284 research outputs found

    Optimisation sous contraintes de problèmes distribués par auto-organisation coopérative

    Get PDF
    Quotidiennement, divers problèmes d'optimisation : minimiser un coût de production, optimiser le parcours d'un véhicule, etc sont à résoudre. Ces problèmes se caractérisent par un degré élevé de complexité dû à l'hétérogénéité et la diversité des acteurs en jeu, à la masse importante des données ainsi qu'à la dynamique des environnements dans lesquels ils sont plongés. Face à la complexité croissante de ces applications, les approches de résolution classiques ont montré leurs limites. Depuis quelques années, la communauté scientifique s'intéresse aux développements de nouvelles solutions basées sur la distribution du calcul et la décentralisation du contrôle plus adaptées à ce genre de problème. La théorie des AMAS (Adaptive Multi-Agents Systems) propose le développement de solutions utilisant des systèmes multi-agents auto-adaptatifs par auto-organisation coopérative. Cette théorie a montré son adéquation pour la résolution de problèmes complexes et dynamiques, mais son application reste à un niveau d'abstraction assez élevé. L'objectif de ce travail est de spécialiser cette théorie pour la résolution de ce genre de problèmes. Ainsi, son utilisation en sera facilitée. Pour cela, le modèle d'agents AMAS4Opt avec des comportements et des interactions coopératifs et locaux a été défini. La validation s'est effectuée sur deux problèmes clés d'optimisation : le contrôle manufacturier et la conception de produit complexe. De plus, afin de montrer la robustesse et l'adéquation des solutions développées, un ensemble de critères d'évaluation permettant de souligner les points forts et faibles des systèmes adaptatifs et de les comparer à des systèmes existants a été défini.We solve problems and make decisions all day long. Some problems and decisions are very challenging: What is the best itinerary to deliver orders given the weather, the traffic and the hour? How to improve product manufacturing performances? etc. Problems that are characterized by a high level of complexity due to the heterogeneity and diversity of the participating actors, to the increasing volume of manipulated data and to the dynamics of the applications environments. Classical solving approaches have shown their limits to cope with this growing complexity. For the last several years, the scientific community has been interested in the development of new solutions based on computation distribution and control decentralization. The AMAS (Adaptive Multi-Agent-Systems) theory proposes to build solutions based on self-adaptive multi-agent systems using cooperative self-organization. This theory has shown its adequacy to solve different complex and dynamic problems, but remains at a high abstraction level. This work proposes a specialization of this theory for complex optimization problem solving under constraints. Thus, the usage of this theory is made accessible to different non-AMAS experts' engineers. Thus, the AMAS4Opt agent model with cooperative, local and generic behaviours and interactions has been defined.This model is validated on two well-known optimization problems: scheduling in manufacturing control and complex product design. Finally, in order to show the robustness and adequacy of the developed solutions, a set of evaluation criteria is proposed to underline the advantages and limits of adaptive systems and to compare them with already existing systems

    Multi-Agent Cooperation for optimizing Weight of Electrical Aircraft Harnesses

    Get PDF
    This paper deals with minimizing aircraft electrical system weight. Because of technological advances that are spreading, electrical system of aircraft is more complex to design and requires new way to be conceived in order to reduce its weight. This paper describes how to optimize weight of harnesses thanks to the Adaptive Multi-Agent System approach. This approach is based on agent cooperation which makes global function of system emerge. Communication between agents is the focus of this approach. We will develop this approach and apply it to the weight optimisation problem. The developed software provides results that are either equivalent or better than those of classical approaches. Moreover, this software may be a precious help to engineer in charge of designing harnesses as it enables to make different tests in a quasi-real time

    The Self-Adaptive Context Learning Pattern: Overview and Proposal

    Get PDF
    International audienceOver the years, our research group has designed and developed many self-adaptive multi-agent systems to tackle real-world complex problems, such as robot control and heat engine optimization. A recurrent key feature of these systems is the ability to learn how to handle the context they are plunged in, in other words to map the current state of their perceptions to actions and effects. This paper presents the pattern enabling the dynamic and interactive learning of the mapping between context and actions by our multi-agent systems

    Exploiting the Use of Cooperation in Self-Organizing Reliable Multiagent Systems

    Get PDF
    In this paper, a novel and cooperative approach is exploited introducing a self-organizing engine to achieve high reliability and availability in multiagent systems. The Adaptive Multiagent Systems theory is applied to design adaptive groups of agents in order to build reliable multiagent systems. According to this theory, adaptiveness is achieved via the cooperative behaviors of agents and their ability to change the communication links autonomously. In this approach, there is not a centralized control mechanism in the multiagent system and there is no need of global knowledge of the system to achieve reliability. This approach was implemented to demonstrate its performance gain in a set of experiments performed under different operating conditions. The experimental results illustrate the effectiveness of this approach

    Methodological Guidelines for Engineering Self-organization and Emergence

    Get PDF
    The ASCENS project deals with the design and development of complex self-adaptive systems, where self-organization is one of the possible means by which to achieve self-adaptation. However, to support the development of self-organising systems, one has to extensively re-situate their engineering from a software architectures and requirements point of view. In particular, in this chapter, we highlight the importance of the decomposition in components to go from the problem to the engineered solution. This leads us to explain and rationalise the following architectural strategy: designing by following the problem organisation. We discuss architectural advantages for development and documentation, and its coherence with existing methodological approaches to self-organisation, and we illustrate the approach with an example on the area of swarm robotics

    Organization of Multi-Agent Systems: An Overview

    Full text link
    In complex, open, and heterogeneous environments, agents must be able to reorganize towards the most appropriate organizations to adapt unpredictable environment changes within Multi-Agent Systems (MAS). Types of reorganization can be seen from two different levels. The individual agents level (micro-level) in which an agent changes its behaviors and interactions with other agents to adapt its local environment. And the organizational level (macro-level) in which the whole system changes it structure by adding or removing agents. This chapter is dedicated to overview different aspects of what is called MAS Organization including its motivations, paradigms, models, and techniques adopted for statically or dynamically organizing agents in MAS.Comment: 12 page

    Cooperative self Organization of agents for optimization : the electrical wiring example

    Get PDF
    International audienceIn aircrafts, densifying electrical systems and oversizing cables in order to respect constraints induce a useless increase in cable weight. This increase leads to additional costs of operation and to an unnecessary pollution during the plane operating life. In this paper we address optimization of harness weight which is a mono-objective problem with manifold and interdependent constraints. To solve this problem, we use a multi-agent approach based on the cooperative self-organization of agents. Performances obtained by the 'Smart Harness Optimizer' software that we have developed are promising for problems considered by the experts as being very difficult. In this article, we expose the method used to solve this Constraint Optimization Problem. Then we apply it to the addressed problem and finally we give results on typical cases and analyze them

    Principles and experimentations of self-organizing embedded agents allowing learning from demonstration in ambient robotic

    Get PDF
    International audienceAmbient systems are populated by many heterogeneous devices to provide adequate services to its users. The adaptation of an ambient system to the specific needs of its users is a challenging task. Because human-system interaction has to be as natural as possible, we propose an approach based on Learning from Demonstration (LfD). However, using LfD in ambient systems needs adaptivity of the learning technique. We present ALEX, a multi-agent system able to dynamically learn and reuse contexts from demonstrations performed by a tutor. Results of experiments performed on both a real and a virtual robot show interesting properties of our technology for ambient applications

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF
    corecore