the difference in performance among the proposed solution and (14) is not produced by the fixed

Gaussian model.

For a fair evaluation of the systems, the same thresholding technique, hangover scheme, and

frame/step sizes have been used. For the case of GΓD VAD, the smoothing parameters of test

statistics and their ratios, smoothing factors, and learning rates, for both noisy speech and noise,
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were tuned manually, following the corresponding description in (30), for every different noise

condition and intensity level. The system is not able to adjust those automatically and thus online

adaptation to varying conditions for optimal performance cannot be achieved in contrary to the

rest systems.

The Pc and Pf were evaluated using the speech recordings performed in the anechoic chamber

of Aalborg University Denmark (25) described in section 2.2.

Speech data were contaminated artificially with white, vehicular, and babble noises from NOISEX-

92 database (33). Their spectrum is presented in Fig. 3.3. Finally, the data were reverberated

using the Image Method (27). For the evaluation of the system under combined phenomena of

reverberation and noise, the source speech signals were first reverberated and then noise was added

at different intensity levels. The input data were sampled at 8 kHz and were segmented into

overlapping frames of 40 msec duration (10 msec step size).
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3.7.1 Performance under Additive Noise

Figure 3.4 depicts how the performance of core models and that of the proposed system varies as

SNR drops due to AWGN. In this graph, it is shown that the performance of CCMSM surpasses

that of the single modalities, with the Laplacian model getting closer for SNRs between 0 and 5 dB.

The performance of TΓD is comparable to the CCMSM for only high SNR values. Something worth

noting is the fact that the single modalities, proposed as core of our system, perform better than

the MSM algorithm (14) and GΓD VAD (30). Additionally, SWMSM performs better than MSM-

G, which follows the same system architecture, although it relies on differently defined statistical

models as those defined here.

−5 0 5 10 15 20
0

5

10

15

20

25

30

35

SNR (dB)

P
e (

%
)

 

 
G.729B

GΓ D [16]

MSM [6]

MSM−G [6]

GD

LD

TΓ D

SWMSM

CCMSM

Figure 3.4: Pe performance under different intensities of White noise

Thus, the methodology of (18) for forming the LRT of Laplacian over Gaussian distribution

seems to perform better. Additionally, the SWMSM VAD shows good performance, but due to

the ripples in its response, caused by switching from one model to another, it fails to perform
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better than LD and TΓD under high SNR values although being able to outperform the GD

model LTR. SWMSM and MSM-G rely on the same switching architecture although the underlying

statistical models of noise and speech are differently expressed. This is indicative of the performance

enhancement, shown in Fig. 3.4, when following the approach of (18) that separately models the

real and imaginary parts of the FFT and mixes them at the LTR stage as independent terms of the

geometric mean in eqn. (25). This can also be observed for GΓD VAD (30) that is underperformed

by single modality GD. Additionally, GΓD VAD (30) requires a set of parameters to be tuned

manually for every different noise condition. This cannot be expected to be optimal for all cases

and thus can lead to poor performance.
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3.7 Performance Discussion

Babble noise (Fig. 3.5) is considered to be one of the most adverse conditions for VAD (17).

In this case, the conclusions are similar to those for AWGN. The performance for all the assessed

systems begins degrading significantly under 5 dB. CCMSM performs better than the rest in almost

all cases. SWMSM shows very good performance, and especially below 5 dB it almost matches the

performance of CCMSM. GΓD VAD (30) performs better than MSM and as SNR drops, it tends

to perform better than the employed GD single modality.

−5 0 5 10 15 20
0

5

10

15

20

25

30

SNR (dB)

P
e (

%
)

 

 
G.729B

GΓ D [16]

MSM [6]

MSM−G [6]

GD

LD

TΓ D

SWMSM

CCMSM

Figure 3.6: Pe performance under different intensities of vehicular noise

In the case of car noise (Fig. 3.6), the performance of MSM (14) and that of GΓD VAD (30)

are closer to that of single modalities we use, comparing with the case of white noise, and under 0

dB they perform better than CCMSM and SWMSM. In fact, this is reasonable enough given that

the core of CCMSM and SWMSM is based on the assumption of Gaussian noise, something not

really efficient when the statistics of noise start to deviate a lot from the GD approaching other

distributions.
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The distribution of the specific car noise is closer to Laplacian, which complies with the funda-

mental assumption of (14) (speech and noise have the same distribution). However, this algorithm

shows better performance than CCMSM only under severe conditions (SNR<0 dB).

It is interesting that although CCMSM is governed by the bad performance of its single modal-

ities below 5 dB, it does not fail significantly when compared to MSM (14). SWMSM also works

on average better than its single modalities.

The performance of the two combination schemes has been further examined. Figure 3.7 shows

the likelihood that emerges from CCMSM and SWMSM when fed the same input (speech contam-

inated by additive car noise at 15 dB). The middle graph illustrates the log-likelihood difference of

the two systems. It is evident that CCMSM produces higher likelihoods than SWMSM, indicating

its increased modelling abilities. The conclusions are also supported by Table I.
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3.7.2 Performance within Reverberant Environments

The modification of captured speech statistics triggered by the presence of reverberation has an

impact on estimated LRT and thus on the performance of the proposed VAD system. Somewhat

surprisingly, this impact is not necessarily negative. The ’spreading’ of speech content, through the

presence of reverberation, facilitates the operation of VAD in some cases, although in other cases

it degrades its performance. Indeed, reverberation reduces the clipping error effect (Pc), which is

observed when VAD systems operate on long speech intervals, acting as a sophisticated hang over

scheme. The prolonging of phrases caused by reverberation, however, might result in late detection

of the offset of speech signals and thus increase Pf , especially for large T60 values. Therefore, its

overall impact on captured speech cannot be usually determined a priori since it depends on a

number of parameters ranging from the reverberation time to the percentage of speech within the

acoustic signal. Similar performance enhancing effects due to room reflections have been presented

also in (34), where the authors examine the performance of ASR within reverberant environments.

0

100

200

300

400

500

600

700

800

lik
el

ih
oo

d 
ra

tio

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1

0

1

time (sec)

am
pl

itu
de

T60=2.2 sec

T60=0.3 sec

Ideal VAD

Figure 3.8: Likelihood ratio of CCMSM for reverberation times 0.3 and 2 sec. The LRT is significantly
enhanced for the increased reverberation case.

In our experiments, we employed the audio signals recorded at AAU anechoic chamber and

reverberated artificially using the Image Method (27) and we observed that for reverberation time

values up to 2 sec the Pc of the proposed CCMSM algorithm is reduced due to reverberation
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for speech intervals. This can also be observed in Fig. 3.8, where the likelihood is higher for

highly reverberated speech (T60 = 2.0 sec) and short silence intervals within words are masked by

reverberation allowing the usage of more distinct thresholds of decision.

Table 3.2: Performance Results under Reverberation and Noise

CCMSM w/ fixed θ CCMSM w/adapt. θ

Noise T60 Pe% Pc% Pf% Pe% Pc% Pf%

25dB

0.1s 2.04 1.23 2.86 3.08 0.81 5.35
0.3s 2.24 1.17 3.30 3.44 1.09 5.78
0.6s 3.09 1.53 4.64 4.56 1.78 7.33
1.0s 4.14 1.62 6.66 5.80 1.90 9.71
1.5s 5.23 1.60 8.87 6.87 1.92 11.82
2.0s 6.13 1.60 10.66 7.54 1.91 13.18

20db

0.1s 2.14 2.21 2.08 2.62 3.30 1.95
0.3s 2.84 1.96 3.72 2.63 2.98 2.29
0.6s 3.19 1.91 4.48 2.67 1.95 3.38
1.0s 5.17 1.66 8.67 2.31 2.43 2.20
1.5s 6.24 1.65 10.83 2.94 2.38 3.49
2.0s 6.47 1.68 11.26 3.90 2.40 5.39

15db

0.1s 2.27 2.27 2.26 2.49 1.97 3.00
0.3s 2.89 1.90 3.87 2.82 1.01 4.64
0.6s 4.70 1.72 7.68 3.18 0.64 5.73
1.0s 4.73 1.38 8.08 2.16 1.62 2.69
1.5s 5.37 1.19 9.55 3.61 2.61 4.61
2.0s 8.97 1.72 16.22 5.37 2.74 7.99

10db

0.1s 2.48 2.52 2.45 2.47 3.89 1.05
0.3s 4.77 2.74 6.80 2.63 1.65 3.60
0.6s 4.88 2.05 7.70 2.81 1.07 4.55
1.0s 7.56 2.63 12.48 5.16 2.74 7.58
1.5s 7.90 2.56 13.25 6.47 2.24 10.69
2.0s 9.35 2.61 16.08 4.91 2.34 7.48

5db

0.1s 5.36 5.65 5.07 4.46 0.66 8.25
0.3s 6.34 4.52 8.16 3.52 1.46 5.58
0.6s 7.12 4.93 9.32 2.84 1.04 4.64
1.0s 8.59 2.94 14.24 4.66 2.88 6.43
1.5s 9.44 3.17 15.71 2.89 1.58 4.21
2.0s 11.83 5.24 18.42 2.71 2.15 3.28

To evaluate performance of CCMSM under noisy and reverberant conditions, the proposed

algorithm has been applied to audio signals that have been initially reverberated artificially and

then contaminated with additive noise. The results are illustrated in Fig. 3.9 where it is shown
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that the dependence of Pe on the SNR and T60 is not monotonic.

0

0.5

1

1.5

2

5
10

15
20

25

5

10

15

SNR(dB)
T

60
 (sec)

P
 (

%
)

e

Figure 3.9: Performance of the system under simultaneous phenomena with adaptive thresholding
enabled

0
0.5

1
1.5

2

5
10

15
20

25

0

5

10

15

SNR (dB)T
60

 (sec)

P
 (

%
)

e

Figure 3.10: Performance of the system under simultaneous phenomena with fixed thresholding

53



3. EMPLOYING LIKELIHOOD RATIO TEST FOR VOICE ACTIVITY
DETECTION

Substituting the adaptive threshold with a fixed one for every noise condition yields Fig. 3.10,

which demonstrates that an increase in T60 or a decrease in SNR increases Pe and that the non-

monotonic behaviour observed in Fig. 3.9 is due to the presence of the adaptive threshold, which

often caters to the effects of reverberation and noise on the speech signal. The increase of the Pe,

for the case of fixed thresholding, is driven by the increase of Pf as can be observed from Table II.

Pc on the contrary remains almost unaffected by reverberation even for low SNR values.

3.8 Conclusions

In this Chapter a statistical voice activity detector, which relies on the modelling of the distribution

of speech as a linear combination of a Gaussian, a Laplacian, and a two-sided Gamma distribution,

has been presented. The decision criterion of the proposed algorithm is the weighted sum of three

likelihood ratio tests, each one corresponding to one of the fundamental core distributions. The

computation of the corresponding weights has been based on the statistical distances of the instan-

taneous input samples from the Gaussian, the Laplacian, and the two-sided Gamma distribution,

estimated using the Kolmogorov-Smirnov test. To further enhance the performance of the proposed

voice activity detector, an adaptive threshold and a hangover scheme have been introduced. Ex-

periments that were performed using artificially reverberated and contaminated with additive noise

anechoic audio data have shown that the voice activity detector outperforms the existing systems

in terms of error rate and that it produces reliable results even under adverse noise conditions and

reverberation effects. In the next Chapter, the concept of using the likelihood ratio test to detect

voice activity will be expanded to support input from multiple sources so that spatial information

is consider towards optimum performance.

54



Chapter 4

Multiple Microphone Voice Activity
Detection

4.1 Introduction

As we’ve shown in Chapter 3, the performance of VAD systems depends strongly on various factors,

including the discriminative ability of the classification criterion employed, the dynamics of the

additive noise and the signal to noise ratio. Speech signals transmitted within reverberant enclosures

and captured using far-field microphones are subject to superposition of reflected versions of the

source signal. Additionally, the movement of the talking person is also affecting the characteristics

of the captured audio signal.

Towards overcoming such adversities, part of related research focused on microphone arrays

(35, 36). These VAD systems have the advantage of utilizing spatial information while involving

multiple and independent observations in contrary to single microphone based methods, which can

only utilize time and/or frequency information. Nevertheless, most of microphone array based VAD

require precise estimates of the direction-of-arrival (DOA) of speech signals in advance or assume

that the speaker’s movement is limited (35, 36). DOA estimation can seriously affect when audio

signals are captured within reverberant enclosures or by directional noise sources.

An alternative approach proposed by Ramirez et al. (37) is Multiple Observation likelihood

ratio test (MO-LRT) VAD. In MO-LRT, the decision rule that is based on the likelihood ratio of the

Gaussian modelled conditioned speech absence and presence, is formulated over a sliding window

consisting of a set of observation vectors around the frame for which the decision is being made.

Nevertheless, this fact imposes a significant delay to the algorithm and increased computations.

For several applications, including real-time operating telecommunication systems, this can be a

major disadvantage.

In this Chapter a modification of the MO-LRT towards the development of a multiple sensor

VAD will be presented. The proposed scheme takes advantage of the additional information pro-
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vided by microphone arrays. It operates without the need of DOA estimation or additional delay

compared to previous multi-microphone VAD technologies.

4.2 System Description

Assuming that speech is generated by a single speaker (source), the reverberated speech signals

captured by the distant microphone array, bearing M microphones, at time t are given by

xm(τ) = hm(τ) ∗ s(t) + nm(τ) (4.1)

where xm denotes the signal captured by the mth microphone s(τ) the source speech signal at time

τ , hm(τ) the corresponding acoustic impulse response, nm(τ) the additive noise, and ∗ denotes

convolution.

4.2.1 Single Microphone Binary Hypothesis Testing

Voice activity detection can be expressed as the likelihood ratio of two hypotheses stating speech

presence and absence (17). Assuming additive noise the two hypotheses H1 and H0 that indicate

speech presence and speech absence are accordingly:

H0 : speech absence : X(t) = N(t) (4.2)

H1 : speech presence : X(t) = S(t) +N(t) (4.3)

where X(t) = [X0(t),X1(t), ...,XK−1(t)]
T , S(t) =

[
S0(t), S1(t), ..., SK−1(t)

]T
, N(t) = [N0(t), N1(t)

, ..., NK−1(t)]
T are the noisy captured speech, reverberated speech, and noise frequency components.

Real and imaginary parts of noise and speech frequency spectrum are assumed to be zero

mean Gaussian distributed. The probability densities for the noise and speech components with k

denoting the frequency bin are given by

fG
n (Nk(t)) =

1√
2πσ2

n,k

e
−Nk(t)2

2σ2
n,k (4.4)

fG
s (Sk(t)) =

1√
2πσ2

s,k

e
−Sk(t)2

2σ2
s,k (4.5)

where σ2
n,k, σ

2
s,k the slowly varying variances of the Gaussian distributed noise and speech respec-

tively estimated by employing eqn.(3.39) for the kth frequency component. The probability density

functions conditioned on H0 and H1 are given by
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4.2 System Description

p(X|H0) =

K−1∏
k=0

1

πλn,k
exp

{
−|Xk|2

λn,k

}
(4.6)

p(X|H1) =
K−1∏
k=0

1

π [λn,k + λs,k]
exp

{
− |Xk|2
λn,k + λs,k

}
(4.7)

where λn,k and λs,k denote the variances of Nk, Sk respectively.

4.2.2 Single Microphone LRT (SM-LRT)

In the case of single microphone VAD scheme the likelihood ratio for the kth frequency bin is

defined as

Λk ≡ p(X|H1)

p(X|H0)
=

1

1 + ξk
exp

{
γkξk
1 + ξk

}
(4.8)

where ξk ≡ λs,k/λn,k and γk ≡ |Xk|2/λn,k the a priori and a posteriori signal to noise ratios (29)

estimated by employing the Predicted Estimation (PD) (14) method used in Section 3.5.

The decision criteria is based on evaluating the geometric mean of the likelihood ratios for the

individual frequencies and is given by

log Λ =
1

K

K−1∑
k=0

log Λk

H1

≷
H0

η (4.9)

and elaborating on eqn.(4.8)

log Λ =
1

K

K−1∑
k=0

{γk − log (γk)− 1}
H1

≷
H0

η (4.10)

where η denotes the threshold of decision. If the geometric mean is above the value of the threshold

η then speech presence H1 is indicated, whereas for values below η speech absence is indicated.

