
THESIS

presented at

Université Paul Sabatier - Toulouse III
U.F.R. MATHÉMATIQUES, INFORMATIQUE ET GESTION

to obtain the title of

DOCTEUR DE L’UNIVERSITÉ DE TOULOUSE

delivered by

UNIVERSITÉ PAUL SABATIER - TOULOUSE III

Mention INFORMATIQUE

by

ELSY KADDOUM

Doctoral school: Informatique et Télécommunication
Laboratory: Institut de Recherche en Informatique de Toulouse

Team: Systèmes Multi-Agents Coopératifs

Optimization under Constraints of Distributed Complex

Problems using Cooperative Self-Organization

JURY

Tom HOLVOET Professor, KULeuven (Reviewer)
René MANDIAU Professor, Université de Valenciennes (Reviewer)
Franco ZAMBONELLI Professor, Università di Modena e Reggio Emilia (Reviewer)

Thierry DRUOT Engineer Airbus, Toulouse (Examiner)
Greet VANDEN BERGHE Senior Lecturer, KaHo Sint-Lieven (Examiner)
Katja VERBEECK Lecturer, KaHo Sint-Lieven (Examiner)

Marie-Pierre GLEIZES Professor, Université de Toulouse III (Supervisor)
Jean-Pierre GEORGÉ Assistant Professor, Université de Toulouse III (Co-Supervisor)

Elsy Kaddoum

OPTIMISATION SOUS CONTRAINTES DE PROBLÈMES DISTRIBUÉS

PAR AUTO-ORGANISATION COOPÉRATIVE

Directeur de thèse : Marie-Pierre Gleizes, Professeur, UPS

Co-Directeur : Jean-Pierre Georgé, Maître de conférences, UPS

Résumé
Les ingénieurs se heurtent quotidiennement, quel que soit leur secteur d’activité, à des

problèmes d’optimisation. Il peut s’agir de minimiser un coût de production, d’optimiser le
parcours d’un véhicule, d’améliorer les performances d’un produit, d’affiner un modèle
de calcul, etc. Ces problèmes se caractérisent par un degré élevé de complexité dû à
l’hétérogénéité et la diversité des acteurs en jeu (humains, appareils électroniques, etc.), à
la masse importante des données, à la distribution des informations manipulées ainsi qu’à
la dynamique des environnements dans lesquels ils sont plongés.

Face à la complexité croissante de ces applications, les approches de résolution classiques
ont montré leurs limites. Depuis quelques années, la communauté scientifique s’intéresse
aux développements de nouvelles solutions basées sur la distribution du calcul et la
décentralisation du contrôle plus adaptées à ce genre de problème. La théorie des AMAS
(Adaptive Multi-Agents Systems), développée au sein de l’équipe SMAC, propose le
développement de solutions utilisant des systèmes multi-agents auto-adaptatifs par auto-
organisation coopérative. Dans ces systèmes, les agents poursuivent des buts locaux
et interagissent d’une manière coopérative. C’est par leur interaction locale que le
fonctionnement du système est rendu plus robuste et plus adapté à la dynamique de
l’environnement, et ainsi, la fonction globale du système émerge. Suite à plusieurs études,
cette théorie a montré son adéquation pour la résolution de problèmes complexes et
dynamiques, mais son application reste à un niveau d’abstraction assez élevé.

L’objectif de ce travail est de modéliser et de spécialiser cette théorie pour la
résolution de problèmes complexes d’optimisation sous contraintes présentant des critères
multidisciplinaires et multi-objectifs. Ainsi, l’utilisation des AMAS en sera facilitée et
pourra être mise à disposition des ingénieurs ayant à résoudre ce genre de problèmes.
Pour cela, le modèle d’agents AMAS4Opt avec des comportements et des interactions
coopératifs et locaux a été défini. Ce modèle peut être instancié ou étendu pour résoudre
divers problèmes d’optimisation. La validation s’est effectuée sur deux problèmes clés
d’optimisation : le contrôle manufacturier se caractérisant par un degré élevé de dynamique
et la conception de produit complexe basée sur le raisonnement par population se
caractérisant par la masse importante de données interdépendantes à manipuler.

Finalement, afin de montrer la robustesse et l’adéquation des solutions développées,
un second objectif de mon travail de thèse a été la définition d’un ensemble de critères
d’évaluation permettant de souligner les points forts et faibles des systèmes adaptatifs et
de les comparer à des systèmes existants.

Cooperative Self-Organisation for Optimization under Constraints i

Elsy Kaddoum

OPTIMIZATION UNDER CONSTRAINTS OF DISTRIBUTED COMPLEX

PROBLEMS USING COOPERATIVE SELF-ORGANIZATION

Supervisor: Marie-Pierre Gleizes, Professor, UPS

Co-Supervisor: Jean-Pierre Georgé, Associate Professor, UPS

Abstract
We solve problems and make decisions all day long: at home, at work, while playing.

Some problems and decisions are very challenging: What is the best sequence of actions to
reach a goal or the best itinerary to deliver orders given the weather, the traffic and the hour?
How to choose the best time for a meeting knowing the availability of concerned people
and meeting rooms with adequate material? How to improve product manufacturing
performances or to refine a computational model given delays to satisfy, interdependencies
between parameter and multi-disciplinary aspects? etc. Problems that are characterized by
a high level of complexity due to the heterogeneity and diversity of the participating actors
such as humans or electronic devises, to the increasing volume of manipulated data and
their distribution and to the dynamics of the applications environments.

Classical solving approaches have shown their limits to cope with this growing
complexity. Thus, the scientific community has been interested, for the last several years,
in the development of new solutions based on computation distribution and control
decentralisation, which are more appropriate for solving such problems. The AMAS
(Adaptive Multi-Agent-Systems) theory developed by the SMAC team, proposes to build
solutions based on self-adaptive multi-agent systems using cooperative self-organisation.
In such systems, cooperative interacting agents pursue local goals. By their interactions, the
robustness of the system and its capacities to adapt to dynamic environments are increased.
Thus, the global function of the system emerges. This theory have shown its adequacy to
solve a large variety of complex and dynamic problems, but it remains at a high abstraction
level, requiring AMAS experts for its application.

This work proposes a specialisation of this theory for complex optimisation problem
solving under constraints characterized by multi-disciplinary and multi-objective criteria.
This will make the usage of this theory accessible to different non-AMAS experts engineers
confronted to such problems. Thus, the AMAS4Opt agent model with cooperative, local and
generic behaviours and interactions has been defined. Such behaviours and interactions
can be instantiated and extended for solving different complex optimisation problems.
Once identified, they have been instantiated and tested on two well-known optimisation
problems: scheduling in manufacturing control characterised by high level of dynamics
and complex product design characterised by the volume of interrelated data.

Finally, in order to show the robustness and adequacy of the developed solutions, a set of
evaluation criteria is proposed to underline the advantages and limits of adaptive systems
and to compare them with already existing systems.

Cooperative Self-Organisation for Optimization under Constraints iii

Many Thanks...

THREE years have passed, three years of hard work but three years of great pleasure,
thanks to all who contributed to this work, even indirectly.

First, I would like to thank my jury members. Pr. René Mandiau, thank you for accepting
to be the president of my thesis jury. I would also like to thank you, Pr. Tom Holvoet and
Pr. Franco Zambonelli for your thorough evaluation and reviewing of my thesis document.

I would also like to thank Greet Vanden Berghe and Katja Verbeeck, not only for
accepting my invitation to be part of my jury, but also for my 3 months visit to their
laboratory. It was a great experience for me, I have learned a lot from you and from your
team.

I also address my thanks to Claudia Raibulet. Our collaboration concerning the
evaluation of self-* multi-agents systems brought me a lot. I hope we will be able to continue
this collaboration.

My thanks to the Zonta international organization from which I received the Amelia
Earhart Fellowships. This reward was for me the recognition of the importance of my work
and encouraged me while facing the challenges of my research. A special thank you to Miss
Katherine Piquet Gauthier and to every person I met in this organization.

During those three years, I have always felt welcomed in the IRIT laboratory. I would
like to thank every person I met or asked for a service. Thank you for being here and for
your help.

Special thanks and thanks and thanks to every member of the SMAC team. Marie-Pierre,
Pierre and Jean-Pierre, thank you for supervising this work, for being here every time I
needed you. I have learned a lot from each of you and hope that every PhD student can have
supervisors like you. My colleagues, thanks for your support, for your encouragements, for
your joy, for every advice you gave me as teachers or researchers, for the coffee breaks, for
every discussion we had, etc. The list is getting long... Thank you for being here.

I would also like to thank every person at Upetec, especially Davy, Sylvain R. and Jean-
Pierre. You are a bit far now, but I won’t forget all the shared moment, especially the
discussions we had at lunch time. It was very nice moments.

I have been in France for eight years now. Thanks to all my friends who I consider as
my second family. Fred, Joel, Marion, Georgette, Joseph, Liliane, Cindy and Diana, thanks
for everything you have done for us. Elodie, I enjoyed every moment we shared and I hope
that you will come back soon to Toulouse. A special thought to the Loustics Team, Nathalie,
Stéphanie, Jean-baptiste and Damien, thank you all for your support and the enjoyable
parties we had together. Bernard, Michèle, Eric, Fabienne and every member of the Dudouit

Cooperative Self-Organisation for Optimization under Constraints v

Many Thanks...

family, it is a great pleasure to meet you. Thanks for all your encouragements and advices
in this very hard period.

My joy every morning I hear my phone ringing with this song. Mum and Dad, I can’t
find the words to thank you. You are at my side and encourage me at every moment. Even
with the distance, you always found the right words to help me go ahead. I am really happy
that you can share this moment with me. I hope that you do not regret the moment you
accepted to send us here; I hope that you are proud of your three children.

Sister Larousse, you encouraged me to follow your steps. It was hard at the beginning
but you were always here and now I want to thank you for this great experience you
shared with me. Thanks for every moment we had and will have together. Thanks for
your encouragements especially in those last months of my thesis. Thanks for all the time
you spent correcting my documents. You are my "Larousse"! I wouldn’t be here without
you. Sorry, for every time I annoyed you. I wish you all the best. You deserve it.

Brother Chouchy, my little brother! I hope you enjoy your stay with us. Thanks for all
your help and for the great moments (lunches, beers, knacki balls, Hot dog sandwiches, etc.)
we shared. Thanks for all your encouraging SMS. Enjoy every moment you can have in your
university, I wish you a lot of courage for your studies and the best for your life.

A warm thank for you Stéphane. Thanks for everything you have done for me. Thanks
for encouraging me to work hard those last months. I won’t have finished this report
without you being by my side. You knew how to enter my life and to become an essential
part of it.

vi Cooperative Self-Organisation for Optimization under Constraints

Contents

Acronyms 1

Introduction Générale 3

General Introduction 7

1 State Of the Art: Optimization under Constraints 11

1.1 Introduction . 16

1.2 Constraint Optimization Problem . 17

1.2.1 Solving Techniques Overview . 18

1.2.1.1 Uninformed Search . 18

1.2.1.2 Informed Search . 19

1.2.2 Heuristics and Meta-Heuristics . 22

1.2.2.1 Single Point Search Algorithms 23

1.2.2.2 Population-Based Search Algorithms 25

1.2.2.3 Analysis of Meta-heuristics . 25

1.2.3 Hybrid Meta-Heuristics . 27

1.2.3.1 Analysis of Hybrid Meta-Heuristics 28

1.3 Distributed Constraint Optimization Problem 28

1.3.1 Variables Agentification . 29

1.3.1.1 Asynchronous Distributed Constraint Optimisation (ADOPT) 29

1.3.1.2 Optimal Asynchronous Partial Overlay (OptAPO) 30

1.3.1.3 Analysis . 31

1.3.2 Nature Inspired . 32

1.3.2.1 Ant Colony Optimization . 33

1.3.2.2 Particle Swarm Optimization 33

1.3.2.3 Analysis . 34

1.3.3 Domain Entities Agentification . 35

Cooperative Self-Organisation for Optimization under Constraints vii

Contents

1.3.3.1 Direct Communication: Dynamic Contract-Net Protocol 37

1.3.3.2 Indirect Communication: Stigmergy 38

1.3.3.3 Environment Feedback: Reinforcement Learning 40

1.3.4 MAS and Meta-heuristics . 41

1.4 Case Based Reasoning Solving Technique . 42

1.4.1 Analysis . 42

1.5 Conclusion & Discussion . 45

2 Theory & Tools for the Study 49

2.1 Introduction . 51

2.2 The AMAS Theory: Cooperative Self-Organisation 51

2.2.1 The Theorem of Functional Adequacy 51

2.2.2 Consequence of the Functional Adequacy Theorem 53

2.2.3 Achieving Self-Adaptation and Self-Organisation 53

2.2.4 Architecture of an AMAS Agent . 54

2.2.4.1 Interaction Module . 55

2.2.4.2 Skill Module . 55

2.2.4.3 Representation Module . 56

2.2.4.4 Aptitude Module . 56

2.2.4.5 Cooperation Module . 56

2.2.5 Internal Functioning of an AMAS Agent 58

2.3 The ADELFE Methodology . 59

2.4 AMAS Modelling Language . 60

2.5 MAY: Make Agents Yourself . 62

2.6 Conclusion and Analysis . 63

3 A Generic Agent Model for Complex Problem Solving 67

3.1 Introduction . 69

3.2 Agent Roles . 70

3.2.1 Constrained Role . 71

3.2.2 Service Role . 72

3.3 Agent Interaction and Communication . 73

3.4 Agent Criticality . 74

3.5 Cooperative Rules . 75

3.5.1 Incompetence . 75

3.5.2 Unproductiveness . 76

viii Cooperative Self-Organisation for Optimization under Constraints

Contents

3.5.3 Uselessness . 76

3.5.4 Conflict . 78

3.5.5 Concurrence . 79

3.5.6 Illustration of some Non Cooperative Situations 79

3.6 Specification of Agent Modules using AMAS-ML 80

3.7 MAY Agent Architecture . 84

3.8 Conclusion . 84

4 Criteria for the Evaluation of Self-Adaptive Multi-Agent Systems for Complex
Problem Solving 87

4.1 Introduction . 89

4.2 Evaluation of the System at Runtime . 91

4.2.1 Performance metrics . 91

4.2.2 Homeostasis & Robustness . 94

4.3 Intrinsic Characterization of the System . 95

4.3.1 Computational Complexity . 95

4.3.2 Decentralisation and Local Algorithms 96

4.4 Development Methodologies Characterization 97

4.5 Comparative Evaluation . 99

4.6 Main Difference between Self-? and Classical Systems 102

4.7 Conclusion . 102

5 Application, Experimentation & Validation 105

5.1 Introduction . 107

5.2 Manufacturing Control Scheduling Problem 108

5.2.1 Dynamic Flexible Job Shop Problem . 109

5.2.2 The Adaptive Multi-Agent System . 110

5.2.2.1 Agent Interactions & Communications 111

5.2.2.2 Agent Criticality . 111

5.2.2.3 Data Types . 112

5.2.2.4 Container Agent . 113

5.2.2.5 Station Agent . 118

5.2.3 SAFlex Results & Discussions . 121

5.2.4 Comparative Study & Discussion . 125

5.2.4.1 Learning/Optimization Approach 127

5.2.4.2 On-line Forward Optimization 127

5.2.4.3 Experimental Setup . 128

Cooperative Self-Organisation for Optimization under Constraints ix

Contents

5.2.4.4 Discussion . 129

5.3 Design of Complex Product . 131

5.3.1 Problem Formalization . 131

5.3.2 The Adaptive Multi-Agent System . 132

5.3.2.1 Agent Interactions . 136

5.3.2.2 Agent Criticality . 137

5.3.2.3 Data Types & Tools . 137

5.3.2.4 Known Element Agent . 140

5.3.2.5 Known Characteristic Agent 141

5.3.2.6 Characteristic Weight Agent 141

5.3.3 SAPBR Results & Discussions . 144

5.4 AMAS4Opt Evaluation . 150

5.5 Conclusion & Perspectives . 151

Conclusion Générale 155

Conclusion & Perspectives 157

List of figures 177

List of tables 181

x Cooperative Self-Organisation for Optimization under Constraints

Acronyms

ACO Ant Colony Optimization

ADELFE Atelier de Développement de Logiciels à Fonctionnalité Emergente

ADOPT Asynchronous Distributed Constraint Optimization

AGV Automated Guided Vehicle

AMAS Adaptive Multi-Agent System

AMAS4Opt AMAS for Optimisation

AMAS-ML AMAS Modelling Language

API Application Programming Interface

CBR Case-Based Reasoning

COP Constraint Optimization Problem

CSP Constraint Satisfaction Problem

DAMASCOP Distributed AMAS Constraint Optimisation Problem

DBA Distributed Breakout Algorithm

DCOP Distributed Constraint Optimization Problem

DFS Depth-First Search

DynCNET Dynamic Contract-NET

DFJSP Dynamic Flexible Job Shop Problem

ERA Environment, Reactive rules, and Agents

GA Genetic Algorithm

JADE Java Agent DEvelopment Framework

MAS Multi-Agent System

MAY Make Agents Yourself

Cooperative Self-Organisation for Optimization under Constraints 1

Acronyms

MDO Multidisciplinary Design Optimization

MOO Multi-Objective Optimization

NCS Non Cooperative Situation

OptAPO Optimal Asynchronous Partial Overlay

PLS Polynomial Time Local Search

PSO Particle Swarm Optimization

SAFlex Self-Adaptive Flexible scheduling

SAPBR Self-Adaptive Population Based Reasoning

SMAC Systèmes Multi-Agent Coopératifs

TOTA Tuples On The Air

TSP Traveling Salesman Problem

2 Cooperative Self-Organisation for Optimization under Constraints

Introduction Générale

The introduction in english starts page 7

Introduction à la résolution des problèmes complexes sous-
contraintes

Les ingénieurs se heurtent quotidiennement, quel que soit leur secteur d’activités, à des problèmes
d’optimisation. Il peut s’agir de minimiser un coût de production, d’optimiser le parcours d’un
véhicule, d’améliorer les performances d’un produit, d’affiner un modèle de calcul, etc. Ces problèmes
se caractérisent par un degré élevé de complexité dû à l’hétérogénéité et la diversité des acteurs en
jeu (humains, appareils électroniques, etc.), à la masse importante des données, à la distribution des
informations manipulées ainsi qu’à la dynamique des environnements dans lesquels ils sont plongés.

Ainsi, la résolution des problèmes sous-contraintes a été un des domaines les plus étudiés et
ce depuis les débuts de l’informatique. Différentes techniques de résolution ont été développées afin
d’assister les utilisateurs dans leurs tâches quotidiennes. Malgré leur adéquation pour la résolution
d’un large éventail de problèmes, les approches classiques ont montré leurs limites face à la complexité
croissantes des applications actuelles. Cette complexité est principalement due à :

3 La dynamique de l’environnement et du système lui-même (changement de contraintes,
modification des acteurs en jeu, etc.);

3 La diversité des données manipulées et l’augmentation de leur volume;

3 L’existence d’interdépendances non suffisamment définies entre les paramètres du problème;

3 La non linéarité des relations entre les paramètres;

3 Les dimensions multi-objectifs et multi-disciplinaires des problèmes étudiés.

Un des formalismes les plus étudiés pour la résolution de ce type de problèmes est le Constraint
Optimization Problem (COP). Les différentes techniques basées sur ce formalisme ont montré leur
adéquation pour la résolution d’un large éventail relativement simple et statique de problèmes sous-
contraintes. Malheureusement, ces techniques ont montré leurs limites face à la complexité croissante
mentionnée ci-dessus. Ainsi, de nouvelles approches de résolution améliorant ces approches classiques
par l’utilisation de la distribution du calcul et la décentralisation du contrôle tentent de répondre à
cette complexité. Différentes motivations sont à l’origine de ces deux améliorations. Premièrement, la

Cooperative Self-Organisation for Optimization under Constraints 3

Introduction Générale

réduction du temps de calcul grâce au parallélisme. Deuxièmement, la distribution des compétences
et des connaissances. Ainsi, dans une application multi-disciplinaire, chacune des disciplines peut
être représentée par une entité spécifique et autonome. La solution est obtenue par les interactions de
ces différentes entités. Par cette décomposition, une meilleure représentation de chaque discipline est
obtenue améliorant ainsi leur gestion. Finalement, la plus importante motivation est l’augmentation
de l’auto-adaptation, la robustesse du système et le traitement local des perturbations. En effet, dans
un environnement dynamique, des évènements imprévisibles tels que l’introduction de nouvelles
entités, la modification des contraintes, des pannes ou même la détection de situations non prévues
à la conception du système peuvent apparaître. Par la distribution du calcul et la décentralisation
du contrôle, seules les entités concernées par ces évènements sont perturbées, les autres pouvant
continuer leur exécution normalement. En conclusion, ces deux aspects augmentent la flexibilité,
la robustesse et l’adaptabilité des systèmes. La plupart des systèmes déployant ces techniques sont
connus sous le nom de Systèmes Multi-Agents.

Un système multi-agent se décompose en un ensemble d’entités autonomes et interagissantes
appelées agents qui par la coordination de leurs actions locales permettent d’atteindre une solution
optimale au niveau global. Différentes techniques de résolution se basent sur les systèmes multi-
agents. Leurs différences résident principalement au niveau des mécanismes de coordination et
d’interaction entres les agents du système. La théorie "Adaptive Multi-Agent System (AMAS)",
utilisée dans ce travail de thèse, propose la conception de systèmes multi-agents adaptatifs en se basant
sur la coopération. Cette théorie a montré son adéquation pour la résolution d’un grand nombre de
problèmes présentant différents niveaux de complexité. Afin de faciliter la conception de systèmes
basés sur cette théorie, la méthodologie ADELFE pour la conception de systèmes à fonctionnalité
émergente fut développée. Cette méthodologie se base sur le Rational Unified Process auquel des
activités dédiées à l’identification et le développement des agents coopératifs ont été ajoutées. Malgré
son adéquation pour guider le développement de systèmes multi-agents coopératifs et adaptatifs,
cette méthodologie présente un niveau d’abstraction assez élevé exigeant ainsi la présence d’un
expert AMAS pour son utilisation. Dans ce travail, nous proposons un modèle d’agent générique
spécialisant l’utilisation de la théorie des AMAS et la méthodologie ADELFE pour la résolution sous-
contraintes de problèmes complexes. Le but de ce modèle est de fournir à l’ingénieur une architecture
générique d’agents proposant des comportements et des interactions entre agents spécifique à ce type
de problèmes.

Contributions

Ce travail de thèse propose deux contributions importantes dans le domaine de la résolution sous-
contraintes de problèmes complexes utilisant les systèmes multi-agents :

1. Un modèle d’agent générique guidant le développement de ce type de systèmes et définissant des
comportements dédiés d’agents.

2. La définition d’un ensemble de critères d’évaluation soulignant l’importance et les points forts
de ces systèmes.

Tout d’abord, nous justifions l’utilisation des technologies basées sur les systèmes multi-agents
adaptatifs pour la gestion de la complexité croissante des applications actuelles et futures.

4 Cooperative Self-Organisation for Optimization under Constraints

Introduction Générale

Par la suite, le modèle d’agent générique spécialisant la théorie des AMAS et la méthodologie
ADELFE est défini. Ce modèle est direct et présente un niveau d’abstraction soigneusement choisi
afin d’être aisément adapté à différents types de problèmes complexes sous-contraintes facilitant ainsi
l’utilisation de la théorie des AMAS par des ingénieurs non-experts du domaine. Ce modèle comporte
deux types d’agents pour lesquels des comportements et des interactions génériques ont été définis.
Chaque agent possède des connaissances et des représentations locales sur le problème. Il est plongé
dans un environnement local incluant ses voisins (d’autres agents du système) ou d’autres entités
actives du système nécessaire à son processus de raisonnement. Les différents agents du système
interagissent d’une manière coopérative avec leur environnement local dans le but de satisfaire leur
but local. Pour cela, chaque agent calcule son degré de satisfaction représentant sa difficulté à
atteindre son but. Une fois que l’équilibre entre les degrés de satisfaction des différents agents est
atteint, la solution globale du problème est obtenue. Les agents conçus sont en relation directe avec
les entités du problème ce qui permet de rester fidèle à la définition du problème. Ainsi, aucune
transformation du problème dans un cadre formel n’est requise ce qui représente une des principales
différences de notre modèle par rapport aux approches classiques. De plus, le modèle défini conserve
les avantages des systèmes multi-agents coopératifs et adaptatifs. Il se caractérise par :

3 un traitement local des perturbations se produisant en temps réel telles que les changements de
contraintes en cours d’exécution ;

3 une augmentation du niveau de robustesse ;

3 sa capacité à maintenir un comportement adéquat et cohérent dans des environnements
hautement dynamiques ;

3 son ouverture. Des nouveaux agents peuvent apparaître ou disparaître du système en cours
d’exécution.

Afin de montrer l’adéquation de ce modèle, deux applications clés du domaine de l’optimisation
ont été choisies : une pour la résolution du problème de la gestion de production et une pour la
conception de produits complexes en se basant sur des données existantes.

Finalement, comme ces systèmes sont différents des approches classiques existantes et comme il
n’existe pas de cadre d’évaluation pour les systèmes adaptatifs, de nouveaux critères d’évaluation et
de caractérisation sont requis afin de souligner la spécificité de ces systèmes et leur capacité à s’adapter
à des environnements dynamiques. Ainsi, trois catégories de critères ont été définies afin de guider
l’évaluation de ces systèmes depuis la phase de conception jusqu’à leur exécution.

Plan du manuscrit

Cette thèse se décomposent en 5 chapitres :

Chapitre 1. Ce premier chapitre présente un état de l’art des différentes méthodes de résolution
existantes. Premièrement, le formalisme COP et son amélioration pour la gestion de la
dynamique est détaillé. Par la suite, une introduction au Case-Based Reasoning (CBR)
comme technique de résolution est présentée.

Cooperative Self-Organisation for Optimization under Constraints 5

Introduction Générale

Chapitre 2. Ce deuxième chapitre est dédié à la présentation de la théorie des AMAS, la méthodologie
ADELFE et différents outils utilisés dans la conception de l’architecture d’agents définis
dans ce travail.

Chapitre 3. Dans ce chapitre, le modèle d’agent générique défini pour la résolution sous-contraintes
de problèmes complexes est présenté ainsi que les comportements des agents et leurs
interactions.

Chapitre 4. Ce chapitre s’intéresse à l’évaluation des systèmes multi-agents adaptatifs. Différents
critères d’évaluation soulignant les capacités d’auto-adaptation de ces systèmes ont été
définis.

Chapitre 5. Dans ce dernier chapitre, deux systèmes multi-agents conçus pour la résolution de deux
problèmes clés de l’optimisation: Self-Adaptive Flexible scheduling (SAFlex) pour la
gestion de production et Self-Adaptive Population Based Reasoning (SAPBR) pour la
conception de produits complexes, sont détaillés. Le modèle d’agents défini dans le
chapitre 3 est utilisé pour la conception de chacun de ces deux systèmes. Leur évaluation
est adressée en utilisant les critères définis dans le chapitre 4.

6 Cooperative Self-Organisation for Optimization under Constraints

General Introduction

Introduction to Complex Problem Solving under Constraints

We solve problems and make decisions all day long: at home, at work, while playing.
Some problems and decisions are very challenging: What is the best sequence of actions to
reach a goal or the best itinerary to deliver orders given the weather, the traffic and the hour?
How to choose the best time for a meeting knowing the availability of concerned people
and meeting rooms with adequate material? How to improve a product manufacturing
performances or to refine a computational model given delays to keep, interdependencies
between parameters and multi-disciplinary aspects? etc. These questions require thinking,
exploration, trial and error.

Since the arising of computer science, the domain of Problem Solving under Constraints
has been widely studied and different techniques have been developed to solve problems
and to assist users in their daily life. But today’s applications are subject to a growing
complexity that classical approaches can not manage any more. This complexity is due
to:

3 The dynamics of the environment and the system itself (constraint changes,
modification of the implicated actors, etc.);

3 The increasing volume and diversity of manipulated data;

3 The existence of insufficiently defined interdependencies between the parameters of the
problem;

3 The non linearity of the relations between parameters;

3 Multi-objective and multidisciplinary dimensions.

The Constraint Optimization Problem (COP) formalism is one of the main formalisms used
for solving this type of problems. Most of the solving techniques have shown their adequacy
to solve a large variety of relatively simple and static problems. But they were unable
to handle the aforementioned growing complexity. Thus, researchers have been working
on their improvements using the distribution of computation and the decentralization of
control. Several aspects motivate taking these directions. The most obvious one is the speed
up of the solving thanks to parallelism. Another one concerns the distribution of expertise.

Cooperative Self-Organisation for Optimization under Constraints 7

General Introduction

For example, in a multi-disciplinary application, each discipline can be represented by
a specialised autonomous entity and the interactions between all theses entities enable a
collective solution. This decomposition results in a better management of each discipline.
Finally, the most important motivation is the increase of adaptation capabilities in an
autonomous manner, robustness and localised perturbations treatment. Indeed, in dynamic
environments different unpredictable events occur. Such events can include the introduction
of new entities, the modification of constraints, system failures or the detection of situations
not predicted at the design level. In such situations, only affected entities are involved
while others can continue their execution. In conclusion, the distribution of computation
and the decentralization of control provide systems with a high level of flexibility, reliability
and adaptability. Most of the systems deploying these techniques are commonly known as
Multi-Agent Systems.

A multi-agent system consists in a set of autonomous and interacting entities that
coordinate their actions locally in order to reach global optimal performances. Different
approaches have exploited the advantages of multi-agent systems. The major differences
between them concern the coordination and interactions mechanisms among agents. The
Adaptive Multi-Agent System (AMAS) theory, on which this work is based, proposes to build
adaptive multi-agent systems using cooperation. This theory has shown its adequacy to
solve a large number of complex problems with different characteristics and complexity
levels. To ease the development of such systems, ADELFE, a toolkit to develop software
with emergent functionality, has been developed. This toolkit includes a methodology based
on the Rational Unified Process and adds specific activities dedicated to the identification
and development of cooperative agents, but it remains at a high abstraction level. In this
work, we propose a generic agent model based on the AMAS theory that completes the
ADELFE methodology providing the engineer with more precise agents models behaviours
and interactions for complex problem solving under constraints.

Contributions

This thesis work leads to two main contributions in complex problem solving under
constraints using multi-agent system technologies:

1. A generic agent model guiding the development of such systems and defining the
behaviours of the agents.

2. The definition of criteria for their evaluation.

After justifying the usage of multi-agent systems technologies for solving current and
future complex applications challenges, we propose a generic agent model based on the
AMAS theory and completing the ADELFE methodology.

The proposed model is straightforward and presents a carefully chosen level of
abstraction enabling it to be easily adapted to different types of complex problem under
constraints. This model is designed in order to reduce the effort that an engineer who is

8 Cooperative Self-Organisation for Optimization under Constraints

General Introduction

not an AMAS expert would need to design an AMAS for the solving of optimisation under
constraints problems.

In this model, we define two sorts of agent behaviours and their interactions. The
agents of this model are provided with local knowledge and local representations of the
problem. Each agent possesses a local environment that includes its neighbours (other
agents to interact with) or entities of the problem required for its solving process. The
defined agents interact cooperatively with their local environment in order to satisfy their
local goal. Each agent computes its satisfaction degree which represents its difficulty to
attain its goal. By reaching a satisfaction equilibrium among the different agents a global
solution of the problem is obtained. The agents are designed with a strong relationship to
the problem entities. By that, we stay close to the problem definition and there is no need
to translate the problem into a specific formal framework which is the main difference with
classical existing approaches.

In addition to this, our model preserves the advantages of cooperative and adaptive
multi-agent systems. The obtained multi-agent system is characterized by:

3 local treatment of real-time occurring events such as constraints changes at runtime;

3 an increased level of robustness;

3 its ability to maintain adequate functioning in highly dynamic environments at runtime
when agents want to leave the system or new agents try to enter;

3 its openness. New agents can enter and leave the system during runtime.

In order to show the adequacy of this model, we develop two applications: one for
solving the well known dynamic flexible job shop problem and one for solving the complex
product design problem using existing similar examples.

Because such systems are different from classical ones and because there is no evaluation
framework for adaptive systems, new characterization and evaluation criteria are required
to underline their specificity and their ability to adapt in dynamic environments. Thus,
a number of categorized criteria to guide the evaluation of this kind of systems from the
design phase to the execution phase are proposed in this thesis.

Manuscript Organisation

This thesis is divided into 5 chapters:

Chapter 1. This chapter concerns the state of the art of existing solving methods for complex
problems under constraints. First, the Constraint Optimization Problem (COP)
formalism and its enhancement to handle dynamics are detailed. Then an
introduction to the Case-Based Reasoning (CBR) solving technique is presented.

Chapter 2. In this chapter, the AMAS theory, the ADELFE methodology and different tools
used to design the architecture of the defined agents are presented.

Cooperative Self-Organisation for Optimization under Constraints 9

General Introduction

Chapter 3. This chapter highlights the generic agent model we define for complex problem
solving under constraints and describes the agents behaviours and interactions
accordingly to the AMAS theory.

Chapter 4. In this chapter, the evaluation of adaptive multi-agent systems is discussed.
Different criteria are defined to underline the importance of self-adaptation.

Chapter 5. In this last chapter, two multi-agent systems designed to solve two different
applications are detailed: Self-Adaptive Flexible scheduling (SAFlex) for the
Dynamic Flexible Job Shop Problem and Self-Adaptive Population Based Reasoning
(SAPBR) for the Complex Product Design Problem. For each, the approach
proposed in chapter 3 is used and the results are discusses accordingly to chapter
4.

10 Cooperative Self-Organisation for Optimization under Constraints

1 State Of the Art: Optimization

under Constraints

« Il n’est pas de vent favorable pour celui qui ne sait pas où il va. »
Sénèque

Contents
1.1 Introduction . 16

1.2 Constraint Optimization Problem . 17

1.2.1 Solving Techniques Overview . 18

1.2.2 Heuristics and Meta-Heuristics . 22

1.2.3 Hybrid Meta-Heuristics . 27

1.3 Distributed Constraint Optimization Problem 28

1.3.1 Variables Agentification . 29

1.3.2 Nature Inspired . 32

1.3.3 Domain Entities Agentification . 35

1.3.4 MAS and Meta-heuristics . 41

1.4 Case Based Reasoning Solving Technique 42

1.4.1 Analysis . 42

1.5 Conclusion & Discussion . 45

Cooperative Self-Organisation for Optimization under Constraints 11

1

State Of the Art: Optimization under Constraints

The chapter in english starts page 16.

Résumé général du chapitre

Choisir le meilleur chemin pour arriver au travail étant donné l’heure et l’état du trafic, choisir le
meilleur moment pour une réunion en considérant la disponibilité des personnes ainsi que celle des
salles de réunions et leur équipement, améliorer les performances d’un modèle de calcul, et divers
autres problèmes d’optimisation nécessitent de prendre des décisions et faire des choix rarement
évidents ou faciles. De part la complexité due à la non-linéarité des interdépendances entre les
paramètres ou à l’hétérogénéité des acteurs en jeux ou même à la dynamique inhérente à ces systèmes,
nous sommes confrontés à une réduction de la visibilité à long terme d’un choix donné et une demande
d’un grand effort d’adaptation en temps réel. D’autre part, ces choix peuvent impacter d’une manière
importante l’efficacité et les performances souhaitées et doivent être soigneusement étudiés. Ainsi
dès le début des systèmes informatiques, un grand effort a été dédié à l’étude et au développement de
systèmes et d’outils afin d’aider les utilisateurs et les assister dans leurs choix.

Un des formalismes les plus important définis pour la résolution sous-contraintes de problèmes
d’optimisation complexes est le Constraint Optimization Problem (COP). Dans ce formalisme,
avant d’être résolu, un problème doit être traduit dans un cadre formel consistant en un ensemble
de variables chacune devant être assignée à une valeur dans un domaine de validité donné afin de
minimiser ou de maximiser une fonction objectif. Résoudre ce type de problème revient à parcourir
l’espace de recherche (souvent décrit sous la forme d’un arbre de recherche) et à trouver la meilleure
affectation possible aux différentes variables.

Différentes techniques visant à parcourir le plus efficacement possible cet espace de recherche
ont été définies. Les techniques de recherche non-informée furent les premières. Elles nécessitent
une exploration complète et exhaustive de l’espace de recherche avant qu’une solution ne soit
obtenue. Parmi elles, les algorithmes de recherche en profondeur et en largeur ainsi que leurs
améliorations (Uniform-cost, Depth-limited, Iterative Deepening Depth-First) ont été les plus
étudiés. Malheureusement, avec l’augmentation de la taille de l’espace de recherche, ces techniques
nécessitent un temps de calcul assez important avant l’obtention d’une solution.

Afin de répondre à cette limite, des informations supplémentaires sur les caractéristiques des
problèmes ont été rajoutées pour accélérer la recherche. Ces techniques sont connues sous le nom
de recherche informée. Elles se divisent en deux catégories: méthodes exactes et méthodes
approximatives. Les méthodes exactes comme l’algorithme par séparation et évaluation, A*
ou la programmation dynamique sont complètes et garantissent, si elles existent, l’obtention de
solutions optimales, mais pour cela, elles demandent une bonne connaissance du problème à résoudre
et peuvent être coûteuses en temps. Les méthodes approximatives quant à elles, ne garantissent pas
l’obtention de solutions optimales mais sont capables d’obtenir de bonnes solutions en un temps de
calcul raisonnable. Les méta-heuristiques sont les méthodes les plus connues et les plus étudiées.

Les méta-heuristiques sont des algorithmes de résolution incertains et souvent non
déterministes. Elles se définissent comme des stratégies de haut niveau visant à guider le processus
de recherche en utilisant des informations spécifiques à un problème donné appelées heuristiques.
Leur objectif est d’explorer efficacement l’espace de recherche afin de trouver une solution proche
de l’optimal. Pour cela, elles alternent entre deux phases: l’exploration et l’exploitation. La

12 Cooperative Self-Organisation for Optimization under Constraints

1

première consiste à découvrir de nouvelles zones de l’espace de recherche alors que la deuxième
consiste à concentrer la recherche dans les zones prometteuses. Elles sont décrites suivant un niveau
d’abstraction indépendant du problème spécifique à résoudre. Nous distinguons entre deux catégories
de méta-heuristiques se différenciant par le nombre de solutions explorées en même temps: les méta-
heuristiques de trajectoire et les méta-heuristiques à base de population.

Les méta-heuristiques de trajectoire consistent à faire évoluer une solution en utilisant comme
outil de base une procédure de recherche locale. Cette procédure améliore une solution par des
déplacements successifs dans un voisinage local. Une des limites principales de cette procédure est sa
facilité à être piégée dans des optimum locaux correspondant à des solutions de mauvaises qualités.
Différentes stratégies sont développées pour contourner ce problème. Parmi elles, nous distinguons:
la recherche tabou, la recherche locale itérée et le recuit simulé.

Les méta-heuristiques à base de population sont considérées comme étant des améliorations
successives dans une population de solution. Initialement, un ensemble de solutions appelées
individus est généré afin de constituer la population. A chaque itération, une nouvelle population est
définie en appliquant des procédures de sélection et de remplacement des individus de la population
courante. Les différentes méta-heuristiques à base de population se distinguent par leur procédures de
sélection et de remplacement. Les algorithmes évolutionnistes inspirés par la théorie Darwinienne
comme les algorithmes génétiques sont les principaux algorithmes étudiés dans cette classe de
méta-heuristiques. Dans ces algorithmes, des procédures de croisement, de mutation et de sélection
sont utilisées pour la génération d’une nouvelle population.

Ces différentes méthodes méta-heuristiques ont montré leur adéquation pour la résolution
d’un large éventail de problèmes d’optimisation. Cependant, elles montrent plusieurs limites.
Premièrement, elles nécessitent la traduction du problème dans un cadre formel bien déterminé ce
qui peut être difficile dans le cadre de problèmes complexes où une spécification globale du problème
est souvent difficile à mettre en place. Deuxièmement, ces méthodes nécessitent un grand effort
d’ajustement de paramètres comme la taille de la mémoire dans la recherche tabou ou les probabilités
de sélection dans les algorithmes évolutionnistes ou la recherche locale itérée. Troisièmement, ces
méthodes sont centralisées et leur efficacité repose sur l’évaluation d’une fonction objectif. Ceci réduit
leur flexibilité et leur robustesse dans des environnements hautement dynamiques où une adaptation
en temps-réel est requise. Finalement, lors de la conception d’une méta-heuristique, il est important
de trouver un équilibre entre les phases d’exploration et d’exploitation. D’une manière générale,
les méta-heuristiques de trajectoire ont de meilleures performances pendant les phases d’exploitation
alors que les méta-heuristiques à base de population sont meilleures pendant les phases d’exploration.

Les méta-heuristiques hybrides adressent cette dernière limite. Elles consistent à combiner
deux ou plusieurs méta-heuristiques allant d’une simple séquence entre deux méta-heuristiques
s’exécutant l’une après l’autre, à la mise en coopération de plusieurs méta-heuristiques s’exécutant
en parallèle. Lors de la conception de ces méthodes, il est important de faire attention à comment
les combiner afin d’éviter une convergence prématurée et maintenir l’équilibre entre les phases
d’exploitation et d’exploration. L’introduction du parallélisme (la distribution du calcul) d’une part
et de la coopération entre plusieurs méta-heuristiques (décentralisation du contrôle) de l’autre ont
permis l’amélioration des résultats obtenus par ces méthodes et ont par ainsi montré leur importance
pour résoudre des problèmes présentant une complexité croissante.

Afin d’intégrer ces notions de distribution et de décentralisation, le formalisme du Distributed

Cooperative Self-Organisation for Optimization under Constraints 13

1

State Of the Art: Optimization under Constraints

Constraint Optimization Problem (DCOP) est introduit. Un DCOP est un COP où chacune des
variables est gérée par un entité autonome appelée agent. Les différents agents du système doivent
coordonner leurs choix et leurs actions afin de satisfaire les contraintes de leur variable et d’optimiser
une fonction objectif. Ainsi, le processus de résolution est distribué sur un ensemble d’agents.
Ces méthodes de résolution sont appelées les Systèmes Multi-Agents. Nous distinguons trois
techniques pour l’identification des agents: agentification des variables, inspiration naturelle et
agentification des entités du domaines.

La technique d’agentification des variables consiste à distribuer un problème défini en tant que
COP. Chaque agent est responsable de l’affectation de sa variable en respectant ses contraintes
avec son voisinage. La plupart des méthodes basées sur cette technique organise les agents selon
une structure hiérarchique dictée par les contraintes. Parmi elles nous distinguons Asynchronous
Distributed Constraint Optimization (ADOPT) et Optimal Asynchronous Partial Overlay
(OptAPO). Dans ADOPT, une structure d’arbre est utilisée pour définir les échanges de messages
entre les différents agents. Cette structure rigide confère à l’algorithme plusieurs limites notamment
l’existence d’un noeud central et la difficulté d’adaptation aux changements de contraintes.
OptAPO contourne cette difficulté en augmentant le degré de décentralisation. Dans cet algorithme,
un agent est élu comme agent de médiation dans un voisinage donné. Cet agent a la charge de
résoudre le problème entre les différents agents de son voisinage direct (agents avec lesquels un
lien direct existe) en respectant leurs contraintes vers les agents non inclus dans son voisinage.
Si aucune solution n’est trouvée, l’agent ajoute à son voisinage les agents externes avec lesquels
des conflits existent. Ainsi, les parties difficiles du problème sont découvertes et leur résolution
est centralisée au niveau d’un agent de médiation. Lors des phases de médiations, l’algorithme par
séparation et évaluation est utilisée afin de déterminer l’existence d’une solution. La limite principale
de cette approche est l’augmentation du nombre d’agents impliqués dans une phase de médiation
donnée. En effet, dans un problème où les variables sont fortement couplées, le voisinage d’un agent
donné peut augmenter jusqu’à inclure tous les agents du système. Dans ce cas, OptAPO se résume
à une résolution centralisée utilisant l’algorithme par séparation et évaluation coûteux en temps.
Cependant, l’augmentation du degré de décentralisation améliore la robustesse de cet algorithme
vis-à-vis de la dynamique.

Les algorithmes à inspiration naturelle s’inspirent du fonctionnement du comportement collectif
d’insectes sociaux tels que les oiseaux, les abeilles, les fourmis, les poissons. Les algorithmes
d’optimisation par colonies de fourmis et par essaims particulaires sont les plus étudiés
de cette catégorie. Dans ces approches, un agent est associé à la construction ou à l’amélioration
d’une solution unique. Les interactions entre agents visent à échanger des informations à propos des
zones prometteuses de l’espace de recherche, de manière à rendre l’exploration plus efficace. Cette
coopération entre agents est mise en oeuvre de deux manières différentes. Dans l’optimisation par
colonies de fourmis, le comportement des agents est inspiré du comportement d’une fourmilière. De
ce fait, les agents coopèrent par le biais de la matrice de phéromone. Cette situation particulière
de coopération entre agents interagissant de manière indirecte via leur environnement se nomme la
stigmergie. Dans l’optimisation par essaims particulaires, le comportement des agents est inspiré
par le déplacement d’un groupe d’oiseaux chacun influençant sa position et sa vitesse en fonction
des autres. Les agents de ce modèle interagissent directement en échangeant des informations
concernant les meilleures positions visitées attirant ainsi les uns et les autres vers les zones
prometteuses de l’espace de recherche. Ces techniques sont similaires aux méta-heuristiques à base de

14 Cooperative Self-Organisation for Optimization under Constraints

1

population mais se différencient par la distribution de la population sur un ensemble d’agents
chacun faisant évoluer sa solution d’une manière autonome. De ce fait, nous pouvons noter
l’absence d’un contrôle global dans ce type d’algorithmes. Malheureusement, ces algorithmes
utilisent à l’image des méta-heuristiques à base de population des fonctions objectifs globales
limitant leur utilisation pour les problèmes possédant ce type de fonction. De plus, ils nécessitent
l’ajustement de paramètres tels que le nombre de fourmis, les stratégies de dépôts et d’évaporation
des phéromones ou la modification de la vitesse des agents. Ces méthodes montrent l’intérêt de la
distribution du calcul et la décentralisation du contrôle mais leur usage reste limité à des problèmes
spécifiques.

