20 research outputs found

    Ant Colony Optimisation for Dynamic and Dynamic Multi-objective Railway Rescheduling Problems

    Get PDF
    Recovering the timetable after a delay is essential to the smooth and efficient operation of the railways for both passengers and railway operators. Most current railway rescheduling research concentrates on static problems where all delays are known about in advance. However, due to the unpredictable nature of the railway system, it is possible that further unforeseen incidents could occur while the trains are running to the new rescheduled timetable. This will change the problem, making it a dynamic problem that changes over time. The aim of this work is to investigate the application of ant colony optimisation (ACO) to dynamic and dynamic multiobjective railway rescheduling problems. ACO is a promising approach for dynamic combinatorial optimisation problems as its inbuilt mechanisms allow it to adapt to the new environment while retaining potentially useful information from the previous environment. In addition, ACO is able to handle multi-objective problems by the addition of multiple colonies and/or multiple pheromone and heuristic matrices. The contributions of this work are the development of a junction simulator to model unique dynamic and multi-objective railway rescheduling problems and an investigation into the application of ACO algorithms to solve those problems. A further contribution is the development of a unique two-colony ACO framework to solve the separate problems of platform reallocation and train resequencing at a UK railway station in dynamic delay scenarios. Results showed that ACO can be e ectively applied to the rescheduling of trains in both dynamic and dynamic multi-objective rescheduling problems. In the dynamic junction rescheduling problem ACO outperformed First Come First Served (FCFS), while in the dynamic multi-objective rescheduling problem ACO outperformed FCFS and Non-dominated Sorting Genetic Algorithm II (NSGA-II), a stateof- the-art multi-objective algorithm. When considering platform reallocation and rescheduling in dynamic environments, ACO outperformed Variable Neighbourhood Search (VNS), Tabu Search (TS) and running with no rescheduling algorithm. These results suggest that ACO shows promise for the rescheduling of trains in both dynamic and dynamic multi-objective environments.Engineering and Physical Sciences Research Council (EPSRC

    The dynamic vehicle routing problem: a metaheuristics based investigation

    Get PDF
    The desire to optimise problems is as prevalent in today's society as it has ever been. The demand for increases in speed and efficiency is relentless and has resulted in the need for mathematical models to bear greater resemblance to real-life situations. This focus on increased realism has paved the way for new dynamic variants to classic optimisation problems. This thesis begins by considering the Dynamic Vehicle Routing Problem. The basic premise of this routing problem is as follows a percentage of customers are known a priori, for which routes are constructed, further customers then arrive during the course of the working day and need to be incorporated into an evolving schedule. Literature has proposed a timeslot approach, whereby one partitions the working day into a series of smaller problems, that one is then required to solve in succession. This technique is used to produce a variety of metaheuristics based implementations, most noticeably Ant Colony Optimisation and Tabu Search. Consideration is then given to the Dynamic Vehicle Routing Problem with Time Windows. This problem is similar to the Dynamic Vehicle Routing Problem, but requires each customer to be serviced within a predefined period of the day. A metaheuristic approach adapted from the most successful algorithm implemented on the Dynamic Vehicle Routing Problem is presented. Finally consideration is given to a time-based decomposition technique for the Vehicle Routing Problems with Time Windows (Large-Scale instances). This work makes use of the dynamic solution technique developed in the preceding work, and is used in conjunction with an Ant Colony Optimisation algorithm and a descent algorithm

    Glossary, Acronyms, Abbreviations: Space transportation system and associated payloads

    Get PDF
    A glossary of terms (and definitions) in current usage for the space transportation system and associated payloads, as well as acronyms and abbreviations, are presented

    From spline wavelet to sampling theory on circulant graphs and beyond– conceiving sparsity in graph signal processing

    Get PDF
    Graph Signal Processing (GSP), as the field concerned with the extension of classical signal processing concepts to the graph domain, is still at the beginning on the path toward providing a generalized theory of signal processing. As such, this thesis aspires to conceive the theory of sparse representations on graphs by traversing the cornerstones of wavelet and sampling theory on graphs. Beginning with the novel topic of graph spline wavelet theory, we introduce families of spline and e-spline wavelets, and associated filterbanks on circulant graphs, which lever- age an inherent vanishing moment property of circulant graph Laplacian matrices (and their parameterized generalizations), for the reproduction and annihilation of (exponen- tial) polynomial signals. Further, these families are shown to provide a stepping stone to generalized graph wavelet designs with adaptive (annihilation) properties. Circulant graphs, which serve as building blocks, facilitate intuitively equivalent signal processing concepts and operations, such that insights can be leveraged for and extended to more complex scenarios, including arbitrary undirected graphs, time-varying graphs, as well as associated signals with space- and time-variant properties, all the while retaining the focus on inducing sparse representations. Further, we shift from sparsity-inducing to sparsity-leveraging theory and present a novel sampling and graph coarsening framework for (wavelet-)sparse graph signals, inspired by Finite Rate of Innovation (FRI) theory and directly building upon (graph) spline wavelet theory. At its core, the introduced Graph-FRI-framework states that any K-sparse signal residing on the vertices of a circulant graph can be sampled and perfectly reconstructed from its dimensionality-reduced graph spectral representation of minimum size 2K, while the structure of an associated coarsened graph is simultaneously inferred. Extensions to arbitrary graphs can be enforced via suitable approximation schemes. Eventually, gained insights are unified in a graph-based image approximation framework which further leverages graph partitioning and re-labelling techniques for a maximally sparse graph wavelet representation.Open Acces

    Space Transportation System and associated payloads: Glossary, acronyms, and abbreviations

    Get PDF
    A collection of acronyms in everyday use concerning shuttle activities is presented. A glossary of terms pertaining to the Space Transportation System is included

    Space transportation system and associated payloads: Glossary, acronyms, and abbreviations

    Get PDF
    A collection of some of the acronyms and abbreviations now in everyday use in the shuttle world is presented. It is a combination of lists that were prepared at Marshall Space Flight Center and Kennedy and Johnson Space Centers, places where intensive shuttle activities are being carried out. This list is intended as a guide or reference and should not be considered to have the status and sanction of a dictionary

    Workplace values in the Japanese public sector: a constraining factor in the drive for continuous improvement

    Get PDF

    Genotypic variation in climbing ability traits in a common bean RIL population

    Get PDF
    Climbing beans are vines that can be grown in either monoculture using wooden or bamboo trellises or in intercropping with other support crops such as maize, but in either case an important characteristic of climbing beans is their vegetative vigor and climbing ability. A range of climbing bean architecture exists; some are extremely vigorous producing more biomass at the top of the plant (type IVb), while others distribute biomass more uniformly across their the length of their vines (type IVa). Different types are selected by farmers in given situations, depending on climate, cropping system, harvesting method and growing period. Few studies have analyzed the inheritance of climbing ability in common bean or analyzed the interaction of this trait with soil fertility levels. Information about climbing ability and its component traits could be used by plant breeders to develop climbing bean ideotypes for different production systems. Therefore one of our research objectives has been to develop methods to analyze climbing bean growth and apply these to genetic mapping populations. In this research we analyzed a population of recombinant inbred lines derived from the cross of a climbing bean, G2333, by a bush bean, G19839, grown under high and low phosphorus treatments, for traits involved with climbing ability
    corecore