4.2.3 Multiple Observation LRT (MO-LRT)

Using multiple observations to enhance the likelihood of a VAD system has shown good properties

in previous studies (37). In the MO-LRT system the decision rule is formulated over a sliding

window consisting of 2D + 1 observation vectors around the frame for which the decision is being

made. The likelihood ratio for MO-LRT is given by (37)

log ΛMO =
1

K(2D + 1)

2D+1∑
d=1

K−1∑
k=0

{γk,d − log (γk,d)− 1}
H1

≷
H0

η (4.11)
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4. MULTIPLE MICROPHONE VOICE ACTIVITY DETECTION

Nevertheless, this approach imposes aD -frame delay to the algorithm and 2D+1 times increased

computations that, for several applications, like real-time operating telecommunication systems can

be a major disadvantage.

Figure 4.1: Schematic representation of the frame delay imposed by the MO-LRT

4.2.4 Multiple Microphone LRT (MM-LRT)

Nowadays, microphone arrays (Fig. 4.2) have become a commodity in commercial (mobile phones,

VOIP terminals) and research environments such as smart rooms (38). The modification of MO-

LRT depicted here, takes advantage of the additional information, required to enhance the decision

of an LRT based VAD, that can be retrieved by the available microphones rather than using past

information through sliding windows that increase the overall delay. This modification on MO-LRT

to a Multiple Microphone LRT (MM-LRT) based VAD relies on the following ratio test

log ΛMM =
1

KM
×

M−1∑
m=0

K−1∑
k=0

{γk,m − log (γk,m)− 1}
H1

≷
H0

η (4.12)

where M denotes the number of available microphones.

Figure 4.2: Typical hardware used in linear microphone arrays such as NIST Mark-III Microphone
array.
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4.2.5 Combining MO-LRT and MM-LRT

For the cases that the VAD system doesn’t need to operate real-time we propose the combination

of MM-LRT eqn.(4.12) and MO-LRT eqn.(4.11) to a Multiple Microphone Multiple Observation

LRT (MM-MO-LRT). This combination can potentially enhance even further the performance of

such systems, given that the conditions of operation allow for the increased delay. The combined

likelihood ratio is given by

log ΛMM−MO =
1

KM(2D + 1)

M−1∑
m=0

2D+1∑
d=1

K−1∑
k=0

{γm,k,d − log (γm,k,d)− 1}
H1

≷
H0

η (4.13)

where M and D indicate the number of the employed microphones and the introduced delay

respectively.

4.2.6 Decision Smoothing

In order to enhance the performance of the hypothesis tests the following forgetting scheme is

employed

Φ(t) = (1− λΛ)Φ(t− 1) + λΛ log Λ(t) (4.14)

where λΛ a smothing factor and Φ(t) the smoothed likelihood.

4.3 Performance Discussion

The Pc and Pf were evaluated using the speech recordings performed in the anechoic chamber

of Aalborg University Denmark using a close talking microphone (Section II ). Speech data were,

as before, contaminated artificially with white and vehicular noises from NOISEX-92 database

(33). The microphone array data were artificially generated using the Image Method (27) for a

reverberation time of T60 = 0.15sec and room dimensions [4.4, 5.8, 2.6]m. The speaker was 2.5m

away from the linear array. The input data were sampled at 8 kHz and were segmented into

overlapping frames of 40 msec duration (10 msec step size).

The performance was evaluated under several scenarios and has been compared to SM-LRT,

MO-LRT, the proposed MM-MO-LRT combination and to the standard ITU-T G.729 Annex B

VAD. For a fair evaluation of the systems the same λΛ = 0.04 and frame/step sizes have been used.

By examining the detection performance under a variety of noisy conditions, a set of thresholds

η for each scheme and noise scenario has been heuristically defined. The simulation results are

depicted in Table 4.1.
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4. MULTIPLE MICROPHONE VOICE ACTIVITY DETECTION

Figure 4.3: System architecture for the Multi Microphone LRT.

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

time (sec)

am
pl

itu
de

0

5

10

15

20

25

30

lo
g 

lik
el

ih
oo

d

 

 

MM−LRT 2 mics
MM−LRT 7 mics

Figure 4.4: Likelihood ratio difference when using 2 or 7 microphones in the estimation of MM-LRT
at 10dB of vehicular noise.

60



4.3 Performance Discussion

0.01 0.1 1
0

10

20

30

40

50

60

70

80

90

100

Decision Threshold (logarithmic scale)

S
pe

ec
h 

D
et

ec
tio

n 
R

at
e 

(%
)

 

 

Single mic
MM−LRT 2 mic
MM−LRT 3 mic
MM−LRT 5 mic
MM−LRT 7 mic

Figure 4.5: Performance enhancement as a function of the number of employed microphones.

Figure 4.4 depicts the difference in likelihood ratio when employing 2 and 7 microphones in

eqn.(4.12) at 10dB of vehicular noise. In the latter case the likelihood ratio is significantly enhanced.

The LRT value of short silence intervals within words at intervals of speech has been increased. This

results in a system the likelihood ratio of which is more uniform within speech segments assisting

the overall behaviour of the system towards clipping error reduction.

This type of performance enhancement can be evaluated as a function of speech detection rate

versus the normalized value of threshold that is employed every time. To do this the range of values

for the likelihood ratio are normalized to 1.

Figure 4.5 depicts the performance gain when increasing the number of microphones in eqn.(4.12)

for 10dB of vehicular noise. As shown, the system’s performance is significantly enhanced by just

introducing a second microphone. Additional microphones also have a positive effect to the response

of the system.

Figure 4.6 illustrates the performance of the previously discussed VAD systems under 5dB of

vehicular noise. MM-LRT and MO-LRT are compared under the same computational complexity

in terms of iterations performed to evaluate eqn.(4.11) and eqn.(4.12) respectively. For a fair
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Figure 4.6: Speech Detection Rate vs Non-Speech Error Rate at 5dB SNR of vehicular noise.

evaluation the two systems where set to operate under the same number of iterations thus, M =

2D + 1. A number of M = 7 microphones has been selected for this case that results in increasing

the delay by D = 3 frames. The results show that MM-LRT performs better or equal to MO-LRT

with the same complexity and significantly lower delay. The scenario of MM-MO-LRT has been

also evaluated for the least frame delay increment D = 1 showing that it outperforms the rest

systems with the cost of additional delay.

The performance of the proposed systems has been also evaluated under white noise as illus-

trated in Table 4.1, showing similar properties to vehicular noise operation.

4.4 Conclusions

A statistical VAD, which relies on a multiple microphone likelihood ratio test has been demonstrated

in this Chapter. The system is based on processing signals captured by far-field microphone arrays.

This way the proposed scheme is taking advantage of the spatial information provided by multiple

sensors without assuming knowledge of direction-of-arrival estimates. In scenarios that are not

real-time critical the system can be further extended to include additional observations employing
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4. MULTIPLE MICROPHONE VOICE ACTIVITY DETECTION

a sliding window around the currently processed frame. Through simulations we have demonstrated

that the proposed system remains more robust than a set of related counterparts. In Chapter 5,

the proposed architecture will be used to merge information derived by a signal decomposition

framework, exploiting further the possibilities this VAD scheme.
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Chapter 5

Empirical Mode Decomposition based
Voice Activity Detection

5.1 Introduction

Data analysis is a necessary part of research and practical applications. Nevertheless, it is very

common that data from a process will be likely characterised by several limiting factors. The

total data span will be finite, the data will be non-stationary and the data might emerge from a

non-linear processes. These characteristics might appear individually in a data set or combined.

Furthermore, intervals of data shorter in duration than the total time scale of a stationary process

can be non-stationary. Speech generation process is such a non-linear and non-stationary process

and especially during fast transitions between phonemes and voicing states it can be considered as

highly non-stationary. Thus, its analysis, when employing methods such as Fourier is conducted

under specific assumptions of linearity and stationarity.

Nevertheless, Fourier analysis is the dominant one, and has been applied to all kinds of data

since it was presented. Although the Fourier transform is valid under general conditions the system

must be linear and the data must be periodic or stationary. Otherwise, the resulting spectrum will

make little physical sense. The stationarity requirement is not particular to the Fourier spectral

analysis, as it is a general case for most of the available data analysis methods.

Apart from stationarity, Fourier spectral analysis also assumes data linearity. Although many

processes can be approximated by linear systems, they also have the tendency to be non-linear

whenever their variations become finite in amplitude and time. Despite the limitations imposed

by Fourier analysis, due to lack of alternatives, Fourier spectral analysis is widely used to process

such data and speech. Although the rough adoption of the stationary and linear assumptions may

lead in performance reduction of systems based on Fourier analysis.

In this Chapter the system developed as a multi-microphone VAD serves as the platform to

merge VAD with a very powerful analysis framework the Empirical Mode Decomposition (EMD)(39).
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5. EMPIRICAL MODE DECOMPOSITION BASED VOICE ACTIVITY
DETECTION

This highly efficient method relies on local characteristics of time scale of the data to analyse and

decompose non-stationary signals into a set of so called intrinsic mode functions (IMF). These

functions are injected to the multiple microphone VAD scheme in order to decide upon speech

presence or absence.

VAD systems based on EMD analysis have been also presented in the past in (40) where EMD

has been used to decompose speech signals self-adaptively and locally. Based on extracting entropy-

based features from the resulting IMFs, the experiments have shown that the proposed method

was superior to the entropy extracted from original speech especially under intensive background

noise. In (41) the signal was first decomposed employing EMD, and then partial decomposition

results were processed by Hilbert transform (HT) to obtain the instantaneous frequency. The

threshold of noise was estimated by analysing the front of signal’s Hilbert amplitude spectrum.

The speech segments and non-speech segments were distinguished by the threshold and the whole

signal’s Hilbert amplitude spectrum resulting in very good performance under low SNR conditions.

5.2 Empirical Mode Decomposition

The key part of the EMD method is that any complicated data set can be decomposed into a finite

and often small number of ’intrinsic mode functions’ that admit well-behaved Hilbert transforms.

This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition

is based on the local characteristic time scale of the data, it is applicable to non-linear and non-

stationary processes (39). An IMF must satisfy the following two conditions:

1. In the whole signal set, the number of extrema and the number of zeros crossings must either

equal or differ at most by one.

2. At any point, the mean value of the envelope defined by the maxima and the envelope by the

minima is zero, that is that the upper envelope and the lower envelope of the signal symmetry

in the time axis.

Assuming a single speaker, the speech signal captured by a distant microphone at time τ is

given by

x(τ) = h(τ) ∗ s(τ) + n(τ) (5.1)

where s(τ) denotes the source speech signal at time τ , h(τ) the corresponding acoustic impulse

response, n(τ) the additive noise, and ∗ denotes convolution.

The process of EMD decomposition for x(τ) is the following:
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5.2 Empirical Mode Decomposition

• Identify all the maxima of the whole signal x(τ) and then by using cubic spline curve inter-

polate maxima points to define the upper envelope of the signal.

• Repeat the above methods, find all the minima, fitting the lower envelope.

• The mean value function of the upper and lower envelope is defined as m1(τ), and then the

first signal component can be calculated as

x(τ)−m1(τ) = h1(τ). (5.2)

• Ideally, h1(τ) should be an IMF, however, in reality, it is difficult to obtain the theoretical

upper and lower envelope, but only obtain by cubic spline fitting an approximation. The

sifting process (39) employed can extract the essential scales from the data. The sifting

process serves the purpose to eliminate riding waves and to make the wave-profiles more

symmetric. To achieve that the sifting process has to be repeated more times. In the second

sifting process, h1 is treated as the data and then we get

h1(τ)−m11(τ) = h11(τ). (5.3)

• The sifting procedure is repeated d times, until h1d is an IMF, that is

h1(d−1)(τ)−m1d(τ) = h1d(τ), (5.4)

• Then, it is designated as c1(τ) = h1d(τ) ,the first IMF component from the data. To guarantee

that the IMF components retain enough physical sense of both amplitude and frequency

modulations, a criterion for the sifting process to stop is determined. This is done by limiting

the size of the standard deviation, SD, computed from the two consecutive sifting results as

SD =
T∑

τ=0

[∣∣h1(d−1)(τ) − h1d(τ)
∣∣2

h2
1(d−1)

(τ)

]
(5.5)

A typical value for SD can be set between 0.2 and 0.3. Overall, c1 should contain the finest

scale or the shortest period component of the signal.

• The separation of c1 from the rest of the data is given simply by

x(τ)− c1(τ) = r1(τ). (5.6)

• Since the residue, r1 , still contains information of longer period components, it is treated as

the new data and subjected to the same sifting process as described above.

r1(τ)− c2(τ) = r2(τ), · · · , ri−1(τ)− ci(τ) = rI(τ). (5.7)
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speech segment.

68



5.3 Merging EMD with Multiple Microphone VAD

The sifting process can be stopped by either when the component, ci , or the residue, rI ,

becomes so small that it is less than the predetermined value of substantial consequence, or when

the residue, rI ,becomes a monotonic function from which no more IMFs can be extracted. Finally,

the decomposed data into n-empirical modes, and a residue, rI , which can be either the mean

trend or a constant can be recomposed to the initial signal by

x(τ) =
I∑

i=1

ci(τ) + rI(τ). (5.8)

where I the number of total IMFs that emerged from the decomposition process. In Fig. 5.1 a

decomposition example of a speech segment contaminated by Gaussian noise at 20dB is illustrated.

During the decomposition of EMD, IMFs with the minimal scale are obtained first (high frequency)

and then are IMFs with large scales (low frequency). In the end the IMF with the maximal scale

is derived (the trend). As depicted in Fig. 5.1 the larger scales (low frequency IMF) have very

low amplitude compared to the small ones. Thus, information contained in the specific IMFs is of

lower significance compared to the information contained in the first IMFs.

5.3 Merging EMD with Multiple Microphone VAD

The multiple microphone VAD system developed in 4 serves as the platform to merge VAD and

EMD. Although for the scope of this work, the multiple microphone signals are substituted by the

corresponding I IMFs (5.8). In essence, the signal x(τ) is first decomposed with EMD into a set

of IMF signals ci(τ) that are treated as additional recordings of a microphone array. The trend rI

is not included in the process.

Following 4, VAD is expressed as the likelihood ratio of two hypotheses stating speech presence

and absence for each IMF ci(t). Assuming additive noise the two hypotheses H1,i and H0,i that

indicate speech presence and speech absence are accordingly:

H0,i : speech absence : Xi(t) = Ni(t) (5.9)

H1,i : speech presence : Xi(t) = Si(t) +Ni(t) (5.10)

where Xi(t) = [X0,i(t),X1,i(t), ...,XK−1,i(t)]
T , Si(t) =

[
S0,i(t), S1,i(t), ..., SK−1,i(t)

]T
, Ni(t) =[

N0,i(t), N1,i(t), ..., NK−1,i(t)
]T

are the noisy captured speech, reverberated speech, and noise fre-

quency components for the ith IMF ci(t) with K the total number of frequency bins.