Les approches basées sur l’agentification des entités du domaine consistent à modéliser les agents
en partant de la description naturelle du problème indépendamment de tout formalisme. Deux
types d’agentification sont à distinguer. La première consiste à agentifier les entités physiques
du domaine. Dans la deuxième, les entités fonctionnelles du problème sont représentées par des
agents. Avec ces approches, le système multi-agent conçu est proche de la définition du problème et
aucune transformation ou traduction n’est à faire. Chaque agent représente une entité du problème
et possède ces caractéristiques. Il est conçu avec un objectif local et son comportement est dicté
par le fonctionnement de l’entité qu’il représente. Par leurs interactions, les agents coordonnent
leurs actions afin de satisfaire leurs buts locaux menant ainsi le système vers une solution
globale. Différentes techniques d’interaction sont utilisées comme la communication directe
par l’utilisation de messages, la communication indirecte via l’environnement inspirée par
l’optimisation par colonies de fourmis ou l’apprentissage par renforcement. Dans cette dernière
technique, un agent doit choisir les actions à réaliser en fonction de la situation, de façon à maximiser
son gain. Aucune communication avec les autres agents du système n’est utilisée. Ces techniques
ont montré leur adéquation pour la résolution de différents types de problèmes avec différents niveaux
de complexité. Ces approches permettent grâce aux processus de décision locale une adaptation
rapide et en temps réel aux changement dynamiques et aux perturbations. L’autonomie donnée à
chaque agent permet l’obtention d’une architecture distribuée très peu couplée rendant ces systèmes
plus robustes.

Dans certains domaines d’applications, la résolution d’un problème dépend de l’expérience et
l’expertise des ingénieurs. En effet, dans ces cas, les ingénieurs ne sont pas capables d’exprimer
d’une manière complète le processus de résolution et les choix effectués. Ainsi, il est impossible de
modéliser ou de définir le problème afin de le résoudre avec les techniques énoncées ci-dessus. Pour
cela, un nouveau formalisme nommé le raisonnement par cas est développé. Le raisonnement par
cas consiste à résoudre un problème en utilisant les solutions déjà utilisées dans des cas similaires.
La connaissance de l’expert ou de l’ingénieur est formulée sous la forme d’un ensemble de cas. Pour
chacun, une description détaillée du problème est donnée ainsi que de la solution suivie et les étapes
qui y ont mené. Les différentes techniques utilisant ce formalisme suivent un processus de résolution
de quatre étapes: recherche de cas similaires, réutilisation, révision et apprentissage. Avec
l’augmentation de la taille des données et la croissance de la complexité de cas et leur description,
la distribution du calcul et la décentralisation du contrôle sont utilisées pour l’amélioration des
résultats et des performances. Ces approches présentent différentes limites notamment durant l’étape
de recherche de cas similaires. En effet, les résultats de cette étape dépendent fortement de la
description des cas (souvent difficile dans les cas complexes) et des fonctions de similarités utilisées.
Une autre limite concerne la distribution de la résolution qui consiste à diviser le problème sur

Cooperative Self-Organisation for Optimization under Constraints 15

1

State Of the Art: Optimization under Constraints

plusieurs agents et combiner les résultats obtenus. Dans ce cas, chaque agent est capable d’obtenir la
meilleure solution possible mais leur combinaison ne conduit pas nécessairement à une bonne solution
globale.

En conclusion, nous déduisons que face à la complexité croissante des applications actuelles,
les systèmes multi-agents par leur distribution du calcul et décentralisation du contrôle
permettent l’obtention de systèmes robustes, flexibles et ayant la capacité de s’adapter
rapidement à la dynamique de leur environnement. Ces mécanismes nécessitent néanmoins la
mise en place d’interactions locales entre les agents leur permettant de coordonner leurs actions
localement afin de produire une solution au niveau global. En analysant toutes les techniques de
résolution utilisant ces mécanismes, nous notons que la coopération est une notion fondamentale
régissant ces interactions et augmentant la qualité des solutions obtenues. De ce fait, nous proposons
la définition d’un modèle d’agent générique comportant des comportements et des interactions basés
directement sur la coopération pour la résolution sous-contraintes de problèmes complexes.

1.1 Introduction

Optimisation problems are omnipresent nowadays. Indeed, people, teachers, engineers
must constantly solve complex problems and make decisions. Choosing the best way
to reach work given the hour and the traffic, establishing the best timetabling given the
availability of each participant or improving the performance of a designed model are
different complex problems. Their complexity is due to the heterogeneity and diversity of
the participating actors, their evolving constraints or the interdependency of the involved
parameters making a global comprehension of the problem difficult or even impossible.
Thus, choices must be done to solve these problems. Such choices are very important and
challenging as they greatly influence the obtained results.

Since the arising of computer science, a huge effort has been dedicated to solve such
problems and assist users in their choices. Different formalisms have been developed for
solving complex optimization problems under constraints. Among them, the Constraint
Optimization Problem (COP) formalism is the most widely studied. In this formalism,
problems are translated in a given framework where a set of variables (problem entities)
must be assigned a value of a given domain so as to minimize or maximise an objective
function. Solving such problems consists in exploring the search space and finding the
best assignment to the variables. In the earlier days of computer science, Uninformed Search
techniques have been studied. These techniques use a complete and exhaustive exploration
of the search space before a solution is obtained. Given the increasing size of the search
space, those methods require a prohibitive amount of time before a solution can be obtained.
Thus, the Informed Search techniques have been introduced. In these techniques additional
information on the problem is used to speed the search. Two information types can be
distinguished dividing by that the Informed Search techniques into two categories Exact
Methods and Approximate Methods. The former are complete and guaranteed to reach an
optimal solution but require additional solving time and a good knowledge of the problem
to solve. The latter are approximate but have shown their adequacy to solve a large variety
of COP problems. The most important class of approximate methods is Meta-heuristics.

16 Cooperative Self-Organisation for Optimization under Constraints

1.2. Constraint Optimization Problem

1

Still, those techniques have shown their limits to handle the growing complexity of
current applications, especially when confronted to unpredictable and changing events
that produce dynamics in the system. Thus, researchers have been working on their
improvements using the distribution of computation and the decentralisation of control. A
new formalism, Distributed Constraint Optimization Problem (DCOP) has then been defined,
and different solving techniques commonly known as Multi-Agent Systems have been
proposed.

In some domains, translating the problem into the COP formalism is impossible as
the solving process depends on the experts knowledge and experience. Indeed, experts
find it hard to articulate their thought processes when solving problems. This is because
knowledge acquisition is extremely difficult in these domains, and is likely to produce
incomplete or inaccurate problem specifications. In such cases, expertise is embodied in a
library of past cases rather than being encoded in classical rules or constraints. The common
techniques to solve such problems are known as Case-Based Reasoning (CBR) techniques.

The chapter is organised as follows: in section 1.2 the COP framework is defined, sections
1.2.1.1, 1.2.1.2 and 1.2.2 presents the different techniques developed for its solving. The
DCOP framework is presented in section 1.3. Its solving techniques are introduced in
sections 1.3, 1.3.1, 1.3.2 and 1.3.3. Section 1.4 introduces the CBR techniques and underlines
their limits and enhancements for complex problem solving under constraints. A global
discussion (section 1.5) concludes the chapter and introduces the main contribution of this
work, as a way to address the limitations highlighted in this chapter.

1.2 Constraint Optimization Problem

The Constraint Satisfaction Problem (CSP) framework is a mean to model problems to
solve in Artificial Intelligence or Operations Research. It consists in a set of variables (X =

x1, ..., xn), which take values in specific domains (D = D(x1), ..., D(xn)) and are restricted
by constraints (C = c1, ..., ck). We distinguish between a partial or complete assignment (or
solution) where some or all of the variables are assigned. Solving the problem consists in
finding a complete assignment with no constraint violation. Such an assignment is called
consistent or legal.

In different CSPs such as Scheduling Problems [Brandimarte, 1993] constraints are
associated to cost functions (i.e. penalties on non respected delays). In addition to the
verification of the constraints, a solution must minimize the costs for these problems.
Unfortunately, some CSPs are over-constrained and no solution exists for them. In such
problems, constraints are also associated to cost functions and solutions must minimize the
cost of the violated constraints. In both cases, problems are known as Constraint Optimization
Problem (COP).

In brief, a COP is a CSP that requires a solution that optimizes (maximizes or minimizes)
an objective function also called a fitness function. This objective function usually combines
different costs functions.

Such problems are commonly presented using constraints graphs. Their search space

Cooperative Self-Organisation for Optimization under Constraints 17

1

State Of the Art: Optimization under Constraints

is represented using a tree where each node is associated to a specific partial solution of
the problem. The root node is called the initial state. The final state (or leaf) is called goal
state. A goal test function is usually used to determine if a given state is a goal or not.
A successor function enables the exploration of the graph by indicating from a given state
which states are possible to reach. Nodes are connected by arcs each associated to a cost. In
some cases, different goal states can exist each reached with having a different cost path.
Solving the problem consists in finding the global optimal path called the global optimal
solution (Definition 1) from the initial state to a goal state, other paths are called local optimal
solutions (Definition 2).

Definition 1. Global optimal solution [Glover and Kochenberger, 2003, chap. 6]
A global optimal solution is a solution that has a better objective function than all solutions of
the search space.

Definition 2. Local optimal solution [Glover and Kochenberger, 2003, chap. 6]
A local optimal solution is an optimal solution in a given region of the search space.

1.2.1 Solving Techniques Overview

Different solving techniques have been developed. [Russell and Norvig, 2003] divided
them into two types: Uninformed Search and Informed Search.

1.2.1.1 Uninformed Search

Also called Blind Search, the uninformed search concerns techniques that do not have
any additional information on the problem beyond that provided in the problem definition.
They are able to expand the search tree by generating successors and determine if a given
state is a goal or not. The most common Uninformed Search algorithms are: Breadth-first
Search, Uniform-Cost Search, Depth-First Search, Depth-Limited Search and Iterative Deepening
Depth-First Search [Russell and Norvig, 2003].

The Breadth-First Search expands all the nodes of a given level before any nodes of the
next level are expanded. If an expanded node generates a goal state, the solution is returned
and the algorithm stops. Indeed, the cost of each path is not considered when expanding
a node. Thus, the Breadth-First Search is more considered as a CSP solver algorithm than a
COP algorithm. It gives an optimal solution when all arc costs are equal.

The Uniform-Cost Search is an extension of the Breadth-First Search fixing this drawback
as instead of expanding the first available node, it expands the node with the lowest path
cost which lead to optimal solutions whatever the arc costs are.

In the Depth-First Search nodes are expended in depth. Thus, the complete branch of a
given node is explored before a new node of the same level is expanded.

The Depth-Limited Search is a variant of the Depth-First Search where the nodes at a
specific depth l are treated as if they have no successors. The definition of this limit l is

18 Cooperative Self-Organisation for Optimization under Constraints

1.2. Constraint Optimization Problem

1

very important as it can be source of incompleteness. Indeed, if a goal state is at a depth d
unknown at the beginning, choosing l < d won’t lead to a solution while choosing l > d is
non-optimal as it costs time and memory.

The Iterative Deepening Depth-First Search mitigates this drawback by repeating the
Depth-Limited Search for different value of l. Algorithm 1.1 shows how the Iterative Deepening
Depth-First Search applies repeatedly the Depth-Limited Search with increasing limits until a
solution is found or until the Depth-Limited Search indicates that no solution exits.

Algorithm 1.1: The Iterative Deepening Depth-First Search Algorithm [Russell and
Norvig, 2003]

Input: problem
for depth← 0 to ∞ do

result← Depth-Limited-Search(problem, depth)
if result 6= stop then

return result
end

end

ANALYSIS

As no additional information are given, the uniformed search techniques usually need
to explore all the states of the search space before a solution is obtained. Thus, they usually
provide good results but their solving time is exponential and they require high memory
space. In addition to this, such techniques are highly dependent on the problem description
and on the constructed search tree. Thus, they cannot be used in dynamic environment
where the structure of the problem and the constraints evolve during time. These techniques
have been widely improved using the Informed Search methods.

1.2.1.2 Informed Search

The Informed Search algorithms use problem specific knowledge and thus, have the
ability to find good solutions more efficiently. They are provided with evaluation functions
informing on how much a reached solution (partial or complete) is promising. Such
functions incorporate additional knowledge on the problem which reduces the size of the
search space and increases the exploration speed. In figure 1.1, such optimization methods
are divided into two sets: Exact Methods and Approximate Methods. As Meta-heuristics
(highlighted in the figure) have shown their adequacy to solve a large variety of problems
presenting different characteristics that this work is interested in, they are presented in a
separate section (1.2.2).

A. EXACT METHODS The Exact methods also named Complete Algorithms provide optimal
solutions and guarantee their optimality. They are based on enumerative methods that
can be viewed as tree search algorithms that do a complete exploration but only on

Cooperative Self-Organisation for Optimization under Constraints 19

1

State Of the Art: Optimization under Constraints

Figure 1.1 — Classical Optimization Methods Classification [Talbi, 2009]

the interesting parts of the search space. The Branch and X family algorithms and
A* enumerate all optimal solutions of the considered problem. They use a bounding
function in order to prune subtrees that do not contain an optimal solution. Constraint
Programming algorithms use propagation and filtering techniques to eliminate non feasible
solutions. Dynamic Programming is based on the recursive division of a problem into simpler
subproblems. Among those algorithms, a presentation of the Branch and Bound, A* and
Dynamic Programming algorithms is given.

The Branch and Bound algorithm is one of the most popular enumerative methods used
to solve optimisation problems in an exact manner. This algorithm explores the search
space by building a tree representing the problem being solved and its associated search
space. The leaf nodes are the potential solutions while the internal nodes are subproblems
of the total solution space. Two main operators are used to construct such tree: branching
and pruning. The algorithm proceeds in several iterations during which both operators
intervene. The branching operator indicates the order in which the branches are explored
depth-first or breadth-first. The pruning operator eliminates the partial solution that does not
lead to optimal solutions. Figure 1.2 shows an execution of the Branch and Bound algorithm
considering the Traveling Salesman Problem (TSP) problem with 4 cities. A solution to the
problem is an optimal path connecting the four cities and visiting each city only once. For
the considered problem, the optimal path is {1;2;3;4;1}. The right side of the figure shows
the cost of the different connections between the cities. The left side shows the tree search
constructed by the Branch and Bound algorithm. We can see that after expanding the first
path a cost value of 70 is found. While exploring the second, third, forth and sixth paths,

20 Cooperative Self-Organisation for Optimization under Constraints

1.2. Constraint Optimization Problem

1

1

43

220

43

10

30

1

2

3 4

3 4

2 4 3 2

4

1

20

35

45

70

3

75

63

X
4

X
2

X
2

1

70

3

75

X

30
25

45

88

40

83

35

50

68

Figure 1.2 — Example of an execution of the Branch & Bound on the Travelling Salesman
problem with 4 cities

before finishing the construction of the solution, the algorithm cuts those paths as a higher
cost value is computed.

In the A* algorithm, the tree search is constructed using an evaluation function that
combines the exact cost of the expanded node (from the start node to the current one) and
the estimated cost to the goal node (from the current node to the goal). This estimation is
done using a function called a heuristic. A* is guaranteed to provide optimal solutions if and
only if this heuristic is admissible, in the sense that it does not over-estimate the cost to reach
the goal. Thus, it is not possible to miss an optimal solution and the interesting parts of the
search space are explored.

In Dynamic Programming, the problem is recursively divided into simpler subproblems
and the solution is obtained after a sequence of partial decisions. Such techniques are
applied to solve search and optimization problems which exhibit the characteristics of
overlappling subproblems and optimal substructure. The overlapping subproblems characteristic
concerns the ability of the problem to be divided into interdependent subproblems, while,
the optimal substructure means that the solution to the problem can be obtained by the
combination of optimal solutions to its subproblems. Thus, their usage is limited to specific
type of problems.

ANALYSIS

Unfortunately, despite the guarantee of optimality, those techniques fail to solve large
instances of difficult problems. For example, in 1998, [Applegate et al., 1998] reported
that the maximum size of the TSP problem that was solved to optimality is 13.509 cities
with a running time approximated to 10 years1! In 2006, given the evolution of the search
strategies, the size of the largest TSP problem solved to optimality is 85.900 cities with
a running time approximated to 136 CPU-years [Applegate et al., 2006]. It is commonly

1The reported time is an estimation of the cumulative CPU time spent on the 48 workstations used to run the
simulation

Cooperative Self-Organisation for Optimization under Constraints 21

1

State Of the Art: Optimization under Constraints

accepted that for complex applications, such techniques cannot be efficiently used to adapt
to the dynamics and provide fast and good solutions.

B. APPROXIMATE METHODS

The Approximate methods generate high quality solutions in a reasonable time for
practical use, but there is no guarantee of finding a global optimal solution. They are divided
into two subclasses: Approximation Algorithms and Heuristic Algorithms. Approximation
Algorithms provide a worst-case performance guarantee in both computational time and
solution quality. Heuristics have acceptable performance in a wide range of problems but do
not guarantee to find global optimal solutions or any lower bound quality for the obtained
solution. In Approximation Algorithms, a study of the problem structure is required for the
guarantee of performance which limits their applicability. For many real-life applications
with an evolving dynamic environment where the structure of the problem is discovered
during time, such algorithms are not applicable. As Heuristic Algorithms have shown
their effectiveness to solve large and complex problems, this state of the art (section 1.2.2)
concentrates on them and their evolution to integrate complexity.

1.2.2 Heuristics and Meta-Heuristics

As shown in figure 1.1, Heuristic Algorithms are classified into two subclasses, Problem-
Specific Heuristics (Definition 3) and Meta-heuristics (Definition 4) [Blum and Roli, 2003].

Definition 3. Problem-Specific Heuristics
Problem-Specific Heuristics are search strategies that are designed to efficiently solve a very
specific problem or instance.

Definition 4. Meta-Heuristics
Meta-heuristics are high-level strategies that use other problem specific heuristics. They aim
at finding the best combination between the exploration (Definition 5) and exploitation
(Definition 6) phases of the search space.

Definition 5. Exploration
In the exploration phase, new regions of the search space are discovered.

Definition 6. Exploitation
The exploitation phase consists in exploiting locally the best discovered solutions and trying to

improve them.

Meta-heuristics are characterized by the following fundamental properties:

3 Meta-heuristics are approximate and usually non-deterministic strategies that guide the
search process to efficiently explore the search space.

22 Cooperative Self-Organisation for Optimization under Constraints

1.2. Constraint Optimization Problem

1

Metaheuristics
Local search

Population

Trajectory

N
at

ur
al

ly
 in

sp
ire

d

Dynamic objective function

Evolutionary
algorithm

N
o m

em
oryD

irect
E

xplicit
Im

plicit

Tabu search

Particle swarm
optimization

Simulated
annealing

Ant colony optimization
algorithms

Evolution
strategy

Genetic algorithm

Estimation of distribution
algorithm

Genetic
programming

Differential
evolution

GRASP

Variable neighborhood search

Stochastic local search

Iterated local search

Guided local search

Scatter search

Evolutionary
programming

Figure 1.3 — Meta-heuristics Classification from Johann Dréo via Wikimedia Commons

3 Meta-heuristics are not problem-specific. They may make use of domain-specific
knowledge in the form of heuristics that are controlled by the upper level strategy.

3 The basic concepts of meta-heuristics permit an abstract level description.

3 Techniques which constitute meta-heuristic algorithms range from simple local search
procedures to complex learning processes.

Figure 1.3 summarizes the different categories used to classify meta-heuristics. The most
common and used one is the Single Point Search vs. Population-Based, which differ by the
number of solutions explored at the same time.

1.2.2.1 Single Point Search Algorithms

Single Point Search Algorithms, also called Trajectory Algorithms, work on a single current
solution and evolve it using local search procedures that improve the solution using a

Cooperative Self-Organisation for Optimization under Constraints 23

1

State Of the Art: Optimization under Constraints

(a) Tabu search (b) Iterated Local Search (a) Simulated Annealing

List of Tabu Solutions

Move to non Tabu solutions

Search Space

C
os

t

Search Space Search Space
C

os
t

C
os

t

Local Search

Perturbation
Local Search

Accepting a deterioration

Figure 1.4 — The principle of different Single Point Search Techniques [Meignan, 2008]

local neighbourhood. Algorithm 1.2 shows the main step of algorithms based on these
techniques. First, a set of candidate solutions C(s) called neighbourhood is generated by
applying local transformation of the current solution (s). Then a new solution is selected
among the set of candidate solutions. This selection strategy is based on the objective
function to optimise. These generation and replacement phases can store some history of
the search in a memory that can be used in the generation of the candidate list of solutions
and the selection of the new solution. The memory usage influences the speed of the search.
The main problem of this procedure is that it is easily trapped in a local optimum. To avoid
this problem, different strategies have been developed such as Tabu Search, Iterated Local
Search and Simulated Annealing (figure 1.4).

Algorithm 1.2: High level template of Single Point Search Algorithms [Talbi, 2009]
Input: Initial solution s0

Output: Best Solution found
t = 0
repeat

/*Generate candidate solutions from st*/
Generate(C(st))
/*Select a solution from C(s) to replace the current solution st*/
st+1 = Select(C(st))
t = t + 1

until Stopping criteria satisfied

While exploring the neighbourhood, the Tabu Search [Glover and Laguna, 1993] avoids
going back to early explored solution using a tabu list. This list only registers recent found
solutions and by that it is considered as a short-term memory. To improve Tabu Search
efficiency, techniques using mean and long-term memory have been introduced [Glover
and Kochenberger, 2003, chap. 2].

The Iterated Local Search strategy [Glover and Kochenberger, 2003, chap. 11] consists
in perturbing the solution whenever a potentially local optimum is reached. It alternates
between two cycles: finding a solution that is a local optimum in a given neighbourhood
and resetting the current affectation to another point of the search space. These two cycles

24 Cooperative Self-Organisation for Optimization under Constraints

1.2. Constraint Optimization Problem

1

are repeated until a termination condition is met. The changes applied to the local optimum
are neither too small nor too large. If they are too small, few new solutions will be explored.
If they are too large, a random restart algorithm is obtained.

Simulated Annealing introduced by [Kirkpatrick et al., 1983] is a probabilistic method
that works by emulating the physical process whereby a solid is slowly cooled so that
when eventually its structure is "frozen", this happens at a minimum energy configuration.
Thus, the parameters of this technique are: energy and temperature. The energy parameter
represents the cost of the solution. A new solution is accepted only if it improves the cost
of current solution. Otherwise, its acceptance depends on a probability measure computed
using the temperature parameter. During the search process, this temperature decreases
which decreases the acceptance probability too. Thus, at the beginning of the search,
solutions with less quality are easily accepted while at the end, only better solutions are
accepted.

1.2.2.2 Population-Based Search Algorithms

Population-Based meta-heuristics could be viewed as an iterative improvement in a
population of solutions [Talbi, 2009, chap. 3]. First, an initial population of solutions called
individuals is generated. Then, it is iteratively improved by the generation of a complete
new population and the replacement of the current one using selection procedures. Such
selection procedures are carried out from both current and new generated populations.
Population-Based meta-heuristics differ in the way they perform the generation and the
replacement procedures. Most of them are nature-inspired algorithms. The most important
category of Population-Based Search Algorithms are Evolutionary Algorithms.

Evolutionary Algorithms are inspired by the theory of evolution presented by C.
Darwin [Darwin, 1859]. In theses algorithms, crossover, mutation and selection procedures
are used for the population improvements. The crossover procedure enables the generation
of new solutions by crossing two current individuals that play a major role (i.e. having the
best cost performance). The mutation procedure is used to promote diversity by the random
modification of the contents of an individual. The most well-known Evolution Algorithm
is the Genetic Algorithm (GA). It follows the standard procedure shown in algorithm 1.3
where each individual is a particular chromosome regrouping a set of genes called genotype.
The fitness function evaluate each chromosome by computing the characteristics of the
genotype. In a realistic problem, it combines several measures to optimise and thus, it
encapsulates the objective function of the problem.

1.2.2.3 Analysis of Meta-heuristics

These classical meta-heuristics are approximation methods that have shown their
adequacy to solve a large set of types of problems with varying levels of complexity. Despite
their adequacy, they show several limits.

These methods rely on the COP formal framework in which a given problem must be
translated. For some problems the translation is straightforward but still a difficult task,
especially since choices made during this phase may strongly impact the performances of

Cooperative Self-Organisation for Optimization under Constraints 25

1

State Of the Art: Optimization under Constraints

Algorithm 1.3: A genetic Algorithm outline [Glize and Picard, 2012]

foreach chromosome i do
initialise xi by the set of genes
xi.fitness← f (xi)

end
while termination conditions not met do

compute the fitness ∑ xi.fitness of the overall new population
foreach individual xi of the population do

select two individuals (xi, xj)
(x′i , x′j)← crossover(xi, xj)

(x′i , x′j)←mutation(x′i , x′j)

x′i .fitness← f (x′i)
x′j.fitness← f (x′j)

insert offspring in new generation population
end
replace the current population with the new population

end

the solving process. Moreover, for complex problems with different interacting entities and
dynamic events, problems are easily described by their entities and their interactions. Thus,
having a global specification of the problem with a complete description of the constraints
is difficult or even impossible. That is why problems are usually simplified to fit the
framework. In addition to this, the COP framework requires the definition of a global
objective function that in complex problems is difficult to define and can change during
the execution.

Another limit of these approaches is the need for parameter tuning. For example, in the
Tabu Search algorithm, the size of the memory plays an important role in the exploration
phase. Ideally, we would like to store all the tested solutions for a better exploration of
the search space. This results in a high memory usage and increases the solving time as
additional time is required to access the memory. Tabu search using short-term memory,
reduces the memory usage but needs additional computational time for the exploration
phase. Thus, the question is: what is the right memory size? In the same manner, genetic
algorithms require the tuning of probability parameters to improve individuals selection,
crossing, and mutation procedures. Those tuning are highly problem specific and may even
require to change during runtime when confronted to evolving problems.

COP are known to be NP-Hard. Thus, the search space grows exponentially with the
growth of problem instances. As these approaches are centralized and non-distributed,
additional computational time is required for the exploration phase.

This centralized control depends on a global objective function for deciding whether
a solution is consistent or not. In mono-objective problems, this results in obtaining
optimal solutions. In multi-objective problems, the different objectives are conflicting and
aggregating them in one global objective function results in non adequate solutions. The

26 Cooperative Self-Organisation for Optimization under Constraints

1.2. Constraint Optimization Problem

1

Pareto approach solves multi-objective problems by proposing a set of solutions representing
seemingly equivalent solution with regard to the objectives. When this approach relies on
classical meta-heuristics, it suffers from their limits.

In addition to this, the control centralization results in non-flexible methods hardly
adaptable to dynamic events. When dynamic events such as change of constraints or the
arrival of new entities happen, theses methods fail to adapt in real time, and a new solving
from scratch is required. This centralization also leads to bottlenecks and lack of robustness
needed in real world applications.

Finally, when designing a meta-heuristic, it is important to find the right equilibrium
between the exploration and exploitation phases to be sure that all regions of the search
space are explored and the best discovered solutions are well exploited without being
trapped in a local optimum. In the above presented methods, some perform better during
the exploration phase such as Population-Based Search Algorithms while other perform better
during the exploitation phase such as Single Point Search Algorithms. Thus, an effort has
been done to combine the advantages of two or more methods in one method. Such mixed
methods are called hybrid meta-heuristics.

1.2.3 Hybrid Meta-Heuristics

The most commonly studied hybrid meta-heuristics consider a combination between
Population-Based Search Algorithms and Single Point Search Algorithms.

One of the most well known hybridization algorithms is the Memetic Algorithms [Glover
and Kochenberger, 2003, chap. 5]. They consider a combination of Evolutionary Algorithm
such as GA with Local Search techniques. They aim to combine the strength of GA which is
the ability to find promising areas of the search space (exploration) with the strength of local
search which is their capabilities of quickly finding better solutions in the neighbourhood
of a given starting solution [Blum et al., 2011]. Such techniques consist in improving the
solutions obtained by the crossover and mutation procedures by applying on them a local
search such as a Tabu Search [Glover et al., 1995] or Simulated Annealing [Tamilarasi and
Kumar, 2010].

Another type of hybrid algorithms are self-contained meta-heuristics that are executed
in sequence. Population-Based Search algorithms where the initial population has been
generated using a Greedy Heuristics2 [Ahuja et al., 2000] belong to this class. Another
example of such hybrid meta-heuristics is the application of a Local Search to improve the
results obtained by a GA [Hageman et al., 2003; Jat and Yang, 2010]. The main problem of
these techniques is the size of the population that must be generated by the Greedy Heuristics
at the beginning of the search or that must be improved by the Local Search which can be
time consuming.

Thus, a new type of hybrid algorithms has been studied. It concerns self-contained meta-
heuristics being executed in parallel and cooperating to find the optimal solution. An
example of algorithms of this class, is the Island model for GA where the population is divided

2Greedy Heuristic are stepwise, iterative procedures that create the population by making seemingly best
choices at each step until all the population is generated.

Cooperative Self-Organisation for Optimization under Constraints 27

1

State Of the Art: Optimization under Constraints

into different subpopulations each being evolved by a GA, and individuals can migrate
between subpopulations. This algorithm and different other parallelization techniques of
the GA are presented in [Nowostawski and Poli, 1999]. The idea is to perform distributed
search by different meta-heuristics and making them cooperate by exchanging the best
found solutions. These techniques have been also developed using different Single-Point
Search algorithms such as Tabu Search [James et al., 2009].

1.2.3.1 Analysis of Hybrid Meta-Heuristics

A first point to underline is that when combining the functionalities of different meta-
heuristics, designers must pay attention to when to apply the hybridization. Indeed, if it is
applied at each iteration, very competitive solutions will be generated in the beginning of
the search, limiting the abilities of the GA to explore distant points of the search space as it
is drown to these local attractors.

The introduction of the parallel meta-heuristics address this centralization problem by
using cooperation between different meta-heuristics which improves the results. Such
techniques enable to speed up the search and solve large-scale problems as the search space
is divided into different smaller search spaces and to improve the quality of the obtained
solutions as the different meta-heuristics cooperate and exchange information about the best
found solutions. But, they possess different limits. They require to tune the parameters
of each used meta-heuristic, to decide when and what information must be exchanged
which can influence the communication costs and how the communication must be done
(the exchange topology) in order to maintain the equilibrium between the exploration and
exploitation phases and avoid premature convergence.

In brief, in spite of their adequacy for specific problems, these methods need to be
improved in order to tackle the growing complexity of today’s applications. Different
approaches based on the distribution of computation and control decentralization have been
proposed. The next section presents a selective review of these approaches.

1.3 Distributed Constraint Optimization Problem

A Distributed Constraint Optimization Problem (DCOP) [Matsui et al., 2008] is a COP
where the variables are managed by agents that control the value they take. Agents must
coordinate their choice of values so that a global objective function is optimized. The global
objective function is modelled as a set of constraints, and each agent knows the constraints
in which its variables are involved. Thus, the solving process is distributed among a set of
agents. Such solving techniques are known as Multi-Agent Systems (MASs).

A MAS is defined as a system in which several interacting, intelligent agents pursue a
set of goals or perform a set of tasks [Weiss, 1999]. Different solving techniques are designed
using MAS approaches. Such techniques differ by agent identification, agent interaction and
agent behaviour.

The most commonly used definitions of the term Agent are:

28 Cooperative Self-Organisation for Optimization under Constraints

1.3. Distributed Constraint Optimization Problem

1

[Ferber, 1995] definition:
An agent is an autonomous physical or virtual entity able to act (or communicate) in a
given environment given local perceptions and partial knowledge. An agent acts in order to
reach a local objective given its local competences.

[Weiss, 1999] definition:
An agent is a computer system that is situated in some environment, and that is capable
of autonomous actions in this environment in order to meet its design objectives.

These definitions agree on the fact that an agent is autonomous, acts in an environment
and possesses an objective to reach. By autonomous, we mean that an agent is able to control
its own state and behaviour. Its existence is independent from the existence of other agents.
It is able to maintain its behaviour in different types of environment such as dynamic,
inaccessible and non-deterministic environments [Russell and Norvig, 2003; Weiss, 1999].
The agent environment concerns all the objects and other agents that influence the agent
behaviour. Its behaviour is divided into three steps: Perception, Decision and Action. In the
Perception step, the agent reads and interprets messages it receives from its environment in
order to update its local representations. The Decision step concerns two points: given the
updated information and its local knowledge and skills, the agent decides the set of possible
actions that must be performed in order to respond to a situation, to answer a request or to
anticipate future situations. Once this set is defined, the agent decides, given its capacities,
skills and resources, what is the subset of actions that it will effectively perform. Finally, in
the Action step, the agent performs the selected actions.

Concerning the agent identification, three different techniques are commonly used:
Variables Agentification approaches, Nature Inspired approaches and Domain Entities
Agentification.

1.3.1 Variables Agentification

These approaches propose a simple distribution of the problem, when given a COP
description. Each agent is responsible for the affectation of it is own variable while
respecting its constraints with its neighbourhood. Most of the algorithms developed
following this approach organize agents into a hierarchy based on the constraint definition.
Asynchronous Distributed Constraint Optimization (ADOPT) and Optimal Asynchronous Partial
Overlay (OptAPO) belong to the well-known and studied algorithms of this approach.

1.3.1.1 Asynchronous Distributed Constraint Optimisation (ADOPT)

ADOPT [Silaghi and Yokoo, 2009] is an asynchronous DCOP solver, which is guaranteed
to find an optimal solution. It orders agents using a Depth-First Search (DFS) tree deduced
from the graph of constraints, and restricts communication to parent/child relationships.
Constraints exist between a variable and any of its ancestors or descendants, but not
between variables in separate sub-trees. Agents interact using three kinds of messages
(figure 1.5):

Cooperative Self-Organisation for Optimization under Constraints 29

1

State Of the Art: Optimization under Constraints

Figure 1.5 — From a DCOP (a) description to the ADOPT (b) DFS tree and communication
graph

1. Value messages that communicate the assignment of a variable from ancestors to
descendants that share constraints with the sender. At start, each agent randomly
chooses a value for its variable and sends appropriate VALUE messages.

2. Cost messages, sent from a child to its parent, indicate the cost of the subtree rooted at
the child.

3. Threshold messages contain Lower and Upper costs bounds. Sent from a parent to its
child, they guide agents choosing their values. They are used to detect the termination
of the execution. Indeed, when the upper bound and the lower bound meet at the root
agent, then a globally optimal solution is found.

1.3.1.2 Optimal Asynchronous Partial Overlay (OptAPO)

OptAPO introduced in [Mailler and Lesser, 2006] increases the decentralisation using
cooperative mediation. OptAPO is a sound and optimal algorithm where agents extend and
overlap the context that they use for making their local decisions as the problem solving
unfolds. Thus, this algorithm discovers difficult portions of a shared problem through
trial and error and centralizes these sub-problems into a mediating agent in order to take
advantage of a fast centralized solver. Agents of this algorithm work by constructing a
good_list and maintaining a structure called the agent_view. The good_list holds the names
of the variables that are known to be connected to the owner by a path in the constraint
graph. The agent_view holds the names, values, domains and constraints of variables to
which an agent is linked. Whenever the agent receives information on other agent variables,

30 Cooperative Self-Organisation for Optimization under Constraints

1.3. Distributed Constraint Optimization Problem

1

it records them in the agent_view. The variable is added to the good_list only if the graph
created by all the variables of the list remains connected, ensuring that only agents having
an interdependency link with the owner are added. As the problem solving unfolds, each
agent tries to solve the problem it has centralized within its good_list. To do this, an agent acts
as a mediator and computes a solution to a portion of the overall problem and recommends
value changes to the agents involved in the mediation session (agents in its good_list). When
different linked agents want to mediate, the mediator is selected using a priority value based
on the size of the good_list. Thus, the most knowledgeable agent is selected to solve the
subproblem. As a mediator, the first attempt of the agent is to solve conflicts by changing
its own value. If no possible value is found, the agent starts the mediation session and uses
a Branch and Bound algorithm to solve its subproblem. If no solution is possible without
causing a violation with agents outside of the session, the mediator adds links to those
agents assuming that they are linked to its variable, increasing by that the size of its good_list.

Figure 1.6 presents an illustration of OptAPO execution for solving the 3-colouring graph
problem. This problem consists in assigning a color from a set of three colors {dark red;
blue; white} ({dark grey; light gray; white} for wite & black figures) to each region of a
map such as two adjacent regions cannot have the same color. The instance shown in the
illustration considers a map of 6 regions {A;B;C;D;E;F} represented by agents and sharing 8
constraints. At the start of the algorithm, each agent chooses a color to its region (as shown
in the left side of the figure) and sends this information to agents having a constraint with
it. Each agent, after updating its good_list and agent_view, checks its view. In this example
two conflicts are detected: (A;B) and (C;D). Agent C having the higher priority value among
its neighbours and being unable to solve its conflict locally, sends an invitation to {A;B;D;E}
to start a mediation session. Thus, each agent labels its domain elements (here the three
possible colors) and sends it back to C :

3 A - blue conflict with C, dark red conflict with B, white no conflict

3 B - blue conflict with C & D, dark red conflict with A, white no conflict

3 D - blue conflict with C, dark red conflict with B, white conflict with E

3 E - blue conflict with C & F, dark red no conflict, white no conflict

Once all of the responses are received, the mediator C conducts a Branch and Bound
search that attempts to find a satisfying assignment to its subproblem and minimizes the
amount of conflict that would be created outside of the mediation (here with F). In this
example, C finds a solution that consists in changing B to green and D to red (left side of the
figure). This solution is sent to agents and the problem is solved.

1.3.1.3 Analysis

ADOPT is proved to be complete. Nevertheless, like several algorithms in this
approach, it suffers from the hierarchy structure between the agents which leads to different
drawbacks. The primary drawback, is the existence of a central node which constitutes a

Cooperative Self-Organisation for Optimization under Constraints 31

1

State Of the Art: Optimization under Constraints

B

EC

D

A

F
p=5

B

EC

D

A

F

p=3

p=4 p=4

mediator constraint
violation

Figure 1.6 — Resolution of the 3-colouring graph problem using OptAPO

bottleneck, especially for large problem instances. Furthermore, as the structure is based
on the constraints, whenever a constraint changes or new constraints are defined, a new
structure must be established. In general, approaches based on centralization present a
number of drawbacks limiting their usage in dynamic environment. [Ouelhadj and Petrovic,
2009] discusses several drawbacks of such approaches applied to dynamic scheduling in
manufacturing systems.

The performances of OptAPO are closely related to the Branch & Bound algorithm.
Indeed, each time an agent decides to mediate in OptAPO it conducts a Branch & Bound
search in its good_list. As the size of the good_list grows, the size of the Branch & Bound
search space increases dramatically. In addition to this, during the OptAPO execution, the
good_list tends to increase as additional links are created due to external conflicts. So, there is
a tendency of at least one agent achieving complete centralization which leads to executions
of the Branch & Bound algorithm that involve all variables [Davin and Modi, 2005]. Thus,
this algorithm is hardly applicable to real-world applications.

In OptAPO, different messages are exchanged between agents during the solving. These
messages include information on the values taken by agents and their constraints. For
example, when requested for a mediation session, each requested agent labels each of its
domain values with the names of the agents that it would be in conflict with it if it were
asked to take that value and return this information in an evaluate! message. The size of this
message is related to the number of variables and the size of the agent’s domain, which can
increase dramatically and causes network overload. In addition to this, privacy and security
problems can be underlined.

Finally, as discussed in section 1.2.2.3, these approaches require a translation of the
problem to the DCOP formal framework which also limits their usage.

1.3.2 Nature Inspired

Known as Swarm Intelligence, algorithms of this approach are inspired from the collective
behaviour of more or less social species such as ants, bees, wasps, termites, fishes and birds
[Bonabeau et al., 1999]. The most studied and used nature inspired optimization algorithms
are Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) [Talbi, 2009, chap.

32 Cooperative Self-Organisation for Optimization under Constraints

1.3. Distributed Constraint Optimization Problem

1

3].

1.3.2.1 Ant Colony Optimization

ACO algorithms are considered as MASs where each agent imitates the cooperative
behaviour of real ants [Dorigo et al., 2000]. The main idea of ACO is to mimic the simple ant
behaviour using simple communication mechanisms and performing complex tasks such
as finding shortest paths to food sources (figure 1.7). Like ants, agents interact indirectly
via the environment by tagging promising regions. Such tags are called Pheromones like the
chemical olfactive and volatile substance left by biological ants to guide other ants toward
a target point. Thus, Pheromones are subject to evaporation and reinforcement processes.
In ACO each agent constructs a solution incrementally from partial solutions. Each agent
decides to add a feasible solution component from the set of feasible neighbours with respect
to the current partial solution. At each step, the agent drops pheromone in the visited
position. The ACO algorithm requires the initialisation of different parameters such as
the number of artificial ants to work in the search space which influences the speed of the
search. Other parameters concern the initial value of the pheromone and the pheromone
evaporation rate. The basic common approach for the pheromone update consists in having
the agent increase the pheromone values of a position when visiting this position of the
search space, while the pheromone values decrease by a fixed proportion as no agent visits
the position. Thus, promising positions presenting parts of the better solutions contain
high pheromone values and are more attractive. Those parameters are important as the
pheromone guides agents near the paths to good solutions and avoids older paths by the
evaporation process. This can be seen in figure 1.7. The first ant finds the food source
(F), then returns to the nest (N) leaving behind a trail of pheromone (b). The other ants of
the nest indiscriminately follow the different possible ways leaving trail of pheromones.
As the pheromones evaporate during time, long portions of other ways lose their trail
pheromones while the trail pheromone of the shortest route is strengthened which makes it
more attractive (2). Thus, the shortest path connecting the nest to the food source emerges
(3).

1.3.2.2 Particle Swarm Optimization

In PSO algorithms, agent behaviour is inspired from the social behaviour of natural
organisms such as bird flocking and fish schooling [Kennedy, 2010]. Each agent is a
candidate solution of the problem called particle. The PSO algorithms find optimal regions
of complex search space through the interaction of individual agents in the population.
It shares many similarities with evolutionary algorithm such as GA. However, it has no
evolution operators. Each agent (particle) is characterized by its own position xi and velocity
vi represented as vectors and indicating the flying direction and the movement to perform.
Each agent possesses a neighbourhood which denotes the social influence between them.

Algorithm 1.4 presents an outline of a classical PSO. At each step, the fitness function
f (xi) determines which particle has the best value in the swarm (gbest) and the best position
ever visited by each agent (lbest). Each agent keeps track of the best explored solutions and

Cooperative Self-Organisation for Optimization under Constraints 33

1

State Of the Art: Optimization under Constraints

F

N

a

b

1

F

N

2

F

N

3

Figure 1.7 — Shortest path fund by an ant colony

updates its velocity toward its local and global best positions, updating by that its position.
As agents exchange information on the best visited position, when an agent detects that it
has a better quality solution, all the other agents move closer to it for better exploration of
the region.

Algorithm 1.4: Particle Swarm Optimisation outline

foreach particle i do
initialise position xi and velocity vi

initialise the local best value: lbest ← xi

initialise the global best value: gbest ← argmin f (xi)

end
while termination conditions not met do

foreach particle i do
update velocity: vi = w.vi + cg.rand(gbest − xi) + cl .rand(lbest − xi)

update position dimension: xi = xi + vi

update the local best value: lbest ← argmin[f (lbest, f (xi))]
update the global best value: gbest ← argmin[f (gbest, f (xi))]

end
end

1.3.2.3 Analysis

Both algorithms are similar to Population-Based Search meta-heuristics as each agent
handles and evolves a complete solution of the considered problem. Thus the multi-agent

34 Cooperative Self-Organisation for Optimization under Constraints

1.3. Distributed Constraint Optimization Problem

1

system is a population of solutions. Nevertheless, they differ from Population-Based Search
meta-heuristics by the distribution of the population on a set of agents, and the individuals
evolution. While in Population-Based Search, selection and evolution procedures are used
considering all the population, in ACO and PSO this evolution is carried out by each
individual. Indeed, each agent decides how to modify its solution given its representation
of the environment and its interactions with other agents.

A first point to notice in these approaches is the absence of a global control. There is no
central agent to decide if a global optimal solution is obtained. The behaviour of the whole
system emerges from the interaction of simple agents.

Such techniques are considered as approximate methods with no quality guarantee on
the obtained solution. But, given their decentralization, they are more robust to dynamics,
such as the arrival of new agents. Unfortunately, as Population-Based Search meta-heuristics,
agents use global objective functions to evaluate their costs, this limits the usage of these
techniques to problems where such functions exist. In addition to this, ACO algorithms
efficiently solve distributed network problems where shortest paths are required, but are
hardly adaptable to other type of problems as for instance, they are inappropriate for
continuous problems when the domain of variables is large as they require to modify the
structure of the problem in a combinatorial one (by splitting the domains of the variables to
intervals) or to change the pheromone model by a continuous one (as the pheromone trails
are associated to a finite set of values related to the decisions that the ants make).

