284 research outputs found

    Extended UDP Multiple Hole Punching Method to Traverse Large Scale NATs

    Get PDF
    A Network Address Translator (NAT) is a popular technological tool used in networks, especially in small-sized networks. Recently, network operators have been considering deploying Large Scale NATs (LSNs) to cope with IPv4 address pool exhaustion. This will make it necessary to deal with several problems related to LSNs, such as multiple levels of NATs (cascaded NATs) and the shortage of port numbers used by NATs. To address these issues, this paper extends the concept of UDP Multiple Hole Punching previously proposed by us. The use of our proposed method enables an accurate Port Prediction and reduces the number of open ports. The new method can determine the low TTL values for IP packets. We also discuss the application of i-Path routers, which provide status information about NATs along a network path for end hosts. The use of these routers makes it easier to perform NAT traversal

    Providing End-to-End Connectivity to SIP User Agents Behind NATs

    Get PDF
    The widespread diffusion of private networks in SOHO scenarios is fostering an increased deployment of Network Address Translators (NATs). The presence of NATs seriously limits end-to-end connectivity and prevents protocols like the Session Initiation Protocol (SIP) from working properly. This document shows how the Address List Extension (ALEX), which was originally developed to provide dual-stack and multi-homing support to SIP, can be used, with minor modifications, to ensure end-to-end connectivity for both media and signaling flows, without relying on intermediate relay nodes whenever it is possibl

    Evaluating the effectiveness of packet filter firewall applications in a “dual stack” internet protocol environment

    Get PDF
    Technology providers have been implementing IPv6 capabilities including networking services and security tools for the past several years in anticipation for the transition from IPv4 to IPv6. This thesis will describe the technical background and an experiment to test the capability of two different host based applications for effective packet filtering in a dual IPv4, IPv6 stack environment

    Development of a Graduate Course on the Transition to Internet Protocol Version 6

    Get PDF
    Internet and mobile connectivity has grown tremendously in the last few decades, creating an ever increasing demand for Internet Protocol (IP) addresses. The pool of Internet Protocol version 4 (IPv4) addresses, once assumed to be more than sufficient for every person on this planet, has reached its final stages of depletion. With The Internet Assigned Numbers Authority’s (IANA) global pools depleted, and four of the five Regional Internet Registries (RIR) pools down to the their last /8 block, the remaining addresses will not last very long. In order to ensure continuous growth of the internet in the foreseeable future, we would need a newer internet protocol, with a much larger address space. Specifically, with that goal in mind the Internet Protocol version 6 (IPv6) was designed about two decades ago. Over the years it has matured, and has proven that it could eventually replace the existing IPv4. This thesis presents the development a graduate level course on the transition to IPv6. The course makes an attempt at understanding how the new IPv6 protocol is different than the currently used IPv4 protocol. And also tries to emphasize on the options existing to facilitate a smooth transition of production networks from IPv4 to IPv6

    Supporting NAT traversal and secure communications in a protocol implementation framework

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresThe DOORS framework is a versatile, lightweight message-based framework developed in ANSI C++. It builds upon research experience and subsequent knowledge garnered from the use and development of CVOPS and OVOPS, two well known protocol development frameworks that have obtained widespread acceptance and use in both the Finnish industry and academia. It conceptually resides between the operating system and the application, and provides a uniform development environment shielding the developer from operating system speci c issues. It can be used for developing network services, ranging from simple socket-based systems, to protocol implementations, to CORBA-based applications and object-based gateways. Originally, DOORS was conceived as a natural extension from the OVOPS framework to support generic event-based, distributed and client-server network applications. However, DOORS since then has evolved as a platform-level middleware solution for researching the provision of converged services to both packet-based and telecommunications networks, enterprise-level integration and interoperability in future networks, as well as studying application development, multi-casting and service discovery protocols in heterogeneous IPv6 networks. In this thesis, two aspects of development work with DOORS take place. The rst is the investigation of the Network Address Translation (NAT) traversal problem to give support to applications in the DOORS framework that are residing in private IP networks to interwork with those in public IP networks. For this matter this rst part focuses on the development of a client in the DOORS framework for the Session Traversal Utilities for NAT (STUN) protocol, to be used for IP communications behind a NAT. The second aspect involves secure communications. Application protocols in communication networks are easily intercepted and need security in various layers. For this matter the second part focuses on the investigation and development of a technique in the DOORS framework to support the Transport Layer Security (TLS) protocol, giving the ability to application protocols to rely on secure transport layer services