Real and imaginary parts of noise and speech frequency spectrum are assumed to be zero mean

Gaussian distributed for every IMF. The probability densities for the noise and speech components
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with k denoting the frequency bin are given by

fn,i(Nk,i(t)) =
(
2πσ2

n,k,i

)− 1
2 e

−Nk,i(t)
2

2σ2
n,k,i (5.11)

fs,i(Sk,i(t)) =
(
2πσ2

s,k,i

)− 1
2 e

−Sk,i(t)
2

2σ2
s,k,i (5.12)

where λn,k,i = σ2
n,k,i, λs,k,i = σ2

s,k,i the slowly varying variances of the Gaussian distributed noise

and speech respectively estimated by employing eqn.(3.39) for the kth frequency component of the

ith IMF. The probability density functions conditioned on H0,i and H1,i are given by

p(Xk,i|H0,i) =

K−1∏
k=0

1

πλn,k,i
e

{
−|Xk,i|2

λn,k,i

}
(5.13)

p(Xk,i|H1,i) =

K−1∏
k=0

1

π [λn,k,i + λs,k,i]
e

{
− |Xk,i|2
λn,k,i + λs,k,i

}
. (5.14)

In the case of single microphone VAD scheme the likelihood ratio for the kth frequency bin of

the ith IMF is defined as

Λk,i ≡ p(Xk,i|H1,i)

p(Xk,i|H0,i)
=

1

1 + ξk,i
e

{
γk,iξk,i
1 + ξk,i

}
(5.15)

where ξk,i ≡ λs,k,i/λn,k,i and γk,i ≡ |Xk,i|2/λn,k,i the a priori and a posteriori signal to noise ratios

estimated by employing the Predicted Estimation (PD) method (14)

λ̂n,k,i(t+ 1) = ζnλ̂n,k,i(t) + (1− ζn)E
[
|Nk,i(t)|2 |Xk,i(t)

]
λ̂s,k,i(t+ 1) = ζsλ̂s,k,i(t) + (1− ζs)E

[
|Sk,i(t)|2 |Xk,i(t)

]
(5.16)

where λ̂s,k,i(t), λ̂n,k,i(t) are estimates of λs,k,i(t), λn,k,i(t) and ζn ,ζs are smoothing parameters both

set to 0.99.

The decision is drawn through the geometric mean of the likelihood ratios for the individual

frequencies of every IMF

log Λk,i =
1

K

K−1∑
k=0

{γk,i − log (γk,i)− 1} . (5.17)

Thus, the LRT across all IMFs components will be transformed to

ΛEMD
log =

1

IK
×

I∑
i=1

K−1∑
k=0

{γk,i − log (γk,i)− 1}
H1

≷
H0

η (5.18)

where η the threshold of decision estimated by 3.6.
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5.3.1 Likelihood Smoothing

The following forgetting scheme is employed to enhance the performance of the hypothesis test

Φ(t) = (1− λΛEMD
log

)Φ(t− 1) + λΛEMD
log

log ΛEMD
log (t) (5.19)

where λΛEMD
log

= 0.9 the smoothing factor and Φ(t) the smoothed likelihood.

5.4 Performance Discussion

The Pc and Pf were evaluated using the speech recordings performed in the anechoic chamber of

Aalborg University Denmark using a close talking microphone (Chapter 2 ). Speech data were,

as before, contaminated artificially with white and vehicular noises from NOISEX-92 database

(33). The microphone array data were artificially generated using the Image Method (27) for a

reverberation time of T60 = 0.15sec and room dimensions [4.4, 5.8, 2.6]m. The speaker was 2.5m

away from the linear array. The input data were sampled at 8 kHz and were segmented into

overlapping frames of 40 msec duration (10 msec step size). The total number of IMFs used in the

EMD decomposition was fixed to ten and the trend was excluded from the estimation of the LRT

with λEMD
Λ = 0.1.

Reverberation

Additive noise

FF mic

Empirical Mode 
Decomposition Multiple Microphone LRT VAD

Figure 5.2: System architecture for the EMD based LRT VAD

The performance of the proposed systems was evaluated under several scenarios and has been

compared to SM-LRT presented in Section (4.2.2) and to the systems proposed in (40, 41) denoted

as ’EMD+HHT’ and ’EMD + SpEnt’ respectively. Same frame/step sizes have been used for all

systems.
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Figure 5.3: Pe performance under different intensities of White noise

Figure 5.3 depicts how the performance of the proposed system varies as SNR drops due

to AWGN. In this graph, it is shown that the performance of EMD combined with the Multi-

microphone VAD surpasses all other solutions. Additionally, EMD with spectral entropy performs

better that EMD with HHT just for up to 10dB. This is due to the fact that the overall performance

of the former system is subject to Pf . The single microphone LRT is the worst performer depicting

the advantage of performance enhancement with EMD prior likelihood testing.

Babble noise (Fig. 5.4) is considered to be one of the most adverse conditions for VAD. In

this case, the conclusions are similar to those for AWGN. The proposed system performs better

than the rest in almost all cases. EMD with spectral entropy is slightly better than EMD with

HTT system and especially for the case of -5dB it performs better than the proposed solution. The

performance for all systems drops significantly faster with SNR dropping, compared to the case of

white noise.

In the case of car noise (Fig. 5.5), the performance of the proposed system is again above the rest

of the systems. The performance of the EMD + HHT system better than the EMD with spectral

entropy for almost all cases apart from the case of 10dB. The simulation results are depicted in

detail in Table 5.1.
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Figure 5.4: Pe performance under different intensities of babble noise
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Figure 5.5: Pe performance under different intensities of vehicular noise
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5.5 Conclusions

5.5 Conclusions

In this Chapter the system developed as a multi-microphone VAD served as the platform to merge

VAD with a very powerful analysis framework the Empirical Mode Decomposition (EMD). This

highly efficient method relies on local characteristics of time scale of the data to analyse and decom-

pose non-stationary signals into a set of so called intrinsic mode functions (IMF). These functions

were injected to the multiple microphone VAD scheme in order to decide upon speech presence or

absence. The outcome of this procedure demonstrated significantly enhanced performance com-

pared to single microphone approaches and other competing systems employing EMD. Nevertheless,

we think that there is even more space for further improving the performance of the proposed sys-

tem. Such improvements might emerge by adaptively selecting the number of IMFs at every step

and not predefine it heuristically. Additionally, an adaptive way to discard those IMFs that con-

tain very little speech information could possible lead in better performance. Overall, the system

proposed here shows the decomposition ability of EMD in terms of significantly improved perfor-

mance. Nevertheless, the performance comes with a cost. The iterative decomposition procedure

followed to produce the IMFs requires significantly increased computational resources. Given that

the number of iterations required per IMF are not a-priori defined, and is data driven, the whole

system might be to slow for real-time implementation although it is designed on a frame-by-frame

processing basis as the rest of the systems.

75
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Part III

Supervised Voice Activity Detection
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Chapter 6

Hidden Markov Models based VAD

6.1 Introduction

In this Chapter a supervised VAD system that uses far-field microphones is considered. The core

of this system consists of two left-right Hidden Markov Models that operate in the feature domain.

Taking into consideration the observations emerged from Chapter 2 for the distribution of speech

the observation probability distribution function of each state is modelled using Gaussian Mixture

Models. This way the distribution of captured speech will be more accurately modelled as a set

of Gaussian distributions. An adaptive threshold is derived, that allows for optimum performance

even in the case of varying noise statistics. Furthermore, to cater for the inter-frame correlation,

especially in the case of speech presence, a hang-over scheme is employed.

Speech generation is a bi-modal process conveying both, audio and visual information an au-

diovisual VAD that combines the advantages of both modalities is considered. As described in

previous Chapters, conventional VAD systems rely solely on audio information (15); their perfor-

mance is inversely related to the level and the characteristics of the inherent noise. Solely visual

VAD systems on the other hand are immune to the interfering noise; however their performance is

subject to several issues like the visibility of the lips from the camera angle, poor illumination and

low quality of captured images.

A video-VAD is constructed based on the HMM framework of the audio one. The basis of the

design is a computationally efficient lip-tracker, operating on the top of a face detection system.

Simulations performed for the audio modality are compared to those of the video one. An approach

to fuse the two modalities is introduced to illustrate the possibilities of such a combination scheme.

6.2 Audio-VAD System Architecture

The core of the system consists of a pair of Hidden Markov Models (HMM). Each one attempts to

model a different audio scene situation; the first is dedicated to the identification of noisy speech
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6. HIDDEN MARKOV MODELS BASED VAD

intervals, while the second deals with the speech-free segments. The employed HMMs have the

well-documented left-right architecture, in which the index of each state is an increasing, non-

monotonical function of time (42). The rationale behind this choice is to accurately model the time

evolving properties of speech. Stationary emission processes per model state are modelled using

Gaussian Mixtures (GM). Model parameters will be optimised using recorded training data that

have been collected from the enclosure within which the system will operate.

The system operates in the feature domain. In particular, 12 Mel-Frequency Cepstral Coefficients-

(MFCCs) plus energy are used as input. To effectively reflect the incurring changes of speech signal

dynamics and to enhance performance, the first-order derivatives of these features are also taken

into account.

During testing mode, the likelihood of the noise model is subtracted from that of the noisy

speech model to get a speech-presence likelihood. The latter is compared to an adaptive threshold

to allow efficient operation even in non-stationary environments. Decisions are smoothed using

a hang-over scheme (15) that caters for inter-frame correlation of speech signals. The process is

summarized in Fig. 6.1.

Speech 
training data

Block in 
observation 
sequences

Hamming 
Windowing

MFCCs Parameter 
Re-estimation

Model 
Initialization

Speech 
model

Non-Speech 
training data

Block in 
observation 
sequences

Hamming 
Windowing

MFCCs Parameter 
Re-estimation

Model 
Initialization

Non-Speech 
model

LogLikehood
estimation

LogLikehood
estimation

Testing 
data

Decision 
Vector

Figure 6.1: Block diagram of the audio HMM-based VAD component.
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6.2 Audio-VAD System Architecture

6.2.1 Model Initialisation

The choice of the initial values of the HMM parameters is crucial for their performance. This is more

profound in the continuous distribution case, when employing multiple mixture models (42). Using

the k-means algorithm for parameter initialisation results in a different HMM parametrisation each

time the system is trained, even if the the same training data are used. This, in turn, leads to

inconsistent VAD performance. Alternatively a statistical initialization strategy for the Expectation

Maximization (EM) algorithm, based on the statistics of the training data can be employed (43).

According to this, the pair-wise Euclidean distance between all dimensions of the training dataset

is computed and a hierarchical cluster tree is created, based on the Single Linkage (SL) algorithm.

The data is partitioned in each dimension into as many subsets as the modes of each HMM state.

The k-means algorithm (44)is then executed using the central values of each subset as initial

values, and the resulting clustered data are fed into EM algorithm for parameter re-estimation

(45). Experimental results have shown that this approach results in lower error values than the

standard randomly initialised k-means.

6.2.2 Training Mode

During training mode the provided noisy speech and noise observation sequences are split into

overlapping frames of duration 45ms and a set of features is extracted for each frame. Subsequently,

the parameters of the noisy speech λSN and the noise model λN are optimised, using the EM

algorithm. The two models are expected to perform almost identically during speech-absence,

provided that a sufficient number of mixtures is used. The use of GMs improves the data-modelling

ability of the system and thus, enhances its performance. The optimum order of the GMs per model

state is chosen heuristically by assessing performance of the system for various number of states

and order of mixtures. To reduce the computational complexity and/or increase the degrees of

freedom (number of states, order of mixtures) it is assumed that the elements of the feature vectors

are mutually uncorrelated. In practice though this assumption does not hold. Apparently, there is

a compromise between optimal performance and computational efficiency.

6.2.3 Classification Mode

To decide on the content of i − th frame, k prior and k posterior frames are considered, forming

the observation sequence

O(i) = Oi−kOi−k+1 · · ·Oi · · ·Oi+k (6.1)
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6. HIDDEN MARKOV MODELS BASED VAD

to which the forward algorithm is applied (42). The derived conditional probabilities P (O|λSN )

and P (O|λN ) are then subtracted to obtain an estimate of the probability of speech activity within

the i− th frame

D(i) = P (O(i)|λSN )− P (O(i)|λN ) (6.2)

This estimate is then compared to a decision threshold in order to decide upon the content of the

current frame

D(i) ≷speech
silence T (6.3)

Notice that the system, when in classification mode, operates in real time; only a slight delay might

be introduced depending on the choice of k.

6.2.4 Adaptive Threshold
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Figure 6.2: Optimum decision threshold, the distributions of speech and noise for the 0 dB case, and
the fitted curves.

To deal with the dynamic nature of the signals involved in recordings with FF microphones

within enclosures, an adaptive threshold is introduced that aims at the minimisation of the mis-

classifications (Pf , Pc). The underlying concept behind this threshold is that the derived speech-

presence and speech-absence likelihoods follow Gaussian distributions, denoted by pn(z;μn, σn, αn, i)

and ps(z;μs, σs, αs, i) respectively, of different mean value (μn, μs), variance (σn, σs) and amplitude
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6.3 Visual-VAD Architecture

(αn, αs) for the i− th frame of input data. (Fig. 6.2). Given a decision threshold T , the probability

of misclassification will be

P
(i)
mis =

∫ T

−∞
ps(z)dz +

∫ ∞

T
pn(z)dz (6.4)

where the first term of the right hand side stands for the speech classified as noise, while the second

is the probability of noise classified as speech (Notice that the dependence of the pdfs on the frame

index i, and their parameters has been neglected for simplicity reasons). The optimal threshold for

the i− th frame is the argument that minimises the misclassification error.

T (i) : argmin
T

P
(i)
mis (6.5)

Taking the gradient of Pmis with respect to T (i) yields

(σ2
s − σ2

n)T
(i)2 − 2(μnσ

2
s − μsσ

2
n)T

(i) +

(
μ2
nσ

2
s − μ2

sσ
2
n − 2σ2

nσ
2
s ln

(
anσs
asσn

))
= 0 (6.6)

The solution of the quadratic equation (6.6) returns the value of T for which the misclassification

error is minimised.

The threshold T (i) is estimated for every input frame. The noise and speech pdfs are approx-

imated by applying curve fitting techniques to the retrieved histograms. Values of D(i) that are

classified as noise are used to update the properties of pn(z), while those classified as noisy speech

are used to update properties of ps(z). Initially, in the absence of sufficient speech data, T (i) is set

to 3σn.

6.2.5 Decision Smoothing

To further enhance the performance of the system and to correct decisions that lack a rationale

justification, a hang-over scheme is employed. This is a state machine that has 2 major (speech

presence, speech absence) and several intermediate transitions states. Thus for transition from

speech presence to speech absence state at least 150ms of silence should be detected, while 100ms

of speech detections are required for the opposite. This lowers the probability of false rejections, by

reducing the risk of a low-energy portion of speech at the end of an utterance being falsely rejected.

(15).

6.3 Visual-VAD Architecture

Similarly to Audio-VAD, the structure of a classical dichotomizer, consisting of two HMM models,

has been used as the core of the Visual-VAD. The first is used to model lip-movement that occurs
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6. HIDDEN MARKOV MODELS BASED VAD

during speech generation while the second identifies lip-movement during speech-absence. The

employed features are the vertical lip distance and its first derivative. The log-likelihoods that

emerge from the recognition procedure are compared to produce the decisions. These are temporally

filtered to reduce false alarms and clipping errors.

Notice that the horizontal opening of the mouth could be also helpful (46); however, this feature

can not be robustly extracted in an ambient intelligence set-up where visual features are extracted

through automatic processing of facial images captured with FF cameras.

In every frame prior to lip-movement tracking the location of the face is detected using a

boosted cascade of simple classifiers structure (47). This frontal detector is trained using 9,000

positive samples (images including faces) and 18,000 negative samples (images without human

faces), all of them scaled to 12 pixels width and 16 height (aspect ratio of 3/4). The minimum

feature size is 0, hit rate is 99.9% and false alarm per cascade stage 50%. Also horizontal and

45-degrees tilted haar-like features are employed along with non-symmetric faces, four splits and

gentle AdaBoost learning (47).

Within each detected face, a Region Of Interest (ROI) is initially defined heuristically based

on face geometry; the lips of the speaker are assumed to lie in this area. This ROI is then filtered

using a horizontal Sobel gradient operator to emphasize horizontal edges. Laplacian operators are

avoided due to their sensitivity to noise (high frequencies) and ringing (double edges) phenomena.

Provided that the face is not rotated more than 45 degrees, these edges correspond to the lips.

The gradient images are binarised using the adaptive thresholding method proposed by Otsu (48).

Morphological opening is finally applied on the binary image to remove noisy pixels. The outcome

of each stage of this process is depicted in Fig. 6.3.

Figure 6.3: Sobel filtering and binarization of the lip ROI.
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6.3 Visual-VAD Architecture

It is assumed that the upper and lower lips are the two largest components in the lip ROI; the

rest are discarded using size thresholding to the second largest object. The vertical opening of lips

is calculated as the difference of the mean vertical distance of each lip from the bottom edge of

the ROI. By doing so, the effect of the angle of the face in the computation of the lip distance is

minimised.