Another point to consider is the need for parameters tuning such as the number of
agents in the ant colony, pheromone influence and evaporation rate in ACO or the velocity
modification in PSO. Thus, solutions accuracy are sensitive to the dynamics present in
recent applications (evolving of number of variables and constraints). The more the current
problem configuration is far from the initial one, the less the initial parameter values are
relevant and the more the result is far from the optimum.

In brief, these methods demonstrate that the distribution of computation and the control
decentralization are required to efficiently solve dynamic problems, but suffer from several
drawbacks that limit their usage to specific problems.

1.3.3 Domain Entities Agentification

These approaches consist in modelling agents from the domain description,
independently from any COP formalisation. Software agents represent entities of the
problem to solve or tools for coordination.

These approaches have been widely used to solve a large variety of complex problems
and different types of agents have been developed. We point out two types of entities
agentification. The first one considers the physical entities of the problem as agents.
In the second one, the functional entities of the problem are agentified. For instance,
considering the manufacturing process planning and scheduling problem (figure 1.8), in
a functional decomposition approach, agents represent functional modules such as routing,
materials handling, transportation management or load management, while in a physical
decomposition approach, agents are used to represent entities in the physical world such as

Cooperative Self-Organisation for Optimization under Constraints 35

1

State Of the Art: Optimization under Constraints

Machines

Containers

Operators

Rails
Routing

Load
Management

Figure 1.8 — Functional & Physical decomposition of the manufacturing control problem

operators, machines or tools. Considering a multi-disciplinary optimization problem such
as complex product design, in a functional decomposition approach, agents represent the
links between the different disciplines while in a physical decomposition approach, agents
represent the considered disciplines.

In such a context, the designed MAS is close to the problem definition and no
transformations are needed. Each agent represents an entity of the problem. Thus,
agents possess the characteristics of the entity they represent and are designed with a
corresponding local objective. Their behaviour is dictated by the description of the problem.

To reach their objective, agents use their local knowledge and interact with each other.
By their interactions, they coordinate their actions and behaviour resulting in more coherent
systems. [Weiss, 1999] defines coordination as the property of a system of agents performing
some activity in a shared environment. This coordination enables the agents to self-organize
their actions. From the obtained organization, the global function of the system emerges
without explicit global control.

Different other optimization problems under constraints were solved using domain
entities agentification techniques such as road traffic simulation [Doniec et al., 2008], vehicle
routing [Weyns et al., 2008], robot task allocation [Lacouture et al., 2011; Gerkey and Mataric,
2002] or complex product design [Welcomme et al., 2006].

This variety of applications show us the adequacy of theses techniques to solve complex
problems. Different from centralized approaches, agent-based approaches can respond
quickly to dynamic changes and disturbances through local decision making. Thanks
to the autonomy given to each individual agent resulting in a distributed loosely coupled
architecture, these approaches provide better fault tolerance than traditional approaches,
increasing by that robustness and adaptivity.

One of the most studied problem in the field is intelligent manufacturing. [Shen et al., 2006]

36 Cooperative Self-Organisation for Optimization under Constraints

1.3. Distributed Constraint Optimization Problem

1

presents a detailed review of agent-based approaches used to solve different applications of
the domain. In our case, we consider the manufacturing process planning and scheduling
which is one of the well studied optimization problems. Different solving techniques have
been investigated by the CollInE3 group in France. Mostly all multi-agent solving systems
agentify physical entities such as jobs and machines. The underlined differences between
them pertain to the negotiation and cooperation processes used by agents to coordinate
their activities. In the following, three different coordination mechanisms are presented:
direct communication using Dynamic Contract-NET (DynCNET), indirect communication
using stigmergy and environment feedback using Reinforcement Learning.

1.3.3.1 Direct Communication: Dynamic Contract-Net Protocol

In some systems, direct communication between agents such as Contract-Net Protocol and
its extended versions [Baker, 1991; Parunak, 1987; Smith, 1980] is used. [Weyns et al., 2007]
introduces the DynCNET protocol, a dynamic extension of the contract-net protocol where
already established contracts can be dynamically changed to support dynamic changes of
the environment. DynCNET is a m x n protocol where an initiator that offers a task can
interact with m participants and a participant that is searching for a task interacts with n
initiators. The default message sequence of DynCNET shown in figure 1.9 consists in four
steps:

1. after the initiator sends a call for proposals,

2. it selects among the received proposals,

3. a provisional winner that

4. informs the initiator that the task is started.

By having the possibility of revising provisional task assignment between step 3 and 4,
the DynCNET ensures the management of dynamics. Indeed, even if the initiator selects a
winner, it can change its selection if another more appropriate participant is found.

The DynCNET was tested on the Automated Guided Vehicles (AGVs) to transport loads in
an industrial environment. In this problem, an AGV must drive to a load before it can pick
it up and transport it to the destination. During this drive, different events may occur such
as new loads entering the system that are more suitable for the AGV to transport or new
AGVs more suitable to perform the transportation may become available. Thus, a flexible
task assignment approach is required for this problem. To apply DynCNET, two physical
agents are identified: AGV agents that correspond to participants and transported agents
(loads) that corresponds to initiators. They interact using the default message sequence,
and before the effective start of a transportation, both agents can change their affectations if
new more suitable agents are discovered.

ANALYSIS

3http://www.irit.fr/COLLINE/Presentations.html

Cooperative Self-Organisation for Optimization under Constraints 37

http://www.irit.fr/COLLINE/Presentations.html

1

State Of the Art: Optimization under Constraints

Figure 1. High-level diagrams of DynCNET. Left: interaction diagram; right: state diagram

(or participant) searches for participants (or initiators) the
area of interest of the initiator (or participant). The dotted
circles in Fig.2 show the current areas of interest of AGV
A (top) and task x (bottom). For task x, there are currently
two candidate AGVs to execute the task: F and G (AGV E is
delivering a load). For AGV A on the other hand, there are
three possible tasks to execute: u, v, and w. Due to the dy-
namics in the system, the set of candidate tasks (initiators)
and agents that can execute a task (participants) can change
over time. E.g., when AGV E drops its load at location s, it
becomes a candidate to execute task x.
Default Sequence. The AUML interaction diagram of
Fig. 1 shows the default message sequence of DynCNET.
The default protocol consists of four steps: (1) the initiator
sends a call for proposals; (2) the participants respond with
proposals; (3) the initiator notifies the provisional winner;
and finally, (4) the selected participant informs the initiator
that the task is started. These four steps are basically the
same as in the standard CNET protocol. The flexibility of
DynCNET is based on the possible revision of the provi-
sional task assignment between the third and fourth step of
the protocol, i.e. the shades zones in Fig. 1.
Switching Initiators and Participants. To explain how
agents can switch tasks when the conditions in the environ-
ment change, we use the UML state diagram in Fig. 1 that
shows a compact representation of the behavior of the agents
in the protocol. First we look at the protocol from the per-
spective of the participant, then we look from the point of
view of the initiator.
Switching Initiators. Consider the situation in Fig. 2 where
AGV A has a provisional agreement to execute task w.

Figure 2. Scenario to illustrate DynCNET

While AGV A drives toward the pick location of task w,
a new task may enter at the transport location p. This new
task is an opportunity for AGV A. DynCNET enables par-
ticipants to switch initiators and exploit such opportunities.
When a participant is ready to execute a task, it enters the
Voting state where it answers cfp’s with proposals.
When the participant receives a provisional–accept
message (step 3 in the interaction diagram of Fig. 1), it en-
ters the Intentional state. As soon as the participant

First International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2007)
0-7695-2906-2/07 $25.00 © 2007

Figure 1.9 — DynCNET Basic Protocol [Weyns et al., 2007]

An important point to underline in this protocol, is the possibility given to agents to
revise already taken decisions. This revision is based on the discovery of more suitable agents
which still is an application dependent notion.

1.3.3.2 Indirect Communication: Stigmergy

In other systems such as [Rajabinasab and Mansour, 2011; Xiang and Lee, 2008;
Valckenaers et al., 2006], agents communicate indirectly via the environment using markers.
For example, [Valckenaers et al., 2006] presents a system where coordination and control are
inspired by food foraging behaviours in ant colonies. The developed system is applied to
scheduling in the manufacturing control problem. In this system, three types of agent are
used.

3 The Resource Agent controls a resource in the system. It has deep and detailed
knowledge about the resource it controls and can provide information concerning the
different states of the resource.

3 The Product Agent corresponds to a product model in the system. It hold the knowledge
on how it can be produced. In other terms it knows the list of operations to be executed
and the qualified resources to execute them.

3 The Order Agent corresponds to a task that needs to be executed. The agent must
perform correctly the assigned work on time. It interacts with the product agent to
discover what valid sequences are available.

Each task of the system is controlled by an order agent that must find a sequence
of suitable resources to treat it. Two steps are required by the order agent to realise its
goal. First, it creates Explorer agents that each search for a good solution to accomplish the
given task. When an explorer agent finds a solution, it returns it to the order agent that
maintains a set of candidate solutions (left side of figure 1.10). These candidate solutions
are marked and reinforced regularly by exploring agents that can rediscover the most

38 Cooperative Self-Organisation for Optimization under Constraints

1.3. Distributed Constraint Optimization Problem

1

Order Agent

t
t

t
re

so
ur

ce
s

re
so

ur
ce

s

re
so

ur
ce

s

Order Agent

t
t

re
so
ur
ce
s

re
so

ur
ce

s

t

re
so

ur
ce

s

Figure 1.10 — The marking of the most attractive candidate solution and the evaporation
of those not rediscovered

attractive candidates with a high probability. The markers of candidate solutions not
rediscovered evaporate during time, decreasing their adequacy for the order agent (right
side of figure 1.10). Second, after this set of candidate solutions has been constructed and
the estimated starting time for the processing of the task approaches, the order agent selects
the most adequate solution that becomes its intention. To execute its intention, the order
agent generates intention agents, at a given frequency. Those agents follow and update
the selected candidate solution. Indeed, they are able to mark the resource agent by the
intention of their order agent. This action has two folds. It enables the resource agent to
predict performance more accurately to its visitors (explorer and intention agents). Such
performance are returned to the order agent that can update the selected candidate solution.
The marks left by the intention agents evaporate. Thus, order agents must create intention
agents at a sufficiently high frequency to maintain its booking intentions. This refreshing
mechanism is required as order agents can adapt their candidate solution given the update
information about the evolution of its current intention and the resources states.

ANALYSIS

In brief, in this system, two coordination mechanisms inspired by ant colonies are
underlined. The first one concerns the marking of the candidate solution while exploring
the search space. The second concerns the marking of the resource agents while executing
the treatment of the tasks. Both mechanisms imply the generation of different Explorer
and Intention agents to maintain the information up to date. The system is robust to
dynamics such as the arrival of new tasks as new order agents independent from the already
existing ones are created, or resources breakdown as agents can always have updated
informations concerning the resource states. In addition to this, the main advantage of
this technique is the flexible emergent forecasting. Indeed, the discovering of different
candidate solutions and the reservation of resources by intention agents facilitate the
prediction of the performance of the manufacturing system while being flexible and robust

Cooperative Self-Organisation for Optimization under Constraints 39

1

State Of the Art: Optimization under Constraints

Environment

D

A

I
R

s a

i

r

Figure 1.11 — The Reinforcement Learning mechanism where an agent A receives an
input (i) describing the current state (s) of the environment. Given its Decision (D) module,
the agent chooses an action (a) that changes the state of the environment. The value of this
state transition is then sent back to the agent through a reinforcement signal (r)

to dynamics. Still, such mechanisms require the tuning of the evaporation rates and the
marking strategies. In addition to this, as different agents must be created by each order
agent for the exploration and treatment phases, scalability issues may be a limit for such
techniques as the number of agents is higher than in other approaches.

1.3.3.3 Environment Feedback: Reinforcement Learning

Another studied coordination technique in complex problem solving under constraints
is Reinforcement Learning. In this technique, a feedback is sent by the environment of the
MAS indicating the performance level achieved so far. Reinforcement learning concerns the
problem of a learning agent interacting with its environment to achieve a goal [Sutton, 1999].
The standard reinforcement-learning model is presented in figure 1.11. At each interaction
step, the Agent (A) receives an input (i) describing the current state (s) of the environment.
Given its Decision (D) module, the agent must choose an action (a). This action changes the
state of the environment. The value of this state transition is then sent back to the agent
through a reinforcement signal (r) [Kaelbling et al., 1996]. Instead of being given examples
of desired behaviour, the learning agent must discover by trial and error how to behave
in order to get a higher reward. Thus, learning requires exploration and exploitation phases.
Indeed, it is not enough for an agent to select the better already tested actions (exploitation)
because then no returns can be obtained for other actions that may perform better. Note
that, for the exploitation phase, a memory space is required by the agent to memorize the
reward obtained given a state (s) and an action (a). Different techniques and algorithms such
as Learning Automata or Q-Learning have been developed in order to help the agent discover
the right behaviour. A complete presentation of Reinforcement Learning and the developed
algorithms can be found in [Verbeeck, 2004].

This technique has also been applied to scheduling in the manufacturing control
problem [Aydin and Öztemel, 2000; Martinez et al., 2010; Wang and Usher, 2005]. In

40 Cooperative Self-Organisation for Optimization under Constraints

1.3. Distributed Constraint Optimization Problem

1

these systems, stations are considered as agents having a list of operations to treat.
Stations are provided with a set of dispatching rules to decide which operation to treat
first. Reinforcement Learning is used by the stations to learn which dispatching rule is
the most appropriate to use given the current state of the environment and an objective
function to minimize. Reinforcement Learning techniques have shown their adequacy to
solve scheduling problems under dynamics. The most studied source of dynamics in such
systems is the arrival of new operations.

ANALYSIS

Still, the performance of these techniques are highly related to the structure of the
problem and the dynamics occurrence. Indeed, in stable environments where dynamics
occurrence follows a smooth distribution law such as an exponential or poisson distribution,
agents are able to learn the structure and choose appropriate actions to perform. Such
problems are characterized by the Markov property that can be learned by agents. These
techniques also perform well in environments that switch from a stable state to another for
a given period. In such environments, the agent behaviour is chaotic for a certain period
corresponding to the state changes. After agents learn to act in this new state, performances
are increased. But, in completely changing environments or random occurrence of
dynamics, the learning process in fact prevents the agents to act efficiently.

1.3.4 MAS and Meta-heuristics

Given their distribution and decentralisation characteristics, MAS have been used for
the implementation of hybrid meta-heuristics relying on parallelism described in section 1.2.3.

A composition of these two techniques has been also investigated. The Beam-ACO search
algorithm [Blum et al., 2011] is an example of such composition where the probabilistic
construction of the solution provided by ACO is replaced by the solution construction
mechanism used by a probabilistic Beam Search4. OptAPO presented in section 1.3.1 is
another example where the Branch and Bound algorithm is used by agents to perform the
cooperative mediation session.

In domain entities agentification, some agents can use meta-heuristics to locally search
for optimal solutions. It is the case of the multi-agent system developed in [Madureira et al.,
2009] for scheduling in manufacturing control where resource agents use a Genetic Algorithm
and Tabu Search to locally schedule the received operations and then they negotiate with
other agents in order to overcome inter-agent constraints and achieve a global schedule.

4The Beam Search algorithm is an optimization of best-first search algorithm which is a graph search that orders
all partial solutions according to a heuristic that predicts how close a partial solution is to a complete solution.
In Beam Search, only a predetermined number of best partial solutions are kept as candidates called the beam
width.

Cooperative Self-Organisation for Optimization under Constraints 41

1

State Of the Art: Optimization under Constraints

1.4 Case Based Reasoning Solving Technique

In some domains such as complex product design, the solving process depends on the
experts knowledge and experience. Indeed, experts find it hard to articulate their thought
processes while solving problems. This is because knowledge acquisition is extremely
difficult in such domains, and is likely to produce incomplete or inaccurate results.

In Case-Based Reasoning (CBR) systems, expertise is embodied in a library of past cases
rather than being encoded in classical rules. The knowledge and reasoning process used by
an expert to solve the problem is not recorded, but is implicit in the case description.

To solve a given instance of a problem, all case-based reasoning methods such as
[Bonzano et al., 1996], [Maher and de Silva Garza, 1997] and [Plaza et al., 1997] have in
common the following process (figure 1.12):

3 retrieve the most similar case (or cases) comparing the case to the library of past cases;

3 reuse the retrieved case to try to solve the current problem;

3 revise and adapt the proposed solution if necessary;

3 retain the final solution as part of a new case.

Figure 1.13 shows the different tasks to accomplish at each step. Each task can itself
be divided into a set of tasks (plain lines). The stippled lines link each task to alternative
methods that can be applied for solving it.

Like in the earlier COP approaches, centralization is the main limit of the first
solving CBR techniques. Indeed, such approaches must handle huge volumes of data or
manipulate information that can be distributed as is the case of networked information for
instance. Thus, Distributed Case Based Reasoning techniques have been studied. Indeed, the
distribution of resources within case-based reasoning architectures is beneficial in a variety
of application contexts. For instance, [McGinty and Smyth, 2001] used a Collaborative Case-
Based Reasoning for better route planing systems, [Prasad et al., 1996] introduce the CBR-Team
system where heterogeneous agents, each responsible for a particular component design
task, cooperate to resolve design conflicts. Different other systems are discussed in [Plaza
and McGinty, 2005].

1.4.1 Analysis

[McGinty and Smyth, 2001] underlines different advantages for the usage of Distributed
Case-Based Reasoning strategies for problem solving. We underline the fact that these
strategies where problems are solved by the combined effort of multiple, independent CBR
agents, have the potential to improve the performance and maintainability of real-world
case-based systems. In addition to this, since each agent is treated as an independent
problem solving entity, overall maintenance is made easier as agents may be locally adapted
independently of the other agents.

42 Cooperative Self-Organisation for Optimization under Constraints

1.4. Case Based Reasoning Solving Technique

1

New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case

RETRIEVE
New
Case
New
Case

R
E
U
S
E

New
Case
New
Case

R
E
T
A
IN

New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case

Problem

New
Case
New
Case
New
Case
New
Case
New
Case

New
Case

New
Case
New
Case

Retrieved
Case

New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case

General
Knowledge

New
Case
New
Case

Previous
Cases

New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case

Suggested
Solution

New
Case
New
Case
New
Case
New
Case

Solved
Case

New
Case
New
Case
New
Case
New
Case
New
Case
New
Case
New
Case

Learned
Case

New
Case
New
Case

REVISE

New
Case
New
Case

Tested/
Repaired
Case

New
Case

Confirmed
Solution

New
Case
New
Case
New
Case
New
Case

Figure 1.12 — The Case-Based Reasoning Cycle [Aamodt and Plaza, 1994]

Still, these techniques present several limits such as the cases description. Indeed, the
description of each case includes the problem and its solution. For complex problems,
the solution is usually hard to formulate. For instance, in complex product design, each
product can be described as a set of characteristics with not well-known dependency links.
The solution for such problems cannot be formulated separately, it is included in the
characteristics description. In addition to this, the first step of the CBR process is retrieving
cases that match the problem to solve as accurately as possible. The retrieve case step is
highly dependent on the case description and the distance functions used. Thus, whenever
cases are not well described, the complexity of this step is increased while its performance
is decreased.

Another point to consider is that in a distributed environment, the combination of the
results obtained by each agent remains difficult to perform. For example, in a distributed

Cooperative Self-Organisation for Optimization under Constraints 43

1

State Of the Art: Optimization under Constraints

p
ro

b
le

m
 s

o
lv

in
g

 a
n

d
le

a
rn

in
g

 f
ro

m
 e

x
p

e
ri

e
n

c
e

re
tr

ie
v

e
re

u
s

e
re

ta
in

id
e

n
ti

fy
fe

a
tu

re
s

in
it

ia
ll

y
m

a
tc

h
c

o
ll

e
c

t
d

e
s

c
ri

p
to

rs

in
fe

r
d

e
s

c
ri

p
to

rs

in
te

rp
re

t
p

ro
b

le
m

ca
lc

ul
at

e
si

m
ila

rit
y

ex
pl

ai
n

si
m

ila
rit

y

fo
llo

w
di

re
ct

in
de

xe
s

se
ar

ch
ge

ne
ra

l
kn

ow
le

dg
e

se
ar

ch
in

de
x

st
ru

ct
ur

e

c
o

p
y

re
v

is
e

co
py

so
lu

tio
n

m
od

ify
so

lu
tio

n
m

et
ho

d
m

od
ify

so
lu

tio
n

ev
al

ua
te

in
 r

ea
l

w
or

ld

e
x

tr
a

c
t

in
d

e
x

in
te

g
ra

te
ex

tr
ac

t
re

le
va

nt
de

sc
rip

to
rs

u
p

d
a

te
g

e
n

e
ra

l
k

n
o

w
le

d
g

e

ex
tr

ac
t

so
lu

tio
ns

a
d

ju
s

t
in

d
e

x
e

s

d
e

te
rm

in
e

in
d

e
x

e
s

re
ru

n
p

ro
b

le
m

g
e

n
e

ra
li

ze
in

d
e

x
e

s

ex
tr

ac
t

so
lu

tio
n

m
et

ho
d

a
d

a
p

t

ev
al

ua
te

in
 m

od
el

s
e

a
rc

h

s
e

le
c

t

ex
tr

ac
t

ev
al

ua
te

by
 te

ac
he

re
v

a
lu

a
te

s
o

lu
ti

o
n

re
p

a
ir

fa
u

lt

ca
se

-b
as

ed
 r

ea
so

ni
ng

us
e

se
le

ct
io

n
cr

ite
ria el
ab

or
at

e
ex

pl
an

at
io

ns

se
lf-

re
pa

ir us
er

-
re

pa
ir

co
py

so
lu

tio
n

m
et

ho
d

Fi
gu

re
1.

13
—

A
ta

sk
-m

et
ho

d
de

co
m

po
si

ti
on

of
th

e
fo

ur
st

ep
s

of
th

e
C

BR
pr

oc
es

s
[A

am
od

t
an

d
Pl

az
a,

19
94

]

44 Cooperative Self-Organisation for Optimization under Constraints

1.5. Conclusion & Discussion

1

case-based system, the problem description can be divided into several sub-problems each
handled by an agent. The partial view of each agent may result in the best local cases
but their combination may not result in the best overall case [Prasad, 2000]. [Plaza et al.,
1997] underlines four major advantages for making agents cooperate in CBR. It states
that cooperation is required in order to improve the individual performance, the quality
of solutions, the efficiency in achieving solutions and especially to achieve tasks that could
not be solved in isolation. In such cases, the CBR techniques can be seen as the cooperation
between existing cases in order to solve new cases.

1.5 Conclusion & Discussion

In this chapter, the main solving techniques used for solving optimisation problems
under constraints are presented. Different limitations and advantages have been
underlined.

A first limit concerns the necessity to translate problems in specific frameworks such as
COP or DCOP so that already defined solving techniques can be applied. Another point
concerns the rigid tree structure used in several solving techniques (Branch and Bound,
ADOPT, etc.). In addition to this, mostly all the defined solving techniques require the
definition of a specific objective function used as a fitness evaluation for the system,
and/or parameter tuning such as in GA, ACO or PSO.

The presented evolution and improvements of the solving techniques have underlined
the importance of the distribution of computation and the decentralisation of control
in order to speed up the search and increase the flexibility of the developed systems.
Multi-agent systems approaches by integrating both concepts have shown their adequacy
to efficiently solve problems with growing complexity. Specifically, domain entities
agentification approaches have shown that using bottom up approaches to design systems
by being close to the problem definition is more appropriate than considering a global
solution when solving such problems. This is justified by the fact that being close to the
problem definition enables to better understand the functioning of the different entities that
can increase by their local treatment the adaptivity of the system and thus its robustness
to dynamics.

In addition to this, in the different solving techniques developed for DCOPs, the concept
of cooperation is fundamental for the interactions between agents to reach high quality
global solutions. Indeed, from the analysis of the different algorithms presented here, the
following cooperation mechanisms can be identified:

3 The Value messages communicated by agents to their descendants in ADOPT help
agents to cooperatively solve a DCOP;

3 In the same manner, an agent in OptAPO can initiate cooperative mediation sessions to
solve local DCOP among a set of agents;

3 The pheromone used by the ants in ACO gives relevant information about promising
regions of the search space and guides the behaviour of other ants;

Cooperative Self-Organisation for Optimization under Constraints 45

1

State Of the Art: Optimization under Constraints

3 The velocity and position of local and global best solutions used by the particles in PSO
are cooperative information exchanged for better exploration phase;

3 Mostly all entities agentification approaches use cooperative interactions between
agents in order to equilibrate the satisfaction degree of the different agents and enable
them to reach their local objective from which the global solution emerges.

3 In CBR techniques, the problem description can be divided into several sub-problems
each handled by an agent. Cooperation is required between the different agents in order
to find the best combination between the different found results.

To sum up, we notice that some sort of cooperative behaviours is required to achieve
efficient results. This is a reason why the Systèmes Multi-Agent Coopératifs (SMAC) team
developed the Adaptive Multi-Agent System (AMAS) theory (chapter 2) based on cooperative
decisions.

Unlike variables agentification and nature inspired agentification techniques where a
formal framework is used to develop the solving system, techniques based on entities
agentification depends on the problem definition. Thus, the choice of entities to agentify
(physical or functional) is related to the way a designer understands the problem, and the
developed solutions are problem specific. This limits the reuse of such systems.

In addition to this, solving problems using such techniques require a bottom-up
approach where we consider the different entities of the problem and their interactions.
Thus specific methodologies different from the traditional top-down methods are required.
Methodologies such as GAIA [Zambonelli et al., 2003], ADELFE [Bernon et al., 2002; Picard,
2004], INGENIAS [Pavón and Gómez-Sanz, 2003], PASSI [Cossentino and Potts, 2002],
SODA [Omicini, 2001], ASPECS [Cossentino et al., 2010] or TROPOS [Castro et al., 2001]
have been developed to guide designers in such a way. Their main strengths but also limits
are that such methodologies are designed to guide the development of multi-agent systems
independently from the type of problem to solve and remain at a high level of abstraction.
Thus, an important effort is required to design a specific instantiation of a MAS as no agent
model ready to use is available.

46 Cooperative Self-Organisation for Optimization under Constraints

1.5. Conclusion & Discussion

1

The contribution of this thesis concerns the improvements of the AMAS theory from
both the theoretical and engineering points of view. At the theoretical level, this thesis
aims at redefining the Non Cooperative Situation (NCS) proposed by the AMAS theory for
optimisation under constraints of complex problems and at defining the agents criticality
level underlining the satisfaction degree of each agent.
From an engineering point of view, this thesis aims at defining the AMAS4Opt
agent model that proposes agent behaviours and interactions based on cooperation
mechanisms for complex problem solving under constraints. This model must:

3 present a sufficient level of abstraction enabling its instantiation on different types of
complex problem under constraints;

3 be straightforward and intuitive so it can be easily understandable and used by
different engineers without the intervention of MAS experts;

3 match with the description of optimisation problems under constraints, so that no
translation framework is required;

3 match the agents definition to the problem entities so no parameter tuning is needed;

3 focus on local agent behaviours and interactions using cooperation, so the adaptivity
of the system is increased;

3 provide agents with local goals that once accomplished enable the global function
of the system to emerge. No global objective function used as a fitness evaluation is
required.

Cooperative Self-Organisation for Optimization under Constraints 47

2 Theory & Tools for the Study

« In theory there is no difference between theory and practice. In practice,
ther is. »

Yogi Berra

Contents
2.1 Introduction . 51

2.2 The AMAS Theory: Cooperative Self-Organisation 51

2.2.1 The Theorem of Functional Adequacy 51

2.2.2 Consequence of the Functional Adequacy Theorem 53

2.2.3 Achieving Self-Adaptation and Self-Organisation 53

2.2.4 Architecture of an AMAS Agent . 54

2.2.5 Internal Functioning of an AMAS Agent 58

2.3 The ADELFE Methodology . 59

2.4 AMAS Modelling Language . 60

2.5 MAY: Make Agents Yourself . 62

2.6 Conclusion and Analysis . 63

Cooperative Self-Organisation for Optimization under Constraints 49

2

Theory & Tools for the Study

The chapter in english starts page 51.

Résumé général du chapitre

Comme souligné dans le chapitre précédent, la coopération est une notion fondamentale régissant
les comportements et les interactions des agents au sein des systèmes multi-agents adaptatifs et
améliorant les résultats obtenus. Ainsi, le modèle d’agent générique développé au sein de cette étude
utilise la coopération telle que définie par la théorie des AMAS (Adaptive Multi-Agent Systems)
comme mécanisme de coordination. Ce chapitre se divise en quatre parties: la théorie des AMAS, la
méthodologie ADELFE, le langage de modélisation AMAS-ML et le générateur d’API MAY (Make
Agent Yourself).

La théorie des AMAS repose sur le théorème de l’adéquation fonctionnelle: "Pour tout système
fonctionnellement adéquat, il existe au moins un système à milieu intérieur coopératif
qui réalise une fonction équivalente dans le même environnement". Ainsi, cette théorie
propose d’utiliser le principe de l’auto-organisation par coopération pour des systèmes ayant des
environnements fortement dynamiques ou dont la fonction est impossible à spécifier exhaustivement.

Le théorème de l’adéquation fonctionnelle a d’importantes répercussions sur la conception de
systèmes multi-agents adaptatifs par auto-organisation. Il suffit, lors de la conception d’un système
multi-agent, de se concentrer sur la conception des agents coopératifs auto-organisateurs et
de se focaliser sur leurs interactions. Un état interne coopératif est ainsi établi permettant à la
fonction globale d’émerger. Nous pouvons ainsi noter trois points clés de la théorie : l’émergence,
l’auto-organisation et les agents coopératifs. Cette première partie du chapitre présente
ces trois notions en se concentrant sur les différents modules constituant un agent coopératif
notamment son module de coopération. Ce dernier définit l’attitude coopérative de l’agent ainsi
que les règles comportementales nécessaires à la résolution des sept situations non coopératives
(incompréhension, ambiguïté, incompétence, improductivité, conflit, concurrence, inutilité) qu’il
peut rencontrer.

Concevoir des logiciels capables de s’adapter à un environnement dynamique impose une méthode
de conception rigoureuse qui se distingue de l’approche globale-descendante habituelle. Pour répondre
à ce besoin, plusieurs méthodes furent développées (GAIA, MESSAGE, DESIRE, etc.). Ces méthodes
se basent sur des architectures d’agents connus (BDI ou FIPA), et n’intègrent que difficilement
les notions d’agents coopératifs, d’auto-organisation et d’ouverture, primordiaux pour la théorie
des AMAS. Ainsi une nouvelle méthode ADELFE (Atelier pour le DEveloppement de Logiciels
à Fonctionnalité Emergente) a été développée. Le but de cette méthode est de guider les développeurs
au cours de la conception de systèmes ouverts, complexes et distribués, en se basant sur la théorie
des AMAS et sur le concept d’émergence. Elle est basée sur une méthode orientée objet, suit le RUP
(Rational Unified Process) et utilise AUML (Agent-UML) afin de rester le plus proche possible des
standards et outils utilisés par les ingénieurs. En se décomposant en cinq phases, ADELFE couvre
le processus de développement logiciel dans son intégralité et permet aux concepteurs de revenir aux
résultats précédents pour les modifier ou les compléter. Chacune de ces phases se décompose en un
ensemble d’activités, chacune contenant un ensemble d’étapes. Comme cette méthode ne concerne que
des applications suivant la théorie des AMAS, des activités ou étapes spécifiques telles l’identification
des agents, leurs interactions et leur conception ont été ajoutées au RUP.

50 Cooperative Self-Organisation for Optimization under Constraints

2.1. Introduction

2

Le langage de modélisation AMAS-ML permet la conception des agents identifiés par la
spécification des différents modules composant un agent. L’outil Make Agent Yourself (MAY)
quant à lui est utilisé pour générer, à partir d’une architecture d’agent déduite de la modélisation
AMAS-ML, une infrastructure d’agent dédiée prête à l’emploi.

Nous concluons ce chapitre sur le fait que la théorie des AMAS ainsi que la méthodologie
ADELFE ont montré leur adéquation pour la conception de systèmes multi-agents capables de
résoudre un large éventail de problèmes présentant différents niveaux de complexité. Cependant,
ils restent à un niveau d’abstraction assez élevé et leur utilisation requiert la présence d’un
expert AMAS. Pour cela, ce travail propose la définition d’un modèle d’agent dédié spécifiant
l’utilisation de cette théorie et guidant les ingénieurs pour la résolution de problèmes
complexes sous contraintes.

2.1 Introduction

As stated in the previous chapter, in complex problem solving under constraints, a
cooperative behaviour of the agents is required to achieve efficient results. Thus, the
proposed generic agent model is based on cooperation mechanisms as presented in the
Adaptive Multi-Agent System (AMAS) theory.

In this chapter, the AMAS theory (section 2.2) on which the agent model is based is
presented. The ADELFE Methodology and two software design tools (section 2.3, 2.4, 2.5)
developed for the design of adaptive multi-agent system based on this theory are also
introduced. Finally, the conclude summarizes the advantages of this theory and tools and
underlines why they are insufficient to be used by an engineer without the help of an AMAS
expert, introducing by that my contribution to this toolbox which aims to facilitate their
usage for optimization in complex problem solving under-constraints.

2.2 The AMAS Theory: Cooperative Self-Organisation

The Adaptive Multi-Agent System (AMAS) theory [Gleizes et al., 2008; Georgé et al., 2003;
Glize, 2001; Gleizes et al., 1999] proposes to develop agents focusing on the well-discussed
advantages of cooperation. It is based on the theorem of functional adequacy.

2.2.1 The Theorem of Functional Adequacy

Cooperation was extensively studied in computer science by Axelrod [Axelrod, 1984]
and Huberman [Huberman, 1991] for instance. "Everybody will agree that cooperation is in
general advantageous for the group of cooperators as a whole, even though it may curb
some individual’s freedom" [Heylighen, 1992]. Relevant biological inspired approaches
using cooperation are for instance Ants Algorithms [Dorigo and Caro, 1999] which give
efficient results in many domains. In order to show the theoretical improvement coming
from cooperation, the AMAS [Gleizes et al., 1999] theory which is based upon the following
theorem has been developed. This theorem describes the relation between cooperation in a

Cooperative Self-Organisation for Optimization under Constraints 51

2

Theory & Tools for the Study

system and the resulting functional adequacy1 of the system. A complete demonstration of
this theorem is given in [Glize, 2001]

Theorem: For any functionally adequate system, there exists at least one cooperative internal
medium system that fulfills an equivalent function in the same environment.

Definition: A cooperative internal medium system is a system where no Non Cooperative
Situation (NCS) exist.

Definition: An agent is in a NCS when:

3 (¬cper) a perceived signal is not understood or is ambiguous;

3 (¬cdec) perceived information does not produce any new decision;

3 (¬cact) the consequences of its actions are not useful to others.

Cooperation is defined as the ability agents have to work together in order to realize
a common global goal. It implies that the activities of the agents are supplementary, and
dependency links and solidarity exist between them. They have a cooperative attitude that
satisfies four properties:

1. Sincerity: If an agent knows that a proposition p is true, it cannot say anything different
to others;

2. Willingness: Agents try to satisfy a request if it is coherent with their own skills and
the current state of the world, and if no prejudice results from the action, either to the
acting agent or to another. If there is a resulting prejudice, refer to property three;

3. Fairness: They always try to satisfy, when it is possible, agents with the higher level of
difficulty or criticality;

4. Reciprocity: Each agent of the same society knows that it and the others verify these
three main properties.

The objective is to design systems where agents:

3 do the best they can when they encounter difficulties. These difficulties can be viewed
as exceptions in traditional programming. From an agent point of view, we call them
Non Cooperative Situations (NCSs). An agent locally tries to detect such failures and try
to repair them. These NCSs can be related to the internal state of the agent or to its
interactions with its environment (the other agents and the system environment);

1Functional refers to the function the system is producing, in a broad meaning, i.e. what the system is doing,
what an observer would qualify as the behaviour of a system. And adequate simply means that the system is
doing the right thing, judged by an observer or the environment. So functional adequacy can be seen as having the
appropriate behaviour for the task.

52 Cooperative Self-Organisation for Optimization under Constraints

2.2. The AMAS Theory: Cooperative Self-Organisation

2

3 anticipate NCSs. The agent always chooses the actions with minimal disturbance to the
other agents it knows. It tries to anticipate [Doniec et al., 2005] (for him and others)
problems that can introduce NCSs;

3 are cooperative towards the system and other agents. The first point implies that agents
not reaching their own goal can be seen as generating NCSs that must be repaired.
Being cooperative toward other agents implies that when detecting or anticipating
NCSs agents try to always help agents with the higher level of difficulty ;

In others words, the AMAS theory considers that the agents, by trying to always have
a cooperative attitude, act by re-organizing their acquaintances and interactions adequately
with the others agents.

2.2.2 Consequence of the Functional Adequacy Theorem

This theorem means that we only have to use (and hence understand) a subset
of particular systems (those with cooperative internal mediums) in order to obtain a
functionally adequate system in a given environment. We concentrate on a particular class
of such systems, those with the following properties [Gleizes et al., 1999]:

3 the system is cooperative and functionally adequate with respect to its environment. Its
parts do not ’know’ the global function the system has to achieve via adaptation;

3 the system does not have an explicitly defined goal, rather it acts using its perceptions
of the environment as a feedback in order to adapt the global function to be adequate.
The mechanism of adaptation results from each agent trying to maintain cooperation
using their skills, representations of themselves, other agents and the environment;

3 each part only evaluates whether the changes taking place are cooperative from its point
of view – it does not know if these changes are dependent on its own past actions;

3 Basically, the idea is that it is easier and more efficient to design systems by focusing
on the agent and the cooperative self-organising mechanisms which will result in the
adequate system, than trying to produce the right global system directly.

This way of engineering systems has been successfully applied on numerous
applications with very different characteristics for the last ten years (autonomous
mechanisms synthesis [Capera et al., 2004], flood forecast [Georgé et al., 2003], electronic
commerce and profiling [Link-Pezet et al., 2000],etc.). For each, the local cooperation
criterion proved to be relevant to tackle the problems without having to resort to an explicit
knowledge of the goal and how to reach it.

2.2.3 Achieving Self-Adaptation and Self-Organisation

We consider that each part Pi of a system S achieves a partial function fPi of the global
function fS (figure 2.1). fS is the result of the combination of the partial functions fPi ,

Cooperative Self-Organisation for Optimization under Constraints 53

2

Theory & Tools for the Study

Figure 2.1 — Adaptation: changing the function of the system by changing the
organisation

noted by the operator "◦". The combination being determined by the current organisation
of the parts, we can deduce fS = fP1 ◦ fP2 ◦ ... ◦ fPn . As generally fP1 ◦ fP2 6= fP2 ◦ fP1 ,
by transforming the organisation, the combination of the partial functions is changed and
therefore the global function fS changes. This is a powerful way to adapt the system to its
environment. A pertinent technique to build these kinds of systems is to use adaptive MAS.
As in Wooldridge’s definition of multi-agent systems [Wooldridge, 2009], we will be referring
to systems constituted by several autonomous agents, plunged into a common environment
and trying to solve a common task.

2.2.4 Architecture of an AMAS Agent

A cooperative agent in the AMAS theory has the four following characteristics. First, an
agent is autonomous: an agent has the ability to decide to refuse a request or start some
activity on its own. Secondly, an agent is unaware of the global function of the system;
this global function emerges (from the agent level towards the multi-agent level) [Georgé
et al., 2003]. Thirdly, an agent can detect non cooperative situations and acts to return to
a cooperative state. And finally, a cooperative agent is not altruistic in the meaning that an
altruistic agent always seeks to help the other agents. Indeed, it is benevolent i.e. it seeks to
achieve its own goal while being cooperative2.

Cooperative agents are equipped with several modules representing a partition of their

2Note that sometimes, this still means that an agent accepts to delay its own goal if it judges that the other
agent is in a more critical state for instance.

54 Cooperative Self-Organisation for Optimization under Constraints

2.2. The AMAS Theory: Cooperative Self-Organisation

2

Manipulates

Perception ActionDecision

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Actuator

Actuator

Actuator

Actuator

Actuator

Actuator

Actuator

Actuator

Actuator

Representations

Cooperation

Skills

Aptitudes

Stimuli Actions

Figure 2.2 — The different modules of a cooperative agent [Bernon et al., 2004]

physical, cognitive and social capacities (figure 2.2). Each module represents a specific resource
for the agent during its perceive-decide-act life cycle. Four of the modules are quite classical
in an agent model [Wooldridge, 2009]. The novelty comes from the Cooperation Module
which contains local rules to solve or anticipate NCS.

2.2.4.1 Interaction Module

Agent interactions are managed by two modules. The Perception Module represents
the inputs the agent receives from its environment. Inputs may have different natures and
types: integer or boolean for instance for simple agents, or symbolic messages in a mail box
for more cognitive agents. The Action Module represents the output and the way the agent
can act on its physical environment, its social environment or itself (considering learning
actions for example). Similarly to the perceptions, actions may have different granularities:
simple effectors activation for a robot or semantically complex messages sending for social
agents.

2.2.4.2 Skill Module

Even if cooperative agents have a strong focus on trying to avoid NCS, they also have
several tasks to complete. The ways to achieve their goals are expressed in the Skill Module.
Skills are knowledge and know-hows about given knowledge fields and enable agents to
realise their partial function – as a part of a MAS that produces a global function. Simply
said, skills are needed for an agent to be able to act. No technical constraints are required
to design and develop this module. For example, skills can be represented as a classical or
fuzzy knowledge base of facts and rules on particular domains. It also can be decomposed
into a lower level MAS to enable learning, as in the ABROSE on-line brokerage application
[Gleizes and Glize, 2000], where skills were decomposed into a semantic network.

Cooperative Self-Organisation for Optimization under Constraints 55

2

Theory & Tools for the Study

2.2.4.3 Representation Module

Agents in a MAS evolve in a given environment (physical or social). The representation
module concerns the beliefs an agent has on this environment. It includes the
agent representation of other agents (social environment) and other entities (physical
environment). In addition to this, the representation module encapsulates the intrinsic
characteristics of the agent itself such as its constraints or its criticality degree and the
representation it has on itself. Thus, this module can be divided into two parts: the intrinsic
characteristics of the agent and the representations it has on itself and on its environment
(physical or social). This module is manipulated by the Perception Module during the
perception phase of the agent life cycle.

2.2.4.4 Aptitude Module

The Aptitude Module contains generic tools an agent needs to accomplish its treatment.
It represents the way an agent must accomplish the decision phase of its life cycle. It
manipulates and activates the different modules of the agent. For instance it can be the
usage of a Monte Carlo selection method to chose which skill to activate or an inference
engine that indicates in which situation the agent is.

2.2.4.5 Cooperation Module

The cooperative attitudes of agents are implemented in the Cooperation Module. This
module manipulates the Skills and Representations, in order to anticipate or detect and
repair NCSs. Therefore , cooperative agents must possess rules to detect NCSs. Seven
types of NCSs have been identified. For each NCS detection rule, the Cooperation Module
associates one or several actions to process to avoid or to solve the current NCS. In the
following, we present for each NCS how it can be detected, repaired and anticipated.

INCOMPREHENSION. This personal NCS is related to the interpretation of the messages
in the perception life cycle step. It informs that the agent is not able to extract any
understandable information from the received message. It is detected locally by the agent
when messages are interpreted.

To solve this NCS, the agent can for instance ask the sender to modify its message, or ask
other agents that may understand it for a translation/decryption.

Agents can anticipate this NCS for themselves by ensuring accurate presentation of
themselves when meeting useful new agents and improving the comprehension of their
environment. When having adequate information on other agents and when it is possible,
they can anticipate and prevent it for other agents by sending them understandable
information.

AMBIGUITY. Related to the update of the local representation in the perception life cycle
step, this NCS informs the agent that different interpretations are possible, and by that,
an accurate representation update is not possible. That can be due for instance to missing
information.

56 Cooperative Self-Organisation for Optimization under Constraints

2.2. The AMAS Theory: Cooperative Self-Organisation

2

To solve this NCS, the agent can ask the sender for additional information, wait until this
information is available or ask for other agents’ help.

Agents are evolving in a context and anticipating this NCS is highly dependent on
their representation of this context. They can anticipate and prevent it for themselves as
previously with accurate representation or by collecting information they judge useful.
When having adequate information on other agents and when it is possible, they can
anticipate and prevent it for other agents by sending the necessary information.

INCOMPETENCE. Related to the definition of the list of possible actions in the decision
life cycle step, this NCS is detected when the agent does not have the competence to treat
received information such as answering an agent request.

To solve this NCS, the agent can inform the sender of its incompetence or redirect the
request to competent agents.

As previously, agents can anticipate and prevent this NCS for themselves by an accurate
presentation of themselves. When having adequate information on other agents and when
it is possible, they can anticipate and prevent it for other agents by sending requests to the
adequate agents.

UNPRODUCTIVITY. Related to the definition of the list of possible actions in the decision
life cycle step, this NCS is detected when the agent has accurately interpreted the received
information but cannot use it to produce any useful information for himself because it
already has this information, it is of no interest for him or the received information is
incomplete (partial unproductivity).

The two first reasons can be repaired by informing the sender about the uselessness of
the information sent and updating the agent profile for the sender. The last is repaired by
asking for additional information.

Anticipating this NCS consists in informing other agents about the update in the agent
profile such as the agent’s main interest or the information produced by the agent and
judged helpful for others.

CONFLICT. This NCS is detected either when considering the list of possible future
actions or when detecting a conflict in the environment. In the first case, among the list
of possible actions some are conflicting and such actions cannot be performed by the agent
at the same time (i.e. lack of resources). In the second case, the conflict can either be due to
a previous action performed by the agent or another agent, or a change in the environment
not related to agent activity. This situation is also detected when the agent considers that
modifying the environment (realizing some actions) can prevent other agents from reaching
their goals (i.e. when using a resource required by another agent).