    Off-Path TCP Exploits of the Mixed IPID Assignment

    Full text link
    In this paper, we uncover a new off-path TCP hijacking attack that can be used to terminate victim TCP connections or inject forged data into victim TCP connections by manipulating the new mixed IPID assignment method, which is widely used in Linux kernel version 4.18 and beyond to help defend against TCP hijacking attacks. The attack has three steps. First, an off-path attacker can downgrade the IPID assignment for TCP packets from the more secure per-socket-based policy to the less secure hash-based policy, building a shared IPID counter that forms a side channel on the victim. Second, the attacker detects the presence of TCP connections by observing the shared IPID counter on the victim. Third, the attacker infers the sequence number and the acknowledgment number of the detected connection by observing the side channel of the shared IPID counter. Consequently, the attacker can completely hijack the connection, i.e., resetting the connection or poisoning the data stream. We evaluate the impacts of this off-path TCP attack in the real world. Our case studies of SSH DoS, manipulating web traffic, and poisoning BGP routing tables show its threat on a wide range of applications. Our experimental results show that our off-path TCP attack can be constructed within 215 seconds and the success rate is over 88%. Finally, we analyze the root cause of the exploit and develop a new IPID assignment method to defeat this attack. We prototype our defense in Linux 4.18 and confirm its effectiveness through extensive evaluation over real applications on the Internet

    A Novel Architectural Framework on IoT Ecosystem, Security Aspects and Mechanisms: A Comprehensive Survey

    Get PDF
    For the past few years, the Internet of Things (IoT) technology continues to not only gain popularity and importance, but also witnesses the true realization of everything being smart. With the advent of the concept of smart everything, IoT has emerged as an area of great potential and incredible growth. An IoT ecosystem centers around innovation perspective which is considered as its fundamental core. Accordingly, IoT enabling technologies such as hardware and software platforms as well as standards become the core of the IoT ecosystem. However, any large-scale technological integration such as the IoT development poses the challenge to ensure secure data transmission. Perhaps, the ubiquitous and the resource-constrained nature of IoT devices and the sensitive and private data being generated by IoT systems make them highly vulnerable to physical and cyber threats. In this paper, we re-define an IoT ecosystem from the core technologies view point. We propose a modified three layer IoT architecture by dividing the perception layer into elementary blocks based on their attributed functions. Enabling technologies, attacks and security countermeasures are classified under each layer of the proposed architecture. Additionally, to give the readers a broader perspective of the research area, we discuss the role of various state-of-the-art emerging technologies in the IoT security. We present the security aspects of the most prominent standards and other recently developed technologies for IoT which might have the potential to form the yet undefined IoT architecture. Among the technologies presented in this article, we give a special interest to one recent technology in IoT domain. This technology is named IQRF that stands for Intelligent Connectivity using Radio Frequency. It is an emerging technology for wireless packet-oriented communication that operates in sub-GHz ISM band (868 MHz) and which is intended for general use where wireless connectivity is needed, either in a mesh network or point-to-point (P2P) configuration. We also highlighted the security aspects implemented in this technology and we compare it with the other already known technologies. Moreover, a detailed discussion on the possible attacks is presented. These attacks are projected on the IoT technologies presented in this article including IQRF. In addition, lightweight security solutions, implemented in these technologies, to counter these threats in the proposed IoT ecosystem architecture are also presented. Lastly, we summarize the survey by listing out some common challenges and the future research directions in this field.publishedVersio

    RPX U+2013 a system for extending the IPv4 address range

    Full text link
    corecore