Based on the estimated lip position and the inter-lip distance, a new ROI is defined that is used

to locate the lips on the next frame. The exact position and the dimensions of the lip ROIs are

temporally smoothed using a recursion. This allows the lip-tracker to cater for the movements of

the head of the speaker. A typical run of the lip tracker on the cropped faces is shown in Fig. 6.4.

The video extracted features, namely the vertical mouth opening and its first-order temporal

difference, are used to train the speech presence and speech-absence HMMs in the training mode.

When the system operates in classification mode the same process is followed; however, features in

this case are fed to the Visual-VAD dichotomiser to produce decisions regarding the existence of

speech activity.
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Figure 6.4: Typical example of lip-tracker’s outcome. The output of the lip-tracker is rather similar
to the energy of a speech-like signal. This is related to the fact that usually, the more we open our
mouth, the higher the level of speech gets.

6.3.1 Fusion

In an AudioVisual-VAD system, the objective is to combine the results of the two modalities

in order to achieve improved and robust performance even under severe noise conditions. Early
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fusion of the audio and visual features in an audio-visual super-vector has been reported to be

outperformed by late fusion of the decisions of the individual modalities (49). In addition, in early

fusion implementations the following issues occur

• Sensors capture raw data in different rates (22050Hz for microphones and 15-30FPS for

camera). Thus the visual features would have to be interpolated in order to be combined

with microphone features.

• The resulting super-vector will not be balanced across the two modalities, since the video

feature vector has two elements, while the audio vector has 26 (12 MFCCs + Energy + 1st

derivative).

To tackle these issues, high-level fusion is employed. The usual approach for decision fusion is to

use weights for the two modalities (50). In some cases these weights are allowed to vary, depending

on the characteristics of the audio-visual signals (51). However, these approaches require training

of the weights and measurement of the chosen audio-visual characteristic, which is not feasible in

the current application. Moreover, they do not take into account the occasional absence of lips due

to head movement, nor the movement of the lips that might occur in speech absence (coughing,

yarning, etc).

In the AudioVisual-VAD a rule-based approach is employed, performing in a hierarchical fash-

ion. More specifically, if a face is detected within the current frame then Visual-VAD becomes the

primary component and Audio-VAD is activated only if lip movement is detected. In this case, a

speech-absence decision by the Visual-VAD results in a general speech absence decision, while both

components should detect speech for a general speech presence decision. On the other hand, if the

face detector does not detect a face in the current frame only the Audio-VAD component is taken

into account (Table 6.1).

Table 6.1: The Employed Fusion Matrix

Face Detection Visual-VAD Audio-VAD AudioVisual-VAD
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0
0 - 1 1
0 - 0 0
0 - 1 1
0 - 0 0
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Figure 6.5: Block diagram of fusing the two modalities.

6.4 Experimental Setup

The performance of the system was evaluated using recordings from a typical office room with

dimensions 7x4x2.5 meters and reverberation time 150ms. A single omnidirectional microphone

placed on a table was used to record the voices of four speakers who were allowed to move freely

in space while recording, in order to emulate a non-intrusive, ambient intelligence environment.

Subjects were asked to read a specific document, including equally distributed segments of speech

and silence. 30% of the recorded data was used for training and 70% for testing purposes. The

recorded sequences were manually annotated with precision 1/100 seconds. The SNR of the data

was approximately 15dB; however, additive noise components were also artificially introduced,

bringing SNR down to -5dB in order to evaluate performance under adverse noise conditions.

The sampling rate was 22kHz and the recorded sequences were split into frames of duration 45ms

during processing. Adjacent frames were overlapping by 75%. The camera operates at 15 frames

per second, with a resolution of 640x480pixels. Heads were less than 250 pixels high in the video

sequence.

The left-right HMMs that were used for the modelling of the noisy speech and noise audio

signals had three states each and six Gaussian distributions per state.
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The performance of the algorithm is compared to that of the VAD system described in annex

B of G.729 audio data compression standard algorithm (4), a very common solution for VoIP

applications and cellular telephony.

6.4.1 Performance Results

The performance results of the proposed system, presented here, were evaluated under three differ-

ent additive white Gaussian noise level scenarios: (a) 15dB, (b) 0dB and (c) -5dB and the results

that were obtained are depicted in Table 3.1. For each noise scenario two situations were examined:

(i) speaker dependent experiments, where the users used for training are a superset of the users

used for testing and (ii) speaker independent experiments, where the speakers used for testing are

not included in the training set.

Table 6.2: Performance Results

Noise Case Pc% Pf% Pe%

Audio - VAD

15dB SpDEP 0.2580 2.7118 1.4849

SpIND 0.0864 3.5247 1.8055

0dB SpDEP 2.6203 2.6437 2.6320

SpIND 2.5231 2.8635 2.6933

-5dB SpDEP 9.0798 6.9208 8.0003

SpIND 10.3073 13.8744 12.0908

Noise Case Pc% Pf% Pe%

Visual - VAD

SpIND 6.3864 9.0466 7.7165

AudioVisual-VAD

15dB SpIND 0.2927 2.7075 1.5001

0dB SpIND 0.8824 2.5851 1.7667

-5dB SpIND 3.8933 5.4793 4.6863

ITU-I Annex B G.729 VAD (4)

Noise Case Pc% Pf% Pe%

15dB SpIND 23.4736 14.7329 19.1032

0dB SpIND 75.3260 1.5916 38.4588

-5dB SpIND 98.9634 1.2982 50.1308

The performance of the proposed VAD at 15dB SNR is almost optimal, with Pe being as low as

1.48% for the speaker dependent (SpDEP) and 1.80% for the speaker independent (SpIND) scenario

(Table 3.1). This can also be observed from Fig. 6.6 where the input signal, the optimal (annotated)

decisions and the produced decisions are depicted for this case. As the noise level increases the

accuracy of the proposed VAD deteriorates rising to 2.69% for the speaker independent case at 0dB.
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However, it can perform satisfactorily even under -5dB of additive white Gaussian noise where it

achieves voice activity detection rates of 88% for the speaker independent case.

The performance of the proposed system is superior than that of the G.729 when these perform

using FF microphones. This can be observed from Table 6.2, where it is presented that G.729 fails

to deliver high accuracy results when performing on reverberant and noisy signals captured with

FF microphones. Moreover, its performance is biased toward noise as can be observed from the

values (voice clipping effect). The effectiveness of the introduced adaptive threshold is depicted

in Fig. 6.6(b) where it is shown that as time evolves the threshold value varies in order to better

reflect the dynamic characteristics of the captured audio signals.
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Figure 6.6: (a)Decision of the proposed VAD system before (dashed line) and after (dotted line) the
application of the hang-over scheme, along with the optimal decisions (solid line) (b) The difference of
the noisy speech from the noise likelihoods plotted along with the adaptive threshold.

The performance of the visual modality is not a function of the noise level. However, its

performance is not optimal since lip-movement (a) commences before speed production and stops

after speech pause, (b) does not necessarily imply speech production and (c) might not be visible at

all times by the camera. So Pe for Visual-VAD is limited to 7.71%. Finally, the performance of the

proposed multimodal system is superior than that of both unimodal systems in terms of accuracy

and robustness (Table 6.2). The fused system combines the advantages of the Visual-VAD with

those of the Audio-VAD. As a consequence it can perform with remarkable accuracy even under

adverse noise conditions (Pe=4.68%), or under poor illumination conditions. Moreover, due to the

hierarchical fusion system, the performance of the AudioVisual-VAD excels that of its consisting
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components. For instance, in the 0dB case, the average detection rate of AudioVisual-VAD is

1.76%, which is smaller than that of the Audio-VAD (2.63%) and of the Visual-VAD (7.71%).

6.5 Conclusions

In this chapter a supervised voice activity detection system suitable for non-intrusive ambient

intelligence applications has been presented. The modelling capabilities of hidden Markov models

have been combined with Gaussian Mixtures per model state to cater for the variable distribution

of speech. Given the bi-modality of speech generation process, conveying both audio and visual

information, an AudioVisual VAD that combines the advantages of both modalities has been also

considered. The employed hierarchical fusion scheme operated at the decision level. Although the

developed system wasn’t based on two perfect modalities, fusing of different VAD showed that there

is a noticeable increment in performance even under extremely adverse conditions.
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Chapter 7

Time Delay Estimation

7.1 Introduction

Voice activity detection is a fundamental component of several speech processing systems. Its

operation is widely combined with other systems to enhance their performance through the dis-

crimination of speech active and inactive periods. Speech processing systems encapsulating VAD

benefit from the fact that they can operate only within speech active periods, which results in al-

lowing resource reallocation and error rate reduction. In this Chapter, performance benefits will be

demonstrated by combining the multi-microphone VAD developed in Chapter 4 with a direction-of-

arrival (DOA) estimation scheme. The core of the DOA system is based on a Mutual Information

(MI) Time delay estimation (TDE) scheme. Optimization of the TDE scheme is considered, prior

performance enhancement with VAD, by encapsulating speech-shaped distributions in the eval-

uation of TDE. This is done in respect to the observations made in Chapter 2 and Chapter 3.

Towards this direction, the underlying assumption of Gaussian distributed source is replaced by

that of Generalized Gaussian distribution that allows evaluating the problem under a larger set

of speech-shaped distributions, ranging from Gaussian to Laplacian and Gamma. Univariate and

multivariate entropy expressions of the Generalized Gaussian distribution are estimated in order

to evaluate the specific information theoretical TDE scheme. The analysis performed, revealed a

significant outcome. It is shown that the employed marginal Mutual Information criterion TDE

proposed in (52) is not depended on the underlying assumption for the distribution of speech as

long as it belongs to the the Generalised Gaussian Distribution (GGD) family.

7.2 Time Delay Estimation

TDE algorithms are embedded in many applications related to localization and tracking of sources,

as part of DOA estimating systems. Systems of interest are voice, sonar and radars (53, 54, 55).

The principle of operation is a literature standard. For the acoustic source tracking scenario, the
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problem is approached by employing distant microphone arrays for the collection of data in frames,

so that the current TDE estimate can be provided. DOA estimation relies on identifying the

relative delay between pairs of microphones using some statistical measure, that returns a peak at

the correct DOA of the source.

The generalized cross-correlation (GCC) algorithm, proposed by Knapp and Carter (56), is

generally considered to be the most common method for TDE (57). The delay estimate function

is provided, by calculating the cross-correlation between the microphone signals and then searching

for the time-delay that maximizes it. The typical limitation of GCC is that if the system is

used in reverberant and noisy environments, the maximum cross-correlation could occur in an

erroneous time-delay created due to the room’s reverberation. Several methods have been proposed

to overcome such issues, including the multichannel cross-correlation coefficient (MCCC) (58), able

to perform adequately in higher noise and reverberation levels by taking advantage of the redundant

information from multiple sensor pairs. However, for non-Gaussian source signals or with limited

number of sensors, it is not any better than GCC.

More recently, the information-theoretic metric of Mutual Information, which can be considered

indirectly as higher order statistics (HOS), was employed in order to evolve TDE (52). Based

on characterizing the speech source as Gaussian, the marginal MI measure was used for TDE. In

addition, in order to overcome reverberation problems more effectively, the MI scheme was modified

to encapsulate information about reflections, improving significantly the estimator’s robustness

against reverberation.

However, all of the aforementioned systems operate under the assumption of Gaussian dis-

tributed (GD) source, something not true for speech. It has been shown (23, 24) that in several

feature domains including time, Fourier Transform (DFT), Discrete Cosine Transform (DCT), and

Karhunen Loeve Transform (KLT), distributions of clean speech, with SNR down to 20dB, can be

very well approximated by Laplacian (LD) and Gamma distributions (ΓD). In addition, speech dis-

tribution varies with time and can be affected by several unpredictable factors including speaker’s

temper, mood, and environmental characteristics.

Additionally, when far-field microphones are used instead of the conventional close-talking, re-

verberation effects, competitive sound sources, and speaker movement can alter the distribution of

captured speech. It becomes apparent that speech is not solely GD, LD, or ΓD distributed, given

its nonstationarity in time and its dependence on external interferences. Thus, speech process-

ing systems relying solely on the Gaussian assumption fail to perform adequately under varying

conditions.

Towards the direction of embedding speech shaped distributions for TDE, the authors in (59)

worked on modeling speech with a Laplacian distribution. The relative delay was estimated via

94



7.3 Information Theory in Time Delay Estimation

minimizing the joint entropy of the multiple microphone output signals. A comparison study (60)

presenting performance differences when employing either Laplacian or Gaussian modeling on the

information theoretical TDE of (52) was performed showing similar performance for both systems

with in fact the Gaussian one performing marginally better. Nevertheless, the Laplacian framework

presented in (59) was based on empirical approximations in order to evaluate the expectations

involved in TDE estimation and the multivariate LD, not allowing for a fair comparison.

7.3 Information Theory in Time Delay Estimation

In general, GCC (56) and its variants like the GCC-PHAT (57) are the most common methods

for TDE. They have the property of exhibiting a global maximum at the lag value that corresponds

to the correct sample delay δ that is syncing the mic recordings. The corresponding delay δ can be

converted to the source’s DOA angle θ by using

θ = arcsin

[
δc

fsd

]
(7.1)

where fs is the sampling frequency of the recording system, and c is the speed of sound (typically

defined as 343 m/s). Thus, the DOA can be obtained by estimating the TDE δ. Note that we

restrict the estimation system to integer-valued delays δ, for which several of the values of θ will

correspond to the same integer delay. This defines the resolution of the array, and it is a function

of the chosen values of d and fs (61).

The problem of the GCC family algorithms is that they cannot perform adequately within

reverberant environments described by the model of (4.1), failing to return accurate estimates of

the relative delay δ. This becomes even more evident for relatively high T60 values.

7.3.1 Mutual Information based TDE

In order to overcome this drawback, some researchers steered their focus on methods employing

information theory, aiming to remain robust under adverse conditions. One of them is Mutual

Information, a measure of how much information one random variable contains about another

random variable. Without loss of generality, we may consider the signals x1 and x2 captured by

two distant microphonesm1 and m2 to be stationary stochastic processes, for which the MI between

them is defined as (62)

I = H[x1] +H[x2(δ)] −H[x1,x2(δ)] (7.2)
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where H[xm] is the differential entropy of xm, and H[x1,x2(δ)] is the joint entropy of the captured

signal x1 and the delayed by δ samples x2(δ). In the scope of TDE, the problem of finding the cor-

rect relative delay between the two signals is equivalent to finding the delay δ that maximizes (7.2).

This practically means that when we determine this delay and synchronize the two microphone

signals, the information that one microphone signal has about the other will be maximum.

If we let xn be an observation vector of a random variable, with density function p (xn), the

differential entropy is defined as

H(xn) =−
∫

p(xn) ln p(xn)dx

= −E{ln p(xn)} (7.3)

where E{·} denotes mathematical expectation.

If we now consider N observation vectors of random variables

x = [x1 x2 . . . xN]T (7.4)

with joint density p(x) their joint entropy will be

H(x) =−
∫

p(x) ln p(x)dx

= −E{ln p(x)} (7.5)

Assuming that the random variables x1,x2, . . . ,xN are Gaussian distributed signals their mul-

tivariate normal distribution with zero mean and covariance matrix

R = E{xxT }

=

⎡
⎢⎢⎢⎣

σ2
x1

rx1x2 . . . rx1xN

rx1x2 σ2
x2

. . . rx2xN

...
...