Solving the first NCS case consists in choosing to perform the most critical (higher
priority) actions as well as trying to minimize the disturbances or prejudice to others. In the
second case, the agent needs to find a set of actions that can resorb the detected conflicting
situations.

Anticipating this NCS depends on the knowledge an agent has concerning the intentions
of other agents and requires specific knowledge structures that an agent can access before
taking an action.

Cooperative Self-Organisation for Optimization under Constraints 57

2

Theory & Tools for the Study

CONCURRENCE. Related to the choice of the list of actual actions to perform in
the decision life cycle, this NCS concerns the interactions between the agent and its
environment. It is detected when among the list of possible actions, some can put the agent
in concurrence or competition with other agents. The agent is able to perform the actions but
considers that there are other agents able to perform the same actions and reach the same
state in the environment.

To solve this NCS, the agent interacts with the other agents to decide which of them is
more appropriate to realize the action.

As previously, anticipating this NCS depends on the knowledge an agent has concerning
the intentions and competences of other agents.

USELESSNESS. Related to the choice of the list of actual actions to perform in the
decision life cycle, this NCS is detected when the agent considers itself not useful (or not
useful enough) for the system or its environment. This can be due to a lack of information
or unused knowledge.

To solve this situation, the agent must choose actions to acquire new information, to
profit from its knowledge or change its place in the organization by interacting with other
agents.

Anticipating uselessness or partial uselessness situations depends on the interactions an
agent has with its environment: is it adequately solicited by the environment? Does it have
sufficient interactions with the environment? Or can it balance the load of other agents?

2.2.5 Internal Functioning of an AMAS Agent

The NCS are cooperation failures that an agent must anticipate or detect and repair.
They can be assimilated to "exceptions" in traditional programming as they are unexpected
events that can occur during runtime with the difference that the agent behaviours must be
prepared to repair NCSs. Our definition of cooperation (section 2.2.1) leads to the definition
for an agent of three local meta-rules the designer has to instantiate according to the problem
to solve:

3 Meta-rule 1 (cper): Every signal perceived by an agent must be understood without
ambiguity.

3 Meta-rule 2 (cdec): Information coming from its perceptions has to be useful to its
reasoning.

3 Meta-rule 3 (cact): This reasoning must lead the agent to produce actions which have to
be useful for other agents and the environment.

During the perception phase of the agents’ life cycle, the Perception sub-Modules
updates the values of the sensors. These data directly imply changes in the Skill and
Representation Modules. Once the knowledge is updated, the decision phase must result in
the choice of actions. During this phase, the agent uses its Aptitude, Skill and Cooperation
Modules to compute its knowledge and decide which actions to perform. Once an action

58 Cooperative Self-Organisation for Optimization under Constraints

2.3. The ADELFE Methodology

2

Figure 2.3 — ADELFE Methodology [Rougemaille et al., 2009]

is chosen, during the action phase, the agent acts by activating its effectors or changing its
knowledge.

2.3 The ADELFE Methodology

Designing adaptive multi-agent systems require a specific methodology different from
the top down traditional methods. Indeed, in such systems, we concentrate on the different
parts of the system and their interactions. The global function of the system emerges
from these interactions. Different methodologies [Henderson-Sellers and Giorgini, 2005;
Bergenti et al., 2004] such as GAIA, DESIRE or INGENIAS have been developed. As
these methods, based on well known agents architectures such as BDI or FIPA, sorely
integrate cooperative agents the main principle for the AMAS theory, a new method was
required. Thus, the Atelier de Développement de Logiciels à Fonctionnalité Emergente (ADELFE)
methodology [Bernon et al., 2002; Picard, 2004; Bernon et al., 2005; Rougemaille et al., 2008]
was developed. ADELFE is a toolkit to guide designers through the development phase
of complex, open and distributed systems based on the AMAS theory and the concept of
emergence. It is based on some well-known tools and notations coming from the object-
oriented software engineering: UML (Unified Modelling Language) and RUP (Rational
Unified Process). It uses AUML (Agent-UML) to express interaction protocols between
agents.

The ADELFE methodology is divided into 5 phases, each including a set of activities (A)
divided into different steps (S) (figure 2.3). Because ADELFE is devoted to the design of
AMAS, specific activities have been added to the RUP:

During the final requirements study (WD2):

Cooperative Self-Organisation for Optimization under Constraints 59

2

Theory & Tools for the Study

3 A6: Characterization of the environment,

3 A7 − S2: Identification of the cooperation failures.

During the analysis phase (WD3):

3 A11: Verification of the AMAS adequacy,

3 A12: Identification of the agents that are involved in the system being built,

3 A13 − S3: Study of the relationships between agents.

During the design phase (WD4):

3 A15: Study if the interaction languages enabling agents to exchange information,

3 A16: Complete the design of these agents. An agent that intervenes in an AMAS is
composed of different parts that produce its behaviour: skills, aptitudes, the interaction
language, world representations and Non Cooperative Situations.

3 A17: Fast prototyping. This is often necessary to verify that the behaviour of these
agents is the desired one, and observe the result of their interactions.

During the development phase (WD5), the main guiding principle is the separation of
concerns. Indeed, this step is decomposed into two steps:

3 An: Study the non-functional part of the agent, also called the operating concerns. This
step describes the basic mechanisms of the agent and generates a deployable library of
the designed agents,

3 An+1: Study the functional part of the agent, also called the behaviour concerns. This step
integrates the behaviour (cooperation and decision rules) of the agent to the generated
deployable agent library.

Different tools have been developed to ease the usage of the ADELFE methodology.
Among them, we detailed the AMAS Modelling Language (AMAS-ML) used for the design of
agents (A16) and Make Agents Yourself (MAY) used for the definition of the agent architecture
and the generation of the deployable agent library (WD5).

2.4 AMAS Modelling Language

The A16 activity of the ADELFE Methodology proposes to define the Skill, Aptitude,
Interaction, Representation and Cooperation modules. [Rougemaille et al., 2008] introduces
the AMAS Modelling Language (AMAS-ML) based on the AMAS Meta-Model (figure 2.4) to
facilitate the definition of those different modules. AMAS-ML distinguishes between the
system point of view and the agent point of view.

The former considers the environment of the system. Indeed, an
AdaptiveMultiAgentSystem evolves in a given ExternalEnvironment presenting useful

60 Cooperative Self-Organisation for Optimization under Constraints

2.4. AMAS Modelling Language

2

Figure 2.4 — AMAS Meta-Model [Rougemaille et al., 2008]

Figure 2.5 — AMAS-ML agent description [Rougemaille et al., 2008]

properties for the design of the system itself. In addition to this, the agents interact with the
entities (Entity) of this environment using perceptions and actions.

The latter concerns the different modules that compose an agent. These modules handle
the agent activities and its life cycle. Usually, the life cycle of a cooperative agent is divided
into three steps: perception, decision and action. Given these steps and their functional
requirements, five modules are defined (figure 2.5).

3 PerceptionModule & ActionModule represent the possible interactions of the agent with its
environment (Perception, Action) and the means the agent has to realise them (Actuator,
Sensor). Among them we distinguish CommunicationAction which enables agents to
exchange information and requests.

3 DecisionModule decomposed into a set of Rules: StandardRule and CooperativeRule (figure

Cooperative Self-Organisation for Optimization under Constraints 61

2

Theory & Tools for the Study

Figure 2.6 — AMAS-ML diagrams for the behavioural rules of an agent [Rougemaille
et al., 2008]

2.6), enables the agents to decide which actions (DecisionResult) to perform given their
knowledge. These rules3 represent the capacity of an agent to detect and repair a
NonCooperativeSituation or to perform its nominal behaviour.

3 Knowledge concerns all the knowledge an agent has: the representation (Representation
& Characteristics) of its environment and itself and its Skills.

3 Aptitude concerns the tools such as a random selection or statics computation, an agent
has to perform its skills and for reasoning.

2.5 MAY: Make Agents Yourself

Another tool developed by the Systèmes Multi-Agent Coopératifs (SMAC) team to facilitate
the development of systems based on the AMAS theory is Make Agents Yourself (MAY)4

[Noel and Arcangeli, 2011]. MAY is a generator of dedicated agent frameworks available
as an Eclipse plugin. This tool is made to build application-specific species of agents and
to generate dedicated frameworks providing them. Such frameworks are then usable to
program agents compliant with the corresponding species of agents.

MAY supports the description of each type of agent as a component-based architecture
and generates the JAVA code required to implement the different components. MAY

3In these diagrams, formal and semi-formal notations are used such as ! for not and @ for an agent address.
4www.irit.fr/MAY

62 Cooperative Self-Organisation for Optimization under Constraints

2.6. Conclusion and Analysis

2

generates the whole Application Programming Interface (API), that is, tools to execute, create
and deploy the specific agent species. The component-based architecture is divided in two
levels each containing a set of µ-components:

3 container (the how), hidden to the user of the framework, defines how the agent works.
Thus, this level contains functioning components such as the life cycle of the agent or
its message manager. This level is common to all agents of the same species.

3 application (the what) concerns what the agent does and the way it uses its tools to
achieve its goals, includes the perception, decision and action components. This level
can be different among a set of agents from the same species.

The two levels are interrelated and components from one level can require or offer
services to components from the same or the other level. As for example, in figure 2.7, the
component LifeCycle requires the methods perceive(), decide() and act() from the components
Perceive, Decide and Act. The method receive() of the component Receive enables the agent
to communicate with its environment. Thus, this method is called external. Whenever a
message is received, this method requires the method put() from the component MailBox in
order to drop the message off in the mail box of the agent.

These two levels link different µ-components 5 together to form a µ-architecture 6

realising the species [Noel, 2011]. As agents from the same species can differ by their
application level, the µ-architecture of a given species contains the common µ-components.
Before the code generation, it must be extended to include the µ-components of the
application level specific to the different agents in the species.

The usage of a component-based architecture increases the flexibility level during the
design (changing the implementation of a component without touching the others) and the
reuse of already designed µ-components (such as the communication components).

2.6 Conclusion and Analysis

This chapter has presented :

3 the AMAS theory on which this thesis is based;

3 the ADELFE methodology used to develop adaptive multi-agent systems based on this
theory;

3 two software design tools used to facilitate the development of such systems.

Two points are to be noted. First, the AMAS theory proposes a specific theoretical
framework that defines the behaviour and the architecture of agents in a multi-agent system.
Nevertheless, this theory remains a high level and general guide and when confronted to

5A component is called µ-components as it is a part of a µ-architecture (pronounced "micro")
6A µ-architecture represents the architecture of an agent. It is called µ-architecture in order to differentiate

between the system architecture and the architecture of the agents that constitute the system.

Cooperative Self-Organisation for Optimization under Constraints 63

2

Theory & Tools for the Study

«�Component»

LifeCycle

servicesCompartment

void : run()

propertiesCompartment

«�Component»

Perception

servicesCompartment

void : perceive()

propertiesCompartment

«�Component»

Receive

servicesCompartment

void : receive()

propertiesCompartment

«�Component»

Send

servicesCompartment

void : send()

propertiesCompartment

«�Component»

Decision

servicesCompartment

void : decide()

propertiesCompartment

«�Component»

Action

servicesCompartment

void : act()

propertiesCompartment

«�Component»

MailBox

servicesCompartment

void : put(…)
Message : get(…)

propertiesCompartment

Container Level

Application Level

Figure 2.7 — A minimal µ-architecture of an agent

a problem, it can be difficult to correctly instantiate it to build the adaptive multi-agent
system that can solve the considered problem. Second, the different steps of the ADELFE
methodology guide the designer to design its system but remain at a certain abstraction
level due to the generic nature of ADELFE. This is a strength as it can be used on a broad
spectrum of applications, but also a drawback as it requires, when using it, the help of both
and agent and application domain experts.

64 Cooperative Self-Organisation for Optimization under Constraints

2.6. Conclusion and Analysis

2

Still, the AMAS theory has shown its adequacy to solve complex problems and ADELFE
has been applied successfully on numerous applications. Indeed, it has succeeded to solve
a large variety of complex problems under constraints such as timetabling and scheduling
[Picard et al., 2005; Clair et al., 2008] or conceptual aircraft design [Welcomme et al., 2009].
This motivates us to specialise its usage for such types of problems by defining semi-generic
agent behaviours, interactions and architectures, ready to use by an engineer for whatever
complex problem under constraint he has to tackle.

Cooperative Self-Organisation for Optimization under Constraints 65

3 A Generic Agent Model for

Complex Problem Solving

« We shall neither fail nor falter; we shall not weaken or tire...give us the tools
and we will finish the job. »

Winston Churchill

Contents
3.1 Introduction . 69

3.2 Agent Roles . 70

3.2.1 Constrained Role . 71

3.2.2 Service Role . 72

3.3 Agent Interaction and Communication . 73

3.4 Agent Criticality . 74

3.5 Cooperative Rules . 75

3.5.1 Incompetence . 75

3.5.2 Unproductiveness . 76

3.5.3 Uselessness . 76

3.5.4 Conflict . 78

3.5.5 Concurrence . 79

3.5.6 Illustration of some Non Cooperative Situations 79

3.6 Specification of Agent Modules using AMAS-ML 80

3.7 MAY Agent Architecture . 84

3.8 Conclusion . 84

Cooperative Self-Organisation for Optimization under Constraints 67

3

A Generic Agent Model for Complex Problem Solving

The chapter in english starts page 69.

Résumé général du chapitre

Une introduction générale à différentes méthodes de résolution existantes a été présentée dans le
premier chapitre de ce travail. Cette présentation a souligné les avantages et inconvénients de ces
méthodes et leur évolution pour mieux répondre aux applications actuelles, notamment l’intégration
de la distribution et de la décentralisation. Ces deux mécanismes nécessaires pour répondre à la
complexité croissante exigent la mise en place de mécanismes de coordination afin de permettre au
système de converger vers la solution optimale. Après une analyse des ces mécanismes, la coopération
apparaît comme un point central et commun à ces différents mécanismes. La théorie des AMAS,
introduite dans le deuxième chapitre, repose sur la définition de comportements coopératifs d’agent
pour la construction de système auto-adaptatif. Le deuxième chapitre a souligné l’adéquation de cette
théorie pour répondre efficacement aux applications actuelles ainsi que son niveau d’abstraction assez
élevé limitant son utilisation à des experts du domaine.

Dans ce chapitre, la contribution principale de ce travail est présentée. Elle consiste en la
définition du modèle d’agent AMAS4Opt spécialisant l’utilisation de la théorie des AMAS pour
la résolution de problèmes d’optimisation sous-contraintes se caractérisant par différents degrés
de complexité. Le but est d’améliorer l’utilisation de la théorie des AMAS pour les problèmes
d’optimisation par la définition de comportements coopératifs d’agents et la mise en place d’une
architecture agent dédiée pour ce type de problème.

Les problèmes d’optimisation sous-contraintes sont généralement décrits comme un ensemble
d’entités sujettes à des contraintes. Dans les systèmes multi-agents, ces entités sont représentées par
des agents interagissants. En analysant ces interactions tout au long du processus de résolution, nous
pouvons distinguer les agents ayant des contraintes à résoudre et les agents possédant les compétences
nécessaires pour les aider. De ce fait, deux types de rôles peuvent être identifiés: le rôle contraint
et le rôle service. Un agent ayant des contraintes à résoudre possède le rôle contraint. Un agent
possédant les compétences nécessaires pour aider les autres agents a le rôle service. Un agent peut
avoir les deux rôles et passer de l’un rôle à l’autre en fonction de son état. La première partie de
ce chapitre se consacre à la définition de ces deux rôles et la mise en place pour chacun d’eux d’un
algorithme générique présentant les différentes étapes constituant le comportement de l’agent.

Les agents de notre modèle interagissent directement par l’utilisation de messages. La
deuxième partie de ce chapitre définit les différentes catégories auxquelles appartiennent les messages
utilisés par les agents:

3 Les requêtes de service utilisées par les agents ayant le rôle contraint pour demander les
services des agents ayant le rôle service.

3 Les requêtes d’information utilisées par les agents des deux rôles pour demander des
informations requises à leur fonctionnement.

3 Les réponses aux requêtes utilisées par les agents pour répondre aux requêtes d’information
ou de service reçues.

68 Cooperative Self-Organisation for Optimization under Constraints

3.1. Introduction

3

3 Les messages d’information utilisés par les agents pour échanger des informations jugées
utiles.

Les agents de notre modèle sont coopératifs et agissent d’une manière à équilibrer leur degré de
satisfaction. Pour cela, le degré de criticité d’un agent est défini comme étant la mesure de son
degré d’insatisfaction. Ce degré est un point clé du comportement coopératifs des agents. En effet,
il dénote la difficulté d’un agent à atteindre son but. En tant qu’agents coopératifs, les agents ayant
le rôle service du système privilégient d’aider les agents ayant le rôle contraint ayant des degrés de
criticité élevés afin d’équilibrer le degré de satisfaction des différents agents. Ainsi, lors de la demande
d’un service, un agent ayant le rôle contraint doit en fonction de ses connaissances calculer de degré
d’une manière bien précise.

Un agent coopératif doit maintenir une attitude coopérative vis-à-vis du système et des autres
agents. Pour cela, il doit anticiper ou détecter et réparer des situations d’échec à la coopération
appelées situations non coopératives. Des sept catégories définies dans la théorie des Adaptive
Multi-Agent System (AMAS), cinq concernent les agents impliqués dans la résolution des problèmes
d’optimisation sous contraintes: l’incompétence, l’improductivité, l’inutilité, le conflit et la
concurrence. La section 5 du chapitre détaille chaque catégorie en spécifiant comment un agent peut
l’anticiper ou la détecter et la réparer.

Avant de conclure, les sections 6 et 7 définissent les différents modules composant l’architecture
du modèle d’agent en utilisant les outils AMAS Modelling Language (AMAS-ML) et Make
Agents Yourself (MAY).

3.1 Introduction

Algorithms based on domain entities agentification seem to be the most suitable
techniques to answer the growing complexity of today’s applications. Those algorithms
have shown their adequacy to solve a large variety of complex problems. Being close to
a natural description of the problem and designing the agents as close as possible to the
entities of the problem, allow the definition of more intuitive and rich solving algorithms
which are then more robust to dynamics, flexible, open and provide a relevant level of
adaptation in real-time.

The state of the art (chapter 1) discussed the evolution of the different solving techniques
and pointed out the quality of such algorithms. Two major points were underlined.

First, different well-known methodologies have been developed to help the design of
such algorithms. Their main advantage but also their limit is that they remain a high level
guide and can be used to solve different problems but their application requires expert
knowledge. They have been used to solve different problems resulting in different specific
hardly reusable algorithms. Contrary of other agentification techniques where generic
algorithms ready to be instantiated for optimisation under constraints such as Ant Colony
Optimization (ACO) or Asynchronous Distributed Constraint Optimization (ADOPT) exist, such
methodologies do not propose agent models ready to be instantiated to a given problem.

Second, the different agentification techniques used to solve optimisation under
constraints problems mainly differ by the coordination mechanisms used by the agents

Cooperative Self-Organisation for Optimization under Constraints 69

3

A Generic Agent Model for Complex Problem Solving

of the system to reach a solution. The state of the art chapter underlined the fact that
cooperation is the main coordination mechanism and that a sort of cooperative behaviour
is required to achieve efficient results.

Chapter 2 presented the AMAS theory where the agents design focuses on the well-
discussed advantages of cooperation. Indeed, this theory proposes to build functional
and adequate systems by concentrating on the cooperative behaviours of the agents. The
ADELFE methodology defined to help the design of systems based on the AMAS theory has
also been presented. Unfortunately, in the same manner as other methodologies, ADELFE
remains at a high level of abstraction meaning that a lot of agent expertise is needed to
design a specific application following the methodology.

This chapter, the main contribution of my thesis, aims at filling the gap between
the methodologies and the specific solving algorithms for optimisation under constraints
problems by defining a generic agent model: AMAS for Optimisation (AMAS4Opt). This
model proposes agent behaviours and interactions based on cooperative mechanisms as
defined in the AMAS theory and that are dedicated for the solving of optimisation under
constraints problems.

The chapter is organised as follows. Section 3.2 introduces the two roles that agents of
this model can have. Sections 3.3, 3.4 and 3.5 present how agents interact and cooperate. In
section 3.6, the different modules of each role are described using the AMAS-ML. Before the
conclusion (section 3.8), the agent architecture described using MAY is presented.

3.2 Agent Roles

Complex problems under constraints are formalized as a set of entities submitted to a
set of constraints. In multi-agent systems, the entities are mainly represented by agents.
Depending on the real-time interactions the multi-agent system has with its environment,
the organization between its agents emerges and constitutes the solution to the addressed
problem.

When analysing the interactions between agents during the solving of optimisation
under constraints problems, we can distinguish agents subjected to constraints and
requiring the help of other agents (this situation can evolve during the solving process).
Thus, two types of roles can be underlined: the constrained role and the service role.
Agents submitted to constraints have the constrained role and are considered as the solving
initiator. They express the problem and by solving their constraints the solution is reached.
To solve their constraints, these agents request the services of agents having the service role.
One agent can have one or both roles and switches at runtime between them depending on
the situation it faces.

Agents designed with this model are based on the Adaptive Multi-Agent System (AMAS)
theory. They possess a cooperative attitude. They are subject to cooperative failures
called Non Cooperative Situations (NCSs) that they must solve by being as cooperative as
possible. Thus, they are provided with criticality degrees representing their difficulties and
importance (section 3.4). Given their cooperative attitude, agents always try to help the

70 Cooperative Self-Organisation for Optimization under Constraints

3.2. Agent Roles

3

more critical agents, thus equilibrating the satisfaction degrees of all the agents.

3.2.1 Constrained Role

The set of agents having this role possess the main constraints of the problem and by
solving their constraints, they will lead to the solution of the problem. They are considered
as the problem solving initiators. They each have a local goal which is to maximize their
satisfaction degree by reducing their criticality degree. This criticality degree is computed
using each agent’s local knowledge and representations such as its dissatisfaction degree
(unsolved constraints), the time spent searching for a solution, its insufficient knowledge
(the agent does not know relevant agents) or the prejudice it may cause if its goal is
not reached. The equilibrated maximization of their satisfaction is necessary to reach
the optimized global solution. Thus, agents try to equilibrate their criticality degrees
cooperatively.

Agents having this role, mainly interact with agents having the service role. For that,
they must be able to compute their criticality degree using their local knowledge and
representations. Their local knowledge mainly concerns the constraints they have. Their
local representations concern the information on other agents and the environment. It is
updated during the perception phase of the agent’s life cycle.

Algorithm 3.1: The outline of the decision phase of agents having the constrained role.

while not satisfied do
search for adequate service;
if service found then

evaluate the criticality level;
request for service;
if service accepted then

search for improvements;
end

else
request for information;

end
end

Algorithm 3.1 presents the outline of the behaviour of an agent having the constrained
role. It is divided into the following steps:

1. search for adequate service: first, the agent tries to search in its knowledge
(representation on other agents) if there exist agents with the adequate service.

2. evaluate the criticality level: once an agent with the adequate service is found, the agent
having the constrained role evaluates its criticality level using its local knowledge and
representations. This criticality degree underlines the difficulties the agent has to find
the adequate service and its importance for the agent.

Cooperative Self-Organisation for Optimization under Constraints 71

3

A Generic Agent Model for Complex Problem Solving

3. request for service: after the evaluation of its criticality, the agent sends a request for
service to the chosen agent indicating its criticality degree.

4. search for improvements: if its request is accepted, the agent having the constrained role
will still search for improvements. Indeed, to reach a good solution, agents must have
the best place they can find in the organisation. Thus, whenever they found an adequate
agent having the service role, they will continue searching if other more suitable agents
can be found.

5. request for information: during its searching process, the knowledge of the agent can
be insufficient to reach its goal. Thus, it requests for information from already known
agents to improve its acquaintances and discover adequate services.

During those different steps, as cooperative agents, agents having the constrained role
face several NCSs such as uselessness NCS when their knowledge is insufficient. They solve
these situations using specific cooperative rules introduced in section 3.4.

3.2.2 Service Role

Agents having the service role possess the required knowledge, skills and competences
to help solve the constraints of agents having the constrained role. They ensure the
connectivity of the resolution as they take into account the needs and difficulties of the
agents having the constrained role and contribute to reach the criticality equilibrium
between them. They have knowledge on other services of the system and can delegate a
part of the requested services to other agents having this role or ask the assistance of other
agents to realize their services.

Algorithm 3.2: The outline of the decision phase of agents having the service role.

get all the received requests;
while there exists an untreated request do

if request for information then
answer the request;

end
if request for service then

register the request & its criticality;
end

end
select the most critical request among the registered requests;
inherit criticality;
send accept request answer to selected agent having the constrained role;
send reject request answers to other agents;

At each life cycle, its behaviour is outlined by algorithm 3.2 where two types of requests
can be underlined: information and services. An agent having the service role responds
directly to the first one as it does not implicate its engagement to perform a service. For the

72 Cooperative Self-Organisation for Optimization under Constraints

3.3. Agent Interaction and Communication

3

second one, the agent must consider the criticality degree of the requesting agents. Indeed,
given its cooperative behaviour, it responds to the requests for service by equilibrating the
satisfaction degree of the requesting agents. Thus, it selects the most critical agent and
inherits its criticality. It faces several NCSs and solves them using specific cooperative rules
introduced in section 3.4.

Agents having the service role may require the help of other agents to perform their
service. They can ask for service delegation or assistance. The service delegation consists
in dividing a service into different sub-services and delegating each sub-service to a given
relevant agent. Requesting for assistance means that to perform its service, the requesting
agent requires the help of another agent and both will perform the same service. In
both cases, agents requiring the help of other agents possess both roles and switch to the
constrained role in order to find the relevant agent.

3.3 Agent Interaction and Communication

Different types of messages can be exchanged between agents depending on their role.
Among them we underline:

3 Request for service: This request is used by agents having the constrained role to
request services from agents having the service role. To specify their requests, agents
use different information based on their local knowledge and representations. When
requesting a service the criticality degree of the agent requesting the service is needed.
Agents having the constrained role compute this degree using their local knowledge.
When delegating services or asking for service assistance, agents having the service role
after switching to their constrained role, transfer the criticality degree received from
the agents requesting their service adding to it their own criticality representing their
difficulty to obtain the service they are searching for.

3 Request for information: such interactions exist between agents when requesting for
additional information. It implicates agents from both roles.

3 Answer to requests: used by service role agents to answer the received requests.

3 Information messages: in addition to the service requests and answers, agents can
exchange information judged to be useful for other agents of the system.

Figure 3.1 illustrates some of the possible interactions between four agents (A1, A2, A3,
A4). A1 and A4 possess both constrained and service roles. A3 requests the service of A1
specifying its criticality degree (criticality1). To respond to A3 request, A1 requires the help
of another agent. Thus, it switches to its constrained role, computes its criticality degree
(criticality2) and requests the service of A4. A4 is available to respond to A1 request and
sends it an accept() answer. A2 is available but its service is not requested. Thus it informs
other agents (here A4) about its availability.

Cooperative Self-Organisation for Optimization under Constraints 73

3

A Generic Agent Model for Complex Problem Solving

S C S

C S C S: Service Role

C: Constrained Role

A1 A2

A3 A4

Figure 3.1 — Example of agent interactions

Note that the definition of those messages remains a guide for the agent interactions and
must be adapted to a given application. They represents a subset of the FIPA1 Communicative
Acts and can be implemented by them: the request for services or information messages can
be implemented using the request act, the answer to requests can be implemented using the
Agree and Refuse acts and the information using the Inform act.

3.4 Agent Criticality

Agent criticality is defined as the local measure of the dissatisfaction degree of an agent.
It denotes the difficulties an agent has to reach its goal and its importance for the system. In
adaptive multi-agent systems, this measure is very important for the cooperative behaviour
of the agents. Indeed, by their cooperative attitude, agents always try to help the most
critical agents and must anticipate or detect and repair cooperation failures called NCSs.
In such systems, this criticality measure is considered as the foundation of cooperative
behaviour.

In our agent model, two criticality degrees are to be distinguished. First, when
requesting for a service, an agent must be able to compute its criticality degree using its
local knowledge and representations. It combines different measures such as the number
of unsolved constraints, the time spent searching for a solution, the insufficiency of the
agent knowledge or the prejudice it may cause if the agent does not reach its goal. Thus,
this measure is relatively dependent on the situation of the agent. Second, when an agent
asks for service delegation or assistance, it must be able to associate to each request the
adequate criticality. For instance, when asking for assistance, the agent must combine the
criticality of the received request with its own difficulty to find this assistance. On the
contrary, when asking for service delegation it must divide the criticality of the received

1www.fipa.org

74 Cooperative Self-Organisation for Optimization under Constraints

www.fipa.org

3.5. Cooperative Rules

3

request in proportion to the delegated part of the service and combine it to its own local
knowledge.

This criticality degree represents for each agent the difficulty to reach its goal. As
cooperative entities, agents act in order to equilibrate the satisfaction degree among
themselves and reduce the global criticality of the system. When detecting a NCS, the agent
associates a criticality measure to this NCS, depending on its situation or the situation of
other agents involved in this NCS. As the agent always seeks to find an equilibrium of
satisfaction, the repair of detected NCSs is highly dependent on these criticality degrees.
Thus, an agent must take them into consideration when deciding which actions to perform.

3.5 Cooperative Rules

As stated on the definition of the AMAS Theory, when designing an adaptive multi-agent
system, designers concentrate on ensuring local cooperative interactions between agents. In
this theory, agents always aim at acting and interacting cooperatively between them in order
to maintain a cooperative attitude. Thus, they detect or anticipate problems that introduce
cooperation failures called NCS and choose actions to repair or avoid them.

Depending on their roles, agents face different NCS categories. From the seven defined
categories of NCS, agents considered in optimization under-constraints are only subject
to five: incompetence, unproductiveness, uselessness, conflict, and concurrence. The
incomprehension and ambiguity categories are related to communication. We consider
that information exchanged between agents is understandable and non-ambiguous in these
kinds of systems as agents are the result of the same design process, by the same designer,
or common specifications. They are always able to interpret the messages, extract useful
information and update their local representations and knowledge.

Concerning the others (incompetence, unproductiveness, uselessness, conflict, and
concurrence), their description in the AMAS theory remains a high level guide for the
definition of cooperative failures that agents can encounter. In the following, these NCSs are
specialized for the optimisation under-constraints problems. For each NCS, a description
of the situations where such NCS can occur is given. The way an agent solves this NCS
is defined as a cooperative rule. The set of cooperative rules are to be integrated in the
ADELFE methodology and can be used when trying to solve optimisation under-constraints
problems.

3.5.1 Incompetence

This NCS occurs when an agent having the service role receives a request for service but
does not have the required qualification to respond. If the agent knows another qualified
agent, it can forward the service to this agent or informs the sender about its existence (figure
3.2). In all cases, the agent must send its incompetence to the original sender so it can update
its local representations (figures 3.2, 3.3), so as not to repeat the same error.

Cooperative Self-Organisation for Optimization under Constraints 75

3

A Generic Agent Model for Complex Problem Solving

<<agent state>>
RequestedForService

<<cooperative rule>>
InformAboutIncompetence informIncompetence()

!provideRequestedService

!knowRelevantAgent

And

isRequestedForService

Figure 3.2 — Inform about incompetence NCS rule diagram

<<cooperative rule>>
InformAboutIncompetence

WithRelevantAgent

informIncompetence()

sendRelevantAgentAddress
(@Agent)

<<agent state>>
RequestedForService

!provideRequestedService

knowRelevantAgent

And

isRequestedForService

Figure 3.3 — Inform about incompetence and send the address of the qualified agent NCS
rule diagram

3.5.2 Unproductiveness

This NCS is detected when the received information is incomplete, already known by
the agent or has no interest for the agent. For example, the information is incomplete when
an agent having the constrained role explores the environment and receives the addresses
of new agents but does not have any knowledge on them. In this case, the agent must
contact these agents in order to improve its acquaintances (figure 3.4). Whenever receiving
already known or uninteresting information, the agent informs the sender which updates its
representations (figure 3.5). The implementation of this last rule can be useful for instance
when memory/network load balance is an issue. Indeed, the designer can choose to
implement it so as to reduce network load since the sender after updating its representations
will not send this information again or as frequently. But, the designer must also consider
the memory space used by the sender which must register the interests of each agent. In case
this rule is not implemented, the agent just ignores such received information. In addition
to these situations, this NCS occurs when the information of the agent is insufficient to reach
its goal (figure 3.6). In this case, the agent must contact already known agents in order to get
useful information. Agents from both roles can face this NCS.

3.5.3 Uselessness

This NCS concerns both constrained and service roles. Agents having the constrained role
are considered as the problem solving initiator. When entering the system, they explore the

76 Cooperative Self-Organisation for Optimization under Constraints

3.5. Cooperative Rules

3

<<agent state>>
DetectingNewAgents

<<cooperative rule>>
ImproveAgentAcquaintances

sendRequestForInformation
(������)

!possessInfo(������)

newAgentDetected(������)

And

Figure 3.4 — Improving agent acquaintances NCS rule diagram

<<agent state>>
ReceivingInformation

<<cooperative rule>>
NotifyAboutInterests sendAgent(���������)

possessInfo(inf��)

receiveInfo(inf��)

And

!interestingInfo(inf��)

Or

Figure 3.5 — Informing other agents of the agent interests NCS rule diagram

<<agent state>>
SearchingForInformation

<<cooperative rule>>
ImproveAgentAcquaintances/Information RequestInformationFrom(acquaintance)

!possessRequiredInfo

Figure 3.6 — Improving agent acquaintances or information NCS rule diagram as current
information is insufficient to reach the agent goal

environment searching for adequate services. This NCS is detected during this exploration
phase as agents have not found their place in the organization yet or as agents have found a
place in the organisation but better places or better interactions can exist (partial Uselessness).

During the exploration phase, if the exploring agent knows a qualified agent but it has
not contacted it, it must send it a request (figure 3.7). If no qualified agents are known, the
requesting agent must search for them by asking for the neighbourhood of his acquaintances
for instance (figure 3.8).

An agent having the service role detects this NCS when its services are not solicited by
its environment. As a cooperative agent, it considers itself useful for the system and must
help other agents to reach their goal (figure 3.9) by proposing its service to them when it
considers it is necessary (for load balancing for instance).

Cooperative Self-Organisation for Optimization under Constraints 77

3

A Generic Agent Model for Complex Problem Solving

<<agent state>>
SearchingForService

<<cooperative rule>>
BuildPartnership sendRequestForService(������)

SearchingForService

knowRelevantAgent(������) And

!contactRelevantAgent(������)

Figure 3.7 — Searching for partnership NCS rule diagram

<<agent state>>
SearchingForService

<<cooperative rule>>
AcquaintancesEnhancement sendRequestForInformation()

SearchingForService

!knowRelevantAgent()

And

Figure 3.8 — Acquaintances enhancement NCS rule diagram

<<agent state>>
NotRequestedFor

<<cooperative rule>>
LookingToHelp proposeService()

!requestedForService

detectOverloadedAgent

And

Figure 3.9 — Looking to be helpful NCS rule diagram

3.5.4 Conflict

This NCS occurs when different agents want to access the same service. It is related
to services requests. This NCS can be detected in two manners. First, agents offering the
service when receiving different requests detect the conflict and solve it using the criticality
degree of agents requesting the service (figure 3.10). This criticality degree represents the
difficulty of an agent to obtain the service and the importance of the service for its constraints
satisfaction. Second, in some specific systems, agents requesting for service detect the
conflict between them and communicate together beforehand to decide which one of them
is the most appropriate to access the service. This second manner is less straightforward
than the first one as it requires additional information exchange.

78 Cooperative Self-Organisation for Optimization under Constraints

3.5. Cooperative Rules

3

<<agent state>>
AnalysingRequests

<<cooperative rule>>
HelpMostCriticalAgent chooseMostCriticalAgent()

availableToPerformService

NbReceivedRequests >1

And

Figure 3.10 — Conflict NCS rules diagram

<<agent state>>
SearchingForService

<<cooperative rule>>
SelectAppropriateRelevantAgent chooseRelevantAgent()

searchingForService

NbRelevantAgents >1

And

Figure 3.11 — Concurrence NCS rules diagram

3.5.5 Concurrence

While exploring the environment, an agent requesting a service can detect different
adequate agents having the service role. As the conflict NCS, this NCS can be detected
either by the agent requesting the service or by the agents offering the service. In the first
case, the agent detects a concurrence NCS between the relevant agents and must choose the
most appropriate one using its local representations and knowledge (figure 3.11). In the
second case, the agents must interact between them and decide which one of them is the
most appropriate to answer the request. The first manner is more intuitive and easier to
implement. The choice of the relevant agent is based on different criteria such as the load
of the agent, the delay, the communication security, the time to obtain a response or the
easiness to obtain the service.

3.5.6 Illustration of some Non Cooperative Situations

Figure 3.12 illustrates three different NCSs between agents having constrained or service
roles.

The first one (in the left of figure 3.12) presents a conflict situation between two agents
(A2 & A3) requesting services from one agent (A1). A1 decides which one to choose using
the criticality degree sent by each requesting agent.

The second situation (in the middle of figure 3.12) presents a Uselessness situation faced
by the agent A4. Here, A4 has the constrained role but does not know any relevant agent
having the service role. Thus, it has to send requests for information.

Finally, agent A7 detects a concurrence situation (in the right of figure 3.12) between
agents A5, and A6. Choosing the appropriate agent depends on different criteria which

Cooperative Self-Organisation for Optimization under Constraints 79

3

A Generic Agent Model for Complex Problem Solving

Conflict ConcurrenceUselessness

S

A1

know A1

C

A2

know A1

C

A3

S

A5

S

A6

know A5 & A6

C

A7

! know relevant Agent

C

A4

S: Service Role C: Constrained Role

Figure 3.12 — Three NCS detected in scheduling in the manufacturing control problem

are application dependent (for instance, is one agent more fragile then the other? is there an
associated coast?).

3.6 Specification of Agent Modules using AMAS-ML

In this section, a description using the AMAS Modelling Language (AMAS-ML) (section
2.4) of the different modules defining an agent architecture (section 2.2.4) is detailed.

Figure 3.13 (resp. figure 3.14) introduces the modules of an agent having the constrained
role (resp. the service role). The architecture of an agent playing both roles can be obtained
by the aggregation of both architectures.

In both figures we distinguish three main parts:

3 The perception module enables the agent to perceive its environment.

For the agent having the service role, this module enables the agent to perceive the
requests for services (requestForService()) and for informations (requestForInformation()).

The answers to the requests (service, delegation of service or service assistance) of
agent having the constrained role such as the acceptance (requestedServiceAccepted()) or
rejection (requestedServiceRejected()) of a request, are found in this module.

Several information judged useful to the agent (both roles) by other agents can also be
perceived (information()).

Note that, the different methods of this module are generic and can be instantiated
depending on the application by adding additional parameters specifying the requested
service and the agent criticality for instance. In addition to this, in this model agents

80 Cooperative Self-Organisation for Optimization under Constraints

3.6. Speci�cation of Agent Modules using AMAS-ML

3

String id
Constraint[] constraints
Service[] requiredServices
Service currentService
Criticality criticalityDegree
State currentState

Criticality computeCriticality()
Agent chooseRelevantAgent ()

Acquaintance[] acquaintances
Boolean isRelevantAgentAvailable
Boolean knowRelevantAgent
Int nbRelevantAgents
Information[] requestedInformation
Information[] knownInformation

<<characteristics>>

<<skills>>

<< representations >>

<< aptitude >>

<<cooperative agent>>
AgentConstrainedRole

void sendRequestForService(@Agent)
void sendRequestForInformation(@Agent)
void sendAgent(interest)
void sendInformation()

<<actions>>

<<action module>>

<<communications>>

void requestedServiceRejected()
void requestedServiceAccepted()
void requestForInformation()
void information()

<<perceptions>>

<<perception module>>

<<communications>>

<<datatype>>
Acquaintance

<<datatype>>
Criticality

<<datatype>>
Service

<<datatype>>
State (Available,

NotAvailable,
InTreatment)

<<active>>
Entity

<<cooperative agent>>
Agent

<<datatype>>
Constraint

Figure 3.13 — The AMAS-ML description of agents having the Constrained Role

Cooperative Self-Organisation for Optimization under Constraints 81

3

A Generic Agent Model for Complex Problem Solving

String id
Service[] servicesRelevantFor
State currentState

Agent chooseMostCriticalAgent()

Acquaintance[] acquaintances
Boolean detectOverloadAgent
Criticality currentRequestedServiceCriticality
Service[] requestedServices
Information[] requestedInformation
Information[] knownInformation

<<characteristics>>

<<skills>>

<< representations >>

<< aptitude >>

<<cooperative agent>>
AgentServiceRole

void rejectService()
void acceptService()
void informIncompetence()
void sendInformation()
void sendRelevantAgentAddress(@Agent)
void sendRequestForInformation()
void proposeService()

<<actions>>

<<action module>>

<<communications>>

void requestForService()
void requestForInformation()
void information()

<<perceptions>>

<<perception module>>

<<communications>>

<<datatype>>
Acquaintance

<<datatype>>
Criticality

<<datatype>>
Service

<<datatype>>
State (Available,

NotAvailable,
InTreatment)

<<active>>
Entity

<<cooperative agent>>
Agent

<<datatype>>
Information

Figure 3.14 — The AMAS-ML description of agents having the Service Role

82 Cooperative Self-Organisation for Optimization under Constraints

3.6. Speci�cation of Agent Modules using AMAS-ML

3

communicate using messages. Thus, the described methods are in the communications
part of this module. In some cases when, for example, the neighbourhood of agents is
fixed or agents are executed in the same environment, agents can access the information
of other agents directly without requesting it. Such access can be implemented directly
using getters methods, and these methods belongs to the perceptions part of this module.

3 The action module allows the agent to act on its environment.

The agents having the constrained role use this module to send services requests
(sendRequestForService(@Agent)) to other agents. This module is used by agents of both
roles for informations requests (sendRequestForInformation(@Agent)) .

It is also used by agents having service role to answer services or information requests
(rejectService(), acceptService(), etc.).

In some cases, this module is used by the agents to solve NCSs. For example, when
receiving the address of a new agent (unproductiveness NCS), the agent uses the
sendRequestforInformation(@Agent) action to acquire information on that agent. A service
role agent detecting that other agents are overloaded (detectOverloadAgent) uses its
proposeService() action to try to solve its Uselessness NCS.

Like the perception module, methods of this module are generic and must be instantiated
accordingly to the developed application. Direct access methods implemented as setters
can also be found in the actions part of this module.

3 The knowledge modules of the agent regroups its skills, characteristics, representations and
aptitude modules.

The skill module contains methods enabling the agent to decide how to act or to perform
local computation.

The characteristics and representations modules contain the information the agent has on
itself and its environment (social and physical). Such information is used by the skills
module of the agent. They are updated locally by the agent during the perception phase.

The aptitude module can be instantiated by specific tools to the studied application
judged by the designer to be useful for the treatment of the agent.

Some examples on the usage of theses modules:

– when looking for a service, the agent computes using its acquaintances the number
of relevant agent (nbRelevantAgent). If a relevant not contacted agent is known
(knownRelevantAgent), its sends a request to it by specifying its criticality using
the computeCriticality() skill, if not, it sends requests for informations to its
acquaintances.

– When an agent detects a Concurrence NCS that occurs when different relevant
agents are detected, it uses its chooseRelevantAgent() skill to decide which agent
to contact.

– When a service role agent receives different requests (requestedServices), it decides
which request to choose using its chooseMostCriticalAgent() skill.

Cooperative Self-Organisation for Optimization under Constraints 83

3

A Generic Agent Model for Complex Problem Solving

The different fields and methods of theses modules are required by the constrained role
agents to satisfy their constraints, and by the service role agents to decide how to treat
the received requests. They are generic and their instantiation depends on the studied
applications.

Those three defined parts, using the interaction and cooperative rules of each agent,
describe the architecture of the agent. The architecture of an agent having the service role is
similar to architectures defined by agent-role methodologies [Kendall, 2001]. Nevertheless,
it differs by the cooperative rules that impact the behaviour of agents, and the fact that
services offered by these agents are designed to help agents having the constrained role to
satisfy their constraints. Thus, these two agents architectures are specific to problem solving
under constraints.

3.7 MAY Agent Architecture

When analysing the different modules of both roles in order to design the agent
architecture using Make Agents Yourself (MAY), a large similarity is noticed. Indeed, the
architecture definition using MAY consists in defining how the different µ-components are
connected (section 2.5). As the difference between both roles concerns internal functions
performed by the µ-components of the agent, agents having one or both roles are considered
being from the same species. Thus, one species of agents called Resolution Agent is created.

This architecture contains six µ-component (LifeCycle, MailBox, Send, Receive, Perception,
Decision and Action) divided into the two levels as presented in figure 2.7.

In addition to these µ-components, two µ-components are to be added : the
Characteristics and Representations µ-components. Those µ-components must offer a set of
methods required by the Perception µ-components to maintain the agent knowledge up
to date, the Decision µ-components to access this knowledge and decide which actions
to perform and the Action µ-components to perform the set of decided actions. As the
characteristics and representations modules are different for both roles, the Resolution Agent
species is completed by the appropriate µ-component (figures 3.15, and 3.16) before agent
creation. An agent having both roles must implement the methods of both µ-components.

Considering the skills of agents, in our case, they are internally used by the decision
module. Thus, no additional µ-component is required for them. They are implemented as
private methods in the implementation of the Decision µ-component. Thus, both roles share
the same Decision µ-component.