. . .
...

rx1xN
rx2xN

. . . σ2
xN

⎤
⎥⎥⎥⎦ (7.6)

will be given by

pG(x) =
1(√

2π
)N

[det(R)]
1
2

exp−
1
2
xTR−1x . (7.7)

By substituting (7.7) into (7.5) we compute the joint multivariate Gaussian entropy
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Hm
G (x) =−

∫
pG(x) ln pG(x)dx

=−
∫

pG(x) ln

[
1(√

2π
)N

[det(R)]
1
2

× exp−
1
2
xTR−1x

]
dx

=

∫
pG(x)

[
ln

{(√
2π
)N

[det(R)]
1
2

}

+
1

2
xTR−1x

]
dx

= ln

{(√
2π
)N

[det(R)]
1
2

}∫
pG(x)dx

+
1

2

∫
pG(x)x

TR−1xdx

=
1

2
ln
{
(2π)N det(R)

}
+

1

2
E
{
xTR−1x

}
(7.8)

In order to evaluate the expectation E
{
xTR−1x

}
the trace property is employed so that

E
[
UTV U

]
= E

[
tr(UTV U)

]
= tr(V E

[
UUT

]
) = tr(I) = N where N the size of the identity

matrix (62).

Thus the joint multivariate Gaussian entropy will be

Hm
G (x) =

1

2
ln
{
(2π)N det(R)

}
+

1

2
E
{
xTR−1x

}
(7.9)

=
1

2
tr
{
E
[
R−1xxT

]}
+

1

2
ln
{
(2π)N det(R)

}
=
1

2
N +

1

2
ln
{
(2π)N det(R)

}
=
1

2
ln
{
(2πe)N det(R)

}
(7.10)

Intuitively, the corresponding univariate entropy for any of the random variables x1,x2, . . . ,xN

is given by

Hu
G(xn) =

1

2
ln
{
2πeσ2

xn

}
(7.11)

If we assume that the source signal is zero-mean Gaussian distributed, the MI of (7.2) will be

equal to (62)

I = −1

2
ln

det[C(δ)]

C11C12
(7.12)
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with det[·] the determinant operator andC(δ) the joint covariance matrix of the microphone signals.

For large frame size L (ideally L → ∞) C(δ) can be approximated as

C(δ) ≈
[

x1

x2(δ)

] [
x1

x2(δ)

]T
=

[
C11 C12(δ)

C21(δ) C22

]
. (7.13)

Note that C11 and C22 are time-shift independent variables. The relative delay is obtained as

that delay that maximizes (7.12) through the evaluation of δ̂ = argmaxδ {I}.
As described in (52), given the theoretical equivalence between maximizing the MI in (7.12) and

the GCC algorithm, which is in fact the time-domain interpretation of the basic form of the GCC

method, the MI-based estimator suffers from the same limitations of GCC and its PHAT variant,

i.e., it would not be robust enough in multi-path environments. Thus, the MI calculation of (7.12)

is not representative enough in the presence of reverberation. In order to estimate the information

between the microphone signals, we use the marginal MI that considers jointly neighbouring samples

and can be formulated as follows (62):

IN(G) =Hu
G[x1] +Hu

G[x1(1)] + . . . +Hu
G[x1(D)]

+Hu
G[x2(δ)] +Hu

G[x2(δ + 1)] + . . .

+Hu
G[x2(δ +D)]−Hm

G [x1,x1(1), . . . ,

x1(D),x2(δ),x2(δ + 1), . . . ,x2(δ +D)] (7.14)

which reduces to the following expression for the Gaussian distributed signals

IN(G) = −1

2
ln

det[C(δ)]

det[C11]det[C22]
(7.15)

with the joint covariance matrix

C(δ) ≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x1(1)
...

x1(D)
x2(δ)

x2(δ + 1)
...

x2(δ +D)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x1(1)
...

x1(D)
x2(δ)

x2(δ + 1)
...

x2(δ +D)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

=

[
C11 C12(δ)

C21(δ) C22

]
. (7.16)
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If D is chosen to be greater than zero, the elements of C(δ) are now themselves matrices. In

fact, for any value of δ, the size of C(δ) is always 2(D + 1) × 2(D + 1) where N = 2(D + 1). We

call D the order of the tracking system.

7.4 Employing Laplacian Distribution for TDE

A Gaussian random variable has the highest entropy of all random variables for a given variance.

Hence, a Gaussian random variable is, in some sense, the least predictable of all, which is why the

GD is usually associated with noise. Information bearing signals contain structures that make them

more predictable than GD random variables (63). Those characteristic structures directly affect

the distributions of such signals which deviate significantly from GD. Hence, given that speech is

fundamentally an information bearing signal, one should look for more accurate representation of

its distribution rather than employing GD.

Furthermore, when it comes to acoustic environments, where the signal of interest is typically

speech, GD modelling can be accurate only under specific conditions of reverberation and noise as

was shown in Section II. Thus, under the rough and inaccurate assumption of GD speech for TDE,

performance reduction should be expected. Towards the direction of substituting the Gaussian

entropy assumption with entropies the distributions of which fit better speech characteristics, the

authors in (59) worked on the derivation of the Laplacian Entropy.

Using an approximation of the multivariate Laplacian pdf of x1, x2, . . . , xN given by

p(x) =2(2π)−
N
2 [det(R)]−

1
2
(
xTR−1x

)P
2 ×KP

(√
2xTR−1x

)
(7.17)

where P = (2−N)/2 and KP (·) is the modified Bessel function of the second kind that is given by

KP (α) =
1

2

(α
2

)P ∞∫
0

z−P−1 exp

(
−z − α2

4z

)
dz, a > 0. (7.18)

The multivariate differential entropy Laplacian for random variables x1, x2, . . . , xN was given

by

Hm
L (x) =

1

2
ln

[
(2π)N

4
det (R)

]
− P

2
E

{
ln

(
θ

2

)}
− E

{
lnKP

(√
2θ
)}

(7.19)

where θ = xTR−1x .

The two quantities E
{
ln
(
θ
2

)}
and E

{
lnKP

(√
2θ
)}

cannot be represented in a closed form.

Thus, a numerical method to estimate the expectations has been proposed, assuming that all
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processes are ergodic so as to replace ensemble averages by time averages. For K samples of each

element of the observation vector the following estimators were proposed:

E

{
ln

(
θ

2

)}
≈ 1

K

K−1∑
k′=0

ln
[
θ(k − k′,m)/2

]
(7.20)

E
{
lnKP

(√
2θ
)}

≈ 1

K

K−1∑
k′=0

lnKP

[√
2θ(k − k′,m)

]
(7.21)

where

θ(k − k′,m) = x(k − k′,m)TR−1(m)x(k − k′,m) (7.22)

In practice, R(m) is first estimated with K observations of x(k,m). When the covariance matrix

is estimated, the same data is used to estimate (7.20) and (7.21).

The univariate zero-mean Laplace distribution pdf is given by

p(x) =

√
2

2σx
exp−

√
2|x|
σx (7.23)

and its entropy is

Hu
L(x) = 1 + ln

(√
2σx

)
(7.24)

The comparison study performed in (60) on the effectiveness of different information-theoretical

TDE techniques revealed that, maximizing the MI for TDE gives more consistent results compared

to minimizing the joint entropy given that MI is insensitive to the variance changes of sensor out-

puts. Furthermore, the authors employed the Laplacian entropy proposed by (59) in the estimation

of the marginal MI in (7.14) to investigate possible performance alterations. The marginal MI for

Laplacian distribution assumption is estimated as

IN(L) =Hu
L[x1] +Hu

L[x1(1)] + . . .+Hu
L[x1(D)]

+Hu
L[x2(δ)] +Hu

L[x2(δ + 1)] + . . .

+Hu
L[x2(δ +D)]−Hm

L [x1,x1(1), . . . ,

x1(D),x2(δ),x2(δ + 1), . . . ,x2(δ +D)]. (7.25)

Due to the approximations employed in (7.20) and (7.21) a closed form for (7.25) cannot be

derived. Simulations performed under various reverberant conditions demonstrated that employing

GD models results in performing similarly or slightly better than employing LD for TDE. Neverthe-

less, the Laplacian framework proposed in (59) includes several approximations that do not allow
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for a fair comparison (i.e. the multivariate LD, empirical approximations for the expectations)

something that can possibly explain the reduced performance of LD. The next section provides

solutions for the problems caused by the inaccuracies of the investigated Laplacian framework

through a more generalized approach regarding the underlying distribution.

7.5 Employing Generalized Gaussian Distribution

In order to further investigate how the adaptation of distributions of higher super-gaussianity affects

the performance of TDE, we have to evaluate the output changes of (7.14) as we employ different

underlying distributions. For the scope of the this work, in order to deal with such comparisons

along a wider set of distributions we took advantage of the properties of the Multivariate Generalized

Gaussian distribution (MGGD).

The generalized Gaussian distribution represents an extension of the standard Gaussian distri-

bution which comprises of three parameters, mean, variance and the shape parameter. The latter is

a measure of the peakedness of the pdf, and allows the GG to approximate a large class of statistical

distributions, including the Gaussian, the Laplacian, and the Gamma distributions which are very

close to the distribution of speech.

The N -dimensional zero-mean Generalized Gaussian (GG) distribution for x1, x2, . . . , xN is

defined as (64)

pGG(x) =
[det (R)]−1/2

[Z(β)A(β)]N
exp

{
− 1

2 [x
TR−1x]

β
2

}
(7.26)

where β is the shape parameter. Z(β) = 2
βΓ
(

1
β

)
and A(β) =

√
Γ(1/β)
Γ(3/β) with Γ the Gamma function.

The Gamma, Laplacian, Gaussian and Uniform distributions are special cases of the GGD, with

β = 1
2 β = 1 , β = 2 and β = ∞ respectively.

Through the GGD all multivariate expressions of distributions can be represented in a closed

form avoiding the usage of approximations like in (7.17) that can potentially result in performance

degradation.

The joint entropy for the generalized Gaussian random variables x1,x2, . . . ,xN is given by
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Hm
GG(x) = −

∫
pGG(x) ln pGG(x)dx

= −
∫

pGG(x) ln

[
[det (R)]−1/2

[Z(β)A(β)]N

× exp

{
− 1

2 [x
TR−1x]

β
2

} ]
dx

= −
∫

pGG(x)

[
ln

{
[det (R)]−1/2

[Z(β)A(β)]N

}

− 1

2

[
xTR−1x

]β
2

]
dx

=

∫
pGG(x)

[
− ln

{
[det (R)]−1/2

[Z(β)A(β)]N

}

+
1

2

[
xTR−1x

]β
2

]
dx

=
1

2

∫
pGG(x)

[
xTR−1x

]β
2 dx

− ln

{
[det (R)]−1/2

[Z(β)A(β)]N

}∫
pGG(x)dx

=
1

2
E

{[
xTR−1x

]β
2

}
− ln

{
[det (R)]−1/2

[Z(β)A(β)]N

}
(7.27)

The expectation E

{[
xTR−1x

]β
2

}
in the left part of (7.27) cannot be evaluated through the

trace property as for the case of multivariate Gaussian entropy in (7.8). The methodology proposed

in (59) for evaluating the expectations for the Laplacian joint entropy could be followed instead.

Thus, we have to evaluate the quantity

E

{[
xTR−1x

]β
2

}
≈ 1

K

K−1∑
k′=0

[
θ(k − k′,m)

] β
2 (7.28)

Nevertheless, using such approximations will result in an instant input dependent system, some-

thing definitely not beneficial for comparing TDE systems based on different distribution assump-

tions.

The specific expectation E

{[
xTR−1x

]β
2

}
is actually a Dirichlet integral of type 1 (64, 65).

We note that the expectations over the whole parameter space �N of a function φ(xTR−1x) =

φ(zT z) ≡ φ(u) with u > 0 for x �= 0 can be reduced to integrals over �+ (for non-negative functions
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φ(u)). Thus, for φ(u) = u(β/2) the expectation becomes

E

{[
xTR−1x

]β
2

}
=

=

∫
�N

[
xTR−1x

]β
2 pGG(x)dx

=
[det (R)]−1/2

[Z(β)A(β)]N

∫
�N

[
xTR−1x

]β
2

× exp

{
− 1

2 [x
TR−1x]

β
2

}
dx

=
[det (R)]−1/2

[Z(β)A(β)]N

∫
�N

φ
(
xTR−1x

)

× exp

{
− 1

2 [x
TR−1x]

β
2

}
dx

=
β

Γ
(
N
β

)
2

(
N
β
+1

)
∫
�+

φ (u)u
N
2
−1 exp

(
− 1

2
u

β
2

)
du

=
β

Γ
(
N
β

)
2
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Substituting the expectation of (7.27) with (7.29) we get

Hm
GG(x) = −

∫
pGG(x) ln pGG(x)dx

=
2Γ
(
β+N
β

)
Γ
(
N
β

) − ln

{
[det (R)]−1/2

[Z(β)A(β)]N

}
(7.30)

For the scope of this work the range value of β is 0.5 ≤ β ≤ 2 and thus, (7.30) reduces to

Hm
GG(x) =

N

β
− ln

{
[det (R)]−1/2

[Z(β)A(β)]N

}
(7.31)

For the univariate case of the generalized Gaussian distributed variable x the entropy is

Hu
GG(xn) =

1

β
+ ln

[
2Γ

(
1 +

1

β

)
σxn

√
Γ(1/β)

Γ(3/β)

]
(7.32)
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The theoretical solutions of (7.32),(7.31), derived through the evaluation of Dirichlet inte-

grals match exactly all the theoretically evaluated multi- and uni- variate entropies presented in

(7.23),(7.11),(7.10) and at the same time provide the multi- and uni- variate entropies over a wider

family set of distributions that can be represented through the MGGD or the GGD.

Based on the evaluated expressions for generalized Gaussian Entropies the marginal MI (7.14)

has been modified and used with the GG assumption to estimate the sample delay between signals

received by a two speaker microphone array. The evaluation has been conducted for values of β in

the range 0.5 ≤ β ≤ 2 that correspond to distributions ranging from Gaussian, to Gamma shaped.

The resulting MI is depicted in Fig.7.1
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Figure 7.1: Marginal MI estimated for different values of the shape parameter β employing GGD and
their sum of absolute relative differences.

The system’s response is identical for the different values of β resulting in exactly the same

sample delay estimation regardless of the assumed underlying distribution. Those results actually

indicate that the estimation of marginal MI does not depend on the underlying distribution.

Indeed, by substituting (7.31) and (7.32) in the estimation of the marginal MI (7.14) we have
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IN(GG) =Hu
GG[x1] +Hu

GG[x1(1)] + . . .+Hu
GG[x1(D)]

+Hu
GG[x2(δ)] +Hu

GG[x2(δ + 1)] + . . .

+Hu
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det[C(δ)]

det[C11]det[C22]
(7.33)

The result is identical to the closed form marginal MI of (7.15) estimated for Gaussian assumed

signals. This indicates that the evaluation of marginal MI is distribution independent, verifying the

results depicted in Fig.7.1. This outcome directly exploits MI invariance property that implies that

if X́ = F (X) and Ý = G(Y ) are homeomorphisms, then I(X,Y ) = I(X́, Ý ) (66). The underlying

distribution assumption for the marginal MI estimation is a function of the β shaping factor i.e. a

linear invertible transformation. Thus, MI will be the same regardless of the β value for the given

distribution family of GGD. Although the invariance property is numerically extremely useful, it

would not hold in general for other interdependence measures. Entropy for example, changes in

general under a homeomorphism.

Furthermore, the solution shows that the illustrated difference in performance results in (60)

indicating that the Laplacian based TDE in (59) is surpassed by the Gaussian case, is caused due

to the approximations used for the Laplacian multivariate distribution employed by the authors in

(59) and the proposed empirical approximation for the evaluation of E

{[
xTR−1x

]β
2

}
.
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7.6 Employing VAD towards assisting DOA Estimation

VAD schemes are being widely used to assist DOA estimators (67, 68, 69, 70). When VAD is

adopted before DOA estimation, the system estimates the sound sources position only when the

target sound occurs. Speech emission is a discontinuous sound source. Due to short pauses between

words and phrases, the performance can be interfered greatly in the presence of a competing sound

source during those silent pauses. Therefore, in a similar fashion to speech recognition applications,

VAD is indispensable to achieve better performance by restricting operation of DOA only in between

speech presence intervals.
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Figure 7.2: Estimating direction of arrival with a source placed at approximately 45 degrees in respect
to the array.

In order to demonstrate this effect, the following simulation was carried out by employing the

Image Model for Small room Acoustics (27) to generate artificial sound waves of a speaker placed

at 4 different angles 1 meter away of the center of a linear microphone array. The microphone array

consisted of two microphones placed at 0.20m away. In the experiment, the sampling rate was set

at 22.1kHz and the reverberation time T60=0.15ms. The simulated room dimensions are [5, 4, 3]m.

Framing of 0.128s and 50% overlapping has been used. The estimation of the source’s direction is

based on the the MI based TDE scheme described in the previous sections for each data frame.
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Figure 7.3: Estimating direction of arrival with a source placed at approximately 60 degrees in respect
to the array.
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Figure 7.4: Estimating direction of arrival with a source placed at approximately 90 degrees in respect
to the array.
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Moreover, 15 dB of additive babble noise, one of the most adverse scenaria for DOA, was also

introduced to the signals to act as the competitive sound source from NOISEX-92 database. The

simulation was performed with and without the presence of a VAD. The VAD employed is the multi-

microphone on described in Chapter 4, selected for its ability to encapsulate spatial information

of multiple microphones without DOA dependency. Fig. 7.2 to 7.5 depict the outcome of the

simulation.

Figures 7.2 to 7.5 show that with high SNR, within speech presence periods, DOA it is almost

immune to the reflective environment in and the competitive noise. However, DOA estimation is

influenced by noise when the sound source pauses. This is very reasonable because actually there is

nothing to listen to at that interval but ambient noise. Nevertheless, the performance of a speaker

localization system degrades greatly at those intervals. Unreliability is introduced since without

VAD the system is not capable to recognise that voice emission has stoped and thus, tracking the

target has to be halted. Nevertheless, when VAD is adopted before DOA estimation, the system

estimates the sound sources position only when the target sound occurs.
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Figure 7.5: Estimating direction of arrival with a source placed at approximately 120 degrees in respect
to the array.
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7.7 Conclusions

In this Chapter, one of the speech processing technologies the operation of which is usually com-

bined with a VAD has been presented. More specifically, the performance benefits of combining the

multi-microphone VAD developed in Chapter 4 with a direction-of-arrival (DOA) estimation scheme

were demonstrated. Like most speech processing systems, TDE encapsulating VAD, benefits from

the fact that it operates only within speech active periods, which results in allowing resource real-

location and error rate reduction. Given that speech emission is a discontinuous sound source, the

performance can be interfered greatly in the presence of background noise during silent pauses. The

employed DOA system was based on information theoretical TDE system. The optimization of this

TDE scheme was also considered in the context of encapsulating speech shaped distributions in the

underlying assumption of the speech model employed. Based on the observations of Chapter 2 and

the outcomes of Chapter 3 we investigated how the performance of a robust information-theoretical

TDE algorithm, changes as we switch between different underlying assumptions for the distribution

of speech. For the scope of the study, the generalized Gaussian distribution has been employed that

allowed to investigate the problem under a wide range of super-Gaussian distributions ranging from

Gaussian to Gamma. The analysis performed, indicates that the employed marginal MI criterion

TDE is not depended on the underlying assumption for the distribution of speech when it belongs

to the family of generalized Gaussian distribution, exploiting the invariance property of MI. To

support the analysis, closed forms of the multivariate and univariate differential entropies for the

Generalized Gaussian distribution were derived, that encapsulate the entropies of other well known

distributions like Gaussian, Laplacian and Gamma.
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Chapter 8

Noise Reduction

8.1 Introduction

Speech processing systems often operate in noisy and reverberant environments. Their operation

is subject to the accuracy of the underlying noise reduction algorithm, that aims to reduce noise

present in the signals that are captured by the employed microphones. Under adverse conditions a

noise reduction scheme, failing to perform adequately, will produce results characterised by speech

distortions (metallic or clipping voice) and/or fluctuating residual background noises, the result of

inaccuracy in estimating the noise spectrum, known as musical noise. In this chapter, performance

enhancement when using VAD in combination with noise reduction will be discussed in terms of

residual noise suppression, present within silence intervals and short pauses during speech produc-

tion. For this scope an efficient noise reduction architecture has been developed based on cascading

the scheme of spectral subtraction based on minimum statistics noise estimation (71, 72, 73). The

idea behind the cascaded structures is to initially subtract primary noise and then consequently use

the same technique, with specific parameter adjustments, to remove spectral subtraction artefacts

such as musical noise or noise leftovers that were generated by the first stage. Moreover, the VAD

presented in Chapter 3 is employed to further suppress noise residuals acting as a musical noise

reduction scheme.

8.2 Spectral Subtraction Based on Minimum Statistics

Noise reduction is a speech processing technology, aiming at the reduction of the noise level in

audio signals and thus the enhancement of speech. Its objective is to increase the SNR and the

intelligibility of speech signals captured by microphones. Its operation relies on the performance

of two subsystems; a noise estimator that produces estimates of the additive noise signal based on

measurements of the noisy speech and a rule that subtracts the estimated noise signal from the

noisy one in order to derive the clean speech.
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8. NOISE REDUCTION

An ideal noise reduction system should remove the noise completely without affecting the voice

quality. However, in practice this is not the case; noise reduction systems fail to remove noise

completely and to leave voice unaffected. Moreover, their output signal is usually contaminated

with residuals of noise subtraction called musical noise. One of the reasons is that, very often, the

estimation of noise power spectrum is updated based on the speech presence/absence indication

of an underlying VAD being subject to its accuracy. Tracking of varying noise levels is slow given

that it is updated only within periods of speech inactivity.

Towards eliminating the problem of incorporating a VAD for updating the estimation for the

psd of noise, a minimum tracking of smoothed power estimate values algorithm was introduced

in (71). The algorithm has been updated (72, 73) to cater for the bias that is introduced given

that the short term minimum power is always smaller than - sparsely equal to - the mean power ,

the minimum noise power estimate is a biased estimate of the mean power. The approach tracks

spectral minima in every frequency band without distinction between speech activity and speech

pause. The noisy speech signal is smoothed using an optimal in the mean square sense smoothing

parameter and an unbiased noise estimator is developed. Spectral subtraction is performed by

computing gain factors for every frequency bin based on the a priori SNR (74). The a priori SNR

is computed using the estimated noise spectrum as proposed in (29).

8.2.1 The Algorithm

According to (71) the captured noisy signal x(τ) is assumed to be the sum of the zero mean speech

signal s(τ) and the zero mean noise signal n(τ) thus,

x(τ) = s(τ) + n(τ) (8.1)

where t the time index. s(τ) and n(τ) are assumed to be statistically independent. The process of

denoising can be summarized in the following steps

• The input signal is processed based on DFT in buffers denoted w(τ). The DFT of the

windowed signal will therefore be

X(λ, k) =

WDFT−1∑
n=0

x(λR+ n) · w(n) · exp
(
−j

2πnk

WDFT

)
(8.2)

where WDFT the length of DFT, k = 0, 1, 2, . . . ,WDFT − 1 the frequency bin, R denotes the

decimation/interpolation factor and λ is the decimated time index.
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• To compute the short time signal power |X(λ, k)|2 subsequent magnitude squared input

spectra are smoothed based on an forgetting scheme with γ ≤ 0.9

|X(λ, k)|2 = γ|X(λ − 1, k)|2 + (1− γ)|X(λ, k)|2 (8.3)

• The short time subband signal power Px(λ, k) is computed recursively based on smoothed

periodograms and

Px(λ, k) = aPx(λ− 1, k) + (1− a)|X(λ, k)|2 (8.4)

where the smoothing factor is set heuristically within the range (0.9 ≤ a ≤ 0.95) based on

performance evaluation.

• In order to compute the noise power estimate Pn(λ, k) we take the short time power estimate

Px(λ, k) within a window of D subbund power samples

Pn(λ, k) = ominPmin(λ, k) (8.5)

where Pmin(λ, k) is the estimated minimum power and omin is the factor used to compensate

for the bias of the minimum estimate given by

omin =
1

E{Pmin}|σ2(k)=1
(8.6)

with σ2(k) the noise power for the kth frequency bin.

• Pmin is computed based on the min of the sub-frame when mod (λ,M) = 0 that is

PMmin(qM−1, k) = min(Px(λ0+(q−1)M), Px(λ0+(q−1)M+1), . . . , Px(λ0+qM−1)) (8.7)

• The overall mean is given by

Pmin(λ0, k) = minPMmin(qM − 1, k) (8.8)

where q = 0, 1, 2, . . . ,W − 1 and W the number of the decomposed windows of size M .

• Finally the power spectrum of the denoised signal is given by

|Y (λ, k))| = max(
√

subfPn(λ, k), |X(λ, k)|Q(λ, k)) (8.9)

where

Q(λ, k) =

(
1−

√
osub(λ, k)

Pn(λ, k)

|X(λ, k)|2
)

(8.10)
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that according to (74) the spectral magnitudes subtraction is performed by employing the

oversubtraction osub(λ, k) factor and by limiting the maximum subtraction by a spectral floor

constant subf (0.01) ≤ subf ≤ 0.05.

8.3 Cascaded Noise Reduction

The estimation of the oversubstraction factor osub, involved in the processes of spectral subtraction

employing minimum statistics, is critical for the quality of output. A large oversubtraction factor

per frequency bin osub(λ, k) could significantly suppress the residuals of noise reduction process

(musical noise). This comes with the cost of reduced speech quality as large oversubtraction is

responsible for metallic voice phenomenon and corrupted speech. Towards controlling those effects

the oversubtraction factor is computed as a function of the subband SNR SNRx(λ, k) and frequency

bin k that is osub(λ, k) = f(λ, k, SNRx(λ, k)) (74). Notice that the subband SNR is estimated by

SNRx(λ, k) = 10log

(
Px(λ, k)−min(Pn(λ, k), Px(λ, k))

Pn(λ, k)

)
(8.11)

Thus, the value of oversubtruction is lower for high SNR conditions (speech presence) and high

frequency than low SNR and low frequency. The efficiency of the proposed solution is not optimal

under particular conditions of low SNR, where the intensity of source speech is low or the noise is

extremely variable. The result when the scheme fails to track accurately instant SNR is that the

presence of noise reduction residuals increases and speech is corrupted.

The idea behind cascaded noise reduction is to initially subtract primary noise using Martins

spectral subtraction algorithm (71, 72) and then consequently use the same technique to remove

spectral subtraction remaining artefacts (musical noise) that are generated in the first subtraction

stage. Two approaches have been devised. The first one, directly performs re-estimation of noise

parameters on the power spectrum of the denoised signal |Y (λ, k))|2 of eq.(8.9). Thus, the input of

the second cascaded system is actually the the power spectrum of the denoised signal of the first

noise reduction stage

|X2cas(λ, k)|2 = |Y1cas(λ, k))|2 (8.12)

In order to estimate the output spectral magnitude of the second stage |Y2cas(λ, k))| the proce-

dure of spectral subtraction is repeated in order to update the parameter set of eq.(8.3) to (8.9).

A block diagram of the process is shown in Fig. 8.1.
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Figure 8.1: Cascaded noise reduction block diagram.

The second approach followed employs cascading before performing overlap and adding to join

frames. This way introduces an extra delay (equal to a step) but alters the performance of the

cascaded system by reducing framing effects of the signal.

In the two denoising stages, the employed maximum oversubtraction (ammax) factor that

determines the aggressiveness of spectral subtraction differs. Every stage has different maximum

oversubtraction factor value. The first stage is quite aggressive (ammax = 12), while the second

stage has a lower maximum oversubtraction factor (ammax = 6), intending to gently correct the

leftovers of the first stage.

The noise reduction enhancement when employing a two-stage cascaded systems is illustrated

in the following figures where a noisy speech segment Fig.8.3 (10dB of ”destroyer engine” noise

from NOISEX-92 database (33)) is denoised by employing the single stage noise reduction scheme

Fig.8.4 proposed by Martin (71) and the proposed two-stage cascaded system Fig.8.5.

115



8. NOISE REDUCTION

Figure 8.2: Initial speech signal.

Figure 8.3: Noisy signal 10dB of ”destroyer engine” additive noise.
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Figure 8.4: Single stage noise reduction output spectrogram.

Figure 8.5: Cascaded noise reduction output spectrogram.
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As depicted in Fig. 8.4, where the single stage noise reduction scheme of Martin (71) is employed,

although most of the frequencies noise is cancelled there are still evident residuals from the spectral

subtraction process around the characteristic frequencies of the specific noise type, the psd of which

is shown in Fig. 8.6. When employing the proposed cascading scheme, the noise reduction is even

higher. The outcome of the cascaded denoising process shown in Fig. 8.5 is very close to the initial

clean signal of Fig. 8.2.

8.4 Evaluation of Noise Reduction

The performance of the systems described has been evaluated under several artificial noise-condition

scenarios. This extensive evaluation was necessary in order to agree on a generic parameter setup

for each state of the cascaded noise reduction scheme. The generic parameter setup ensures that

the performance of the system will be satisfactory for most of the noise schemes.
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Figure 8.6: Welch Power Spectral Density Estimate of the employed noises.

Speech data captured in the anechoic chamber of AAU were contaminated artificially with

”vehicular”, ”buccaneer engine”, ”m109”, ”destroyer engine”, ”machine gun” and ”F-16” noise

schemes from NOISEX-92 database (33) at different noise levels. Power spectral density is pre-
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sented in Fig. 3.3 and 8.6. Finally, the data were reverberated using the Image Method (27) with

T60=0.15ms. The input data were sampled at 8 kHz and were segmented into overlapping frames of

256 samples with 64 step size. Thus, the delay introduced by the noise reduction scheme of Martin

-tagged as ”Single Martin”- and the Cascaded version of this -tagged as ”Cascaded”- is 32ms. The

cascaded system, the second stage of which operates on the output of the first after overlap and

adding the data frames, introduces an extra delay equal to an additional step, with the overall

delay being 40ms -tagged as ”Cascade + delay”.

Moreover, the convex combination VAD presented in Chapter 3 is used as a post-processing

block after the ”Cascade + delay” system tagged as ”Cascade + d + VAD”. The combination of

the two technologies aims at revealing the noise suppression benefits within silence intervals and

short pauses between words, when employing VAD. When VAD is used to trigger a Voice Operated

switch (VOX) spectral subtraction residuals (”musical noise”) can be significantly suppressed down

to zero. Eliminating noise reduction residuals to zero is of crucial importance, especially in the

cases where denoising is performed in ”open” communication channels, to avoid amplification of

the effects due to their circulation in the acoustic channel.
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Figure 8.7: Performance of noise reduction schemes in terms of SNR and NR for various levels of
vehicular noise.

The systems are compared in terms of SNR (dB) achieved after denoising and total noise reduc-

tion - NR (dB) within silence intervals. Voice quality is evaluated through Perceptual evaluation

of speech quality (PESQ) (75). Fig. 8.7 to 8.12 summarize the results. The total noise reduction is

computed as the average energy of noise over time, in the initial testing pattern, over the average

energy of the filtered noise. SNR is estimated as the average energy of speech intervals minus the
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average energy of speech absence intervals, over the average energy of speech absence intervals.

For the case VAD is used, the SNR calculation the power of background noise present in speech

intervals is also considered, measured within silence intervals prior the operation of VAD.
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Figure 8.8: Performance of noise reduction schemes in terms of SNR and NR for various levels of
buccaneer engine noise.
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Figure 8.9: Performance of noise reduction schemes in terms of SNR and NR for various levels of m109
engine noise.

As depicted in the figures, the proposed systems achieve high rates of noise reduction, approx-

imately 20-30dB lower than that of Martin’s single stage noise reduction scheme. Furthermore,

musical noise and residuals from the spectral subtraction process are drastically compressed when
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employing the cascaded noise reduction schemes. The version that introduces and additional one

step delay is more gentle treating voice (Fig. 8.13) although, the SNR achieved and overall noise

reduction within silence intervals is slightly lower that the ”Cascade” system.
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Figure 8.10: Performance of noise reduction schemes in terms of SNR and NR for various levels of
destroyer engine noise.
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Figure 8.11: Performance of noise reduction schemes in terms of SNR and NR for various levels of
m109 and machine gun synthetic noise.