3.8 Conclusion

In this chapter, the generic agent model AMAS for Optimisation (AMAS4Opt) developed
to specialise the usage of the AMAS theory for complex optimisation problems under
constraints has been detailed.

By analysing the agents interactions during the solving process, two roles that guide

84 Cooperative Self-Organisation for Optimization under Constraints

3.8. Conclusion

3

«�Component»

CharacteristicsConstrainedRole

servicesCompartment

String getId()

Constraint[] getConstraints()
void setConstraints(Constraint[] newC)
void updateConstraints(Constraint[] newC)

Service[] getRequiredServices()
void setRequiredServices(Service[] newRS)
void updateRequiredServices(Service[] newRS)

Service getCurrentService()
void setCurrentService(Service currentS)

Criticality getCriticalityDegree()
Criticality setCriticalityDegree()

State getState()
State setState()

propertiesCompartment

String id
Constraint[] constraints
Service[] requiredServices
Service currentService
Criticality criticalityDegree
State currentState

«�Component»

CharacteristicsServiceRole

servicesCompartment

String getId()

Service[] getServicesRelevantFor()
void setServicesRelevantFor(Service[] newS)
void updateServicesRelevantFor(Service[] newS)

State getState()
State setState()

propertiesCompartment

String id
Service[] servicesRelevantFor
State currentState

Figure 3.15 — Characteristics µ-components for constrained and service roles

«�Component»

RepresentationsServiceRole

servicesCompartment

Acquaintance[] GetAcquaintances()
void updateAcquaintances(Acquaintance[] acq)

Boolean isDetectedOverloadAgent()
void setDetectedOverloadAgent(Boolean b)

Criticality getCurrentRequestedServiceCriticality()
void setCurrentRequestedServiceCriticality(Criticality c)

Service[] getRequestedServices()
void updateRequestedServices(Service[] reqSer)

Service[] getRequestedInformation()
void updateRequestedInformation (Information[] reqInfo)

Information[] getKnownInformation()
void updateKnownInformation(Information[] info)

propertiesCompartment

Acquaintance[] acquaintances
Boolean detectOverloadAgent
Criticality currentRequestedServiceCriticality
Service[] requestedServices
Information[] requestedInformation
Information[] knownInformation

«�Component»

RepresentationsConstrainedRole

servicesCompartment

Acquaintance[] GetAcquaintances()
void updateAcquaintances(Acquaintance[] acq)

Boolean isRelevantAgentAvailable()
void setRelevantAgentAvailable(Boolean b)

Boolean isknowRelevantAgent()
void setKnowRelevantAgent(Boolean b)

Int getNbRelevantAgents()
void setNbRelevantAgents(int nb)

Service[] getRequestedInformation()
void updateRequestedInformation (Information[] reqInfo)

Information[] getKnownInformation()
void updateKnownInformation(Information[] info)

propertiesCompartment

Acquaintance[] acquaintances
Boolean isRelevantAgentAvailable
Boolean knowRelevantAgent
Int nbRelevantAgents
Information[] requestedInformation
Information[] knownInformation

Figure 3.16 — Representations µ-components for constrained and service roles

Cooperative Self-Organisation for Optimization under Constraints 85

3

A Generic Agent Model for Complex Problem Solving

the agents behaviours have been underlined: constrained and service roles. For each role
an outline of the agent behaviour is given. In this model, agents interact using direct
communications. The different required messages have been identified and discussed. In
addition to this, as stated in the AMAS theory, agents cooperate in order to reach their local
goal and to equilibrate their satisfaction degrees. Thus, they possess a cooperative attitude
and always try to anticipate or detect and repair cooperation failures called Non Cooperative
Situations (NCSs). A list of NCSs that agents of this model can encounter has been addressed.

Concerning the theoretical contribution of this thesis, the NCSs of the AMAS theory have
been specialised for the solving of optimisation under constraints problems. For each rule,
an explicit definition including how the NCS can be detected by agents, to which role it
belongs and how the agent can solve it is given. In addition to this, the agent criticality
has been introduced and defined to guide the cooperative choices of the agents. Different
measures representing the local measure of the dissatisfaction degree of the agent can be
used to compute this criticality degree. Still, this measure is application dependent.

From the engineering point of view, two generic algorithms defining the behaviour of
both roles are given. Each algorithm provides the engineer with the different steps to follow
in order to design their agents. The definition of each NCS states when an agent can detect
it, by that helping the engineer to identify the NCSs that its agents may face. The cooperative
rules defined to solve each NCS provide the engineer with the knowledge, representations
and skills required by each agent to anticipate or detect and repair NCSs.

In conclusion, the AMAS4Opt model defines the process to follow to design dedicated
agents for the solving of optimisation under constraints problems. It requires the analysis
of the natural description of the problem to identify the agents and their roles. Still, as
the proposed roles and behaviours are close to the problem description, we feel confident
that this identification is intuitive. In order to evaluate our model, chapter 5 presents two
instantiations of this model for the solving of two well-known optimisation problems: the
scheduling in manufacturing control problems and the design of complex products.

86 Cooperative Self-Organisation for Optimization under Constraints

4 Criteria for the Evaluation of

Self-Adaptive Multi-Agent

Systems for Complex Problem

Solving

« Not everything that can be counted counts and not everything that counts
can be counted. »

Albert Einstein

Contents
4.1 Introduction . 89

4.2 Evaluation of the System at Runtime . 91

4.2.1 Performance metrics . 91

4.2.2 Homeostasis & Robustness . 94

4.3 Intrinsic Characterization of the System . 95

4.3.1 Computational Complexity . 95

4.3.2 Decentralisation and Local Algorithms 96

4.4 Development Methodologies Characterization 97

4.5 Comparative Evaluation . 99

4.6 Main Difference between Self-? and Classical Systems 102

4.7 Conclusion . 102

Cooperative Self-Organisation for Optimization under Constraints 87

4

Criteria for the Evaluation of Self-Adaptive Multi-Agent Systems for Complex Problem Solving

The chapter in english starts page 89.

Résumé général du chapitre

La complexité croissante des logiciels favorise la conception de systèmes multi-agents auto-
organisateurs1 présentant des propriétés self-? . Ces systèmes se composent d’un ensemble d’agents
autonomes et interagissants, conduisant à l’émergence du comportement collectif. Grâce à leurs
propriétés self-? , ces systèmes sont capables d’auto-adaptation et gèrent les dynamiques dues aux
changements endogènes et exogènes. Parmi ces propriétés, nous distinguons :

3 l’auto-organisation : processus par lequel un système change, lors de son exécution, son
organisation sans aucune intervention externe. L’auto-configuration permettant au système
de devenir conforme aux besoins de l’application, en est un exemple;

3 l’auto-stabilisation ou homéostasie : propriété assurant l’atteinte d’un état stable par le
système;

3 l’auto-réparation : mécanisme permettant la détection et la réparation des erreurs;

3 l’auto-régulation : mécanisme permettant l’ajustement autonome des paramètres.

Une forte dynamique liée à l’apparition d’évènements imprévus caractérise de nombreuses
applications actuelles comme en télécommunications, économie ou bio-informatique. Les systèmes
classiques supportent difficilement ces caractéristiques mais, contrairement aux systèmes self-? ,
des preuves formelles concernant leur performance peuvent exister. De plus, le fonctionnement de
systèmes classiques peut être validé avant même leurs déploiements dans des environnements réels.
De manière générale, les systèmes classiques sont fonctionnellement adéquats (ils réalisent ce pour
quoi ils ont été conçus). Les questions qui se posent aux concepteurs de systèmes multi-agents
adaptatifs sont : comment peut-on mettre en avant les systèmes self-? par rapport aux systèmes
classiques sachant leur indéterminisme ? Ou, comment les propriétés self-? garantissent-elles un bon
fonctionnement malgré les perturbations ? Comment prouve-t-on l’adéquation fonctionnelle de ces
systèmes ? Puisqu’aucune preuve formelle n’existe pour ce type de système, ce chapitre focalise sur
l’évaluation empirique qui est primordiale pour notre communauté. Le but étant de souligner les
avantages et les caractéristiques des systèmes self-? par rapport aux autres systèmes.

Les rares études et évaluations des systèmes self-? se basent sur un nombre réduit de critères
tels que le temps et la charge de communication. Malgré leur importance, ces critères restent
insuffisants pour refléter la spécificité de ces systèmes. D’autres critères comme l’homéostasie, le
degré de décentralisation ou la complexité sont plus appropriés et doivent être considérés. L’objectif
de ce chapitre est de définir et analyser les critères essentiels d’évaluation de ces systèmes
auto-adaptatifs.

Ce chapitre présente les critères identifiés selon trois parties:

La première concerne l’évaluation du système en cours de fonctionnement. Cette catégorie
concerne la validation de l’adéquation fonctionnelle du système. Elle se décompose en des mesures de

1Systèmes multi-agents capables d’auto-organisation en cours d’exécution

88 Cooperative Self-Organisation for Optimization under Constraints

4.1. Introduction

4

performances (le temps, la charge de communication, la précision et la qualité, l’indéterminisme, la
progression et la gestion de la mémoire) ainsi que des mesures de robustesse et d’homéostasie tel
que le temps d’adaptation nécessaire après l’apparition d’une perturbation.

La deuxième catégorie étudie les caractéristiques intrinsèques du système. Ces critères
pouvant être étudiés avant l’exécution du système, permettent de souligner la complexité
algorithmique du système et la décentralisation du contrôle. En effet, dans ces systèmes, la
distribution et la décentralisation rendent impossible l’évaluation de la complexité algorithmique
globale du système. Ainsi les mesures portant sur la localité de la résolution telle que la complexité
des algorithmes locaux à chaque agent, la localité de leur actions, le degré de décentralisation sont
plus appropriés.

La troisième catégorie considère la méthodologie de conception. En effet, la conception des
logiciels capables de s’adapter à un environnement dynamique impose une méthode de conception
rigoureuse qui se distingue de l’approche globale-descendante habituelle. Différentes méthodes de
conception ont été développées présentant des degrés de difficultés variés. Cette catégorie propose
des critères d’évaluation de ces méthodologie selon trois points: l’identification des agents et leur
conception, la facilité de déploiement et de distribution et la généricité. Ces critères sont plus
qualitatifs que quantitatifs, mais sont utiles pour les prochains développements basés sur la même
approche. Cette caractérisation souligne les points positifs et négatifs d’une méthodologie par rapport
à une autre.

La caractérisation et l’évaluation d’un système fournissent un ensemble de valeurs qualitatives et
quantitatives permettant non seulement d’évaluer le système mais aussi de le comparer avec d’autres
pour souligner ses limites et ses avantages. La dernière partie de ce chapitre propose un ensemble de
moyens facilitant cette comparaison et présente un panel de comportements typiques associés aux
processus d’auto-adaptation. Elle souligne le fait qu’une vue multi-objectif est plus adaptée pour la
comparaison de ces systèmes vu l’interdépendance des différents critères mesurés.

4.1 Introduction

In the last few years, the growing complexity of current applications has led to designing
self-organizing systems presenting self-? properties [Serugendo et al., 2005]. Those systems
are necessarily composed of several autonomous interacting entities (called agents) acting
in an environment. In general, the global behaviour of the system emerges from the local
interactions between its agents. Those systems behave autonomously and must handle the
dynamics coming from exogenous or endogenous changes2, i.e., they are able to self-adapt
[Bernon et al., 2003; Robertson et al., 2001].

Moreover, those systems are characterized by different self-? properties such as:

3 self-organization: the mechanism or the process enabling a system to change its
organization without explicit external control during its execution time [Serugendo
et al., 2006].

2Endogenous changes are perturbations caused by entities belonging to the system. Exogenous changes
solely occur from entities outside the system. Handling these perturbations can lead to change agents behaviour
or even the global objective of the system.

Cooperative Self-Organisation for Optimization under Constraints 89

4

Criteria for the Evaluation of Self-Adaptive Multi-Agent Systems for Complex Problem Solving

3 self-stabilization or homeostasis: the system always reaches a stable state [Würtz, 2008].

3 self-healing: the mechanism that allows a system to detect and recover from errors.

3 self-tuning: the system is able to adjust its parameters.

Generally, those characteristics make systems more robust than classical ones and
by that more adequate to solve complex real-life problems common in many domains:
telecommunications, economics, bio-informatics, industrial environments, etc. Real-life
problems present a lot of dynamics where events are unpredictable and can occur any time.
Classical systems with no self-? properties are usually inappropriate to solve such problems.
The main advantages of classical systems over self-? systems are that, for most, formal
proofs of reaching good solutions exist and the functioning of the system can be validated
before deploying it in a real environment. Classical systems are usually predictable in
their functioning. The question is how can we point out the advantages of self-? systems
over classical ones when for instance most of them are not deterministic? Or, how can
self-? properties guarantee good solutions under perturbations? Or, how can we prove
that they are functionally adequate (e.g they do what they are designed for)? Yet, there
are no tools to formally prove the behaviour of self-? systems [Edmonds and Bryson, 2004;
Edmonds, 2005; Gleizes et al., 2008] and only empirical evaluation can help answering those
questions.

As those systems are different from classical ones, new or updated characterization
and evaluation criteria are required for analysing the contribution of self-? properties and
system performance. In this work, we aim at collecting a number of ideas and propositions
about how to evaluate such systems. The idea is to propose relevant evaluation criteria
that help to validate the behaviour of these systems, underline their advantages on classical
approaches by showing how self-? properties can increase the performances and thus, ease
their acceptance for the industry.

For the evaluation of those systems, researchers commonly use a very reduced number
of criteria such as time or communication load. These two criteria are important but not
sufficient to highlight their specificity. Other criteria such as homeostasis, decentralization
degree3 or complexity are more appropriate and must be studied.

Generally, these systems show two kinds of behaviour: the nominal behaviour (N) which
is the normal behaviour (i.e. the behaviour of classical systems) and the self-? behaviour
(S) which enables the system to handle unexpected dynamics. In some systems, those
behaviours are distinct. In some others, they are intricate. This chapter aims at guiding the
evaluation of this kind of system from the design phase to the execution phase by providing
the main criteria regrouped in different sets.

In the following, the identified evaluation criteria are classified in three parts: the first
concerns the system at runtime, the second discusses its intrinsic characteristics and the
third presents the methodologies characterization. In each part, the main criteria to measure
are defined and a way to examine them is given when possible. Finally, a proposition
to compare different systems to point out their originality, advantages and weaknesses is
presented.

3A measure of the control and decision making distribution between agents[Loor and Chevaillier, 2003]

90 Cooperative Self-Organisation for Optimization under Constraints

4.2. Evaluation of the System at Runtime

4

4.2 Evaluation of the System at Runtime

Different questions are to be considered by designers to validate the well-functioning of
the system and of the self-? mechanisms, such as: is the system able to solve the problem
for which it is designed? Is the system able to self-adapt in an efficient way? Are the
self-? properties implemented in the system sufficient to insure the needed robustness? etc.

Evaluating the system at runtime concerns the results obtained at the end of its
execution but also its behaviour during it. The former part gives information on the system
performances. While the latter part enables the study of how the system handles dynamics
and points out the self-? characteristics. Note that the end of the execution of a self-adaptive
system is not so easy to determine. This kind of systems has to continuously self-adapt to
its environment and usually keeps running indefinitely. If it has to reach a given state or a
solution, the end cannot be known by the system itself, mainly because of the distribution.
Designers must add a global observer of the system which has to decide if the system has
reached its goal and by that has to stop.

4.2.1 Performance metrics

The evaluation criteria presented in this section concern the results of different system
executions for a given scenario. Six points are considered: time, communication load, non
determinism, accuracy/quality, progress and memory usage. Once these measures are
done, they can be used by the evaluator to compare its system with others.

Time. Measuring the time studies the computation time needed by the system to reach a
solution. In real-time dynamic environments, systems must be reactive and respond quickly
by proposing good solutions. In some other static environments, the quality of solution is
important and thus, additional computational time can be given to the systems in order
to get optimal solutions. By studying this criterion, designers can know if their system is
suitable or not to a given context.

Commonly utilized, time has different definitions. In [Meisels et al., 2002], it is expressed
by the number of checked constraints, or more generally the number of performed atomic
operations. Another frequent way is the measurement of computing time (CPU) [Clair et al.,
2008], [Hansen et al., 2008; Meignan et al., 2008]. For this, the characteristics of machines
should be considered. [Dongarra, 1988] introduces some transformation ratios in order to
make times of different machines comparable. Others authors [Clair et al., 2008], [Lynch,
1996] study the time as the number of steps needed by agents to reach the solution4. Another
common way is the time needed by the most costly operations.

We consider that the number of steps needed by agents is the most appropriate and
easiest way to measure time. In fact, considering the measurement of CPU needs to take
into account machines and platform characteristics, while counting the number of verified
constraints in distributed context must consider the asynchrony between the agents [Meisels

4In [Clair et al., 2008], it is calculated as the fabrication cycle number. While in [Lynch, 1996], it is the number
of rounds for a synchronous algorithm.

Cooperative Self-Organisation for Optimization under Constraints 91

4

Criteria for the Evaluation of Self-Adaptive Multi-Agent Systems for Complex Problem Solving

et al., 2002] which is also the case of considering the time needed by the most costly
operations.

At the beginning of distributed systems, designers worried that the systems spend
too much time communicating than working. Currently in self-? systems, the dilemma
has shifted to the ratio between working and self-adapting. In self-? systems, we propose
to distinguish when it is possible the Nominal Time (NT) needed to perform its usual

function (which could be to solve a problem) from the Self-? time (ST) needed to self-adapt
to changes in the environment. For example, in a mail server representing self-healing
characteristics a distinction can be done between the time spent by the server doing its
nominal behaviour (sending or receiving mail messages) from the time spent on searching
for help when it is overloaded. When this distinction is not possible, an evaluation of the
Mean of the Time Differences (MTD) between the execution of the system in a scenario

without perturbation and its execution in a scenario with perturbations can be realized. For
instance, in a self-? system solving a constraint satisfaction problem, it is difficult to perform
this separation. Some can consider that the time spent by an agent to find an affectation for
its variable is the NT, while others consider it as the ST.

Communication Load. In self-? systems, agents usually need to communicate in
order to reach the solution or the organization needed to attain the solution. Examining
the communication load enables the study of network load which is an important
criterion for the deployment of the system in a real environment. Indeed, systems
with high communication load require network infrastructure that can handle important
communications. Studying this criterion gives information on which infrastructure a system
can be deployed.

A way to measure this parameter is the amount of exchanged messages. The exchanged
messages can be sorted in two sets: the messages Nominal Communication Load (NCL)

for the solving part and the messages Self-? Communication Load (SCL) for self-
adaptation. For example, in a mail server representing self-healing characteristics we can
distinguish between sent or received mail messages and messages asking for help when the
server is overloaded.

But, as the number of exchanged messages is highly dependent on the
centralization/decentralization degree5 of the algorithms, it would be interesting to
analyse the communication load in regard to the decentralization degree. In decentralized
algorithms more messages are needed among agents while in centralized approaches
agents do not have to exchange a lot of information. Unfortunately, rare are the studies that
combine them.

Different other parameters are interesting to examine when studying the communication
load [Brito et al., 2004]. Among them, the message size and complexity are to be underlined
as they are relevant indicators of the time needed to understand and process messages. The
network load is mainly calculated using this communication load in addition to transit and

5Calculated as the ratio between the number of agents in charge of the decisions and the total number of
agents.

92 Cooperative Self-Organisation for Optimization under Constraints

4.2. Evaluation of the System at Runtime

4

latency time.

Accuracy/Quality. The accuracy or quality of solution refers to functional adequacy
of the designed system. A system is functionally adequate if it is useful for its
environment [Gleizes et al., 2008; Parunak and Brueckner, 2004] which means that
it does what it is conceived for. A convenient measure for solution quality is the
distance from the optimal value (δ(Scur, Sopt)) . The main problem of this measure is the

determination of the optimal solution. In some cases, this value is known for some instances,
but in general it is unknown. That’s why some authors usually use scenario belonging
to well-known benchmarks and compare their solution with best known solutions. The
quality of self-adaptation can be highlighted when running the system on a sufficiently
high number of scenarii presenting different levels of dynamics and unpredicted events.
The aim is to show that the system maintains a high quality level.

Non Determinism. In self-? systems, information are distributed among agents
which behave asynchronously. These characteristics normally make the resolution non
deterministic. As a consequence, for one considered scenario, the solutions obtained from
one execution to another may be different [Gaillard et al., 2009]. Studying the distances
between those obtained solutions gives information about the stability of the system in
comparison with exact approaches. Usually authors use measures of central tendency such
as mean or median and variability such as standard deviation and variance to examine the
non determinism of a system [Chiarandini, 2005].

Progress. Evaluating the Nominal Progress (NP) of the system refers to the study of
how the system progressively reaches a complete solution. A measure of this could be the
percentage of the main goal reached at each step. To do this measure it is not necessary to
know the optimal solution. It is just the measure of the activity. For example, in [Clair et al.,
2008], the progress is measured as the total number of finished containers at each step.
During time, this can be observed by looking at the curves representing this progress as they
will have specific forms (linear, exponential, logarithmic) (section 4.5). More interestingly
for self-? systems, we can analyse how self-adaptation influences this progress: does it
maintain or even increase the rate (which is an ideal situation), does the progress slow
down (how much?), or even worse, is there a decrease in the progress (the worst being
a reset to zero of the progress). Finally, we can also evaluate Self-? Progress (SP) , the
progress of the self-adaptation following a perturbation in the same manner as NP.

Memory Usage. Another interesting uncommon criterion is the amount of memory used
by each agent for the solving part Nominal Memory (NM) and the self-adaptation part

Self-? Memory (SM) . This criterion has a direct influence on the computational complexity
(section 4.3.1) when for example, at each step an agent must process information from
all other agents or just from a local neighbourhood. The deployment of the system in
real-world application is also affected by a high usage of the memory, for example in
the context of ambient intelligence where small devices are usually constrained by small

Cooperative Self-Organisation for Optimization under Constraints 93

4

Criteria for the Evaluation of Self-Adaptive Multi-Agent Systems for Complex Problem Solving

memory capacities [Weber et al., 2005].

4.2.2 Homeostasis & Robustness

As stated above, the main property of self-? systems is their ability to maintain their
functioning in an environment presenting a high level of dynamics. In other words, we
can say that self-? systems possess robustness, and homeostasis/self-stabilization abilities.
The robustness is the property of a system that is able to maintain its behaviour under
perturbations [Robertson et al., 2001]. Adaptation capabilities such as the ability of the
agents to treat the perturbations are means to obtain this robustness. The homeostasis
ability is what enables the system to regain its normal behaviour after being perturbed.
In [Würtz, 2008, chap. 5], authors defined the homeostasis as the capacity of regaining an
ideal state in which the system is operating in a maximally efficient way. Studying those
two abilities enables to understand in depth how the system handles the dynamic changes
of the environment, and by that validate its adequacy to solve the problem. These qualities
guarantee that the system will continue to function when confronted to difficulties. It can
be noticed that certain situations require either strong homeostasis capabilities or strong
robustness (as these are not exactly identical).

Robustness. Considering dynamics is a very interesting point in complex problem
solving. Events occur at different steps and are usually unpredictable. A robust system is a
system which is able to maintain a stable behaviour even under perturbations. To measure
the robustness, the following points can be considered:

3 The system maintains a functional adequacy even during perturbations. In other terms,
the variation of the solution quality is weak under perturbations ∆Q < ε where ∆Q is
the variation of the solution and ε is a very small value.

3 The new solution (state) reached by the system is close to the previous one.

3 The amount of changes inside the system between the state when the perturbation
occurs and the new stable state, is minimal.

Time for Adaptation. The time for adaptation is the time needed by the system to
regain its normal behaviour after the occurrence of a perturbation. When measuring
the time (section 4.2.1), ST which represents the time needed by the system to self-
adapt along its execution was introduced. While the time for adaptation studied here, is
the Self-? Time for Adaptation (STAlc) needed to take into account one type of dynamic
changes. The number of steps needed by agents to return to the normal functioning is an
appropriate measure of this criterion. Two levels are to be considered to measure adaptation
time: local level and global level.

In the first one, the number of steps needed by each agent is examined. Measuring
this time allows the designer to examine the self-adaptability of the agents. In the second

94 Cooperative Self-Organisation for Optimization under Constraints

4.3. Intrinsic Characterization of the System

4

one, the self-adaptivity of the global behaviour of the system is studied by measuring the
number of steps needed by the system to regain its normal behaviour (figure 4.3).

Measures for runtime evaluation

3 Time for self-adaptation ST, time for solving NT, time for adaptation STAlc or the
mean of the time differences MTD.

3 The number of messages for solving NCL and the number of messages for self-
adaptation SCL.

3 The quality of the solution (δ(Scur, Sopt)) and the degree of non determinism of the
resolution.

3 The progress of the resolution NP and the progress of the self-adaptation SP.

3 The memory usage rate for the nominal behaviour NM and the self-? behaviour
SM.

3 The robustness level of the system (∆Q < ε).

4.3 Intrinsic Characterization of the System

The main limit of the evaluation criteria presented in the previous section is that they
can only be measured during or after the execution of the system. Since this can only be
done on a limited number of scenarii or situations, these evaluations cannot guaranty the
qualities of the system in every real-world situation and on the long run.

This section completes the previous one by defining, discussing and presenting as
evaluation criteria several characteristics of self-? systems which can be used without having
to actually run the systems. Given the knowledge of the nature of a system, of its
functioning, its computational complexity, the decentralization, the requirements of the
local algorithm or the influence of the number of agents and their computation needs can
be partially studied. This enables to already evaluate and compare such systems.

4.3.1 Computational Complexity

Very early in Computer Science [Fortnow and Homer, 2003]6, the need arose to be able to
measure the time or memory required by a program or an algorithm. Basically, by looking at
a classic algorithm, one can ascertain how the execution would fare in a worst-case scenario
and by expanding the set of input data to a real-world problem, one can predict that the
algorithm would fail to give a response in a reasonable time. This problem of scalability has
been thoroughly studied in the last 40 years and a formal theoretical framework has been
given [Wilf, 1986]7. With it comes the well-known but difficult to completely grasp notions

6http://people.cs.uchicago.edu/ fortnow/papers/history.pdf
7http://www.math.upenn.edu/ wilf/AlgComp3.html

Cooperative Self-Organisation for Optimization under Constraints 95

4

Criteria for the Evaluation of Self-Adaptive Multi-Agent Systems for Complex Problem Solving

of orders of complexity and NP-hardness. The main idea to keep in mind is that we currently
have problems which we do not know how to solve in a polynomial time such as scheduling
problems or routing problems.

The general theory is quite out of the scope of this work but the question remains when
evaluating a self-? system: can we know how efficient it is by looking at the code? If the
system attains its self-? properties via a global control algorithm, it perfectly fits the previous
framework and can thus be studied and evaluated by its tools. For evaluation purposes, this
is an interesting advantage, but the major drawback is that interesting problems combine
with exponential complexity thus rendering these systems basically non-functional.

4.3.2 Decentralisation and Local Algorithms

In our experience, nearly all systems exhibiting self-? properties on real-world
complexity scale problems rely in one way or another on distribution of the computation,
decentralization of the control and local mechanisms to explore the search space. When
one local, even simply calculated (in terms of complexity) change can have non-linear
repercussion throughout the whole system, how can we calculate the computational
complexity of the whole system? There exists work [Papadimitriou et al., 1990] on
complexity theories for local search algorithms, with for instance the definition of the
Polynomial Time Local Search (PLS) class, but they fix very strict boundaries.

Local Computational Complexity, Decentralization, Action Locality, Initial and
Acquired Knowledge and Agent Number Influence are criteria to study to validate the
decentralisation level and the efficiency of local algorithms.

Local Computational Complexity. Pending on a breakthrough in Theory of Complexity,
we are thus reduced to analyse the local algorithm by itself. This is already a criterion to
disqualify certain local algorithms which require too much computational power.

Decentralization. We can complete the study of the Local Computational Complexity
criteria with an evaluation of some sort of ratio between the decentralization and the
amount of local computation needed. If the system has limited decentralization, it may
fall in the NP-complete problem class. If the decentralization is important, but the local
computation complex, then each local decision may be NP-complete. In short, how many,
how decentralized, how simple are the agents in the system and how many other agents
does it need to know or interact with?

Bear in mind that this criterion cannot be used alone as the least complex local algorithm
would be for instance to always choose a random action for an agent, but would certainly
produce one of the worst systems ever. On the other hand, it can be usefully applied
to filter local algorithms growing too much in complexity. For instance, an algorithm
where an agent has to check all the properties of all the other agents of the system, and
with a prediction for n steps ahead depending on its chosen action, is a very naive approach.

Action Locality. In the same way, we can also add our understanding of the

96 Cooperative Self-Organisation for Optimization under Constraints

4.4. Development Methodologies Characterization

4

repercussions of a local action on the rest of the system. Since self-? systems are complex
systems, they are prone to the well known butterfly effect as we can observe in systems
which use gossip mechanisms or propagation in neural networks [Jelasity and Babaoglu,
2006]. But we can already evaluate how probable this will be by studying the strategies
of the agents in regard to this. For instance, does an agent systematically broadcast its
informations and needs? Or does it proceed by selecting its targets based on an evaluation
of their relevance? Another example would be the minconflict [Minton et al., 1992] types of
heuristics which try to progress in the solving by minimizing the negative impact inside a
neighbourhood, and by consequence, reduce the overall complexity.

Initial and Acquired Knowledge. Some algorithms require specific or extensive
knowledge to be provided to the system before it can even start. For instance, in
many meta-heuristics approaches like Ant Colony Optimization (ACO) or Particle Swarm
Optimization (PSO), a preliminary analysis of the solution space is required to set up
parameters like the number of self-? agents or the probability distribution characterizing
their behaviours [Dréo et al., 2005]. In the same way, some algorithms require this during
their activity to be able to be efficient. This can be evaluated and used as a criterion as this
kind of systems are more difficult to deploy.

Agent Number Influence. The number of agents in a system can drastically increase
or decrease the efficiency of the system. This is an important factor to ascertain the
optimal organization in high cost problems, for instance when deploying satellite swarms
[Bonnet and Tessier, 2008]. More importantly for self-? systems, it enables to judge the
scalability of a system as it evolves during its life. This can be of course evaluated during
runtime, but also by analysing how the system is built: does it facilitate the introduction of
new agents? Can agents easily delegate? Are extensive self-organizing abilities present? etc.

Local Complexity and Decentralization Criteria

3 Calculate the computational complexity of the local decision process.

3 Evaluate how decentralized the system is.

3 Evaluate how much influence the action of one agent potentially has on the rest of
the system.

3 Evaluate the difficulty to provided required initial knowledge to the system or the
acquisition of it during execution.

3 Analyse the scalability of the system.

4.4 Development Methodologies Characterization

Another perspective to analyse before developing a given distributed self-? system is
the development methodology, i.e. the process to follow and the concepts to manipulate

Cooperative Self-Organisation for Optimization under Constraints 97

4

Criteria for the Evaluation of Self-Adaptive Multi-Agent Systems for Complex Problem Solving

during the development phases (analysis, design, implementation, etc.). In fact, all the
approaches one can consider to develop a self-? system are not equal from this point of
view. However, even if it is possible to try to define criteria concerning this perspective,
highlighted points are more qualitative than quantitative. Some analysis on how a
self-? systems has been developed, are useful for next developments. Different studies has
been realized for classical methodologies. Our aim is to underline the criteria dedicated to
the self-? properties such as: identification of autonomous agents, distribution, genericity
and flexibility.

Analysis and Identification of Autonomous Agents. During the analysis of a problem
to solve, many factors may make the task tough. In some cases the development is
straightforward while in some others it asks for some expert knowledge. One difficult
task for the development of self-? system is agents identification. In some methodologies,
problem specifications lead in a straightforward manner to this identification. While in
others, some analysis phases must be done. For example, in problem solving (using
the Constraint Optimization Problem (COP) framework), developing a Distributed Constraint
Optimization Problem (DCOP) solver like Distributed Breakout Algorithm (DBA) [Hirayama and
Yokoo, 2005], Environment, Reactive rules, and Agents (ERA) [Liu et al., 2002] or approaches
like ACO [Dorigo and Stützle, 2004] or PSO [Kennedy and Eberhart, 2001], requires
transforming the problem to solve into the constraint satisfaction problem framework. This
can be a difficult task especially considering that choices made during this phase may
strongly impact on the performances of the system and some parameters requiring expertise
knowledge must be fixed.

Another kind of approach may not directly match a problem into a given formal or semi-
formal framework. For instance, the Adaptive Multi-Agent System (AMAS) theory [Picard
and Glize, 2006] focuses much on the properties or behaviour an agent may have (e.g.
cooperativeness) and therefore the designer will have to find what are the agents within
the problem that can be agentified as to implement a self-? solver. This tack can also be
difficult in this kind of approach and a good methodology has to guide the engineer for this
identification.

Distribution and Deployment Ease. All the developed systems are not easily
distributable depending on the paradigms they rely on such as communication. We
distinguish between two types of communication: stigmergic ones and direct ones.

Stigmergic and swarming self-? approaches, like ACO, require the development or
the use of specific environmental frameworks, such in tuple spaces middleware like the
SwarmLinda [Charles et al., 2004] framework or the Tuples On The Air (TOTA) middleware
[Mamei and Zambonelli, 2005] that can support the pheromone deposits, updates and
monitoring.

Direct communication approaches require dedicated frameworks like Java Agent
DEvelopment Framework (JADE)8 to be deployed. This also requires to develop the entities as
agents and programming them using dedicated libraries.

8http://jade.tilab.com/

98 Cooperative Self-Organisation for Optimization under Constraints

http://jade.tilab.com/

4.5. Comparative Evaluation

4

Additional effort must be done to deploy such systems. The evaluation of these efforts
underline the fact that the methodology is easily used by any designer or requires specific
knowledge.

Genericity. Self-? approaches may also differ concerning their level of genericity, i.e.
the provided effort to adapt a method to a given problem. For instance, DCOP approaches
like DBA or ACO are completely generic, in the sense that they provide distributed solvers
for problems as soon as they are expressed as COP. However they still require some
adjustment by setting parameters, like the time limit for DBA, the probability distribution
of behaviours for ERA, or the entire set of pheromones and collective parameters for ACO.
This criteria enables the disqualification of ad-hoc methodologies (designed for a specific
problem) compared to generic methodologies used for different types of problem.

Development Methodology Evaluation Criteria

3 How much effort is required to adapt the general concepts of the method to a specific
problem?

3 How much effort is required to distribute a problem among a collective of self-*
entities?

3 How much effort is required to deploy the developed system?

3 How large is the scope of problems for which the method is relevant or applicable?

3 How difficult is it to add new constraints and problems to an existing system?

4.5 Comparative Evaluation

The characterization and evaluation of a system provide quantitative and qualitative
values which enable to judge it and compare it to other systems in order to highlight its
strengths and its weaknesses. This section proposes means for comparing different systems
and a panel of typical behaviours associated to their self-adaptation process.

Evaluation of performance enables to show that a system is better or worse than another.
The criteria to compare two systems can be a subset chosen among the previous presented
measures (sections 4.2, 4.3, 4.4). Usually, systems behave as seen in figure 4.1 where one
system is better for a criterion but not for another one.

Those criteria are highly inter-independent and a multi-objective view is more
appropriate. This multi-objective view cannot be reduced into an unique dimension
combining all these criteria because they are very context sensitive, depending for instance
on the application domain or initial requirements. Consequently, a radar view is proposed as
a relevant way to judge the functional adequacy of a self-? system. An "ideal system" is on
the radar center because it outperforms the others in all the dimensions.

Still, each criterion, when analysed in detail, can bring valuable information for

Cooperative Self-Organisation for Optimization under Constraints 99

4

Criteria for the Evaluation of Self-Adaptive Multi-Agent Systems for Complex Problem Solving

Criteria 3

Criteria 4

Criteria 5Criteria 6

Criteria 7

Criteria n

…

Criteria 1

Criteria 2

Figure 4.1 — A radar chart to compare self-? systems

Adaptive system

Non adaptive system
Criteria

time

Acceptable
solutions

Figure 4.2 — How does the system reach a solution when confronted to a new problem?

comparing self-? systems. In the following, several illustrative curves representing a
comparison between different systems are given. Each curve can be seen as representing
an archetypal behaviour for a given criterion or another.

100 Cooperative Self-Organisation for Optimization under Constraints

4.5. Comparative Evaluation

4

TAlc

Time

TAlc

TAlc

Criteria
C

P1 P2 P3

TAlc

TAlc

Non Adaptive System

Adaptive Systems

Figure 4.3 — How does the system adapt to change?

A first criterion that can be studied is the dynamic of adaptation of the system when
a perturbation occurs during time, C=δ(Scur, Sopt) (section 4.2.2). A distinction is done
between the non-adaptive systems and the self-adaptive systems. The former is not able to
adapt its behaviour under dynamic changes and by that cannot improve its solution. For
the latter, three types of response are differentiated as seen on figure 4.2:

3 diagonal line when the system improves its solution in proportion to time.

3 lower curve which is usually interesting for critical real-world applications as the
system is able to rapidly adapt itself and proposes acceptable solution rapidly.

3 upper curve which represents a system showing a certain inertia to self-adapt and
starting to propose acceptable solution late.

In the same manner, this figure can be used to illustrate the response type of the system
to one dynamic change (the event occurs at time t = 0).

Figure 4.3 is used to illustrate the occurrence of different types of perturbations
separately. If we consider the quality of solutions as Criterion C, we can see that at the
beginning of the curves, the three represented systems improve their solutions. When the
first perturbation P1 occurs, the distance to the optimal solution greatly increases for all of
them. We can clearly see that a system with no adaptation then worsens its quality more
and more with each new perturbation. An adaptive system recovers from the event.

Another information we can read on these curves, is the time for adaptation STAlc

(section 4.2.2). A self-adaptive system is able to regain an optimal state more or less quickly
(see full line and dashed line on the figure).

Cooperative Self-Organisation for Optimization under Constraints 101

4

Criteria for the Evaluation of Self-Adaptive Multi-Agent Systems for Complex Problem Solving

Another criterion that we can consider using the same figure, is the robustness of the
system. For example here, the system represented by the full curve is more robust than
the one represented by the dashed curve, as its reaction to perturbation is less important
especially for perturbation P3. Moreover, this can also illustrate that some adaptive systems
are able to self-learn from their adaptation to a type of perturbations so that whenever such
a perturbation happens again, the system is ready to respond efficiently.

Finally, the number of messages SCL used for adaptation can also be studied in this
same figure. We can see that a non-adaptive system maintains the same number of messages
when perturbations occur (In figure 4.3, it is equal to zero and it is represented by the x-
axis), while the self-adaptive systems increase SCL when perturbations occur and decrease
it after adapting their behaviour. The fact that the system represented by the full curve
needs less messages than the one represented by the dashed curve could be explained by
the decentralization degree in the system or the efficiency of the interaction mechanisms
(section 4.3.2).

4.6 Main Difference between Self-? and Classical Systems

An important limitation when trying to ascertain that a self-? system behaves well,
comes from its main difference with classic software: its ability to change, adapt, evolve.
Both the computational complexity and decentralization might completely change when
a system is subject to important modifications in its structure, the way it works, its
communication and so on. The only objective measure would be to freeze the system
or make a snapshot and calculate its computational complexity and distribution at that
moment. Furthermore, by regularly taking these snapshots, this can become another
criterion: does the system grow like a cancer or is it fully functional? Can the system simplify
itself when needed?

But this ability is potentially also their greatest strength. Where a problem would need
a higher complexity class algorithm, the self-? system can cut through the search space to
reach a specific state of itself. Ideally, this would represent an optimal system for given
criteria. This is for instance the case when designing self-adaptive applications which can
autonomously build relevant models of a complex systems (natural phenomena, human
activity) [Georgé et al., 2009].

4.7 Conclusion

In this chapter, a set of comparison criteria for self-? systems has been presented. I
propose to observe and analyse them from three points of view:

1. Evaluate the system at runtime by studying its behaviours when subject to endogenous
and exogenous dynamics,

2. Evaluate the intrinsic properties of a system by focusing on the decentralization and the
locality properties of the system, from its specifications,

102 Cooperative Self-Organisation for Optimization under Constraints

4.7. Conclusion

4

3. Evaluate the methodology to develop the system from the modelling to the deployment
phases.

Once collected, these criteria must be analysed in global viewpoint. However,
aggregating such disparate criteria (quantitative or qualitative) is not an easy task since they
are highly inter-independent and a multi-objective view is more appropriate. This point is
discussed by illustrating some criteria with theoretical charts.

This work is a first step for evaluating self-? systems and highlighting the consequences
of their specific behaviours devoted to their adaptation which is missing in classical systems.
Nevertheless, formal validation is fundamental to enable the promotion of these systems in
industries. Currently, as it is impossible to prove all the behaviours of these systems, partial
proofs can be done and a promising lead is mixing simulation and formal classical proofs.

This work [Kaddoum et al., 2009] is currently being improved in collaboration with
Claudia Raibulet from the Università degli Studi di Milano-Bicocca [Kaddoum et al., 2010].
In this work, the criteria for the evaluation of self-? systems in general have been addressed
including architectural criteria and underlining how adding adaptivity can influence the
nominal part of a system.

Cooperative Self-Organisation for Optimization under Constraints 103

5 Application, Experimentation &

Validation

« Anyone who has never made a mistake has never tried anything new. »
Albert Einstein

Contents
5.1 Introduction . 107

5.2 Manufacturing Control Scheduling Problem 108

5.2.1 Dynamic Flexible Job Shop Problem 109

5.2.2 The Adaptive Multi-Agent System . 110

5.2.3 SAFlex Results & Discussions . 121

5.2.4 Comparative Study & Discussion . 125

5.3 Design of Complex Product . 131

5.3.1 Problem Formalization . 131

5.3.2 The Adaptive Multi-Agent System . 132

5.3.3 SAPBR Results & Discussions . 144

5.4 AMAS4Opt Evaluation . 150

5.5 Conclusion & Perspectives . 151

Cooperative Self-Organisation for Optimization under Constraints 105

5

Application, Experimentation & Validation

The chapter in english starts page 107.

Résumé général du chapitre

Lors des précédents chapitres, nous avons défini le modèle d’agent AMAS for Optimisation
(AMAS4Opt) pour la résolution de problèmes d’optimisation sous contraintes ainsi qu’un ensemble
de critères pour l’évaluation des systèmes adaptatifs. Afin de valider ces contributions, deux
applications clés d’optimisation connues pour leur complexité ont été choisies: le contrôle
manufacturier et la conception de produits complexes.

Dans notre étude, le contrôle manufacturier concerne la planification des tâches dans une usine.
En d’autres termes, nous nous intéressons à la gestion des ressources de production afin de mieux
répondre aux besoins des clients (respect des délais) tout en respectant un ensemble de contraintes
telles que la disponibilité des ressources et l’ordre des traitements. Ainsi, les commandes des clients
sont représentées par des containers. Chaque container se décompose en une liste ordonnée de
traitements devant être traités par des stations de travail adéquates de l’usine. Cette application
se caractérise par la combinatoire élevée produisant un espace de recherche de taille considérable ainsi
que la nécessité de la prise en compte en temps réel d’évènements dynamiques tels que les pannes des
stations de travail ou l’arrivée de nouvelles commandes dans le système.

Notre deuxième application concerne la conception de produits complexes. D’une manière
générale, la conception de produits complexes est une application multi-disciplinaire et multi-objectif
où un ensemble de disciplines, reliées par des interdépendances non-linaires, doivent travailler
ensemble afin de concevoir un produit tout en satisfaisant leurs objectifs. Par exemple, concevoir une
voiture implique des ingénieurs provenant de divers domaines tels que la mécanique, l’électronique,
l’informatique ou même l’écologie. Vouloir une voiture puissante implique un moteur plus puissant
donc une consommation plus importante mais respectant des contraintes écologiques. Atteindre un
équilibre entre ces différentes disciplines n’est pas toujours une tâche évidente. Jusqu’à maintenant,
les différentes études dans ce domaine se sont intéressées à la modélisation des disciplines et leurs
interactions. Dans ce travail, nous proposons de traiter ce problème en considérant un autre point
de vue. En effet, si l’on considère un domaine de conception bien déterminé, nous constatons qu’un
ensemble de produits testés et validés existe. Chacun de ces produits est décrit par un ensemble
de caractéristiques déjà définies. C’est en se basant sur cet ensemble de produits existants que
nous proposons la conception de nouveaux produits pour lesquels uniquement un sous-ensemble
de caractéristiques est défini. La complexité de cette application est due à la diversité et au volume
des données manipulées ainsi qu’à l’existence d’interdépendances non connues et non linéaires entre
les caractéristiques du problème.

Dans ce chapitre, nous présentons ces deux problèmes ainsi que l’initialisation du modèle d’agent
sur chacun des deux systèmes multi-agents: Self-Adaptive Flexible scheduling (SAFlex) pour la
gestion du contrôle manufacturier et Self-Adaptive Population Based Reasoning (SAPBR) pour
la conception de produits complexes. Les performances des deux systèmes sont étudiées en utilisant
les différents critères d’évaluation proposés dans le chapitre 4. De plus, SAFlex a été comparé à deux
approches basées sur l’apprentissage par renforcement.

Les résultats obtenus sont encourageants tant au niveau du modèle défini qu’au niveau des
systèmes développés.