The cascaded system employing the VAD performs remarkably better that the rest. The cas-

caded system with additional one step delay was combined with VAD due to its better performance

in terms of speech quality. Nonetheless, one should expect that by encapsulating VAD in the output
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of the system the overall noise reduction and achieved SNR would approach infinity, although this

is not the case here. Due to non-speech detection error rate Pf (false alarms) the average power

of the signal within silence intervals is not 0 and thus the SNR and NR rates are restricted. This

is usually due to the hangover employed that introduces delay in state switching from ”speech” to

”non-speech” state allowing very small segments of noise get through the acoustic channel.
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Figure 8.12: Performance of noise reduction schemes in terms of SNR and NR for various levels of
F-16 cockpit noise.
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different noise intensities.
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Figure 8.13 depicts the performance enhancement in terms of PESQ metric. In general the

cascaded schemes proposed show significantly better performance especially for adverse conditions

below 5dB SNR. The cascaded system with the extra delay performs better than the rest. When

combining its operation with the VAD the performance slightly drops for SNR down to 5dB due

to voice clipping errors. For the adverse conditions of 0dB and -5 dB there is a slight gain in

performance due to suppression of residuals that appear within short pauses of speech between

words.

In order to reduce overall delay, we attempted to reduce the frame and step sizes so that the

noise subtraction is performed on shorter time intervals. Nevertheless, the transition from 256

frame length to 128 aiming to reduce overall delay resulted to a slight performance degradation, in

terms of voice quality and musical noise artefacts.

8.5 Conclusions

In this chapter, one of the speech processing technologies the operation of which is usually combined

with a VAD has been considered. More specifically, the performance benefits of combining VAD

with noise reduction in noisy environments has been examined. Within this context a cascaded

noise reduction framework has been proposed. The idea behind cascading noise reduction in to

two stages is to initially subtract primary noise and then consequently use the same technique

to remove spectral subtraction remaining artefacts and musical noise that are generated in the

first subtraction stage. Two approaches have been followed. The first one, directly performs re-

estimation of noise parameters on the power spectrum of the first stage denoised signal. The second

one operates after the first stage denoised frames have been reconstructed to form the output in

order to cater for the windowing effects. As depicted by the results under a large set of conditions

of different types of noise and intensities the proposed architectures achieve high rates of noise

reduction, approximately two times than that of Martin’s single stage noise reduction scheme. The

VAD presented in Chapter 3 has been employed to further suppress noise residuals acting as a

musical noise reduction scheme showing significant performance enhancement within silence and

short pause intervals.
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Chapter 9

Indicating Apnea using VAD

9.1 Introduction

Chapter 9 deals with the detection of one of the major breathing-related sleep disorders, apnea.

Apnea is considered to cause significant impact on patients health. Symptoms include disruption

of oxygenation, snoring, choking sensations, apneic episodes, poor concentration, memory loss,

and daytime somnolence. Diagnosis of apnea and breath disorders involves monitoring patients

biosignals and breath during sleep in specialized clinics requiring expensive equipment and technical

personnel. In this Chapter the design of a system capable for preliminary detection of sleep breath

disorders at patients home utilizing patient sound signals will be described. The core of the system

is based on a likelihood ratio test voice activity detector modified to detect snoring and heavy

breathing events. The design of the employed VAD is actually a modification of convex combination

scheme presented in Chapter 3. The basic feature of the proposed systems is the capability of

unobtrusive monitoring of patients at home improving this way the reliable detection of sleep

disorders in home environments offering comfort and time saving to patients.

9.2 Apnea Characteristics

Sleep is a basic human need in which there is a transient state of altered consciousness with percep-

tual disengagement from ones environment. Sleep Disordered Breathing (SDB) describes a group

of disorders characterized by abnormalities of respiratory pattern or the quantity of ventilation dur-

ing sleep. SDB causes disruptions in sleep, yielding waking somnolence, diminished neurocognitive

performance, adverse cardiovascular outcomes, insulin resistance and other metabolic dysfunctions.

One major sleep disorder is Obstructive Sleep Apnea (OSA), which is a sleep disorder characterized

by pauses in breathing during sleep. It can occur due to complete or partial obstruction of the

airway during sleep. Sleep Apnea is also known to cause loud snoring, oxyhemoglobin desatura-

tions and frequent arousals (76). Each apnea episode lasts long enough so that one or more breaths
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9. INDICATING APNEA USING VAD

are missed, while such episodes occur repeatedly throughout sleep. The standard definition of an

apneic event includes a minimum of 10 seconds interval between breaths, with either a neurolog-

ical arousal, a blood oxygen desaturation of 3-4% or greater, or both arousal and desaturation.

Clinically significant levels of sleep apnea are defined as five or more episodes per hour of any type

of apnea. There are three distinct forms of sleep apnea: central, obstructive, and complex (i.e., a

combination of central and obstructive) constituting 0.4%, 84% and 15% of cases respectively (76).

Breathing is interrupted by the lack of respiratory effort in central sleep apnea. Regardless of type,

the individual with sleep apnea is rarely aware of having difficulty breathing, even upon awakening.

Symptoms may be present for years (or even decades) without identification, during which

time the sufferer may become conditioned to the daytime sleepiness and fatigue associated with

significant levels of sleep disturbance. As a result, affected persons have unrestful sleep and excessive

daytime sleepiness (76, 77). The disorder is also associated with hypertension impotence and

emotional problems (77). Because obstructive sleep apnea often occurs in obese persons with

comorbid conditions, its individual contribution to health problems is difficult to discern. The

disorder has, however, been linked to angina, nocturnal cardiac arrhythmias myocardial infarction

stroke and even motor vehicle crashes (78, 79, 80, 81, 82).

It is estimated that 20 million Americans are affected by sleep apnea. That would represent more

than 6.5%, or nearly 1 in 15 Americans, making sleep apnea as prevalent as asthma or diabetes.

It is also estimated that 85-90 percent of individuals affected are undiagnosed and untreated. The

Wisconsin Sleep Cohort Study found that, among the middle-aged, nine percent of women and 24

percent of men had sleep apnea (83, 84). 2.500 patients in average per year are examined at sleep

disorder centers in Greece and almost 80% of them are diagnosed with obstructive sleep apnea (85).

The costs of untreated sleep apnea reach further than just health issues. It is estimated that the

average untreated sleep apnea patient’s health care costs $1,336 more than an individual without

sleep apnea. If approximations are correct, 17 million untreated individuals account for $22,712

million, or almost 23 billion in health care costs (86). All the above facts prove the significance of

sleep apnea as a medical problem and justify the research done in this field.

9.3 Common Methods for Apnea Detection

Polysomnography (PSG, see Fig. 9.1) is the most common method for diagnosing obstructive

sleep apnea. In this technique, multiple physiologic parameters are measured while the patient

sleeps in a laboratory. Typical parameters in a sleep study include eye movement observations

(to detect rapid-eye-movement sleep), an electroencephalogram (to determine arousals from sleep),

chest wall monitors (to document respiratory movements), nasal and oral airflow measurements,
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an electrocardiogram, an electromyogram (to look for limb movements that cause arousals) and

oximetry (to measure oxygen saturation). Apneic events can then be documented based on chest

wall movement with no airflow and oxyhemoglobin desaturation. PSG requires special equipment

of high cost to be installed and specialized personnel to be present. It offers limited resources for

patient assessment (e.g., sleeping beds). In addition, elderly or sick patients often find the PSG

equipment too cumbersome, and may be reluctant to spend the night in the sleep laboratory (87).

Figure 9.1: Patients being assessed for Obstructive Sleep Apnea (OSA) using Polysomnography equip-
ment.

Additional methods to Polysomnography have been proposed in literature for sleep disorders

detection or Apnea assessment. Mendez et al. present in (88) a method for screening OSA based on

single ECG signals. Signal processing is used for the detection of RR intervals and QRS complexes

and then the latter are classified using neural networks. The accuracy of the method in identifying

patients with OSA is up to 88% according to authors. This method however requires from the

patient to wear specific equipment and therefore cannot be characterized totally non-invasive.

Furthermore the method relies on the existence of a training set of healthy patients and patients

diagnosed with OSA. EEG arousal is utilized by Sugi et. al in (89) for sleep apnea syndrome

detection. A sensitivity of 86% was achieved in successfully detecting apneic cases using this

method. Still, the patient needs to be assessed in the Sleep Clinique wearing some uncomfortable
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equipment. A body-fixed accelerometer sensor is used in (90) for acquiring vibration sounds during

patients sleep. The latter technique is less invasive than PSG but still can cause discomfort to the

patient and results can be easily biased by the sensor placement. In (91) Brunt et al. present a

pneumatic bio-measurement method installed on patients bed for monitoring heartbeat, respiration,

snoring and body movements. The latter achieves maximum patient comfort but still requires

specialized hardware, a lot of data preprocessing and training and can only be used in Sleep Clinics.

Less invasive methods that have been used more extensively utilize sound processing of breath

and snore sounds generated by patients during sleep. The feasibility of sleep apnea characterization

through specific snore signal features has been proved in previously published studies (92, 93, 94,

95). Sound data acquisition is performed through microphones that are installed near patients

beds at Sleep Clinic. For example the bed of the collaborating in this work Evagelismos Sleep

Disorder Clinic is depicted in Fig. 9.1. Proper processing for noise removal, and feature extraction

for further characterization of the snore as apneic or benign follow sound capturing in such sound

analysis systems. Noise removal can be performed by applying adaptive cancellation filters (94),

Linear Predictive Coding for speech removal (95), Kalman filtering (96) and Wavelet transformation

(97).

All the aforementioned works that utilize snore signal processing for OSA characterization are

based on microphone installations as already mentioned at Sleep Clinics. The proposed system

is based on a mobile device that can be installed at patients home and can transmit snore sound

data to the Sleeping Clinics remotely. Maximum patient comfort during sleep is achieved and

a greater number of patients can be examined, resulting in better and faster prognosis of the

sleep disorders. The following sections present technical details regarding the proposed system

architecture, hardware specifications and the proposed snore sound analysis methodology.

9.4 Applying VAD for Apnea Indication

According to the clinical protocol, an apnea incident occurs when patient breath is interrupted

for more than 6 seconds (77). In addition, the majority of the patients suffering from OSA, snore

during sleep and present apneic events during the pause of snore events (76, 77, 78). Thus, in

order to detect apnea during patients sleep from the acquired snore signal, snoring and breathing

events have to be identified and quantified. Based on conducted experiments, when analyzing the

captured snore sound signal, and applying short-term (i.e. frame lengths below 100ms) Discrete

Fourier Transform (DFT), the distribution of real and imaginary parts of snore coefficients can be

modeled by a two-sided Gamma distribution (TΓD) (23, 24), as illustrated in Fig. 9.2 and 9.3 as

shown for for anechoic voice distribution in Section 2.3.

128



9.4 Applying VAD for Apnea Indication

−0.3 −0.2 −0.1 0 0.1 0.2
0

500

1000

1500

2000

2500

3000

3500

4000

snoring recording amplitude

hi
st

og
ra

m
, p

df

 

 

amplitude histogram

TΓD

GD
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Figure 9.3: Snore amplitude distribution of frequencies. Histograms have been normalized to their
maximum value per frequency bin.

The whole process results in the automated annotation of snore events. This way, silent periods

between two sequential snores (i.e., the time patient does not breath or exhales) are quantified and

depending on their duration, an apneic event can be detected. This way a preliminary assessment
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can be provided to the experts. Subsection presents this method in detail.

9.4.1 Snore Hypothesis Testing

As in the case of voice, snore detection can be performed by evaluating the ratio of two distinct

hypotheses, snore presence, and snore absence, denoted by H1 and H0 respectively. This approach

is analogous to the evaluation of voice activity detection presented in Section 2.2.

H0 : snore absence : X(t) = N(t) (9.1)

H1 : snore presence : X(t) = S(t) +N(t) (9.2)

whereX(t) = [X0(t),X1(t), ...,XM−1(t)]
T , S(t) =

[
S0(t), S1(t), ..., SM−1(t)

]T
,N(t) = [N0(t), N1(t),

..., NM−1(t)]
T are the captured snore signal, source snore signal, and noise frequency components.

9.4.1.1 Probability Distribution of Noise

Both the real and the imaginary parts of noise frequency components are assumed to be zero mean

following GD. The pdf of Nk(t) for the case of noise with k denoting the frequency bin is given by

fG
n (Nk(t)) =

1√
2πσ2

n,k

e
−Nk(t)2

2σ2
n,k (9.3)

where σ2
n,k is slowly varying with time variance factor of the Gaussian assumed distributed noise

for the kth frequency component. The imaginary part follows a similar distribution.

9.4.1.2 Probability Distribution of Snore Signal

As shown before in Figs(9.2, 9.3), it can be assumed that both the real and the imaginary parts of

the frequency distribution of captured snore signal are better modeled using a TΓD

TΓD : fΓ
s (Sk(t))

4
√
3

2
√
πσs,k

4
√
2
|Sk(t)|−

1
2 e

−
√

3|Sk(t)|√
2σs,k (9.4)

for the kth frequency component, where σ2
s,k is the slowly varying variance factor.
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9.4.1.3 Conditional Probability Density Functions

Using the predefined statistical model for snore and assuming Gaussian noise, the conditional pdfs

of snore absence can be expressed as

H0 : fX|H0
(Xk(t)) =

1√
2πσ2

n,k

e
−Xk(t)2

2σ2
n,k (9.5)

The snore presence hypothesis is derived by

H1 for TΓD snore signal model

H1 : fX|H1
(Xk(t)) =

∫ ∞

−∞

4
√
3 |Sk(t)|−

1
2

4π 4
√
2
√
σs,kσn,k

× e
−

√
3|Sk(t)|√
2σs,k

− (Xk(t)−Sk(t))2

2σ2
n,k dSk (9.6)

9.4.2 Snore Detection Likelihood Ratio Test

The likelihood ratio of those two conditional pdfs of snore presence and absence as proposed in

Chapter 3, is defined as

Λk ≡ fXk|H1
(Xk)

fXk|H0
(Xk)

=

∫∞
−∞

4√3
4π 4√2

√
σs,kσn,k |Sk(t)|

e
−

√
3|Sk(t)|√
2σs,k

− (Xk(t)−Sk(t))
2

2σ2
n,k dSk

1√
2πσ2

n,k

e
−Xk(t)2

2σ2
n,k

(9.7)

where fXk|H1
(Xk) is the hypothesis of snore presence H1 and fXk|H0

(Xk) is the hypothesis of snore

absence H0 under the assumption of Gaussian distributed noise. The decision criteria is based on

evaluating the geometric mean of the likelihood ratio for the individual frequencies and is given by

log Λk =
1

K

K−1∑
k=0

log Λk

H1

≷
H0

η (9.8)

whre η denotes the threshold of decision.

The values of snore and background noise power spectrum have to be continuously tracked. In

this case the method of (14), namely Predicted Estimation (PD) has been employed as described

in Section 3.5.

9.5 Threshold Evaluation

To overcome problems from the bias introduced by the LRT towards snore detection H1 (16) we

use a modified version of the one proposed in Section 3.6. The underlying concept behind this

threshold is to track continuously the mean likelihood ratio value for the snore absent intervals. In
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this direction a buffer Nbuf holding past values of log Λk is employed. Initially, for the first 1-2 sec.

of operation the system assumes snore absence. Given the first likelihood values the computation

of the threshold is performed by

η̂(t) ≡ (
Nbuf + 3 · σNbuf

)
(9.9)

where σNbuf
and Nbuf are the standard deviation and mean of the values in Nbuf . The buffer is

updated with new values only within snore absence intervals and if those are smaller than 4 ·σNbuf
.

For smoothing the threshold estimate, a forgetting factor λη = 0.98 is introduced

η̂(t+ 1) = λη · η̂(t) + (1− λη) η̂(t+ 1) (9.10)
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Figure 9.4: System response emerged for a sequence of snore events. Estimated geometric mean and
snore presence/absence decision for the specific input.