106 Cooperative Self-Organisation for Optimization under Constraints

5.1. Introduction

5

En effet, les agents du modèle AMAS4Opt ont été conçus de façon à être le plus proche possible
du fonctionnement des entités réelles du problème. Ceci a permis de partir de la description naturelle
des problèmes posés et en déduire les agents des systèmes, leur comportement ainsi que les règles
coopératives guidant leur comportement. De ce fait, la généricité du modèle AMAS4Opt par son
adaptation à deux applications présentant des caractéristiques différentes et son aspect intuitif par la
représentation des entités du domaine ont été validés.

Concernant les systèmes multi-agents développés, les résultats obtenus confirment l’adéquation
de la théorie des Adaptive Multi-Agent System (AMAS) pour la résolution de ce type de problèmes
présentant des caractéristiques variées.

5.1 Introduction

In order to validate the AMAS4Opt agent model that was developed and the evaluation
criteria that were defined, two applications known for their complexity have been chosen.
In the first one, the Manufacturing Control Scheduling Problem, besides the combinatorial
complexity, is of interest due to the need to manage dynamics such as station breakdowns
or the arrival of new containers. In the second one, Design of Complex Products, the
complexity is due to the volume of manipulated data that is produced by unknown (or at
least not precisely known) and often complex interrelated non-linear functions. Those two
applications have been chosen because of their very different characteristics so as to verify
that the agent model is sufficiently generic.

In this chapter, both problems are described and formalized. Then, the adaptive multi-
agent systems instantiating the generic agent model for solving the problems are presented.
Each multi-agent system is then evaluated accordingly to several of the previously defined
evaluation criteria. A comparison with two other approaches is also provided for the
Manufacturing Control Scheduling Problem.

The chapter is organised as follows:

3 section 5.2 is dedicated to the Manufacturing Control Scheduling Problem application;

3 in section 5.3 the Complex Problem Design application is presented;

3 section 5.4 presents an evaluation of the AMAS4Opt agent model;

3 section 5.5 concludes the chapter by discussing the perspectives for both applications
and underlines the advantages of the agent model that was defined.

Cooperative Self-Organisation for Optimization under Constraints 107

5

Application, Experimentation & Validation

Machines

Containers

Figure 5.1 — A factory representation

5.2 Manufacturing Control Scheduling Problem

Production planning and control is concerned with the application of scientific methodologies
to problems faced by production management, where materials and/or other items, flowing within
a manufacturing system, are combined and converted in an organised manner to add value in
accordance with the production control policies of management [Wu, 1994]. Production planning
and control can be decomposed into several elements. Our study concerns one of them,
the scheduling or production activity control, defined by [Duggan and Browne, 1991] as
Principles and techniques used by the management to plan in the short term, control and evaluate the
production activities of the manufacturing organisation. To sum up, the manufacturing control
scheduling problem is a mean to plan the use of resources for production by respecting
predefined constraints (delivery delays, operators schedule, etc.). Thus, it concerns the
scheduling of the operations of different containers representing the client orders on the
factory stations (figure 5.1).

Unexpected events occur in most of the real-world manufacturing systems and lead to
a new type of scheduling problems called Dynamic Flexible Job Shop Problems (DFJSPs). In
such problems, there is a theoretically infinite set of containers representing client’s orders
that arrive continually over time and must be treated respecting delays. In addition, other
events can occur such as station failures, processing time changes, etc. Different solving
methods have been developed. They are categorized in three main categories: off-line
scheduling, rolling-time scheduling and completely real-time scheduling [Ouelhadj and
Petrovic, 2009].

The off-line scheduling methods are solving strategies where everything is known in
advance. They build robust predictive scheduling based on predictability measures. In
these methods, whenever a non-considered real-time event occurs, a complete rescheduling

108 Cooperative Self-Organisation for Optimization under Constraints

5.2. Manufacturing Control Scheduling Problem

5

is necessary, generating a new schedule from scratch to be used henceforth. In principle,
such methods are better to maintain optimal solutions but are rarely achievable in practice
especially in environments with high levels of dynamics where the determination of
predictability measures is difficult.

Rolling-time scheduling techniques are methods that generate a first schedule given the
currently known information and adjust it to maintain shop efficiency and performances
during execution. The adjustment techniques can be periodic, event driven or hybrid. In
the periodic adjustment techniques, schedules are repaired at regular intervals. While in the
event driven techniques, schedules are repaired whenever an unexpected real-time event
occurs. Such methods usually perform well as they build complete schedules using the
optimization of global objective functions, but in highly dynamic environments, they require
additional CPU time as they have to often repeat the rescheduling procedure.

In the completely real-time scheduling, the schedule is constructed step by step and
decisions are made locally in real-time. Nearly all the solving methods of this category
are based on decentralized and distributed multi-agent systems where agents represent
manufacturing entities, have the ability to generate their local schedules, react locally to
real-time events and interact together to generate global robust schedules. As decisions are
made locally, global optimality is not guaranteed but the obtained systems are robust and
can naturally adapt to real-time events.

In this first part of the chapter, the SAFlex, a completely real-time scheduling technique
developed in this PhD is detailed. SAFlex is an adaptive multi-agent system based on the
AMAS Theory constructed using the agent model defined in chapter 3. The presentation
is organized as follows. First, the DFJSP (section 5.2.1) is formalised. Next, the designed
Multi-Agent System (MAS), the agents and their behaviour are described (section 5.2.2)
and the obtained results (section 5.2.3) regarding self-adaptivity are discussed. Then, the
comparison established between SAFlex and two learning methods during my 3-months
visit to the Vakgroep Informatiechnologie, Departement Industrieel Ingenieur at KaHo Sint-
Lieven, Gent, Belgium, is presented (section 5.2.4).

5.2.1 Dynamic Flexible Job Shop Problem

The DFJSP is described by the following hypothesis:

3 A set of stations S = S1; S2; ...; Sm, each being able to process a set of operations.

3 The operation sets on different stations may be different, and the processing time of
each operation is station-dependent.

3 Pre-emption is not allowed (an operation being processed cannot be interrupted to be
replaced by another) and each station can perform only one operation at a time.

3 A set of independent containers C = C1; C2; ...; Cn.

3 Each container is decomposed in a sequence of ordered operations O1;j; O2;j; ...; Ol;j

(where l is the number of operations for Cj).

Cooperative Self-Organisation for Optimization under Constraints 109

5

Application, Experimentation & Validation

3 Operations of the same container have to respect the finish-start precedence constraints
given by the operation sequence.

3 Containers are released at different arrival times and their treatments must be ended
before a given due date.

3 During processing, there are some unpredictable events such as station breakdowns,
station repair, due date changes and changing of the processing time.

The DFJSP consists in scheduling each operation on an appropriate station, and
to sequence the operations on adequate stations respecting the finish-start precedence
constraints and the delays. We denote dj the due date of container Cj, si;j the start time of
an operation Oi;j and cTi;j its completion time. The completion time CTj of a container Cj is
equal to the completion time of its latest operation Ol;j. The tardiness of a container Cj is
Tj = max(CTj − dj; 0). If Tj > 0, then the container Cj is tardy and the tardiness state STj = 1
else STj = 0. The obtained schedule must minimize:

3 Tn =
n
∑

j=1
STj: the number of tardy containers;

3 T = 1
n

n
∑

j=1
Tj: mean Tardiness;

3 Tmax = max{Tj|1 ≤ j ≤ n}: maximum Tardiness;

3 CTmax = max{CTj|1 ≤ j ≤ n}: the makespan or the completion time of the last
container that leaves the system;

For simulation purpose, we considered that time is divided into steps called fabrication
cycles. Each fabrication cycle corresponds to a certain time t.

5.2.2 The Adaptive Multi-Agent System

SAFlex is a self-adaptive multi-agent system inspired by the Distributed AMAS Constraint
Optimisation Problem (DAMASCOP) approach [Clair et al., 2008] designed during my master
2 research. SAFlex has been designed using the agent model presented in chapter 3.

Given the problem description, two types of cooperative agents have been developed:
Container agents and Station agents. The Container agents represent the containers entering
the system and must schedule their operations on the different stations in the factory. If no
containers enter the system, the stations can stay idle and no schedule is to be established.
Thus, it is the Container agents that possess the constraints of the problem and that must
interact with the Station agents in order to construct the schedule and solve the problem.
Given the defined agent model, Container agents possess the constrained role and Station
agents possess the service role. The behaviours of both agents are described in the following
sections.

110 Cooperative Self-Organisation for Optimization under Constraints

5.2. Manufacturing Control Scheduling Problem

5

5.2.2.1 Agent Interactions & Communications

In this system, agents communicate using messages. Table 5.1 summarizes the different
messages sent by each type of agent. As those messages are an instantiation of the agents
interactions defined in section 3.3, they are divided into the same four categories presented
in that section. We have changed the names of the functions so that they correspond to the
treated application.

Agents Request for service Request for Information Answer to requests Information

Container askToUse()
askForNeighbourhood()

cancelFutureUse()
cancelUse()

askForProcessingTime()
askForFutureUsage()

Station

usageAccepted()

newStationCriticality()
stationInPerturbation()

usageRejected()
futureUsageAccepted()
futureUsageRejected()

neighbourhood()
processingTime()

Table 5.1 — Messages in SAFlex

The askToUse() message is used by the Container agent to ask the immediate use of the
station that can accept (usageAccepted()) or refuse (usageRejected()).

The askForFutureUse() is used to inform the station about a future reservation of the
station that can also accept (futureUseAccepted()) or refuse (futureUseRejected()).

The Container agent can cancel an immediate reservation or a future use notification
using cancelUse() and cancelFutureUse() messages.

The Container agent can ask a given station for its neighbourhood or its processing time
for a specific operation using askForNeighbourhood() or askForProcessingTime() messages. The
station answers to these requests using neighbourhood() and processingTime() messages.

The Station agent can inform Container agents requesting its service or being treated
by it about its current state if it is in perturbation (stationInPerturbation()) or about
updated information concerning the higher criticality level of the received requests
(newStationCriticality()).

5.2.2.2 Agent Criticality

An important notion when defining agents using our model is the agent criticality. As
defined in section 3.4, when requesting a service, agents must compute their criticality and
associate it to their requests. In the manufacturing control scheduling problem as defined
above, the Container agents are the agents that request the services of Station agents. Thus,
they are the agents that compute their criticality degree which must reflect their difficulties
to be treated by an adequate station.

Four values define the criticality of a Container agent:

1. The station optimality rank: this first value indicates the preference the Container
agent attributes to each qualified station it has in its local representations. As the
processing time of each operation is station dependent, the Container agent will order

Cooperative Self-Organisation for Optimization under Constraints 111

5

Application, Experimentation & Validation

the different known and qualified Station agents from the lower processing time to the
higher processing time in an optimality ranks list. This list is then used by the Container
agent as the order in which it will send its requests. For the Station agent, this value
is interpreted as the difficulty the Container agent has to get accepted by its preferred
station. Thus, the higher this value is, the higher the criticality of the Container agent
is, as it means that the agent cannot be accepted at a better ranking station.

2. The prejudice: when requesting the service of a Station agent, the Container agent
knows that other qualified stations can exist. The prejudice value is used by the
Container agent to inform the requested Station agent about the prejudice that it may
cause if it does not accept to treat the operation of the Container agent. This value is
computed using the residual time considering the processing time of the next Station
agent in the optimality ranks list. As the processing time of the next station is usually
higher than the current one, this value indicates the loss of time caused to the Container
agent if it is not accepted by its preferred Station agent. The Station agent will put a
higher criticality on the Container agent to which it causes the higher prejudice.

3. The residual time: this value indicates the time left (remainingProcessingTime) to the
Container agent to treat its operations before its dead-line. As the processing time of
each operation is station dependent, Container agents are provided with the highest
known processing time for each operation. When computing the residual time of
the current operation the Container agent uses the effective processing time of the
requested station. The less residual time a Container agent has the more it is critical.

Residual time = (deadLine - releaseDate) - remainingProcessingTime

4. The number of qualified stations known by the Container agent: this last value
indicates the number of qualified stations known by the agent. Thus, a Container
agent knowing several qualified stations is less critical than an agent knowing only
one qualified Station.

When receiving several usage requests, the Station agent orders them beginning from
the first value and in case of equality, the next value is considered.

5.2.2.3 Data Types

Different dataTypes manipulated by both agents have been defined: Acquaintance,
Operation, Work, Criticality and Information.

1. Acquaintance: an acquaintance is another known station that is physically close to the
current station. For a Station agent, the list of acquaintances defines its neighbourhood.
The Station agent sends this neighbourhood to a Container agent when rejecting a request
for service (usageRejected(), futureUsageRejected()) or when asked for its neighbourhood
(neighbourhood()). The Container agent registers in these structures the different explored
stations.

112 Cooperative Self-Organisation for Optimization under Constraints

5.2. Manufacturing Control Scheduling Problem

5

2. Operation: for the Station agent, it defines the processing time of each operation for
which the station is qualified. When released, the Container agent is provided with the
maximum known processing time for each operation it needs. This structure is updated
by the Container agent after it receives, from the Station agent, the processing time of a
given operation (processingTime()).

3. Work: it is used by agents to make, accept or reject requests. It contains the Container
agent requesting the service, the requested Station agent, the Operation needed by the
Container agent with the real processing time of the requested station, its criticality, the
expected time to begin its treatment1 and the current position of the Container agent.
This last information is updated accordingly to the position of the station where the
treatments of the Container agent are processed.

4. Criticality: contains the four values defined in section 5.2.2.2.

5. Information: this structure is used by the Container agent to store information judged
useful for its reasoning concerning Station agents. Such information is sent by the
Station agent when rejecting the service request received from a Container agent. It
contains:

3 the Station agent concerned by the registered information;

3 the possible beginning time of the next processing operation that can be accepted
by the Station agent2;

3 the maximum criticality of the requests perceived by the Station agent. This
information is used by the Container agent when trying to renew its request to
this station. If its criticality is less than the received value, it does not renew
its requests. The Station agent updates this information (newStationCriticality())
whenever a change is detected.

5.2.2.4 Container Agent

The Container agent (CAj) represents a given container Cj and has to explore the factory
searching for qualified stations for its operations. As containers arrive at different times,
Container agents are created when the corresponding container is released in the factory. At
the beginning, each CAj is provided with the address of a station chosen randomly. This
station can be qualified or not for its first operation.

Figure 5.2 describes the skills, characteristics, representations and the interactions of the
CAj with other agents of the system and its environment. The description is provided using
AMAS Modelling Language (AMAS-ML).

The behaviour of the CAj is described considering its Status(figure 5.3): AVAILABLE, IN

TREATMENT and IN PERTURBATION.

1This time is equal to 0 for an immediate use request (asktoUse()) or to a given computed time by the Container
agent for a future usage request (askForFutureUsage()).

2In case the Station agent is Booked by a Container agent or in Treatment, this value corresponds to the end of
its current treatment. In case it is in Perturbation, the Station agent does not provide this information.

Cooperative Self-Organisation for Optimization under Constraints 113

5

Application, Experimentation & Validation

askToUse(Work)
askForFutureUsage(Work)
cancelUse(Work)
cancelFutureUse(Work)
askForNeighbourhood(ContainerAgent)
askForProcessingTime(ContainerAgent, Op)

<<actions>>

<<action module>>

<<communications>>

Perturbation

Available
Free
Booked
Delayed

InTreatment
InPerturbation
Stopped

<<enumeration>>

ContainerStatus

<<active>>

Scheduler

<<datatype>>

Work{
containerAgent,
stationAgent,
Operation,
criticality,
beginingPT,
position

}

<<datatype>>

Criticality{
optimalityRow,
prejudice,
residualTime,
nbQualifiedStations

}

<<datatype>>

Acquaintance{
StationAgent,
Operation[]

}

<<datatype>>

Information{
stationAgent,
stationCriticality,
stationPossibleBeginPT

}

neighbourhood(StationAgent, Acquaintance[])
processingTime(StationAgent, Op, Int)
usageAccepted(Work)
usageRejected(Work, Acquaintance[],beginPT)
futureUsageAccepted(Work)
futureUsageRejected(Work , Acquaintance[], beginPT)
newStationPrejudice(prejudice)
stationInPerturbation(Work)

<<perceptions>>

<<perception module>>

<<communications>>

<<cooperative agent>>

StationAgent

String id
Position currentPosition
ContainerStatus currentState
ContainerStatus availableState
Date deadLine
Work currentWork
Work improvedWork
Work futureWork
Operation[] operationsNeeded
Criticality criticality

Machine chooseStationForCurrentWork()
Machine chooseStationToWait()
Machine chooseStationForNextOperation()
Work searchForImprovements()

Acquaintance[] knownStations
boolean waitingForUsage/FutureUsageAnswer
boolean waitingForImprovedUsageAnswer
boolean UsageAccepted/Rejected
boolean ImprovedUsageAccepted/Rejected
boolean FutureUsageAccepted/Rejected
boolean improvementAccepted/Rejected
Information[] stationsCantHelp

<<characteristics>>

<<skills>>

<< representations >>

<< aptitude >>

<<cooperative agent>>

ContainerAgent

<<datatype>>

Operation{
OperationID,
processingT

}

Figure 5.2 — Container agent description using AMAS-ML

114 Cooperative Self-Organisation for Optimization under Constraints

5.2. Manufacturing Control Scheduling Problem

5

[p
e

rcie
veP

e
rtubation

()]

InTreatment
chooseStationForNextOperation()

InPerturbation
CancelAllRequests()

Stopped
quit()

[N
ee

d
edO

pe
ration

s.length
=

=
 0

]

[F
ab

rication
C

ycleS
tarted

&
&

 sta
tu

s=
=

B
o

o
ked]

[perceivePerturbation()]

[PerturbationEnded]

[isCurrentOperationTreated
&& ! perceivePerturbation()]

H

UsageRequestAccepted
Available

Free
chooseStationForCurrentWork()

Delayed
searchForImprovements()

searchForImprovements()
chooseStationForNextOperation()

Booked

UsageRequestRejected

Figure 5.3 — Container agent states

AVAILABLE. This status corresponds to the exploration phase of the CAj. Three different
sub-statuses are distinguished: Free, Booked and Delayed.

In the Free state, the CAj seeks a station for its current operation. For that, it
selects from its knowledge the qualified stations and sends them processing time requests
(askForProcessingTime()). After receiving the stations responses (processingTime()), the CAj

computes its optimality ranks list and chooses the most appropriate station depending on
the lower possible processing time. If several stations have the same processing time it
chooses the nearer station to its current position. Once a station is chosen, the CAj sends
it a usage request (askToUse()) that includes information about the requested operation and
its criticality. If the station accepts the request, the CAj becomes Booked. If not, the CAj has
two possibilities: it delays its treatment on the station that refused the request and sends it a
future usage request (askForFutureUsage()) or selects a new station and sends it a usage request
(askToUse()). In the first case, if the station informed by the future usage request accepts it, the
Container agent becomes Delayed.

In the Booked state, the CAj continues the exploration of the factory for improvements.
Such improvements occur when the CAj discovers new stations that may treat its operation
faster that the current booked one. To try to discover such stations, the CAj sends
neighbourhood requests (askForNeighbourhoud()) to already known stations. When this
neighbourhood is received, the CAj selects the new not known qualified stations and asks
them for their processing time. After that, if better stations are discovered, the CAj sends them

Cooperative Self-Organisation for Optimization under Constraints 115

5

Application, Experimentation & Validation

<<agent state>>
SearchingForService

<<cooperative rule>>
SelectAppropriateQualifiedStation

chooseStationForCurrentWork()/
chooseStationToWait()/

chooseStationForNextOperation()

searchingForService

NbQualifiedStaions >1

And

Figure 5.4 — The select appropriate qualified station Cooperative Rule for solving the stations
concurrence NCS

either usage requests or future usage requests. If a more adequate station accepts to treat
the current operation, the CAj cancels the already booked station and changes its status
correspondingly to the accepted request (usage request: it stays in the Booked state; future
usage request: it switches to the Delayed state). In addition to this, the CAj sends future usage
requests to qualified stations for its next operation. It uses the same process as if in the Free
state.

In the Delayed state, the CAj behaves in the same way as in the Booked state. It continues
the exploration of the factory sending usage/future usage requests for its current operation
and switches states according to the accepted requests. As in this state the agent is not
sure about the treatment of its current operation it will not send any future usage requests
concerning its next operation.

Finally, the CAj can easily switch between the three states Free, Booked and Delayed
depending on the information it perceives.

Four Non Cooperative Situations (NCSs) which have been instantiated from the generic
NCSs found in section 3.5 for DFJSP, can be underlined in this state:

3 Stations concurrence (figure 5.4): several qualified stations can be detected by the
Container agent when searching to treat its operations. The Container agent chooses
the most appropriate station using the station processing time, its position, the possible
beginning time of its processing and the perceived criticality of the station. This
cooperative rule is an instantiation of the Concurrence rule (section 3.5.5).

3 Uselessness after usage/future usage request (figure 5.5): this situation, an
instantiation of the Uselessness rule (section 3.5.3), occurs when the requested station
cannot treat the current operation (Free state) or next operation (Booked state) of the CAj.
To solve this NCS, the CAj must request the service of another station. Thus, it selects an
appropriate station and sends it the adequate request (askToUse(), askForFutureUsage()).

3 Suboptimal affectation (figure 5.6): in a Booked or Delayed state, the CAj continues the
exploration of the factory searching for improvements. Indeed, as a cooperative agent,
the CAj must find the best possible place in the organisation (partial Uselessness NCS
section 3.5.3). Thus, whenever an improvement is detected the CAj sends adequate
requests and tries to obtain the service.

3 Knowledge Unproductiveness (figure 5.7): the CAj does not know any other adequate

116 Cooperative Self-Organisation for Optimization under Constraints

5.2. Manufacturing Control Scheduling Problem

5

<<agent state>>
SearchingForService

<<cooperative rule>>
RequestAlternativeStation AskToUse()/ForFutureUse()Booked

Usage/FutureUsageRejected

And

Free
Or

knowQualifiedStation

Figure 5.5 — The request alternative station Cooperative Rule for solving the uselessness of
a usage/future usage request NCS

<<agent state>>
SearchingForImprovements

<<cooperative rule>>
ExploitImprovements AskToUse()/ForFutureUse()

Delayed

existImprovement

And

Booked
Or

Figure 5.6 — The exploit improvements Cooperative Rule for solving the suboptimal
affectation NCS

available station. Thus, it asks stations for their neighbourhood. If no adequate station
is found, the CAj waits for the next fabrication cycle. This situation is an instantiation
of the Unproductiveness cooperative rule (section 3.5.2).

In addition to these cooperative rules, the Container agent possesses useful and important
informations concerning its next qualification for the Station agents. Given its cooperative
attitude, it forwards these informations by sending future usage requests in order to
anticipate future NCS.

IN TREATMENT. The current operation of the CAj is treated by a station. The CAj

knows when its current treatment can be finished, and it sends future usage requests to
qualified stations for its next operation. If one of its requests is accepted, the CAj will
automatically ask the usage of the station accepting the request as soon as its current
treatment is finished. During its treatment, the CAj always searches for improving the
treatment of its next operation as described in the Available state. In this state, the CAj can
be informed by the Station agent about a perturbation that has occurred on the station. In
this case, the CAj switches its state to In Perturbation and waits until the perturbations are
finished. Moreover, given its cooperative attitude, it cancels and stops sending information
about its next operation.

Cooperative Self-Organisation for Optimization under Constraints 117

5

Application, Experimentation & Validation

<<agent state>>
SearchingForService

<<cooperative rule>>
SearchingForNewQualifiedStation AskForNeighbourhood()

! KnowQualifiedStation

Figure 5.7 — The searching for new qualified station Cooperative Rule for solving the
knowledge unproductiveness NCS

The Stations concurrence, Uselessness after future usage request, Suboptimal
affectation and Knowledge Unproductiveness non cooperative situations can also occur
in this state. The CAj repairs them in the same way as in the Available status.

IN PERTURBATION. The CAj has problems (blocked on a station, is being modified,
etc.) and by that cannot provide any information about its current or next operations.
As a cooperative agent, it cancels any reservation or sent request and stays idle until the
perturbation is finished.

5.2.2.5 Station Agent

The Station agent (SAi) represents a given station Si. It is qualified for the treatment of a
set of operations required by the Container agents. It is the agent with the service role. Its
role in the factory is to help the Container agents to find their schedules. Thus, it receives
the requests of the Container agents and tries to respond to them while being as cooperative
as possible. Figure 5.8 describes its skills, characteristics, representations and its interactions
with other agents of the system and its environment. The description is provided using the
AMAS-ML modelling language.

The behaviour of the Station agent SAi consists in selecting between the Container agents
usage/future usage requests which operation to treat. It receives different types of requests:

3 Processing time requests for given operations;

3 Neighbourhood requests from Container agents exploring the factory;

3 Usage requests;

3 Future Usage requests about upcoming operations (regroups current and next
operation treatments).

The SAi responds to the two first types of requests independently of its status using
processingTime() and neighbourhood() messages. For the usage and future usage requests, the
SAi responds accordingly to its different states as described in figure 5.9: AVAILABLE, IN

TREATMENT and IN PERTURBATION.

118 Cooperative Self-Organisation for Optimization under Constraints

5.2. Manufacturing Control Scheduling Problem

5

String id
StationStatus currentState
StationStatus availableState
Position position
Work currentAcceptedWork
Int endProcessingTime
Operation[] operations

Work chooseUsageReqToAccept()

Work chooseFutureUsageReqToAccept()

Acquaintance[] neighbourhood
Work[] queuedWorks
Work[] rejectedWorks
Work[] usageRequests
Work[] futureUsageRequests
Work[] canceledWorks
ContainerAgent[] neighbourhoodRequests
ContainerAgent[] processingTimeRequests

<<characteristics>>

<<skills>>

<< representations >>

<< aptitude >>

<<cooperative agent>>

StationAgent

Perturbation

<<active>>

Scheduler

Available
Free
Booked

InTreatment
InPerturbation

<<enumeration>>

StationStatus

<<datatype>>

Acquaintance{
StationAgent,
Operation[]

}

<<datatype>>

Work{
containerAgent,
stationAgent,
Operation,
criticality,
beginingPT,
position

}

askToUse(Work)
askForFutureUsage(Work)
cancelUse(Work)
cancelFutureUse(Work)
askForNeighbourhood(ContainerAgent)
askForProcessingTime(ContainerAgent,Op)

<<perceptions>>

<<perception module>>

<<communications>>

<<cooperative agent>>

ContainerAgent

neighbourhood(Acquaintance[])
processingTime(StationAgent, Op, Int)
usageAccepted(Work)
usageRejected(Work, Acquaintance[],beginPT)
futureUsageAccepted(Work)
futureUsageRejected (Work , Acquaintance[],beginPT)
newStationPrejudice(prejudice)
stationInPerturbation(Work)

<<actions>>

<<action module>>

<<communications>>

<<datatype>>

Criticality{
prejudice,
residualTime,
nbQualifiedStations

} <<datatype>>

Operation{
OperationID,
processingT

}

Figure 5.8 — Station agent description using AMAS-ML

Cooperative Self-Organisation for Optimization under Constraints 119

5

Application, Experimentation & Validation

InPerturbation
CancelAllRequests()

[F
a

b
rica

tio
n

C
ycleS

ta
rted

&
&

 job
O

p
erationA

ccepte
d]

[perceivePerturbation()]

[PerturbationEnded]

[perceivePertubation()]

H

Available
chooseUsageReqToAccept()

chooseFutureUsageReqToAccpet()

rejectUsageRequest()
chooseFutureUsageReqToAccept()

InTreatment

[is
C

u
rr

e
n

tO
p

e
ra

tio
nF

in
is

he
d

]

[! isCurrentOperationTreatmentFinished
&&! perceivePerturbation()]

Figure 5.9 — Station agent states

<<agent state>>
AnalysingUsageRequests

<<cooperative rule>>
HelpCurrentMostCriticalContainer chooseUsageReqToAccept()

Available

NbReceivedUsageReqs >1

And

Figure 5.10 — The help current most critical Container Cooperative Rule for solving the
conflict NCS

AVAILABLE. The Station agent has no operation in treatment. It decides using an
evaluation of the criticality level of the perceived usage/future usage requests which ones
to keep and which ones to reject. Indeed, a Station agent can accept several future usage
requests depending on the beginning time of their processing and the duration of their
treatment. Those requests will be treated by the station after its current treatment is finished
(note that for the future requests it is only the Container agent that is delayed and has to
wait until the Station agent finishes its current treatment). The SAi can only accept one
usage request, which it does depending on the level of criticality of the container and the
processing duration of the requested operation.

In this state, the Station agent is confronted to the Conflict NCS (figures 5.10, 5.11).
Indeed, by receiving different usage/future usage requests at the same time, the SAi detects
the conflict between the Container agents. It solves this situation using the criticality level
and the processing time of each requested operation.

IN TREATMENT. The SAi is treating an operation, it cannot accept another one. By that,
it rejects all the current usage requests by notifying the requesting agents adding the ending
processing time of its current treatment and its neighbourhood. Concerning the perceived

120 Cooperative Self-Organisation for Optimization under Constraints

5.2. Manufacturing Control Scheduling Problem

5

<<agent state>>
AnalysingFutureUsageRequests

<<cooperative rule>>
HelpFutureMostCriticalContainers chooseFutureUsageReqToAccept()

Available

NbReceivedFutureUsageReqs >1

AndIn Treatment

Or

Figure 5.11 — The help future most critical Container Cooperative Rule for solving the
conflict NCS

future usage requests, it keeps the more urgent ones that begin after its current treatment is
finished. As in the Available state, the SAi must handle Conflict NCS for future usage requests
(figure 5.11).

IN PERTURBATION. The SAi cannot treat any operation and cannot provide any
information about the ending of the perturbation. As a cooperative agent, it rejects all the
requests it receives and notifies the requesting agents about its state (stationInPerturbation()).

At each fabrication cycle, agents cooperate locally by using the updated information
about their states to decide how to act. Without the use of any global information, the
schedule of the current available operations on the available stations is obtained after a
certain number N of agent life cycles (perceive, decide and act).

5.2.3 SAFlex Results & Discussions

SAFlex is tested using the Multi-Agent for Supply Chain (MASC) platform developed by
André Machonin and all in the context of the multi-team working group CollInE3. The code
counts more than 90 classes, with 20 classes generated using Make Agents Yourself (MAY),
implemented in Java.

For the evaluation of SAFlex, 90 instances (45 without perturbations affecting stations
and 45 with perturbations) were generated using different parameters of the problem. Their
generation is described in section 5.2.4.3. In order to explain obtained results, one simple
representative instance with and without stations perturbations is presented first. It is
characterized by:

3 6 stations;

3 10 containers: 2 having 5 operations and 8 having 6 operations;

3 7 containers are released at time t = 0, 1 at time t = 1, 1 at time t = 7 and 1 at time
t = 17. Due Dates range between time t = 25 and t = 44.

3http://www.irit.fr/COLLINE/

Cooperative Self-Organisation for Optimization under Constraints 121

http://www.irit.fr/COLLINE/

5

Application, Experimentation & Validation

This instance was also transformed in an instance with perturbations by adding 25
station breakdowns affecting the 6 stations at different times. SAFlex runs on both instances
for 100 times and average results are computed (table 5.2).

Without pertubations With perturbations
Tn 0,86 4,12
T 0,14 1,7

Tmax 0,99 7,34
CTmax 39,87 48,27

Calculation time (ms) 0,17 0,25

Table 5.2 — Average results for SAFlex

Figure 5.12, shows the obtained schedules for the studied instances, using the average
completion time CTmax. The blue lines (first 3 vertical lines) represent the release dates, the
red ones (five last vertical lines) the due dates and perturbations are represented by rectangle
shapes coloured with yellow and orange stripes. Stations are represented using the letter M
and each container is represented with a different color using the letter J. The evaluation of
SAFlex is done regarding several criteria that underline self-adaptivity (chapter 4).

A first point to underline is the increase of the CTmax. The station breakdowns occurring
at the beginning impose some delays on the container treatments which increase the
complete Makespan. Thus, the calculation time also increases.

To understand how SAFlex reacts to these perturbations, the calculation time needed
by agents at each Fabrication Cycle is studied. Figure 5.13, presenting the evolution of
the computation time under perturbations per fabrication cycle, shows that whenever new
containers are released, the calculation time is increased than reduced as the perturbation
is handled by the system. Another point to underline is that the most unstable period of
the resolution is between the fabrication cycle 7 and 20, which corresponds to the arrival of
different station breakdowns. Even under these perturbations, we can see that the locality
of agents actions prevents a drastic increase in calculation time.

Without pertubations With perturbations
Tn deviation 0,7 1
T deviation 0,14 0,6

Tmax deviation 0,8 1,4
Cmax deviation 1,236 1,99

Calculation time (ms) deviation 0,04 0,09

Table 5.3 — Standard deviation over 100 executions

The decentralized and distributed nature of multi-agent systems makes such systems
non deterministic. Thus, an interesting criterion to study is the stability of the obtained
solutions from one execution to another. Here, the standard deviation ratio over 100
executions (table 5.3) is computed. The low values obtained demonstrate the stability of
the system, and the concentration of the different solutions around the average. It can be
interpreted as a consistent behaviour of the system (as opposed to more chaotic/random

122 Cooperative Self-Organisation for Optimization under Constraints

5.2. Manufacturing Control Scheduling Problem

5

M
 =

 S
ta

ti
o

n

J=
C

o
n

ta
in

er

F
ab

ri
ca

ti
o

n

C
y
cl

e

F
ab

ri
ca

ti
o

n

C
y
cl

e

A
.

B
.

Fi
gu

r e
5.

12
—

Th
e

sc
he

du
le

s
co

m
pu

te
d

by
SA

Fl
ex

fo
r

th
e

tw
o

st
ud

ie
d

in
st

an
ce

s
w

it
ho

ut
(A

.)
an

d
w

it
h

(B
.)

pe
rt

ur
ba

ti
on

s)
(I

H
M

de
si

gn
ed

by
To

ny
W

au
te

rs
fr

om
th

e
V

ak
gr

oe
p

In
fo

rm
at

ie
te

ch
no

lo
gi

e,
D

ep
ar

te
m

en
t

In
du

st
ri

ee
l

In
ge

ni
eu

r,
K

aH
o

Si
nt

-L
ie

ve
n,

G
en

t
-

Be
lg

iu
m

.

Cooperative Self-Organisation for Optimization under Constraints 123

5

Application, Experimentation & Validation

t=7t=1 t=17

Figure 5.13 — Evolution of the computation Time (ms) per fabrication cycle for the
instance with perturbations

Figure 5.14 — The progress of treated container throughout the system execution

behaviours).

Another interesting criterion is the Progress which refers to the study of how the system
progressively reaches a complete solution under perturbations. In SAFlex, the evolution
of finished container treatments during simulation is studied. Figure 5.14 summarizes the
results. Note that the curves have the same progression, which means that, when the
perturbations occur, the system is slowed down and after the agents self-adapt, it regains
its stable behaviour. Another point which is studied using larger instances, concerns the
reaction of the system when a group of urgent containers arrives. The progress showed
us that the evolution of finished containers is slowed down when these urgent containers
arrive and the evolution increases after these containers are treated. Thus, we deduce that

124 Cooperative Self-Organisation for Optimization under Constraints

5.2. Manufacturing Control Scheduling Problem

5

the priority measure computed locally by Container agents and used by the Station agents is
adequate and important for the agents decisions.

Finally, the simplicity of the agents behaviour can be underlined. Indeed, the agents
adapt their behaviour locally to the perceived events. This action locality reduces the effect
of perturbations, increases the adaptivity and thus, improves the robustness of the system.
In addition to this, the simple behaviours reduce the complexity of local algorithms which
help the system to keep stable computation time even with larger instances.

Other larger instances including a large number of stations and containers was also
tested. For example, one of the larger instances defined with perturbations is characterized
by:

3 15 stations;

3 20 containers: 2 having 10 operations, 7 having 11 operations, 3 having 12 operations, 5
having 13 operations and 3 having 14 operations;

3 Release dates range between t = 0 and t = 190. Due Dates range between time t = 177
and t = 363;

3 76 perturbations occurring at different intervals of time.

simple instance large instance
Tn 4,12 0,4
T 1,7 0,125

Tmax 7,34 2,4
CTmax 48,27 341,2

Calculation time (ms) 0,25 3,3

Table 5.4 — Average results for SAFlex applied to two instances (simple and large)

We note, given the differences presented in table 5.4, that SAFlex is scalable. It is able to
handle the dynamic events keeping reasonable calculation time and providing good results
regarding the defined objectives.

5.2.4 Comparative Study & Discussion

In this work, a comparison between the Reinforcement Learning technique and the
AMAS Theory has been established. SAFlex is compared to two different approaches.
Each was built using Reinforcement Learning techniques in multi-agent system. The first
one, Learning/Optimization approach is an off-line scheduling technique. The second,
On-line Forward Optimization is a rolling time scheduling technique. This study was
done during my 3-months visit in Belgium in cooperation with Yailen Martinez from the
Computational Modeling Lab, Vrije Universiteit Brussel - Belgium and Tony Wauters from
the Vakgroep Informatietechnologie, Departement Industrieel Ingenieur, KaHo Sint-Lieven,
Gent - Belgium [Kaddoum et al., 2010].

Cooperative Self-Organisation for Optimization under Constraints 125

5

Application, Experimentation & Validation

Evaluation
Criterion

Considered Not
Considered

Remarks

Resolution
Time

X

Number of
messages

χ The number of messages was not studied
as in this study, the agent behaviour and
their criticality management were our first
interest. Still, this criterion will be studied
in order to deploy the system in real
environments.

Quality of
solution

X

Progress X
Memory usage χ This approach is not memory intensive as

agents do not require to register a lot of
information. Still, this criterion is
important(i.e. when deployed on
embedded systems) and will be studied to
compare this approach to other
self-organised multi-agent systems.

Robustness X
Local
computational
complexity

X

Decentralisation X
Action locality X
Initial and
acquired
knowledge

X

Agent number
influence

X The system tested on large instances does
not seem to suffer from scalability issues.
Still further studies are required.

Analysis and
identification
of autonomous
agent

χ Those criteria depend on the AMAS4Opt
agent model used in this study. See section
5.4 at the end of the chapter for additional
information.

Distribution &
deployment
ease

χ

Genericity χ

Table 5.5 — Summary of the considered and not considered evaluation criteria
introduced in chapter 4 for the evaluation of SAFlex.

126 Cooperative Self-Organisation for Optimization under Constraints

5.2. Manufacturing Control Scheduling Problem

5

5.2.4.1 Learning/Optimization Approach

The Learning/Optimization method is an off-line scheduling approach divided in two
phases. First, a two-stage learning method is applied to obtain feasible schedules, which
are then used as initial data for the mode optimization procedure [Van Peteghem and
Vanhoucke, 2008] developed during the second phase.

The implemented learning method decomposes the problem following the assign-then-
sequence approach [Pezzella et al., 2008]. Therefore we have two learning phases, during
the first phase operations learn which is the most suitable station (one agent per operation
which chooses a station from the given set) and during the second phase stations learn in
which order to execute the operations in order to minimize the makespan (one agent per
station choosing which operation to process next from the queue of operations waiting at
the corresponding resource). Once a feasible schedule is obtained, the mode optimization
procedure is executed. This procedure has the following steps:

1. Step 1: Order the operations according to their end times (the time when they were
ended in the schedule received as input).

2. Step 2: Taking into account the previous ordering, for each operation, choose the station
that will finish it first (shortest end time, not shortest processing time). The result is a
backward schedule.

3. Repeat steps 1 and 2 to obtain a forward schedule.

Once the mode optimization is executed, the quality of the solution is taken into account
to give feedback to the agents of the learning phase.

5.2.4.2 On-line Forward Optimization

The On-line Forward Optimization method (OFO) uses an event-driven re-scheduling
technique. A first schedule given all the available information is generated. At each
fabrication cycle, if any new information is available, a new schedule is generated without
changing the already scheduled and started operations.

For scheduling the operations, a serial schedule generation method with a station
choice optimization procedure is used [Van Peteghem and Vanhoucke, 2008]. The OFO
method works as follows. At fabrication cycle 0 an empty schedule S is initialized. If at
fabrication cycle t a container is released or a station is in perturbation, an optimization
step is applied. After Q iterations, the optimization step returns a good partial schedule.
At each optimization iteration, a random but feasible operations list is constructed. This
operations list contains all new operations, and all already scheduled operations from the
previous best partial schedule that have not been started yet at fabrication cycle t. This
operations list is used in a serial schedule generation method that takes into account the
station perturbations to generate a new partial schedule. The best partial schedule during
the Q optimization iterations is kept. The quality of a partial schedule is determined using
an objective function combining the different problem objectives to optimize (section 5.2.1).
This method uses the learning automata and at each iteration of the Q iterations, a feedback

Cooperative Self-Organisation for Optimization under Constraints 127

5

Application, Experimentation & Validation

is sent to the agent that learns the best actions to perform [Wauters et al., 2011, 2010]. After
the optimization step, the scheduled operations are added to the schedule S. If the schedule
S already contained some operations, it will use the new values. This optimization step is
executed at each fabrication cycle where perturbation events occur.

5.2.4.3 Experimental Setup

For the comparison of the different approaches we generate a representative set of
instances of the dynamic flexible Job shop scheduling problem. For that, classical flexible
job shop scheduling instances were used as a base problem [Brandimarte, 1993] to which
release-dates, due-dates and perturbations were added. From the base problem instances,
9 problems were chosen. For each problem, 5 instances without station breakdowns
perturbations using a uniform distribution between given limits were randomly generated:
the number of containers ranges from 10 to 20, the number of stations ranges from 4 to
15 and the number of operations for each container ranges from 5 to 15. Then, we added
perturbations to each instance (station breakdowns). Thus, the final test set contains 90
scenario instances (45 without perturbation and 45 with perturbations) with widely varying
characteristics.

Due-dates are generated uniformly between a lower bound LBr and an upper bound
UBr. The lower bound is the best lower bound found in literature for the base problem
[Pezzella et al., 2008]. For the upper bound value, we use a greedy first available station
heuristic to compute a Makespan value for each instance. This heuristic assigns operations
one by one to the first available station.

Release-dates are also uniformly generated between 0 and max(0; di,j − pmax). Where

pmax =
n
∑

i=1
maxk(pi;j;k) is the maximum total processing time of a container Cj considering

the maximum processing time of each of its operations maxk(pi;j;k).

For the generation of the perturbations, we use two distributions: Poisson and Erlang
[Winston, 2003]. The Poisson distribution with mean UBr

θ determines the inter-arrival time
between perturbations. Higher θ values result in a lower mean inter-arrival time, and thus
in more perturbations. The Erlang distribution with rate parameter R and shape parameter
k computes the duration of the perturbations, with a mean duration of k

R .

For the instances with perturbations, θ = 5, R = 2, and k = 6 were used, so a mean
perturbation time of 3 fabrication cycles is obtained. Settings for the OFO approach are
Q = 50. For SAFlex, the number of agents life cycle for each fabrication cycle N is fixed to
15.

In this study, our interest is focused on the 4 objectives (the number of tardy containers
Tn, mean Tardiness T, maximum Tardiness Tmax and makespan CTmax) defined in section
5.2.1 and the computation time. As each objective provides precise information on the
approach behaviour, it is impossible to reduce them into one unique dimension. To
compare the three studied approaches, a multi-objective presentation providing a global
view on those objectives is more appropriate. Consequently, we present the results using
a radar view having 5 directions : four for the objectives (Tn, T, Tmax, CTmax) and one for

128 Cooperative Self-Organisation for Optimization under Constraints

5.2. Manufacturing Control Scheduling Problem

5

�����

����

���

��������

�� : number of Tardy Containers
� :	mean	Tardiness
���� : maximum Tardiness
����� : Completion Time /Makespan
��������: Calculation Time

Figure 5.15 — Approaches Comparison

the computing time. On each direction, the scale represents a percentage, 100% being the
worst behaving method, 0% representing the value 0 for a given measure. Thus, we obtain
a normalized view for each criterion, facilitating the comparison. The best system is on the
radar center because it outperforms the others in all the dimensions.

For each instance, we performed 10 runs and represented the average results using a
radar view. We notice a certain variability between the results of different instances which
means that the characteristics of the studied instances impact the obtained results. As stated
in the introduction, we are interested in real-life problems with a high level of dynamics.
In such context, it is difficult to characterize the instances that can occur. By that, a global
view considering average results of all the given instances is more adequate to compare the
functioning of the three approaches, as it represents the mathematical expectation of the
behaviour in a real-world situation. This global view is presented in figure 5.15.

5.2.4.4 Discussion

In this section, the results regarding the four objectives defined in section 5.2.1 (the
number of tardy containers Tn, mean Tardiness T, maximum Tardiness Tmax and makespan
CTmax) to which the calculation time is added, are studied on the three different solving
methods, representing different approaches to the Dynamic Flexible Job Shop Problem. The
advantages and limits of the presented approaches regarding the 5 directions of the radar
view are discussed (figure 5.15).

Considering the Makespan (CTmax) objective, we notice in one hand, that OFO is
performing best. OFO computes a global function of weighted objectives. An increased

Cooperative Self-Organisation for Optimization under Constraints 129

5

Application, Experimentation & Validation

weight on this objective ensures good results but the tardiness objectives are not fully
optimized. On the other hand, SAFlex has the worst CTmax. This is due to the fact that, in this
approach, we focus on the tardiness of containers. In a context of a real-time environment,
we decided to provide the best satisfaction for the client orders by reducing the delays and
respecting the due dates. That enables SAFlex to be better for Tn, T and Tmax, but still having
a reasonable CTmax.

Considering the tardiness objectives Tn, we notice that OFO and SAFlex both compute
a relatively good Tn. An interesting point to see is that SAFlex optimizes T and Tmax better.
This is a consequence of the priority level used by the Station agents to choose between the
Container agents. This priority level can be considered as the Container Agent satisfaction
degree, and by always choosing the agent with the highest criticality, we try to equilibrate
this satisfaction degree. That results in an equilibrated tardiness between containers and
reduces Tmax.

Regarding the calculation time, the simulations were done on different types of
computers which increases the difficulty to study this criterion. Nevertheless, we notice
that OFO is the best approach in that direction. This fact is in contradiction with what
we underlined in the introduction (section 5.2) about the rolling-time scheduling methods.
Indeed, its stated that such methods perform well but increase their computation time in
a dynamic environment, but this is hidden because of the averaging. To show that effect,
we studied the difference between the average calculation time for the instances without
perturbations and instances with perturbations. The results, summarized in table 5.6, show
that when adding perturbations, OFO increases significantly the calculation time while in
SAFlex, the time increases slowly. The reason resides in the fact that in SAFLex, complexity
is distributed between the agents which reason at a local level, continuously taking into
account dynamic events in their reasoning, whereas OFO needs complete rescheduling.

Without perturbations With perturbations Increase
OFO 0,24 ms 1,02 ms +325%
SAFlex 1,18 ms 1,32 ms +12%

Table 5.6 — Average Calculation Time for instances without and with perturbations

From a general point of view, rolling and real time scheduling techniques are more
appropriate for DFJSP solving than off-line scheduling techniques. Here, SAFlex and OFO
are adequate systems, each having its limits and advantages. An interesting study would
be to try to combine their advantages in order to improve the results.

130 Cooperative Self-Organisation for Optimization under Constraints

5.3. Design of Complex Product

5

5.3 Design of Complex Product

A complex product is generally a system composed of numerous interconnected parts
representing a specific discipline and is developed using associated expertise. Those parts
are interdependent and the function of the system is provided by their interactions. The
design of such complex product involves the coordination between different correlated
disciplines and must satisfy a set of performances and objectives before it can be
manufactured and sold. By that, the complex system design problem is a multidisciplinary
and multi-objective optimization problem.

Different optimization approaches have been developed for solving design problems
such as Multidisciplinary Design Optimization (MDO) or Multi-Objective Optimization (MOO)
[Brochtrup and Herrmann, 2006]. [Welcomme et al., 2009] introduces a distributed self-
adaptive multi-agent approach for the Aircraft Preliminary Design problem where agents have
disciplines knowledge and act cooperatively to solve the problem.

In this work, a new original approach based on the generic agent model is proposed to
solve the problem. It does not require explicit model knowledge. Indeed, for each design
domain, a generally huge set of real already designed elements exists. Considering, for
example, the Aircraft Preliminary Design problem, the set of already defined populations of
aircraft such as A380, A320, etc. is large. Such aeroplanes have been tested and validated.
Thus, when constructing a new aeroplane, it is interesting to profit from the already known
and acquired knowledge from the already existing aeroplanes, especially considering that
this knowledge does not only contain the disciplines information but also the engineers
experience. Another problem where it is interesting to profit from the already existing
knowledge is the seed problem. Large data bases of plant phenotypes exist. When searching
for crossing different plants in order to obtain specific phenotypes, it is useful to profit from
such existing data bases. Unfortunately, given the huge volumes of data bases, the existing
knowledge is not well exploited. This approach can also be useful in different other domains
such as the design of vehicle engines or for the invention of new medicine.

The SAPBR approach, given this set of already existing elements and a new element for
which some of the characteristics are known and the others are unknown, aims at finding
the values of the unknown characteristics. In this approach, disciplines are represented by
their characteristics. Their interdependencies exist but are unknown.

5.3.1 Problem Formalization

In a design domain D (table 5.7), a set E of real already designed elements exists
E={E1; E2; ...; En}. Each element Ej is described by a set of characteristics C={C1; C2; ...; Cm}
each having a known value V(i;j) (where i represents the number of the characteristic
of the element j). So, an element Ej can be represented as a vector of values

V=
{

V(1;j); V(2;j); ...; V(m;j)

}
. The correlation between the different characteristics are given

by a set of formulas (expressed as in formula 1) expressing each characteristics as a function
f(i;j) of the others characteristics. Those different f(i;j) are unknown in our case.

Cooperative Self-Organisation for Optimization under Constraints 131

5

Application, Experimentation & Validation

```````````````Characteristic
Element

E1 E2 ... Ej ... En

C1 V(1;1) V(1;2) ... V(1;j) ... V(1;n)

C2 V(2;1) V(2;2) ... V(2;j) ... V(2;n)

..........................
Cm V(m;1) V(m;2) ... V(m;j) ... V(m;n)

Table 5.7 — Design Domain

```````````````Characteristic
Element

E1 E2 E3 Ex

C1 V(1;1) V(1;2) V(1;3) V(1;x)

C2 V(2;1) V(2;2) V(2;3) V(2;x)

C3 V(3;1) V(3;2) V(3;3) ?
C4 V(4;1) V(4;2) V(4;3) ?

Table 5.8 — Example of a Design Domain with the definition of a new Element

Formula 1. V(i;j) = f(i;j)(V(1;j), V(2;j), ..., V(k;j), ..., V(m;j))(∀k 6= i)

The aim of SAPBR is, given a data base representing the known elements of domain D
and a new element Ex =

{
V(1;x); V(2;x); ...; V(m;x)

}
where only a subset of the characteristic

values V(i;x) is defined by the engineer, to provide estimated plausible values to the non-
defined subset of characteristic values V(j;x) (j 6= i). The characteristics with defined values
are called Known Characteristics, the others are called Sought Characteristics.

5.3.2 The Adaptive Multi-Agent System

In order to design the adaptive multi-agent system and define the cooperative agents
and their behaviour for solving this problem, an analysis of the problem is required. The
first point to study is what is required to obtain the value of one Sought Characteristic.
For that, let us consider a small instance of the problem (table 5.8).

In this instance three known elements E={E1; E2; E3} are described using four
characteristics C={C1; C2; C3; C4}. Two characteristics (C1 and C2) are known for the new
element Ex. C3 and C4 are unknown. If we suppose that C3 depends on C1 and C2 while C4

depends on C2 and C3, we can, considering the dependency between C3, C1 and C2, find an
indirect dependency between C4, C1 and C2. Thus, knowing the value of C3 is not required for
the computation of the value of C4.

The consequence of the generalization of the concept of indirect dependencies that exist
between the characteristics of the elements is that it is not required to consider the different
Sought Characteristics of the new element when trying to define the value of one Sought
Characteristic. In other words, it is sufficient to only consider the known knowledge on
the Known Characteristics to find a value for one Sought Characteristic. Thus, the complete

132 Cooperative Self-Organisation for Optimization under Constraints

5.3. Design of Complex Product

5

```````````````Characteristic
Element

E1 E2 E3 Ex

C1 V(1;1) V(1;2) V(1;3) V(1;x)

C2 V(2;1) V(2;2) V(2;3) V(2;x)

C3 V(3;1) V(3;2) V(3;3) ?

Table 5.9 — First sub-problem of the Design Domain Example

```````````````Characteristic
Element

E1 E2 E3 Ex

C1 V(1;1) V(1;2) V(1;3) V(1;x)

C2 V(2;1) V(2;2) V(2;3) V(2;x)

C4 V(4;1) V(4;2) V(4;3) ?

Table 5.10 — Second sub-problem of the Design Domain Example

problem can be divided into sub-problems each containing the different known elements of
the domain with the subset of their characteristics that are defined in the new element and
their values for one Sought Characteristic. For instance, the small instance considered above
is divided into two sub-problems. The first one contains the three elements, the first two
characteristics (C1; C2) and C3 (table 5.9). The second one contains the three elements, the
first two characteristics (C1; C2) and C4 (table 5.10).

The second point is how can the value of the Sought Characteristic be estimated for
a given sub-problem. To answer this question, the interdependency of the characteristics
must be analysed. As stated in the problem formalization (section 5.3.1) the different
characteristics are correlated and each characteristic can be defined as a function of the
others. In complex problem design, such functions are usually complex non-linear functions
which are difficult to approximate on large intervals. But if considered in very small
intervals, such functions can be approximated linearly as shown in figure 5.16. Thus, when
a new value is given for a characteristic, the value of the second characteristic can be found
using the linear function of the adequate interval.

Thus, for a considered element Ej, each characteristic can be expressed as a weighted
sum of the other characteristics (formula 2) where CW(k;j) is the weight associated to the
value of characteristic Ck of the element Ej.

Formula 2. V(i;j) = CW(1;j) ∗V(1;j) + CW(2;j) ∗V(2;j) + ... + CW(m;j) ∗V(m;j))(∀m 6= i)

Given this formula, estimating the value of the Sought Characteristic consists in finding
the weights CW(i;x) associated to the values of the Known Characteristics V(k;x).

Another consequence of this linear approximation considering the relation between the
different values of a given characteristic and their associated weights (figure 5.17), is that it
leads to the ability to estimate the weight CW(i;x) of the Known Characteristic.

To summarize, estimating the value of a Sought Characteristic consists in computing

Cooperative Self-Organisation for Optimization under Constraints 133

5

Application, Experimentation & Validation

��

��

Figure 5.16 — Linear approximation on small intervals of non-linear complex functions

Figure 5.17 — Linear approximation of the weight of a given characteristic Ck

the different weights CW(i;j) of the characteristics that are known for the new element.
Once these weights are estimated, the second step consists in framing the new element as
tightly as possible by known elements from the domain. Then, the weights CW(i;x) of the
Known Characteristics can be calculated leading to the estimation of the value of the Sought
characteristic.

Finally, now that the solving process is defined, the interacting entities must be
identified in order to select among them the cooperative agents of the adaptive multi-agent
system. In our case, four entities are distinguished (figure 5.18):

3 The Known Characteristic entity: it represents a known characteristic of the new element.

134 Cooperative Self-Organisation for Optimization under Constraints

5.3. Design of Complex Product

5

�1 �2 �� �� Constraints

�1 ��(1;1) ��(1;2) ��(1;3) �(1;�) (��(1;�))
�
�=1 = InfluenceRank(�1/��

�2 ��(2;1) ��(2;2) ��(2;�) �(2;�) (��(2;�))
�
�=1 = InfluenceRank(�2/��

… … … … … ………………

�� ��(�;1) ��(�;2) ��(�;�) (�;�) (��(2;�))
�
�=1 = InfluenceRank(�� /��

�� �(�;1) �(�;2) �(�;�) ????

� �;1 =
��(�;1) ∗ �(�;1

�
�=1

� �;2 =
��(�;2) ∗ �(�;2

�
�=1

…
� �;� =
��(�;�) ∗ �(�;�

�
�=1

Known ElementsKnown
Characteristics

Characteristic Weight

Sought Characteristic

∑

∑

∑

∑ ∑ ∑

Figure 5.18 — The different interacting entities in SAPBR

It possesses all the known knowledge on this characteristic for each element (Ci, a
line in the table of the figure 5.18). Using this knowledge and the known values of
the Sought Characteristic, this entity computes its Influence Rank (section 5.3.2.3) on the
Sought Characteristic. This influence is the constraint used in order to compute the
weight associated to the value for each element so that the influence rank of the sum
of the different weights (Weight Influence, section 5.3.2.3) is equal to the influence rank.
In addition to this constraint, the continuity or coherence of the linear approximations in
successive small intervals should also be respected. Thus, the weight of a given value
is bounded by the weights of the values bounding this value. This constraint is called
the linearity constraint and can be seen as a way to prevent a chaotic succession of linear
approximations (a sort of smoothing).

3 The Known Element entity: it represents a known element of the domain (Ej, a column
in the table of the figure 5.18). It knows its values for the known characteristics and
the sought characteristic of the new element. Thus, it can help for the estimation of the
different weights of the values of its known characteristics so that the formula 2 can be
verified among its characteristics.

3 The Characteristic Weight entity: it represents the weight associated to a value of a given
characteristic in a given element (a cell in the table of the figure 5.18). It must adjust its
value in order to satisfy the known elements and the known characteristics constraints.

3 The Sought Characteristic entity : it represents one of the unknown characteristics of
the new element (Cx in the figure 5.18). This entity does not have sufficient local
information in order to estimate its value. The known information on this characteristic
are its values for the known elements and the influence deduced from these values
that a known characteristic can have on it. The first information is used by the Known
Element to verify the formula 2. The second one is used by the Known Characteristic to
verify its influence rank.

Three of the four defined entities can be considered as cooperative agents: the Known
Characteristic, the Known Element and the Characteristic Weight. Indeed they are the entities

Cooperative Self-Organisation for Optimization under Constraints 135

5

Application, Experimentation & Validation

that must cooperatively interact in order to estimate the right weights CW(i;x) for the values
of the known characteristics in the new element in order to estimate the value of the Sought
Characteristic. The Sought Characteristic is considered as an active entity that can provide
useful information for other agents but does not participate in the solving process.

The Known Element agents and the Known Characteristic agents possess the constraints of
the problem. Thus, they are the agents having the constrained role. Given their constraints,
they guide the Characteristic Weight agents to find their values, by requesting adjustment
directions that would lead to the satisfaction of their constraints. The Characteristic Weight
agents will respond to theses requests by taking into account their criticality degrees. Thus
they are the agents having the service role.

In brief, each sought characteristic in the new element requires its own multi-agent
system for its solving. Each multi-agent system contains three different types of agents:
Known Element agents, Known Characteristic agents and Characteristic Weight agents.
The number of Known Element agents in one multi-agent system is equal the number of
known elements in the data base. The number of Known Characteristic agents is equal to
the number of known characteristics in the data base. The number of the Characteristic
Weight agents is equal to the number of cells in the data base.

5.3.2.1 Agent Interactions

In this system, agents communicate using messages. Table 5.11 summarizes the different
messages sent by each type of agent. They are divided into the four categories presented
in section 3.3. The different messages are an instantiation of the messages defined in our
generic agent model. We modified their names so that they correspond to the treated
application.

Agents Request for service Request for Information Answer to requests Information
Known
Characteristic

decreaseKCWeight() influenceRank() setSCDisorder()
increaseKCWeight() weightsInfluence() setSCWeightsSum()

Known Element
decreaseKEWeight()
increaseKEWeight()

Characteristic Weight getNeighbourValue() KEKCWeight()

Table 5.11 — Messages in SAPBR

The decreaseKCWeight(), increaseKCWeight(), decreaseKEWeight() and increaseKEWeight()
messages are used by the Known Characteristic and the Known Element agents to request the
modification of their weights from the Characteristic Weight agents that respond using the
KEKCWeight().

The setSCDisorder() and setSCWeightsSum() are used by the Known Characteristic agent
to inform the Sought Characteristic entity about its influence. The Sought Characteristic
entity, once having the different influences, associates a rank to each known characteristic.
Known Characteristic agents get this rank using influenceRank() and weightsInfluence(). Those
methods are implemented as getters and setters as the Sought Characteristic entity does not
change and can be visible by other agents.

When looking to satisfy its Linearity Constraint, the Characteristic Weight agent uses the

136 Cooperative Self-Organisation for Optimization under Constraints

5.3. Design of Complex Product

5

getNeighbourValue() to access the values of its neighbours and compare them with it is
current value. As this neighbourhood do not change during the execution, this method
is implemented as a getter.

5.3.2.2 Agent Criticality

As stated in the description of the entities, a Characteristic Weight entity is associated to a
specific value of a given Known Characteristic for a Known Element. Thus, each Characteristic
Weight agent can encounter at each life cycle two requests: one coming from the Known
Characteristic agent and one from the Known Element agent which can be contradictory. In
addition to this, the Characteristic Weight agent must satisfy the linearity constraint with its
neighbours. Adjusting its weight to satisfy this constraint can also be contradictory with the
first two requests.

The Known Characteristic agent request is the most critical request as it is related to the
influence rank computed using the disorder that the Known Characteristic imposes on the
Sought Characteristic. This disorder is related to the evolution of the two characteristics which
is a good indicator on how the value of the Sought Characteristic must evolve given the value
of the Known characteristic (section 5.3.2.3).

The Known Element agent request is related to the satisfaction of formula 2. This request
comes after the first one as once the influence rank of the characteristic is found, this formula
guarantees a good approximation of the known values of the Sought Characteristic. Finally,
the adjustment of the weight given the linearity constraint is the less critical request as it is
only used to guarantee the coherence of the estimated weights.

The Characteristic Weight agent adjusts its step using an adaptive value tracker (section
5.3.2.3) with an adaptive step. This step adapts given the received requests and the local
representations of the agent (linearity constraint). Whenever no contradiction exists for the
value adjustment, the Characteristic Weight agent adjusts its value using the adapted step.
Whenever contradictions exist, the Characteristic Weight agent tries first to satisfy the Known
Characteristic agent. If no request from that agent exist, the Characteristic Weight agent tries
to satisfy the Known Element request. Finally, if no request exists from the other agents, it
tries to satisfy the Linearity Constraint given its representations on its neighbours.

5.3.2.3 Data Types & Tools

Six data types (Influence Rank, Weight Influence, Characteristic Value/Weight and
Element Value/Weight) and one tool (adaptive Value Tracker are used by the different
identified agents.

1. Influence Rank: this data type is an Integer computed by the Known Characteristic agent
only at the start of the resolution. It measures the disorder of the Known Characteristic
in the Sought Characteristic. The Higher the disorder is, less the Known Characteristic
influences the Sought Characteristic. To compute this disorder, the elements of each
characteristic are completely ordered by their values. The computeDisorder() function
(algorithm 5.1) is then used to compute the differences between both orders. When

Cooperative Self-Organisation for Optimization under Constraints 137

5

Application, Experimentation & Validation

the characteristic values are constant, this order is random and the function cannot be
used to compute the disorder. Thus, the constant values of both characteristics must
be considered separately. Table 5.12 resumes the different possible cases. When one
characteristic is constant different from zero and the second is not, the algorithm 5.2
where n is the number of the Known Elements is used. It is based on a permutation
of the ordered elements of the constant characteristic so that the computed disorder is
maximised. Once computed, this value is sent to the Sought characteristic entity that
compares it with the disorder values of the different Known characteristic agents and
deduces the Influence Rank of each Known Characteristic agent.

Algorithm 5.1: computeDisorder()
Input: KnownCharacOrderedElem, SoughtCharacOrderedElem
Output: disorder
disorder ← 0
for i← 0 to (nbElements-1) do

currentElemId← KnownCharacOrderedElem.get(i).getElemID
currentElemOrder ← getElemOrder(SoughtCharacOrderedElem, currentElemId)

nextElemId← KnownCharacOrderedElem.get(i + 1).getElementID
nextElemOrder ← getElemOrder(SoughtCharacOrderedElem, nextElemId)

disorder ← disorder + |currentElemOrder− nextElemOrder|
end

Algorithm 5.2: Disorder computation when one characteristic is constant (<>0) and the
second is not

if (n%2==0) then(n−2
2

)2 ∗ 2 + (n− 2)
else((n−3

2

)
∗
(n−3

2 + 1
))
∗ 2 + (n− 2)

end

2. Weight Influence: this data type is an Integer used by the Known Characteristic agent
to compare the influence rank of its computed weights for each element to its Influence
Rank. Each Known Characteristic computes the sum of the absolute value of the weights
associated to its different values for each known element and sends this value to
the Sought Characteristic entity that compares it with the values received from the
different Known characteristic agents and deduces the Weight Influence rank of each
Known Characteristic agent.

3. Characteristic Value/Weight: this data type is used by the Known Element agent to
store the value/weight of its characteristics. It contains the characteristic ID and its
value/weight for the considered known Element.

138 Cooperative Self-Organisation for Optimization under Constraints

5.3. Design of Complex Product

5

Known Characteristic Sought Characteristic Disorder

is constant equal to zero
is constant = 0 0

is constant <> 0 Maximum disorder
is not a constant Maximum disorder

is constant <> 0
is constant = 0 Maximum disorder

is constant <> 0 0
is not a constant algorithm 5.2

is not a constant
is constant = 0 Maximum disorder

is constant <> 0 algorithm 5.2
is not a constant computeDisorder() (algorithm 5.1)

Table 5.12 — The different possible cases to compute the disorder of a Known Characteristic
in a Sought Characteristic

4. Element Value/Weight: the Element Value data type is used by the Known Characteristic
agent and the Sought Characteristic entity to store their values for the different Known
Element. The Element Weight data type is used by the Known Characteristic agent to
store its weights for the different Known Element. It contains the element ID and its
value/weight for the considered characteristic.

In addition to these data types, the Characteristic Weight agent uses an Adaptive Value
Tracker tool [Lemouzy, 2011] to adjust its value given the increase/decrease requests of the
Known Characteristic and Known Element agents. The objective of this adaptive value tracker
is to track a given value that is bounded in a given interval. For that, it possesses a step
∆ adjusted depending on the received requests. When the successive received requests are
in the same direction (increase or decrease), the step increases using, at the beginning, a
geometric progression where the current step is multiplied by 2, until a maximum step
(∆max) is reached. After that, the step continues to increase using a linear progression
that consists in adding to the current step the ∆max. Whenever two successive received
requests are not in the same direction, the step is divided by 3. This adaptive value tracker
manipulates the following elements :

3 the variation interval [vmin; vmax] in which the tracked value can vary;

3 a minimum step (∆min) computed using the width of the variation interval and the
wanted precision on the tracked value;

3 a ∆max computed using the ∆min and the number of steps required to reach this value
using geometric progression before switching to linear progression. In our case, this
number was studied in order to divide the variation interval into two portions and the
number of steps used to cover the first portion using a geometric progression starting
from the ∆min is equal to the number of steps used to cover the second portion using
a linear progression starting from the ∆max. This guarantees an optimal exploration of
the interval;

3 the current step ∆ that starts from a random value between ∆min and ∆max, and adapts
its value given the different successive requests.

Cooperative Self-Organisation for Optimization under Constraints 139

5

Application, Experimentation & Validation

String id
CharacteristicValue[] knownCharacteristicValues
CharacteristicValue[] soughtCharacteristicValues
double precision

double computeWeightedCharacteristicsSum()

CharacteristicWeight[] characteristicWeights

<<characteristics>>

<<skills>>

<< representations >>

<< aptitude >>

<<cooperative agent>>

KnownElementAgent
<<datatype>>

CharacteristicValue{
CharacteristicID,
Value

}

void KEKCWeight(double weight)

<<perceptions>>

<<perception module>>

<<communications>>

<<cooperative agent>>

CharacteristicWeightAgent

void decreaseKEWeight()
void increaseKEWeight()

<<actions>>

<<action module>>

<<communications>>

<<datatype>>

CharacteristicWeight{
CharacteristicID,
Weight

}

Figure 5.19 — Known Element Agent description using AMAS-ML

5.3.2.4 Known Element Agent

The Known Element agent represents a known element Ej of the Domain. Figure 5.19
describes its skills, characteristics, representations and interactions with other agents of the
system. The description is provided using AMAS-ML.

The goal of this agent is to find the weights of its characteristics so as to satisfy formula 2.
At each life cycle, it receives the adjusted weights CW(i;j) value from the Characteristic Weight
agent (KEKCWeight()) corresponding to its known characteristics KCi. Then, it computes the
sum of the weighted characteristics (weightedSum = CW(1;j) ∗ V(1;j) + CW(2;j) ∗ V(2;j) + ... +
CW(m;j) ∗V(m;j)) and compares it to its value for the sought characteristic.

If this weightedSum is higher than the value of the sought characteristic, the Known
Element agent asks the concerned Characteristic Weight agents to decrease their values
(decreaseKEWeight()).

If it is lower, it asks to increase the weight values (increaseKEWeight()).

When it is equal, the Known Element agent is satisfied and no requests are formulated.
As the equality is hard to reach, the Known Element agent stops requesting modification

140 Cooperative Self-Organisation for Optimization under Constraints

5.3. Design of Complex Product

5

<<agent state>>
ConstraintNotSatisfied

<<standard behaviour>>
RequestAdjustmentService Increase/DecreaseKEWeight()

� �;� != ��(�;�) ∗ �(�;�)
�
�=1∑

Figure 5.20 — The request adjustment service Cooperative Rule for solving the better
interactions partial Uselessness NCS

whenever the difference between the weightedSum and its sought characteristic value is less
than a precision value provided by the designer.

This agent encounters a better interactions partial UselessnessNCS (section 3.5.3).
Indeed, until its constraint is not satisfied the Known Element agent must request adjustments
from the Characteristic Weight agents, so that a better interaction is established between them.
Figure 5.20 represents this cooperative rule.

5.3.2.5 Known Characteristic Agent

The Known Characteristic agent represents a known characteristic entity. Figure 5.21
describes its skills, characteristics, representations and interactions with other agents of the
system and its environment. The description is provided using AMAS-ML.

Once created, this agent computes its influence rank (section 5.3.2.3). Then, its goal is to
associate a weight value to each of its values for the different elements, so that its weight
influence (section 5.3.2.3) is equal to its influence rank. Thus, at each life cycle, after receiving
the weight values associated to each of its elements from the Characteristic Weight agent
(KEKCWeight()), it computes its weight influence and compares it to the influence rank. If
both influences are equal, the Known Characteristic agent is satisfied, and does not formulate
any request. If not, it asks the Characteristic Weight agents to increase (weight influence less
than rank influence) their values (increaseKCWeight()) or to decrease (weight influence higher
than rank influence) them (decreaseKCWeight()).

Until its weight influence is equal to its influence rank, this agent is considered in a
uselessness NCS (section 3.5.3) as its place in the organisation is not reached yet. Thus, it
sends requests to the Characteristic Weight agents (figure 5.22).

5.3.2.6 Characteristic Weight Agent

The Characteristic Weight agent represents a characteristic weight entity. Its goal is
to adjust the weight associated to a given characteristic value for a specific element.
Thus, it receives requests from the Known Characteristic agent and Known Element agent
corresponding to this value. Its skills, characteristics, representations and the interactions
with other agents of the system and its environment are described in figure 5.23. The
description is provided using AMAS-ML.

When receiving the different requests from both Known Characteristic and Known Element

Cooperative Self-Organisation for Optimization under Constraints 141

5

Application, Experimentation & Validation

String id
ElementValue[] elementValues

double computeWeightsSum()

Int InfluenceRank
Int weightsInfluence
ElementWeight[] elementWeights

<<characteristics>>

<<skills>>

<< representations >>

<< aptitude >>

<<cooperative agent>>

KnownCharacteristicAgent

<<entity>>

SoughtCharacteristic

<<datatype>>

ElementValue{
ElementID,
Value

}

void KEKCWeight(double weight)

<<perceptions>>

<<perception module>>

Int influenceRank()

Int weightsInfluence()
<<communications>>

<<cooperative agent>>

CharacteristicWeightAgent

void decreaseKCWeight()
void increaseKCWeight()

<<actions>>

<<action module>>

void setSCDisorder(double disorder)

void setSCWeightsSum(double weightsSum)
<<communications>>

<<datatype>>

ElementWeight{
ElementID,
Weight

}

Figure 5.21 — Known Characteristic Agent description using AMAS-ML

<<agent state>>
InfluenceConstraintNotSatisfied

<<cooperative rule>>
RequestAdjustmentService Increase/DecreaseKCWeight()

weightsInfluence != InfluenceRank

Figure 5.22 — The request adjustment service Cooperative Rule for solving the Uselessness
NCS

142 Cooperative Self-Organisation for Optimization under Constraints

5.3. Design of Complex Product

5

void KEKCWeight(double weight)

<<actions>>

<<action module>>

<<communications>>

void decreaseKCWeight()
void increaseKCWeight()
void decreaseKEWeight()
void increaseKEWeight()

<<perceptions>>

<<perception module>>

double getNeighbourValue()
<<communications>>

String weightID
String elementID
String characteristicID
Double weightValue

Agent chooseMostCriticalAgent()
double adjustWeightValue()

CharacteristicWeightAgent leftNeighbour
CharacteristicWeightAgent rightNeighbour
boolean increase/decreaseKCWeight
boolean increase/decreaseKEWeight
boolean isLinearityConstraintSatisfied

AdaptiveTracker adaptiveValueTracker

<<characteristics>>

<<skills>>

<< representations >>

<< aptitude >>

<<cooperative agent>>

CharacteristicWeightAgent

<<cooperative agent>>

KnownCharacteristicAgent

<<cooperative agent>>

KnownElementAgent

<<cooperative agent>>

CharacteristicWeightAgent

Figure 5.23 — Characteristic Weight Agent description using AMAS-ML

Cooperative Self-Organisation for Optimization under Constraints 143

5

Application, Experimentation & Validation

<<agent state>>
RequestsConflict

<<cooperative rule>>
RespondMostCriticalAgent

adjustWeightValue()

increaseKCWeight

chooseMostCriticalAgent()Or

increaseKEWeight

decreaseKEWeight

decreaseKCWeight

!isLinearityConstraintSatisfied

Or

And

Figure 5.24 — The respond to the most critical agent Cooperative Rule for solving the requests
conflict NCS

agents, it considers the most critical one given the criticality measure defined in section
5.3.2.2. Then, it adjusts its value using its adaptive value tracker defined in section 5.3.2.3
and sends the adjusted value to its Known Characteristic and Known Element agents. If no
requests are received from the agents, the Characteristics Weight agent tries to satisfy its
linearity constraint. Thus, it perceives the values of its left and right neighbours, which are
the weights associated to the closed values of its known characteristic value but for different
known elements, and uses the adaptive value tracker to increase or decrease its value.

This agent encounters two different NCS: requests conflict and partial uselessness of the
estimated value.

The first one, an instantiation of the Conflict NCS (section 3.5.4), occurs when the
Characteristic Weight agent receives requests from both Known Characteristic and Known
Element agents. It solves this NCS by choosing the most critical one given the criticality
measure defined in section 5.3.2.2 (figure 5.24).

The second one, an instantiation of the Uselessness NCS (section 3.5.3), occurs when the
linearity constraint is not satisfied as the agent considers that it has not found the best place
in the organisation regarding the representations it has of its neighbours (figure 5.25). It
solves this NCS by adjusting its value.

5.3.3 SAPBR Results & Discussions

The SAPBR approach is currently applied to the Aircraft Preliminary Design problem. The
data base involves 129 elements each described using 163 characteristics. Five test cases
have been provided by the domain expert (Thierry Druot, R&D engineer at Airbus). Only
one characteristic is known for the first case, five for the second case, fifteen for the third case,
twenty-one for the forth case and thirty-six for the fifth case. For each case three different
test files have been constructed with different values for the known characteristics. Each
file has been constructed by extracting one element from the data base and keeping only for
that element the values of the known characteristics defined by the corresponding test case.

144 Cooperative Self-Organisation for Optimization under Constraints

5.3. Design of Complex Product

5

<<agent state>>
LinearityConstraintNotSatisfied

<<cooperative rule>>
AdjustValue adjustWeightValue()

weightValue>LeftNeighbourValue

And

weightValue>RightNeighbourValue

weightValue<LeftNeighbourValue

And

weightValue<RightNeighbourValue

Or

Figure 5.25 — The adjust value Cooperative Rule for solving the partial uselessness of the
estimated value NCS

Then, this element is considered as the new element to estimate. Once SAPBR estimates
the new element, the results are compared with the original element. The simulation was
launched on an Intel Core 2 Duo 2.4GHz RAM:4.0Go. The code was implemented using
Java and includes more than 80 classes with 24 classes generated using MAY.

Table 5.13 summarizes for each file (launched one time), the number of estimated sought
characteristics divided into three classes depending on the distance between the estimated
value estimatedValue and the original value realValue and the percentage of values estimated
with a distance less than 13%. The distance has been computed using two different formulas.

First, according to the expert, estimating a value with a distance (|realValue−estimatedValue|
realValue ∗

100) less than 13% of the real value is an acceptable result. In our case, more than 75% of
the characteristics are estimated with a distance less than 13%. Thus, the obtained results
present a good Accuracy/Quality (section 4.2.1). In addition to this, for some characteristics,
having a higher percentage is normal and can be considered as a normal result (i.e for
characteristics not related or lightly related to the known characteristics given test case).
But as we do not have sufficient information to detect such characteristics, additional work
with the expert is required to completely validate the behaviour of the agents.

As this first formula does not provide good estimation when the realValue is close
to zero (due to the division by the realValue), the distance between the estimatedValue
and the realValue relatively to width of the values interval (valueIntervalWidth) of the
characteristic (|realValue−estimatedValue|

valueIntervalWidth ∗ 100) has been studied. Here also, the results show a
good Accuracy/Quality as more than 88% of the characteristics are estimated with a distance
less than 13%.

As stated in the description of the Known Element agent (section 5.3.2.4), estimating
the weight so that the exact value of a sought characteristic is retrieved is difficult and a
precision value defining the allowed difference between the estimated value and the real one
have been introduced. In our case, we fixed this precision to 10−4. The stopping criterion of
the system is the number of life cycles of the agents. For this study, the number is fixed to
100 life cycles. Other stopping criteria have been identified such as the satisfaction of Known
Element and Known Characteristic agents or the non-existence of possible adjustments for the

Cooperative Self-Organisation for Optimization under Constraints 145

5

Application, Experimentation & Validation

|re
al

V
al

ue
−

es
ti

m
at

ed
V

al
ue
|

r e
al

V
al

ue
∗

10
0

|re
al

V
al

ue
−

es
ti

m
at

ed
V

al
ue
|

v a
lu

eI
nt

ev
al

W
id

th
∗

10
0

Fi
le

s
N

am
es

0-
13

%
13

%
-5

0%
50

%
-1

00
%

%
un

de
r

13
%

0-
13

%
13

%
-5

0%
50

%
-1

00
%

%
un

de
r

13
%

Fi
le

1.
1K

C
10

6
55

1
65

,5
14

7
14

1
90

,7
Fi

le
2.

1K
C

10
8

52
2

66
,6

15
7

4
1

96
,9

Fi
le

3.
1K

C
11

8
44

0
72

,8
15

7
3

2
96

,9
Fi

le
4.

5K
C

12
2

28
8

77
,2

14
1

15
2

89
,2

Fi
le

5.
5K

C
12

9
16

13
81

,6
13

5
19

4
85

,4
Fi

le
6.

5K
C

12
1

34
3

76
,6

11
1

43
4

70
,3

Fi
le

7.
15

K
C

10
7

33
8

72
,3

13
7

11
0

92
,5

Fi
le

8.
15

K
C

74
71

3
50

11
9

26
3

80
,4

Fi
le

9.
15

K
C

12
0

26
2

81
12

1
26

1
81

,7
5

Fi
le

10
.2

1K
C

11
6

21
5

81
,7

12
4

17
1

87
,3

Fi
le

11
.2

1K
C

10
3

35
4

72
,5

10
9

33
0

76
,7

Fi
le

12
.2

1K
C

11
3

28
1

79
.5

10
6

34
2

74
,7

Fi
le

13
.3

6K
C

98
28

1
77

11
5

12
0

90
,5

Fi
le

14
.3

6K
C

10
9

17
1

85
,8

11
8

9
0

92
,9

Fi
le

15
.3

6K
C

11
0

15
2

86
,6

11
2

14
1

88
,2

Ta
bl

e
5.

13
—

Th
e

nu
m

be
r

of
es

ti
m

at
ed

so
ug

ht
ch

ar
ac

te
ri

st
ic

s
fo

r
tw

o
co

m
pu

ta
ti

on
fo

rm
ul

as
of

th
e

di
st

an
ce

.
Th

e
nu

m
be

r
is

di
vi

de
d

in
to

th
re

e
cl

as
se

s
de

pe
nd

in
g

on
th

e
di

st
an

ce
be

tw
ee

n
th

e
es

ti
m

at
ed

va
lu

e
an

d
th

e
or

ig
in

al
va

lu
e

an
d

th
e

pe
rc

en
ta

ge
of

va
lu

es
es

ti
m

at
ed

w
it

h
a

di
st

an
ce

le
ss

th
an

13
%

146 Cooperative Self-Organisation for Optimization under Constraints

5.3. Design of Complex Product

5

Figure 5.26 — The percentage of estimated sought characteristics classified accordingly to
the distance (|realValue−estimatedValue|

valueIntervalWidth ∗ 100) between the estimated value and the original
value

Characteristic Weight without deteriorating the solution. Those criteria will be implemented
in the next version of the system.

Figure 5.26 shows us that given this precision and this stopping criterion, more that 63%
of the sought characteristics are estimated with a distance less than 5%. The percentage of
the sought characteristics estimated with distances higher than 15% is less than 5%. These
results demonstrate the adequacy of the system and validate the agents’ behaviours.

In table 5.14, the average time needed by a multi-agent system to estimate the value of
a Sought Characteristic is given, in addition to the total computation time for each file. We
note that when additional characteristics are known, additional time is required before the
system reaches a complete solution. This can be explained by the increase in the number of
agents as each known characteristic is represented by a Known Characteristic agent and each
of its values is represented by a Characteristic Weight agent. For example, from the second
case (5 known characteristics) to the fourth case (21 known characteristics) the number of
agents increases from 123.082 agents ((129 known element agents + 5 known characteristic
agents + 5*129 characteristic weight agents) * 158 sought characteristic) to 405.978 agents
((129 known element agents + 21 known characteristic agents + 21*129 characteristic weight
agents) * sought characteristic). Thus, additional time is required to exchange information
between the different agents and stabilize the system. Another point that can impact the
time is the stopping criterion. The system stops after a given number of agent life cycles,
even if a solution is reached before. Further studies are required to improve and implement
other more appropriate stopping criterion.

However, as each Sought Characteristic can be estimated by its own multi-agent system,
the resolution can be distributed among different computers and only the average time

Cooperative Self-Organisation for Optimization under Constraints 147

5

Application, Experimentation & Validation

Files Names
Average Time By

Sought Characteristic
(ms)

Total time (ms) Number of agents

File1.1KC 42 6.806 41.958
File2.1KC 43 7.058 41.958
File3.1KC 42 6.839 41.958
File4.5KC 172 27.204 123.082
File5.5KC 173 27.351 123.082
File6.5KC 172 27.298 123.082
File7.15KC 620 91.808 ≈ 1,5min 307.692
File8.15KC 617 91.403 ≈ 1,5min 307.692
File9.15KC 619 91.725 ≈ 1,5min 307.692
File10.21KC 930 132.117 ≈ 2,2min 405.978
File11.21KC 921 130.833 ≈ 2,1min 405.978
File12.21KC 919 130.543 ≈ 2,1min 405.978
File13.36KC 3.739 474.953 ≈ 8min 610.743
File14.36KC 3.749 476.159 ≈ 8min 610.743
File15.36KC 3.764 478.108 ≈ 8min 610.743

Table 5.14 — The average time needed by a multi-agent system to estimate the value of a
Sought Characteristic, the total computation time and number of agents for each file.

needed to estimate the value of one sought characteristic is significant. Regarding this time,
only a few seconds (4s for the fifth case) are needed to propose a value to the designer. Thus,
it is possible to transform the SAPBR software in an interactive tool, that can then profit from
the feedbacks of the designer.

Concerning the decentralization criterion (section 4.3.2), the action locality of the agents
can be underlined as only local information is used by the agents to decide and act. As each
cell of the data base is represented by a Characteristic Weight agent, increasing the size of the
data base will increase the number of cooperative interacting entities. But, considering the
action locality of the agents and the low computational complexity level of their behaviour,
this increase of the agent number should not impact the results exponentially or cause
system breakdowns. We can note that distribution of the information among the agents is
done such that each agent is provided with an initial small amount of knowledge required
for its reasoning. The Known Characteristic and the Known Element agents do not acquire
any additional information. The Characteristic Weight agent only requires to register the last
received adjustment direction so they can adapt their value.

Table 5.15 summarises for the evaluation of SAPBR which of the defined evaluation
criteria from chapter 4 have been considered and justifies why the other criteria were not
considered.

148 Cooperative Self-Organisation for Optimization under Constraints

5.3. Design of Complex Product

5

Evaluation
Criterion

Considered Not
Considered

Remarks

Resolution
Time

X

Number of
messages

χ As no external events occur, the number of
message exchanged by the agents at each
life cycle is constant. Still, this criterion
must be studied before the deployment of
the system and before adding the
interactions with the engineer.

Quality of
solution

X

Progress χ This study is the first time the AMAS
theory was confronted to such new
original class of problems. That is why our
aim was to show the adequacy of our
model to solve such application before
looking to these criteria.

Memory usage χ

Robustness χ

Local
computational
complexity

X

Decentralisation X
Action locality X
Initial and
acquired
knowledge

X

Agent number
influence

X The system does not seem to suffer from
any scalability issue as it was tested with
more than 400000 agents. Still further
studies are required.

Analysis and
identification
of autonomous
agent

χ Those criteria depend on the AMAS4Opt
agent model used in this study. See section
5.4 at the end of the chapter for additional
information.

Distribution &
deployment
ease

χ

Genericity χ

Table 5.15 — Summary of the considered and not considered evaluation criteria
introduced in chapter 4 for the evaluation of SAPBR.

Cooperative Self-Organisation for Optimization under Constraints 149

5

Application, Experimentation & Validation

5.4 AMAS4Opt Evaluation

In this chapter, the AMAS4Opt agent model has been instantiated for the solving of two
well-known optimisation problems. Both instantiations underlined different advantages of
the model:

3 the defined roles are conceptually close to the behaviour of entities involved in
optimisation under constraints problems. The constrained role matches the entities
submitted to constraints whose solving lead to the global solution of the problem. The
service role matches the behaviour of entities that are in the system to help other entities
solve their constraints. In SAFlex this identification is straightforward as it is identical
to the actual functioning of the entities. Indeed, in one hand, we have the containers
that require to be treated on specific stations, and on the other hand, the stations that
are qualified for specific treatments and can help the containers to reach their goals.
In SAPBR, this identification is less straightforward but still intuitive. Indeed, given
the definition of the problem, we know that the already known knowledge (the known
values of the different characteristics) is required to help estimate the values of the sought
characteristics. A further analysis of the problem was required to define the resolution
process. The aim of this analysis was the find how the different entities of the problem
can interact to solve the problem. From these interactions, the agent roles have been
identified.

3 the agents of this model are provided with local goals, behaviours and interactions.
They locally perceive their environment and update their representations and
knowledge. Thus, they are each able to handle the dynamics they perceive and rapidly
adapt to new situations allowing a better handling of the problem complexity. This
advantage is easily underlined by SAFlex as agents faces concrete dynamic events such
as stations breakdowns and the obtained results show the system’s robustness. In
SAPBR, the complexity is due to the non-linear interdependencies that exist between
the different characteristics. Considering these interdependencies from the local agent
point of view enables a better handling of this complexity. Indeed, the agents
only considers local approximations of these interdependencies which in very small
intervals can be considered as linear. Thus, no complete estimation of them is required.

3 the defined agent criticality measure guides the cooperative behaviour of the agents
increasing the equilibration of the satisfaction degree of agents. The consequence is
an efficient exploration of the search space. For instance, in SAFlex, the measure of
the container criticality used by the stations to decide which containers to treat enable
the system to equilibrate the agents’ dissatisfaction degrees resulting in less tardiness.
In SAPBR, the defined agent criticality helps the Characteristic Weight Agent to better
estimate their value by replying to the more relevant agent.

3 the cooperative rules guide the agents behaviours to reach good solutions by always
seeking to be cooperative towards their environments. In comparison to the Distributed
Constraint Optimization Problem (DCOP) based approach where a translation of the
problem into the DCOP formalism is required, in our case, an identification of the

150 Cooperative Self-Organisation for Optimization under Constraints

5.5. Conclusion & Perspectives

5

NCS is required. Depending on the problem this translation can be difficult. The
identification of the NCS can also be difficult. Still, as the agent behaviour is close
to the actual functioning of the entities and as their behaviours are more intuitive to
define, our agent model provides for each NCS, specific states in which the agents can
be confronted to it. This allows a more intuitive identification of these NCSs.

3 the agent model presents a sufficient level of genericity. Indeed, the two applications
have been chosen because of their very different characteristics. The complexity of the
Manufacturing Control Scheduling Problem is due to the combinatorial size of the search
space and to the need to manage dynamics such as stations breakdowns or the arrival
of new containers. In the second one, Design of Complex Products, the complexity is
due to the volume of manipulated data that is produced by unknown (or at least not
precisely known) and often complex interrelated non-linear functions. Both developed
MAS using our AMAS4Opt agent model showed encouraging results.

To conclude, we feel confident that the AMAS4Opt model is intuitive, and
comprehensive enough so that a non MAS expert engineer should be able to understand,
instantiate and extend to a large variety of complex optimisation under constraints
problems, as it matches the problems natural description and the real-world entities
functioning.

The next step of this study is to make non MAS expert engineers use our model and
validate the advantages underlined by our experience.

5.5 Conclusion & Perspectives

In this chapter, two adaptive multi-agent systems, SAFlex for the Manufacturing Control
Scheduling Problem and SAPBR for Complex Problem Design, have been implemented
using the generic agent model defined in chapter 3 and evaluated using a set of defined
criteria in chapter 4.

Concerning SAFlex, two cooperative agents have been identified: the Container agent
having the constrained role and the Station agent having the service role. SAFlex evaluation
was done on repeated runs on a set of 45 different scenarii, representative of the variety
one can find in real-world manufacturing situations. We feel confident in the efficiency
and robustness of this approach. In particular, we aimed at emphasising the importance
of taking into account dynamic events for the purpose of realism, and showed how SAFlex
seamlessly takes these dynamic events into consideration during the reasoning and decision
making of the agents. As this decision making is done continuously and locally, the
complexity of the algorithms stays the same and the calculation time only increases slightly.
Scaling-up to problems containing thousands of containers and stations seems quite realistic
and further work is planned to demonstrate this.