9.5.1 Apnea Indication

Given the decision vectors, a snore absence / presence hangover state machine based on (15) that

is able to track transitions from snore to silence intervals is defined. Time information elapsed
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between phenomena of snore presence and absence can be stored into buffer and give the ability of

indicating apnea condition.

normal 
sleep

apnea
indication

H0 H0 H0 H0

H1H1H1
log k > log k >

log k log k log k 

Figure 9.5: State Diagram of Sleep Breath Disorder Detection scheme.

The implementation of the hangover scheme as an apnea indicator is based on the idea that

snores are highly correlated with time as generated with the function of breath. The hangover

scheme is implemented as a state machine shown in Fig 9.5. Parameters H1 and H0 indicate

snore presence and absence respectively, being triggered by the value of log Λk. If the value of the

geometric mean log Λk is greater than or equal to the threshold the snore event is detected otherwise

snore absence is assumed. This slightly biases the system towards snore detection. Thus the value

of log Λk is then used to determine which state H1 or H0 the machine should be in. As mentioned

before an apnea incident occurs when patient breath is interrupted between snores for more than 6

seconds. Given that a new log Λk emerges every 20msec, a number of 50 consecutive snore absence

detections should emerge by the system to indicate an ‘apnea’ incident. A set of 5 (100msec)

consecutive snore presence indications are required to reset the state to ‘normal’ breathing.

Following the transitions in Fig. 9.5 let’s assume that initially the system is at the ‘normal’

breathing state due to past sequential snore detection events. The value of log Λk is employed to

determine how the hangover scheme should proceed. If it gets below the threshold η the state

machine begins to progress through the transition states toward the ‘apnea’ state. At this point

the incident of ‘apnea’ is not definite as the lower value might be a false by the snore detection

algorithm not being able to detect a snore event. After 50 consecutive indications of snore absence

is the hangover scheme will enter the ‘apnea’ state. The chain will remain in that state unless

log Λk becomes greater that the threshold.
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When this event occurs, the hangover scheme will begin to progress through transition states

towards the ‘normal’ breath state. This done due to the uncertainty of snore presence indication

which might be a false alarm. After five consecutive snore indications, the hangover scheme will

return to the ‘normal’ state and wait till the value of log Λk drops below the threshold again.

9.6 Performance Evaluation

In order to evaluate the proposed technique for sleep sound analysis, a number of 9 recordings of

individuals (6 males and 3 females) have been collected at Euagelismos Sleep Clinic, Medical School

in University of Athens (85). Each sound sample corresponds to a complete sleep study (duration

up to 6 hours) of patients that either suffered from sleep apnea or were examined for symptoms

of sleep breath disorders. Snore sound events and apnea have been manually annotated by the

Sleep Clinic experts. The experiments were conducted in three different room conditions. The first

scenario involved recordings in a typical home environment during night with no apparent noise;

the second was performed with additional noise from operating air-conditioning system and the

third with additional urban noise from an open window. The noise intensity in the three recording

scenarios has been restricted close to 15dB, since the recording environment had to be comfort

for the patient. A recording sampling rate of 22.05kHz has been used. The evaluation metrics

employed are:

• TP: True Positives (Percentage of correct indications of snore presence)

• FN: False Negatives (Percentage of incorrectly rejected snore events).

• TN: True Negatives (Percentage of correct indications of silence).

• FP: False Positives (Percentage of misclassified silence intervals).

• SENS: Sensitivity (=TP/(TP+FN)) (Tendency of system towards snore detection).

• SPCF: Specificity (=TN/(TN+FP)) (Tendency of system towards silence).

Table 9.1: Snore Detection Performance Results

Noise SNR TP% FP% FN% TN% SENS% SPCF%

Clinic Sleep Room 15.30dB 98.31 1.69 6.18 93.82 94.02 98.2

Aircondition On 14.41dB 97.36 2.64 3.79 96.21 96.2 97.3

Open Window 12.85dB 92.07 7.93 4.81 95.19 95.0 92.3
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Table 9.2: Apnea Indication Performance Results

Noise SNR TP% FP% FN% TN% SENS% SPCF%

Clinic Sleep Room 15.30dB 79.03 20.97 4.08 95.92 95.09 82.06

Aircondition On 14.41dB 81.44 18.56 2.91 97.09 96.55 83.95

Open Window 12.85dB 76.62 23.38 3.82 96.18 95.25 80.44

Very few alternative methods for the classification of patients through snoring information have

been published to date, like the one described in (98). Using a model based on the snoring pitch,

a sensitivity of 91% at a specificity of 67% is obtained in the detection of Sleep Apnea patients.

Another method for the detection of Sleep Apnea patients based on the transient fluctuations

of a logarithmic average of the respiratory sound intensity was recently validated (99). Subjects

were classified with sensitivity of 93% and specificity 67%.

The method we proposed for snore detection performs similarly or better than those systems

according to the results in Table 9.1 being at the same time computationally lightweight. When

it comes to apnea indication, the simplicity of the hangover scheme we employed doesn’t allow for

optimum performance as FN had to be retained as low as possible so that the possibility that a

healthy subject is indicated to suffer from apneic events is very low (Table 9.2). Nevertheless, given

that apneic events occur multiple times within the time the patient is sleeping, it is very unlikely

failing to indicate that a patient suffers from apnea. Nonetheless, any comparison must be taken

with caution until a validation on a greater database is available.

9.7 Conclusions

In this Chapter a non-invasive system for automated Sleep Apnea detection utilizing snore sound

analysis has been presented. Despite the fact that Obstructive Sleep Apnea is not widely known,

it is a very common health issue with high potential implications and effects on patients health.

The most common assessment method involves the overnight physiological sign monitoring of the

patient in Sleep Clinics, and requires specific equipment and specialized personnel. Most widely

used diagnosis technique of sleep breath disorder events rely completely on the manual scoring of

physiological data by specialists, which is time consuming, costly and not readily available as well.

Snore signals along with apneic events are captured by microphone. The core of the processing

algorithm employed is based on the VAD developed in Chapter 3 with the scope of creating a

computationaly lightweight system that could be potentially used to monitor patients at home

improving this way the prognosis and treatment procedure and offering the maximum comfort

to patients at same time. The system can only be utilized as a preliminary remote assessment

method in case patients present both OSA and snoring. However, since snoring events are highly
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related to OSA (100) the system can act as an indicator for further assessment of the patient

using the standard PSG techniques. The indication of apnea is based on the fact long pauses in

breaths or snores during sleep can indicate an apneic event according to the clinical protocol. A

hangover state machine has been employed to continiously track transitions from snore to silence

event indicating apneic events based on state transition times. Conducted experiments, using the

proposed VAD architecture for detecting snore detection, under various conditions, have indicated

significant accuracy in detecting snoring against background noise.
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Chapter 10

Concluding Remarks

The performance of a VAD, like for most of speech processing system, is significantly downgraded

when far-field (FF) microphones are used instead of the conventional close-talking (CT), due to

reverberation effects, competitive sound sources, and speaker movement that can significantly alter

the statistical characteristics of captured speech. The scope of this work was the development of ro-

bust VAD systems and algorithms, able to operate with one or more FF microphones within adverse

environments. Thus, VAD systems had to be designed in such way so that they are able to cater

for the varying energy of speech signals captured with FF sensors, reflections and highly-intensive

interfering noises. The algorithms developed, as part of this the work, were designed in a real-

time frame-by-frame processing basis to allow for their integration in modern telecommunication

systems, smart rooms and other technologies.

In the first part of this work, speech distribution variability under external interferences was

investigated. This study formed the basis for the development and design of an unsupervised

VAD based in the convex combination of a set of prime distributions able to robustly operate

within adverse conditions. The work continued with the design of a multi-microphone VAD that

encapsulated spatial, apart from frequency and time, information. The multi-microphone VAD

was later used in combination with a powerful data analysis method towards achieving optimal

performance. Speech distribution information was also encapsulated in a supervised VAD scheme

employing Hidden Markov Models the states of which are modelled using Gaussian Mixture Models

to cater for the dynamics of captured speech. Additionally, a visual-VAD was developed and fused

with audio one. Additionally, the effect of the developed VAD algorithms on other audio signal

processing application fields was examined. Those included speaker tracking, noise reduction and

acoustic event detection. Moreover, we worked on the involvement of those audio signal processing

technologies by encapsulating observations, outcomes and techniques that demonstrated better

performance for VAD. We now summarize the key results of our work and discuss open issues.
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10.1 Summary of Main Results

The basis for this work was an extensive study on the effects of noise and reverberation on speech

distribution at various intensity levels and conditions. We demonstrated that when FF microphones

are used, competitive sound sources, and speaker movement can significantly alter the distribution

of captured speech. In contrary to previous studies, we depicted that captured speech with FF

microphones is not solely GD, LD, or ΓD distributed, given its non-stationarity in time and its

dependence on external interferences. This way we justified why speech processing systems relying

solely on the Gaussian or other fixed assumptions are expected not to perform adequately under

varying conditions. Fixed distribution assumptions can be accurate only under specific conditions

of reverberation and noise. Those outcomes, actually directed the whole research effort into the

development dynamically adaptive systems able to overcome such environmental adversities and

speech dynamics.

Moving a step further, a highly efficient statistical voice activity detector was developed, which

relies on the modelling of the distribution of speech as a convex combination of a Gaussian, a

Laplacian, and a two-sided Gamma distribution discussed in Chapter 3. The decision criterion of

the proposed algorithm is the weighted sum of three likelihood ratio tests, each one corresponding

to one of the fundamental core distributions. The computation of the corresponding weights has

been based on the statistical distances of the instantaneous input samples from the Gaussian, the

Laplacian, and the two-sided Gamma distribution, estimated using the Kolmogorov-Smirnov test.

Experiments performed using artificially reverberated and contaminated with additive noise ane-

choic audio data revealed that the specific voice activity detector outperforms the existing systems

in terms of error rate and that it produces reliable results even under adverse noise conditions and

reverberation effects. The result justified our initial hypothesis, that speech distribution can be

better modelled as linear combination of a set of primal distributions rather than any other single

distribution approach.

In the next step, in Chapter 4, we considered the encapsulation of spatial information, embed-

ded in signals captured by far-field microphone arrays, in a VAD scheme. The developed scheme

is taking advantage of the spatial information provided by multiple sensors without the need of

knowledge of direction-of-arrival estimates like previous approaches. Simulations performed demon-

strated that the proposed system remains more robust than a set of related counterparts without

imposing additional delay in the system or being subject to reverberation.

The multi-microphone VAD served as the platform to merge VAD with a very powerful analysis

framework namely Empirical Mode Decomposition (EMD), presented in Chapter 5. This highly

efficient signal decomposition method significantly enhanced the performance of VAD acting as a
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speech enhancement technique prior to voice detection. The outcome of this procedure demon-

strates significantly enhanced performance compared to single microphone approaches.

In the area of supervised voice activity detection, a system based on the modelling capabilities

of hidden Markov models has been developed in Chapter 6 . Gaussian Mixtures modelling has

been employed per model state to cater for the variable distribution of speech in respect to the

outcomes of the research on speech distribution. Given the bi-modality of speech generation process,

conveying both audio and visual information, an Audio-Visual VAD that combines the advantages

of both modalities has been also considered. Although the developed system wasn’t based on two

optimal modalities, fusing of different VAD schemes showed that there is a noticeable increment in

performance even under extremely adverse conditions.

Following the study plan we then concentrated on exploring applications of VAD. In Chapter 7

the performance benefits of combining the developed multi-microphone VAD with a direction-

of-arrival (DOA) estimation scheme were demonstrated on the basis that speech emission is a

discontinuous sound source. The employed DOA system was based on information theoretical TDE

system. The optimization of this TDE scheme was also considered in the context of encapsulating

speech shaped distributions in the underlying assumption of the speech model employed. Thus,

we investigated how the performance of a robust information-theoretical TDE algorithm, changes

as we switch between different underlying assumptions for the distribution of speech in respect to

the instant input. The analysis performed, revealed a significant research outcome. The employed

marginal MI criterion based TDE is not depended on the underlying assumption of the distribution

of speech when that belongs to the family of Generalized Gaussian distribution, exploiting the

invariance property of MI. To support the analysis, closed forms of the multivariate and univariate

differential entropies for the Generalized Gaussian distribution were derived, that encapsulate the

entropies of other well known distributions like Gaussian, Laplacian and Gamma.

Additionally, in Chapter 8, performance enhancement when using VAD in combination with

noise reduction systems has been also documented in terms of residual suppression within silence

intervals. For this scope an efficient noise reduction architecture has been developed based on

cascading an one-pass scheme.

Finally, we steered our focus in acoustic event detection field. More specifically, an automated

sleep apnea detection system utilizing snore sound analysis has been presented. The core of the

processing algorithm employed was based partially on the convex combination of multiple statistical

models VAD aiming to a computationally lightweight system that could be potentially used to

monitor patients at home. This way prognosis, treatment procedure and offering the maximum

comfort to patients is improved. Conducted experiments using the system in various conditions
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have indicated increased accuracy in detecting snoring against background noise and indication of

apneic events compared to other obtrusive methodologies.

10.2 Discussion and Future Directions

VAD accuracy is of paramount importance and plays a critical role in enhancing the performance of

other speech processing systems. Thus, searching for methods to improve accuracy of VAD remains

a highly tempting field. In this thesis we investigated the parameters that affect VAD performance

towards designing better systems able to operate within adverse conditions.

Throughout the individual sections of this work some interesting research directions arose. The

statistical VAD which relies on the modelling of the distribution of speech as a convex combination of

a Gaussian, a Laplacian, and a two-sided Gamma distribution discussed in Chapter 3, outperformed

existing systems in terms of error rate even under adverse noise conditions and reverberation effects.

Although, in the case of intensive car noise (SNR<0 dB), which is Laplacian distributed, the scheme

did not perform as expected. This is due to the assumption of Gaussian distributed noise. Thus,

evaluating the combination of the three prime distributions used to model speech with other than

Gaussian distribution for noise would be very interesting. The convex likelihood ratio would have

to be modified so that it also encapsulates a combination scheme for noise distribution.

Encapsulating the specific convex combination scheme in the multi-microphone VAD approach,

presented in Chapter 4, is indeed interesting to see in the direction of performance optimisation.

Combining such an efficient modelling scheme with spatial information is expected to result in

significantly increased performance.

Another important topic opens through combining the multi-microphone VAD with Empirical

Mode Decomposition, presented in Chapter 5. This highly efficient signal decomposition method

significantly enhanced the performance of VAD acting as a speech enhancement technique prior to

voice detection. Although, the specific decomposition methodology requires significantly increased

computation time in order for the signal to be decomposed into the corresponding intrinsic mode

functions (IMF). Thus, it would be of great importance to investigate methods to boost execu-

tion times of EMD for VAD. Additionally an alternative adaptive way to the heuristic method of

selecting the speech information bearing IMFs could be considered.

Future work in the field of supervised VAD described in Chapter 6 could explore more advanced

facial feature extraction algorithms such as active appearance models aiming to the design of a

more robust Visual VAD. Other decision fusing techniques could also be evaluated in the context

of combining the two modalities of speech production.
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Furthermore, in the field of time delay estimation, presented in conjunction with VAD in Chap-

ter 7, optimisation in the context of encapsulating speech shaped distributions in the underlying

assumption of the speech model employed can be reconsidered for different TDE methodologies.

The analysis performed, as part of this work, revealed that the employed marginal MI criterion

based TDE is not depended on the underlying assumption of the distribution of speech when that

belongs to the family of Generalized Gaussian distribution, exploiting the invariance property of

MI. Although, this property stands only for MI and thus it is of high interest to encapsulate speech

shaped distribution in TDE for other methodologies for which this approach would be beneficial.

Additionally, in the field of noise reduction investigeted in Chapter 8, it would be very interesting

working on improving the embedded VAD schemes that are responsible of accurately updating the

estimation for the spectrum of noise and speech in many denoising systems. This would lead in

more efficient noise reduction systems eliminating musical noise at the same time on the context

of a more accurate noise spectrum estimation.

Finally, the apnea indication methodology presented in Chapter 9 could be further improved

by developing more efficient classification techniques to detect the apneic events. Given the the

system doesn’t need to operate in real-time, advanced classification techniques such as deep-belief

networks and support vector machines could be employed in the direction of increasing detection

accuracy.
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