Comparing SAFlex with two very different state-of-the art methods, the first one, L/O
(Learning/Optimization) being an off-line scheduling technique, the second, OFO (On-
line Forward Optimization), a rolling time scheduling technique, ensures that advantages
and drawbacks are evaluated. Indeed, these resource allocation problems are typically

Cooperative Self-Organisation for Optimization under Constraints 151

5

Application, Experimentation & Validation

multi-objective problems where optimizing a given objective usually penalizes another.
5 objectives were used in our experimentation: the number of tardy containers, mean
Tardiness, maximum Tardiness, makespan and calculation time. SAFlex showed that it
ensured an efficient and satisfactory equilibration of the different objectives as it does not
worsen one objective in order to improve another one. Indeed, no explicit priority is
associated to each objective as in global objective functions.

As seen in section 5.2.4.4, SAFlex & OFO both compute interesting results. In addition
to comparing these approaches on larger instances with a higher level of dynamics and
complexity, a further work is planned to combine their advantages in order to improve their
results.

Concerning SAPBR, three cooperative agents have been identified: the Known
characteristic and Known Element agents having the constrained role and the Characteristic
Weight agent having the service role. SAPBR is a new approach to solve the complex
product design problem. Indeed, the most common approaches use explicit models
representing the disciplines of a given domain. The SAPBR approach on the other hand
simply uses the already known elements of the domain and proposes plausible values for
new products being designed. An interesting part of the development of this application
was the problem analysis phase, before the identification of the cooperative agents. This
problem analysis consists in describing the problem bearing in mind the generic agent
model and the agents role. For that, three questions have been answered: what is required
to solve the problem, what is the solving process and finally, what are the entities
participating in the solving and what are their respective local roles.

The evaluation of SAPBR was done in the Aircraft Preliminary Design domain on 15 test
files with different number of known characteristics, with a realistic base of 129 elements
and 163 characteristics each. This study was a first attempt to solve such complex problems
with a new original approach. This approach showed very encouraging results where other
approaches struggle. In addition to this, it underlines the fact that by focusing on relatively
simple cooperative agents behaviours and interactions, complex problems can be solved.

Further studies and evaluation measures such as the non determinism and the scalability
are needed in order to completely validate the agents behaviour and improve the criticality
measure. Indeed, currently in the Characteristic Weight agent decision process the criticality
degrees of the requests are strictly ranked depending on the type of the requesting agents
(first the Known Characteristic agent, second the Known Element and third the Linearity
Constraint). In our point of view, a better cooperative criticality measure can be defined
which would equilibrate more cooperatively the requesting agents.

The next step of this study is to improve our agents behaviour to be able to detect errors
or uncertainties in the data base (the expert explained that due to human errors the values
are only partially trustworthy).

Then, the reasonable calculation time required by the system to find solutions encourage
us to transform SAPBR in an interactive software that can be used on-line by the designer.
For that, the agents behaviour must also be improved to handle the dynamic events such as
the introduction of new elements or known characteristics, the deletion of already defined
elements or characteristics, or the transformation of a sought characteristic in a known

152 Cooperative Self-Organisation for Optimization under Constraints

5.5. Conclusion & Perspectives

5

characteristic.

To summarize, both designed systems have shown the adequacy of our generic model
and the associated AMAS theory compliant behaviours to solve complex problems under
constraints. In addition to this, it can be noted that the AMAS4Opt agent model has
been instantiated on two very different complex problems. This instantiation has been
straightforward and underlines the importance of this specialization of the AMAS theory for
optimization under-constraints of complex problem solving. Indeed, until now this theory
remained at a high abstraction level and specializing it will help us to promote its usage for
engineers that are not agent experts which is the next step of our study. Currently, this agent
model is being instantiated on other applications by PhD students in the team in order to
validate its usage.

Cooperative Self-Organisation for Optimization under Constraints 153

Conclusion Générale

The conclusion in english starts page 159

Nous sommes quotidiennement confrontés à la résolution de problèmes d’optimisation sous
contraintes. Ces problèmes se caractérisent par un degré élevé de complexité rendant cette résolution
difficile. A l’origine de cette complexité croissante, ce travail souligne quatre points importants:

1. la dynamique de l’environnement et du système lui-même rendant impossible la mise en place
d’un contrôle global du système;

2. le volume et la diversité des données manipulées;

3. l’existence d’interdépendances insuffisamment définies entre les paramètres du problème;

4. les dimensions multi-objectif et multidisciplinaire des problèmes étudiés.

Dans ce travail, le modèle d’agents AMAS4Opt pour la conception de systèmes multi-agents
pour la résolution des problèmes d’optimisation sous contraintes a été défini et décrit. Ce modèle
spécialise la théorie des AMAS pour la résolution de ce type de problème. Ce modèle se caractérise par
sa généricité, sa proximité à la description naturelle de ces problèmes, sa décentralisation du contrôle
et distribution du calcul. Ceci permet une instanciation directe du modèle pour la résolution d’une
large variété de problèmes d’optimisation sous contraintes.

De plus, ce travail s’est intéressé à la définition d’un ensemble de critères pour l’évaluation des
approches auto-adaptatives. Ces approches se différencient des approches classiques par leur capacité
à résoudre des problèmes présentant une complexité élevée par l’utilisation de mécanismes self-*
permettant d’améliorer les performances et la robustesse des systèmes. Les critères définis permettent
de souligner ces avantages afin d’améliorer l’acceptation de ces systèmes au niveau industriel.

Cette conclusion est organisée comme suit: premièrement, les contributions au niveau applicatif
et scientifique sont présentées. Par la suite, les perspectives et les améliorations possibles de ce travail
sont discutées.

Contributions au niveau applicatif

Au niveau applicatif, les principales contributions de ce travail sont:

Cooperative Self-Organisation for Optimization under Constraints 155

Conclusion Générale

• La définition d’une architecture d’agent générique utilisant l’outil Make Agents
Yourself. Cette architecture a été validée lors de son utilisation pour la conception des agents des
deux systèmes développés.

• L’instanciation des règles coopératives définies dans le modèle d’agents. Tout au long de ce
travail, l’importance de la coopération comme guide du comportement des agents a été soulignée. Le
modèle d’agents proposé définit un ensemble de règles coopératives permettant aux agents d’anticiper,
de détecter et de réparer des situations d’échecs à la coopération. La définition de ces règles a
été déduite du comportement réel des entités impliquées dans des problèmes d’optimisation sous-
contraintes. Leur identification et instanciation pour la résolution des deux problèmes considérés,
nous a permis de valider leurs aspects intuitif et direct.

• La résolution de deux problèmes clés de l’optimisation sous contraintes. En effet,
deux systèmes multi-agents adaptatifs: Self-Adaptive Flexible Scheduling (SAFLEX) pour
la planification des tâches dans une usine et Self-Adaptive Population Based Reasoning
(SAPBR) pour la conception de produits complexes. Ces deux systèmes ont été conçus en utilisant
le modèle d’agents AMAS4Opt. Cette conception a souligné l’aspect intuitif de notre modèle et
l’aide supplémentaire qu’il offre aux concepteurs par la proposition d’une architecture d’agent prête
à instancier.

• La comparaison de SAFLEX avec deux approches basées sur l’apprentissage par
renforcement. De cette comparaison, l’importance de la criticité des agents définie comme guide
de la coopération et le moyen pour atteindre de bonnes solutions a été soulignée.

• L’utilisation des critères d’évaluation. Les performances des deux systèmes développés ont
été analysées en utilisant les critères d’évaluations définis. Ceci a permis de souligner les avantages
et limites de notre approche distribuée surtout concernant la gestion de la dynamique.

• L’adéquation du raisonnement local pour la résolution de problèmes complexes. Les
résultats obtenus avec SAPBR ont confirmé l’efficacité du comportement simple et local des agents
pour la résolution de problèmes complexe et difficile où une résolution globale est impossible.

Contributions au niveau scientifique

Au niveau scientifique, les contributions majeures de ce travail sont le modèle d’agents, la
définition de la criticité des agents ainsi que la définition des critères d’évaluation.

• Le modèle d’agent AMAS4Opt défini comme une importante spécialisation de la théorie
des AMAS, a permis d’enrichir cette théorie et faciliter son usage pour la conception de systèmes
multi-agents pour la résolution de problèmes d’optimisation sous-contraintes. Ce modèle présente
un niveau d’abstraction bien choisi lui permettant d’être instancié d’une manière directe pour la
résolution d’une large variété d’applications du domaine. Dans ce modèle, deux rôles d’agents ont été
identifiés: le rôle contraint et le rôle service. Le premier concerne les agents soumis à des contraintes
et nécessitant pour leur résolution l’aide des agents ayant le rôle service. Les agents de ce modèle
possèdent des buts locaux, des comportements locaux, et interagissent d’une manière coopérative.
Ils sont conçus de manière à suivre du mieux possible le comportement des entités du problème.
La localité de leurs actions et leur autonomie permettent une meilleure gestion de la dynamique et
accroissent la robustesse du système.

156 Cooperative Self-Organisation for Optimization under Constraints

Conclusion Générale

• La définition de la criticité des agents. Ce travail a souligné l’importance de la coopération
pour guider le comportement des agents. La mesure de criticité a été définie comme élément central
pour le processus de décision coopératif des agents. Nous avons souligné l’importance de cette mesure
pour permettre aux agents d’atteindre de bonnes solutions.

• Les critères d’évaluation ont été définis pour rendre compte de l’importance et de l’efficacité
des approches auto-adaptatives par rapport aux approches classiques. Contrairement aux approches
classiques où des preuves formelles peuvent exister sous certaines conditions, l’évaluation des
approches auto-adaptatives reste une tâche difficile. Dans ce travail, une première étude concernant
l’évaluation de ces systèmes, la validation de leur comportement et la mise en évidence de leurs
avantages par rapport aux approches classiques, a été établie.

Perspectives au niveau applicatif

Au niveau applicatif, les perspectives concernent:

• Le développement d’outils de conception implémentant notre modèle d’agent et guidant
les ingénieurs lors de la conception d’agents basés sur ce modèle. Ces outils sont à intégrer à
la méthodologie ADELFE pour faciliter la conception de systèmes multi-agents adaptatifs pour la
résolution de problèmes d’optimisation sous-contraintes.

• La validation du modèle d’agent par son instanciation sur d’autres applications du
domaine.

• La validation des caractéristiques de notre modèle par son utilisation par des ingénieurs
non-experts de la théorie des AMAS. Le but étant de souligner les limites de ce modèle et ainsi pouvoir
l’améliorer.

• La combinaison des avantages de SAFlex et des approches basées sur l’apprentissage
par renforcement. En effet, la comparaison de ces différentes techniques de résolution a souligné
pour chacune d’elles ses limites et ses avantages. Une étude intéressante que nous souhaitons
continuer en collaboration avec l’équipe Vakgroep Informatietechnologie est l’évaluation des ces
approches sur des cas présentant des degrés élevés de complexité afin de pouvoir combiner leurs
avantages et améliorer les résultats.

• La Comparaison de SAFLex et SAPBR avec d’autres approches distribuées et auto-
organisées afin d’analyser et d’étudier des critères liés à la décentralisation du contrôle et la
distribution du calcul.

• La comparaison de SAPBR avec des approches basées sur le raisonnement par cas ou
des méthodes statistiques. En effet, par leur définition, les approches basées sur le raisonnement
par cas ou les méthodes statistiques semblent être pertinentes pour la résolution du problème traité
par SAPBR.

• Le développement d’outils pour l’évaluation des systèmes auto-adaptatifs utilisant les
critères d’évaluation définis dans ce travail. Ces outils devront guider l’évaluation de ces systèmes et
intégrer des mesures génériques permettant de valider la robustesse et l’adaptation des ces systèmes
à des environnements fortement dynamiques.

Cooperative Self-Organisation for Optimization under Constraints 157

Conclusion Générale

Perspectives au niveau scientifique

Au niveau scientifique, les perspectives concernent:

• L’amélioration de la criticité des agents. En effet, cette mesure est pour l’instant
dépendante de l’application traitée. Étant donnée son importance pour le comportement coopératif
des agents et son influence sur les résultats, cette mesure est parfois difficile à définir. Ainsi, un
processus générique permettant aux agents de découvrir cette mesure et de la normaliser entre eux
doit être développé.

• L’amélioration des critères d’évaluation. Dans ce travail, une première étude concernant
comment des critères d’évaluation déjà existants peuvent être utilisés pour souligner l’adaptation et
la robustesse des approches distribuées et décentralisées a été établie. Nous souhaitons améliorer la
définition de ces critères par l’introduction de mesures prenant en compte la dynamique et les étendre
par l’exploration d’autres critères.

• La définition de modèles d’agents basés sur la théorie des AMAS pour d’autres types
de problèmes. Le succès de l’instanciation de notre modèle pour la résolution de deux applications
présentant des caractéristiques variées, et la facilité amenée par ce modèle à la théorie des AMAS
et à la méthodologie ADELFE, nous encouragent à définir d’autres modèles d’agents spécialisant la
théorie des AMAS pour d’autres types de problèmes.

158 Cooperative Self-Organisation for Optimization under Constraints

Conclusion & Perspectives

« The most exciting phrase to hear in science, the one that heralds discoveries,
is not ’Eureka!’ but ’Now that’s funny?’ »

Isaac Asimov

THE research presented in this document started from the observation that optimisation
under-constraints problems are omnipresent nowadays and showing a growing

complexity which makes their solving really challenging. We identified four important
reasons for this increasing complexity:

1. the dynamics of the environment and the system itself making a global control of the
system hard to achieve or even impossible;

2. the volume and diversity of interrelated data;

3. the existence of insufficiently defined non-linear interdependencies between the
parameters of the problem;

4. the existence of multi-objective and multidisciplinary dimensions.

In this work, we presented a generic approach to design multi-agent systems for
optimisation under-constraints complex problem solving. This generic approach is an
important specialisation of the Adaptive Multi-Agent System (AMAS) theory for this type of
problems. Key aspects of this approach are genericity, simplicity, decentralization of control
and distribution of computation. These aspects enable a straightforward instantiation of the
approach for a large variety of optimisation under-constraints problems. Decentralisation
and distribution are essential as they provide flexibility and robustness to the designed
system.

Another important subject covered in this work is the definition of criteria for the
evaluation of self-adaptive approaches. Such approaches differ from classical ones by their
ability to treat problems in their whole complexity by proposing self-* mechanisms that
increase performance and robustness. The evaluation criteria we propose point out these
advantages in order to ease their acceptance for the industry.

Cooperative Self-Organisation for Optimization under Constraints 159

Conclusion & Perspectives

This conclusion is organised as follows: first, we summarize the main applicative and
scientific contributions of this work. Next, we present several suggestions for improving this
work and further research. It concludes with final words on my personal experience.

Applicative Contributions

At the applicative level, the concrete contributions of our research are:

• The definition of a generic agent architecture called Resolution Agent using Make
Agents Yourself (MAY). We validate this architecture by using it to design the agents of two
developed systems.

• The instantiation of the defined cooperative rules. During this work, we underlined
the importance of cooperation to guide the behaviour of agents. For that, we defined a set
of cooperative rules that helps agents to anticipate or detect and repair cooperation failures.
We designed two multi-agent systems where those rules are instantiated. As the defined
cooperative rules have been deduced from the actual functioning of the problem entities,
their identification and instantiation on both applications was verified as being intuitive
and straightforward.

• The solving of two key optimisation under-constraints problems by the development
of two self-adaptive multi-agent systems: Self-Adaptive Flexible scheduling (SAFlex) for
the Manufacturing Control Scheduling problem and Self-Adaptive Population Based Reasoning
(SAPBR) for the Complex Product Design problem. We designed both systems using the
AMAS for Optimisation (AMAS4Opt) agent model. The design was straightforward and we
underlined the ease this model brings to the ADELFE methodology by the proposition of a
complete agent architecture ready to be instantiated.

• The comparison of SAFlex with two reinforcement learning approaches. From this
comparison, we notice the importance of the agent criticality measure for the cooperation.

• The usage of the evaluation criteria. Both developed applications have been
evaluated using the evaluation criteria we addressed. This evaluation contributed to a better
understanding of the strengths and weaknesses of our decentralized approaches especially
regarding the handling of dynamics.

• The adequacy of local treatments to solve challenging problems. The results we
obtained with SAPBR have underlined how simple and local agent behaviours can solve
very challenging and complex problems where currently no models of the problem are
known.

Scientific Contributions

The main scientific contribution of this work is the AMAS4Opt agent model defined as a
specialisation of the AMAS theory. This theory had already shown its adequacy to solve a
large variety of problems but required specific agent expert knowledge.

The study on the state of the art has addressed several limits of existing approaches.

160 Cooperative Self-Organisation for Optimization under Constraints

Conclusion & Perspectives

First, the translation of the problem in a given framework such as the Distributed Constraint
Optimization Problem (DCOP) framework generally requires a certain level of understanding
of the global problem to be able to transform it in the given framework. Second, the
handling of dynamics is hardly taken into account as it implies modifications on the
structure of the problem and thus makes a global solving of the problem impossible. Third,
parameter tuning is still strongly application-dependent and a difficult task as no guide
exists for the parameters definition that can impact the performance.

This state of the art has also underlined the importance of the distribution of
computation and control decentralisation so that the flexibility and robustness of the
systems increase. It also shows how being close to the problem definition and
concentrating on the local behaviours and interactions of the entities can lead to a better
understanding and solving of the problem.

We have also underlined the fact that cooperation is a central and fundamental
coordination mechanism in the different decentralised approaches that enables the system
to converge and reach good global solutions.

The AMAS theory takes advantage of a specific definition of cooperation by proposing to
build adaptive multi-agent systems while concentrating on local and cooperative interacting
agents. The main limit of this theory is that it remains a high level and general guide which
renders its usage by non AMAS experts difficult.

The concrete contributions of our research are:

• The AMAS4Opt agent model we have defined as an important specialisation of the
AMAS theory so that its usage is facilitated for optimisation under-constraints problem.
The proposed model presents a carefully chosen level of abstraction so as to be easily
understandable, instantiated and extended to a large variety of optimisation under-
constraints problems. Two agent roles have been identified. The Constrained Role possessed
by agents submitted to constraints and considered as the problem initiators. The Service
Role possessed by agents that can help agents having the constrained role to solve their
constraints and reach their goals. The agents of this model are provided with local goals,
behaviours, cooperative rules and interactions that match seamlessly with the behaviours
of the problem entities. The locality and autonomy provided to the agents enable to better
handle the dynamics and rapidly adapt.

• The definition of criticality for agents in the AMAS4Opt model. During this work,
we underlined the importance of cooperation to guide the behaviour of agents through
cooperative rules. We defined the agent criticality measure that helps agents in their
cooperative decision process and we underlined the importance of this measure and its
impact on the obtained results.

• The evaluation criteria we have addressed to underline the importance and the
efficiency of self-adaptivity through self-* properties and the advantages of self-adaptive
systems over-classical approaches. Contrarily to classical systems where formal proofs may
exist under particular conditions, adaptive multi-agent system approaches lack a relevant
evaluation framework. We conducted a first study on how such systems can be evaluated in
order to validate their behaviour, underline their advantages over classical approaches by

Cooperative Self-Organisation for Optimization under Constraints 161

Conclusion & Perspectives

showing how self-* properties can increase the performance and thus ease their acceptance
for industry. We propose evaluation criteria aiming at guiding the evaluation of adaptive
multi-agent systems from the design phase to the execution phase.

Contributions Evaluation

This work contributed to fill a gap in the existing solving techniques based on the
agentification of the domain entities and to improve the AMAS theory from a theoretical
and engineering point of view. Indeed, concerning the existing solving techniques, the
state of the art underlines the existence of different algorithms to solve specific optimisation
under constraints problems. These algorithms are designed using given methodologies.
Such methodologies remain at a high level of abstraction enabling their usage in different
domains but requiring huge effort to get instantiated to specific applications. Thus, we
proposed the AMAS4Opt agent model as a ready to use framework. The agents of this
model are provided with local goals, behaviours, cooperative rules and interactions that
match seamlessly with the behaviours of the problem entities.

This model has been first instantiated on the manufacturing control scheduling problem.
The satisfactory results helped us to validate our model. In addition to this, the usage of this
model instead of applying the different steps of the ADELFE methodology allowed us to
gain time. By that, we were able to confront the AMAS theory and the AMAS4Opt model
to the design of complex products using a new original approach. The obtained result was
very encouraging.

To conclude, the applicative contributions of this work point out the importance and the
efficiency of the scientific contributions. Still, now that this work is completed, we feel that
by addressing some challenging problems several perspectives have arisen.

Applicative Perspectives

Our perspectives at the applicative level are:

• The development of design tools that can be integrated to the ADELFE methodology.
Those tools must implement in a generic manner the agent architecture we defined and
guide the designers through the different design phases of our model. Code generation also
needs to be proposed.

• The validation of our model by instantiating it to other complex applications
involving multi-criteria and multi-objective optimization. This is the subject of a PhD
work, currently done in the team and consisting in developing a multi-agent system used
for integrative design4, where different design levels, each involving different interrelated
disciplines that interact also from one level to another, must be considered.

• The validation of the intuitive aspect of our model by making non AMAS experts
using it. This will help to underline remaining challenges and will help improving our

4For an explanation of the idea of integrative design, please refer to the ID4CS project: www.irit.fr/id4cs

162 Cooperative Self-Organisation for Optimization under Constraints

Conclusion & Perspectives

model.

• When comparing SAFlex to the On-line Forward Optimisation approach, we
underlined the fact that both systems are adequate, each having its limits and advantages.
An interesting study we would like to continue in collaboration with the Vakgroep
Informatietechnologie is the evaluation of both systems in more complex scenarii, and
eventually to try to combine their advantages in order to improve the results.

• Comparing SAFlex and SAPBR to other distributed self-organised MASs, in order
to validate evaluation criteria such as the number of messages, the decentralisation and the
action locality.

• In the state of the art chapter, we introduced a brief description on the Case-
Based Reasoning (CBR) techniques. Given their description, these techniques are relevant
for solving the problem addressed by SAPBR. In addition to this, different statistical
mathematical methods such as the study of correlation or the analysis of variance have
been used to solve such problem. That is why we would like to compare SAPBR to CBR
techniques and to statistical mathematical methods.

• The development of an evaluation framework. Given the importance of the
evaluation criteria that were defined, we intend to contribute to the development of an
evaluation framework integrating tools that can help to understand the functioning and
performance of adaptive multi-agent systems, and implementing the different evaluation
criteria in a generic manner so that the evaluation of such systems becomes straightforward.
This framework could then be used as a general evaluation guide.

Scientific Perspectives

Our perspectives at the scientific level are:

• Improve the criticality measure. This measure is currently application dependent
and requires a certain level of understanding of the problem to be well defined. In some
problems, this can be a difficult task especially considering that this measure is a guide
for the cooperative behaviour of the agent and thus highly impacts the obtained results.
Different other researches in the team have underlined the importance of this measure and
we agree on the fact that a generic process to define this measure must be defined. At the
applicative level, we could even imagine mechanisms that can be used by agents to discover
this measure and learn to normalize it for a given problem.

• Improve existing and explore new evaluation criteria. Further studies are required
to improve the definition of the criteria we propose and to explore additional ones. We
especially would like to continue the work we have started with Claudia Raibulet consisting
in extending those criteria for adaptive systems in general and adding architectural criteria.
This work will fit in the scope of new researches that are currently being done in the
team aiming at validating and verifying the behaviour of complex systems presenting self-*
properties or mechanisms.

• (Semi-) generic agent model for other types of problems or domains. The success
of the instantiation of our model on two applications and the facilitation it brings for the

Cooperative Self-Organisation for Optimization under Constraints 163

Conclusion & Perspectives

AMAS theory and the ADELFE methodology encourages us to define other (semi-)generic
agent models specialising the AMAS theory for other types of complex problems such as
parameter learning, complex process control or simulation.

Thoughts on the Emergence Aspect

What do we call emergence in our system? How can we call our system emergent
while we know what our agents do? and different similar questions were asked during
conferences or presentations. My personal opinion is: "It is all in interactions". Indeed,
we design our agents providing them with local goals and behaviours. There is no control
telling to those agents what to do. They are only provided with local rules that, depending
on their states and their perception of their neighbours, guide the agent actions in its
environment and by that its interactions with other agents. From this local agent point
of view, we have no visibility on the global functioning of the system. While considering
this global system point of view, we can see that given their interactions, an organisation
is constructed between the agents enabling the system to converge. Thus, in my point of
view, the emergence in our systems concerns the manner the agents locally explore in a
deterministic way a very small part of the whole search space enabling the whole system to
converge. How this exploration is done can not be predicted and is not controlled by the
designer, but the efficiency of these kind of systems is to be found there.

Final Words

Reaching the end of this study, I feel that my work could be a useful contribution to
complex problem solving. Interested in optimisation problems under constraints for several
years now, I found in the SMAC team a new way to solve such problems. The AMAS theory
proposes to address these problems in their whole complexity and solving them through
simple and local mechanisms.

When I arrived in the team four years ago, I found that applying the theory and defining
cooperative behaviours for an application to be a challenging task. Indeed, this approach
differs from classical ones by its manner to treat the problem. Instead of thinking globally
how a problem can be solved, with this theory we learn to think locally and to design
efficient and simple agent behaviours that by their interactions enable the emergence of
good solutions. Since I have developed different systems using this theory, I am convinced
of its potential and the ability of cooperative and adaptive multi-agent systems to address
complex problems with a realistic approach. For this reason, I wanted to participate in its
promotion and ease its usage for non AMAS experts. I think and I hope that my contribution
will motivate designers to use it for the solving of more realistic problems such as scheduling
in a real factory, in the domotics field for energy efficient resource management or for
ambient intelligence for instance.

Before concluding, I would like to mention the important experience my 3-months visit
to the Vakgroep Informatietechnologie has offered to me. In particular, this visit enabled me
to compare my system with other approaches and thus being able to improve my agents’

164 Cooperative Self-Organisation for Optimization under Constraints

Conclusion & Perspectives

behaviours.

In addition to this, a great reward this work has given to me is the Amelia Earhart
Fellowship from the Zonta International organisation. Having my work rewarded by this
important institute is for me, maybe not a comfort that my work is really good but that I
knew how to stand up to a great challenge. This motivated me even more to go ahead.

Finally, as this work would have not been possible without the encouragements of my
supervisors and every cooperative member of the team, I would like to conclude this thesis
with this quote from Virginia Burden:

"Cooperation is the thorough conviction that nobody can get there unless everybody gets there".

Cooperative Self-Organisation for Optimization under Constraints 165

Personal Bibliography

1. Gaêl Clair, Elsy Kaddoum, Marie Pierre Gleizes, and Gauthier Picard. Self-regulation in
self-organising multi-agent systems for adaptive and intelligent manufacturing control. In EEE
International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pages
107 - 116, 2008.

2. Elsy Kaddoum, Marie-Pierre Gleizes, Jean-Pierre Georgé. Designing Complex Systems:
Population Based Emergence of Parameters In the 9th European Workshop on Multi-agent
Systems (EUMAS 2011), 2011.

3. Gaêl Clair, Elsy Kaddoum, Marie-Pierre Gleizes, Gauthier Picard. Approches multi-
agents auto-organisatrices pour un contrôle manufacturier intelligent et adaptatif. In Journés
Francophones sur les Systèmes Multi-Agents (JFSMA), Cépaduès, p. 191-200, 2008.

4. Elsy Kaddoum, Marie-Pierre Gleizes, Jean-Pierre Georgé, and Gauthier Picard.
Characterizing and evaluating problem solving self-* systems. In The First International
Conference on Adaptive and Self-adaptive Systems and Applications (ADAPTIVE), 9
pages (electronic medium). CPS Production - IEEE Computer Society, 2009.

5. Elsy Kaddoum, Claudia Raibulet , Jean-Pierre Georgé, Gauthier Picard, Marie-Pierre
Gleizes. Criteria for the evaluation of self-* systems. In Workshop on Software Engineering
for Adaptive and Self-Managing Systems (at ICSE), ACM, p. 29-38, 2010.

6. Elsy Kaddoum, Marie-Pierre Gleizes, Jean-Pierre Georgé, Pierre Glize, Gauthier
Picard. Analyse des critères d’évaluation de systèmes multi-agents adaptatifs. In Journés
Francophones sur les Systèmes Multi-Agents (JFSMA), Cépaduès, p. 123-132, 2009.

7. Elsy Kaddoum, Yailen Martinez, Tony Wauters, Katja Verbeeck, Ann Nowé, Patrick
De Causmaecker, Greet Vanden Berghe, Marie-Pierre Gleizes, and Jean-Pierre Georgé.
Adaptive methods for flexible job shop scheduling with due-dates, release-dates and machine
perturbations. (extended abstract) Workshop on Self-tuning, self-configuring and self-
generating search heuristics (Self*) in the 11th International Conference on Parallel
Problem Solving From Nature (PPSN), 4 pages, 2010.

Cooperative Self-Organisation for Optimization under Constraints 167

Personal Bibliography

Under Review

Elsy Kaddoum, Jean-Pierre Georgé, Marie-Pierre Gleizes, Pierre Glize. SAFlex: Self-Adaptive
Multi-Agent System for Dynamic Flexible Job Shop Problem. In Journal of Systems and Software,
2010.

168 Cooperative Self-Organisation for Optimization under Constraints

Bibliography

AAMODT, A. AND PLAZA, E. 1994. Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AI Commun. 7, 1, 39–59.

AHUJA, R. K., ORLIN, J. B., AND TIWARI, A. 2000. A greedy genetic algorithm for the
quadratic assignment problem. Computers & OR 27, 10, 917–934.

APPLEGATE, D., BIXBY, R., CHVATAL, V., AND COOK, W. 1998. On the solution of traveling
salesman problems.

APPLEGATE, D. L., BIXBY, R. E., CHVATAL, V., AND COOK, W. J. 2006. The Traveling
Salesman Problem: A Computational Study. Princeton University Press.

AXELROD, R. 1984. The Evolution of Cooperation. Basic Books.

AYDIN, M. E. AND ÖZTEMEL, E. 2000. Dynamic job-shop scheduling using reinforcement
learning agents. Robotics and Autonomous Systems 33, 2-3, 169–178.

BAKER, A. D. 1991. Manufacturing control with a market-driven contract net. Ph.D. thesis,
Rensselaer Polytechnic Institute, Troy, NY, USA.

BERGENTI, F., GLEIZES, M.-P., AND ZAMBONELLI, F. 2004. Methodologies and Software
Engineering for Agent Systems. The Agent-Oriented Software Engineering handbook. Kluwer
Publishing.

BERNON, C., CAMPS, V., GLEIZES, M. P., AND PICARD, G. 2004. Designing agents’
behaviors and interactions within the framework of adelfe methodology. In ESAW.
Lecture Notes in Computer Science, vol. 3071. Springer, 311–327.

BERNON, C., CAMPS, V., GLEIZES, M.-P., AND PICARD, G. 2005. Engineering Self-Adaptive
Multi-Agent Systems: the ADELFE Methodology. In Agent-Oriented Methodologies. Idea
Group Publishing, Chapter 7, 172–202.

BERNON, C., GLEIZES, M. P., PEYRUQUEOU, S., AND PICARD, G. 2003. Adelfe: A
methodology for adaptive multi-agent systems engineering. In ESAW. Lecture Notes in
Computer Science, vol. 2577. Springer, 156–169.

BERNON, C., GLEIZES, M.-P., PICARD, G., AND GLIZE, P. 2002. The adelfe methodology
for an intranet system design. In International Bi-Conferenystems (AOIS-2002) at

Cooperative Self-Organisation for Optimization under Constraints 169

Bibliography

CAice Workshop on Agent-Oriented Information SSE’02 (AOIS - SSE). CEUR Workshop
Proceedings, (on line).

BLUM, C., PUCHINGER, J., RAIDL, G. R., AND ROLI, A. 2011. Hybrid metaheuristics in
combinatorial optimization: A survey. Appl. Soft Comput. 11, 6, 4135–4151.

BLUM, C. AND ROLI, A. 2003. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Comput. Surv. 35, 3, 268–308.

BONABEAU, E., DORIGO, M., AND THERAULAZ, G. 1999. Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press, Inc.

BONNET, G. AND TESSIER, C. 2008. Multi-agent collaboration: A satellite constellation case.
In STAIRS. Frontiers in Artificial Intelligence and Applications, vol. 179. IOS Press, 24–35.

BONZANO, A., CUNNINGHAM, P., AND MECKIFF, C. 1996. Isac: A cbr system for decision
support in air traffic control. In EWCBR. 44–57.

BRANDIMARTE, P. 1993. Routing and scheduling in a flexible job shop by tabu search. Annals
of Operations Research 41, 3, 157–183.

BRITO, I., HERRERO, F., AND MESEGUER, P. 2004. On the evaluation of discsp algorithms.
The Fifth International Workshop on Distributed Constraint Reasoning (DCR04) Toronto, Canada
September 27, 2004 held in conjunction with Tenth International Conference on Principles and
Practice of Constraint Programming (CP 2004) 5, 142–151.

BROCHTRUP, B. M. AND HERRMANN, J. W. 2006. A classification framework for product
design optimization. In Proceedings of IDETC/CIE 2006 conference.

CAPERA, D., GLEIZES, M. P., AND GLIZE, P. 2004. Mechanism type synthesis based on
self-assembling agents. Applied Artificial Intelligence 18, 9-10, 921–936.

CASTRO, J., KOLP, M., AND MYLOPOULOS, J. 2001. A requirements-driven development
methodology. In CAiSE. Lecture Notes in Computer Science, vol. 2068. Springer, 108–123.

CHARLES, A., MENEZES, R., AND TOLKSDORF, R. 2004. On the implementation of
swarmlinda. In ACM Southeast Regional Conference. 297–298.

CHIARANDINI, M. 2005. Stochastic local search methods for highly constrained
combinatorial optimisation problems. Ph.D. thesis, Udine, Italy.

CLAIR, G., KADDOUM, E., GLEIZES, M. P., AND PICARD, G. 2008. Self-regulation in self-
organising multi-agent systems for adaptive and intelligent manufacturing control. In
SASO. 107–116.

COSSENTINO, M., GAUD, N., HILAIRE, V., GALLAND, S., AND KOUKAM, A. 2010. Aspecs:
an agent-oriented software process for engineering complex systems. Autonomous Agents
and Multi-Agent Systems 20, 2, 260–304.

COSSENTINO, M. AND POTTS, C. 2002. A case tool supported methodology for the design
of multi-agent systems.

170 Cooperative Self-Organisation for Optimization under Constraints

Bibliography

DARWIN, C. 1859. On the Origin of Species by Means of Natural Selection. John Murray, London.

DAVIN, J. AND MODI, P. J. 2005. Impact of problem centralization in distributed constraint
optimization algorithms. In AAMAS. 1057–1063.

DONGARRA, J. 1988. Performance of various computers using standard linear equations
software in a fortran environment. SIGARCH Comput. Archit. News 16, 1, 47–69.

DONIEC, A., ESPIÉ, S., MANDIAU, R., AND PIECHOWIAK, S. 2005. Dealing with multi-
agent coordination by anticipation: Application to the traffic simulation at junctions. In
EUMAS. 478–479.

DONIEC, A., MANDIAU, R., PIECHOWIAK, S., AND ESPIÉ, S. 2008. A behavioral multi-agent
model for road traffic simulation. Eng. Appl. of AI 21, 8, 1443–1454.

DORIGO, M. AND CARO, G. D. 1999. The Ant Colony Optimization Meta-Heuristic. In New
Ideas in Optimization. McGraw-Hill, 11–32.

DORIGO, M., CARO, G. D., AND STÜTZLE, T. 2000. Ant algorithms. Future Generation Comp.
Syst. 16, 8.

DORIGO, M. AND STÜTZLE, T. 2004. Ant colony optimization. MIT Press.

DRÉO, J., PÉTROWSKI, A., SIARRY, P., AND TAILLARD, E. 2005. Metaheuristics for Hard
Optimization: Methods and Case Studies. Springer.

DUGGAN, J. AND BROWNE, J. 1991. Production activity control: A practical approach to
scheduling. International Journal of Flexible Manufacturing Systems 4, 1, 79–103.

EDMONDS, B. 2005. Using the experimental method to produce reliable self-organised
systems. In Engineering Self-Organising Systems. Lecture Notes in Computer Science, vol.
3464. Springer, 84–99.

EDMONDS, B. AND BRYSON, J. 2004. The insufficiency of formal design methods - the
necessity of an experimental approach - for the understanding and control of complex
mas. In AAMAS. 938–945.

FERBER, J. 1995. Les Systèmes multi-agents: Vers une intelligence collective. InterEditions, Paris.

FORTNOW, L. AND HOMER, S. 2003. A short history of computational complexity. Bulletin
of the EATCS 80, 95–133.

GAILLARD, F., KUBERA, Y., MATHIEU, P., AND PICAULT, S. 2009. A reverse engineering
form for multi agent systems. In ESAW. Lecture Notes in Computer Science, vol. 5485.
Springer, 137–153.

GEORGÉ, J.-P., GLEIZES, M. P., AND GLIZE, P. 2003. Conception de systèmes adaptatifs à
fonctionnalité émergente : la théorie amas. Revue d’Intelligence Artificielle 17, 4, 591–626.

GEORGÉ, J.-P., GLEIZES, M.-P., GLIZE, P., AND RÉGIS, C. 2003. Real-time simulation for
flood forecast: an adaptive multi-agent system staff. In AISB’03 Symposium on Adaptive
Agents and Multi-Agent Systems (AAMAS’03). 109–114.

Cooperative Self-Organisation for Optimization under Constraints 171

Bibliography

GEORGÉ, J.-P., PEYRUQUEOU, S., RÉGIS, C., AND GLIZE, P. 2009. Experiencing self-adaptive
mas for real-time decision support systems. In PAAMS. Advances in Intelligent and Soft
Computing, vol. 55. Springer, 302–309.

GERKEY, B. P. AND MATARIC, M. J. 2002. Sold!: auction methods for multirobot
coordination. IEEE Transactions on Robotics 18, 5, 758–768.

GLEIZES, M. P., CAMPS, V., GEORGÉ, J.-P., AND CAPERA, D. 2008. Engineering systems
which generate emergent functionalities. In EEMMAS. Lecture Notes in Computer
Science, vol. 5049. Springer, 58–75.

GLEIZES, M.-P., CAMPS, V., AND GLIZE, P. 1999. A theory of emergent computation based
on cooperative self-oganization for adaptive artificial systems. In Fourth European Congress
of Systems Science , Valencia Spain.

GLEIZES, M.-P. AND GLIZE, P. 2000. Abrose : Des systèmes multi-agents pour le courtage
adaptatif. In 8ièmes Journées Francophones d’Intelligence Artificielle Distribuée et des Systèmes
Multi-Agents. hermès, 117 – 132.

GLIZE, P. L’adaptation des systèmes à fonctionnalité emergente par auto-organisation
coopérative, hdr, Université Paul Sabatier, Toulouse, France.

GLIZE, P. AND PICARD, G. 2012. Self-organisation in constraint problem solving. In Self-
organising Software: From Natural to Artificial Adaptation. Springer. to be published.

GLOVER, F., KELLY, J. P., AND LAGUNA, M. 1995. Genetic algorithms and tabu search:
Hybrids for optimization. Computers & OR 22, 1, 111–134.

GLOVER, F. AND LAGUNA, M. 1993. Tabu search. In Modern heuristic techniques for
combinatorial problems. John Wiley & Sons, Inc., Chapter 3, 70–150.

GLOVER, F. W. AND KOCHENBERGER, G. A. 2003. Handbook of Metaheuristics (International
Series in Operations Research & Management Science). Springer.

HAGEMAN, J. A., WEHRENS, R., VAN SPRANG, H. A., AND BUYDENS, L. M. C.
2003. Hybrid genetic algorithm-tabu search approach for optimising multilayer optical
coatings. Analytica Chimica Acta 490, 1-2, 211 – 222.

HANSEN, K. M., ZHANG, W., AND INGSTRUP, M. 2008. Towards self-managed executable
petri nets. In SASO. 287–296.

HENDERSON-SELLERS, B. AND GIORGINI, P. 2005. Agent-oriented methodologies. Information
Science Reference.

HEYLIGHEN, F. 1992. Evolution, selfishness and cooperation; selfish memes and the
evolution of cooperation. Journal of Ideas 2, 4, 70–84.

HIRAYAMA, K. AND YOKOO, M. 2005. The distributed breakout algorithms. Artificial
Intelligence 161, 1-2, 89–115.

172 Cooperative Self-Organisation for Optimization under Constraints

Bibliography

HUBERMAN, B. A. 1991. The performance of cooperative processes. In Emergent computation:
Self-organizing, Collective, and cooperative phenomena in Natural and Artificial Computing
networks, Special issue of Physica D. MIT Press, 38–47.

JAMES, T., REGO, C., AND GLOVER, F. 2009. A cooperative parallel tabu search algorithm
for the quadratic assignment problem. European Journal of Operational Research 195, 3, 810–
826.

JAT, S. AND YANG, S. 2010. A hybrid genetic algorithm and tabu search approach for post
enrolment course timetabling. Journal of Scheduling, 1–21.

JELASITY, M. AND BABAOGLU, Ö. 2006. T-man: Gossip-based overlay topology
management. In Engineering Self-Organising Systems. Lecture Notes in Computer Science,
vol. 3910. Springer, 1–15.

KADDOUM, E., GLEIZES, M.-P., GEORGÉ, J.-P., AND PICARD, G. 2009. Characterizing
and evaluating problem solving self-* systems. In The First International Conference on
Adaptive and Self-adaptive Systems and Applications (ADAPTIVE 2009). CPS Production -
IEEE Computer Society, (electronic medium).

KADDOUM, E., MARTINEZ, Y., WAUTERS, T., VERBEECK, K., NOWÉ, A., CAUSMAECKER,
P. D., BERGHE, G. V., GLEIZES, M.-P., AND GEORGÉ, J.-P. 2010. Adaptive methods for
flexible job shop scheduling with due-dates, release-dates and machine perturbations.

KADDOUM, E., RAIBULET, C., GEORGÉ, J.-P., PICARD, G., AND GLEIZES, M.-P. 2010.
Criteria for the evaluation of self-* systems. In Workshop on Software Engineering for
Adaptive and Self-Managing Systems (at ICSE 2010). ACM, 29–38.

KAELBLING, L. P., LITTMAN, M. L., AND MOORE, A. W. 1996. Reinforcement learning: A
survey. CoRR cs.AI/9605103.

KENDALL, E. A. 2001. Agent software engineering with role modelling. In AOSE. Lecture
Notes in Computer Science, vol. 1957. Springer, 163–170.

KENNEDY, J. 2010. Particle swarm optimization. In Encyclopedia of Machine Learning. 760–
766.

KENNEDY, J. AND EBERHART, R. C. 2001. Swarm Intelligence. Morgan Kaufmann.

KIRKPATRICK, S., JR., D. G., AND VECCHI, M. P. 1983. Optimization by simmulated
annealing. Science 220, 4598, 671–680.

LACOUTURE, J., NOËL, V., ARCANGELI, J.-P., AND GLEIZES, M. P. 2011. Engineering agent
frameworks: An application in multi-robot systems. In PAAMS. Advances in Intelligent
and Soft Computing, vol. 88. Springer, 79–85.

LEMOUZY, S. 2011. Systèmes interactifs auto-adaptatifs par systèmes multi-agents auto-
organisateurs : application à la personnalisation de l’accés à l’information. Ph.D. thesis,
Université de Toulouse (Paul Sabatier), France.

Cooperative Self-Organisation for Optimization under Constraints 173

Bibliography

LINK-PEZET, J., GLIZE, P., AND GLEIZES, M. P. 2000. Abrose: An adaptive multi-agent tool
for electronic commerce. In WETICE. 59–66.

LIU, J., JING, H., AND TANG, Y. Y. 2002. Multi-agent oriented constraint satisfaction.
Artificial Intelligence 136, 1, 101–144.

LOOR, P. D. AND CHEVAILLIER, P. 2003. Solving distributed and dynamic contraints using
an emotional metaphor : Application to the timetabling problem. In 5th EURO/INFORM
international conference, new opportunities for operations research. 144.

LYNCH, N. A. 1996. Distributed Algorithms. Morgan Kaufmann.

MADUREIRA, A., SANTOS, J., AND PEREIRA, I. 2009. A hybrid intelligent system for
distributed dynamic scheduling. In Natural Intelligence for Scheduling, Planning and Packing
Problems. 295–324.

MAHER, M. L. AND DE SILVA GARZA, A. G. 1997. Case-based reasoning in design. IEEE
Expert 12, 2, 34–41.

MAILLER, R. AND LESSER, V. R. 2006. Asynchronous partial overlay: A new algorithm for
solving distributed constraint satisfaction problems. J. Artif. Intell. Res. (JAIR) 25, 529–576.

MAMEI, M. AND ZAMBONELLI, F. 2005. Programming stigmergic coordination with the
tota middleware. In AAMAS. 415–422.

MARTINEZ, Y., WAUTERS, T., CAUSMAECKER, P. D., NOWÉ, A., VERBEECK, K., BELLO, R.,
AND SUAREZ, J. 2010. Reinforcement learning approaches for the parallel machines job
shop scheduling problem. In Proceedings of the Cuba-Flanders Workshop on Machine Learning
and Knowledge Discovery.

MATSUI, T., MATSUO, H., SILAGHI, M., HIRAYAMA, K., AND YOKOO, M. 2008. Resource
constrained distributed constraint optimization with virtual variables. In AAAI. 120–125.

MCGINTY, L. AND SMYTH, B. 2001. Collaborative case-based reasoning: Applications in
personalised route planning. In ICCBR. Lecture Notes in Computer Science, vol. 2080.
Springer, 362–376.

MEIGNAN, D. 2008. Une approche organisationnelle et multi-agent pour la modélisation
et l’implantation de métaheuristiques: Application aux problèmes d’optimisation de
réseaux de transports. Ph.D. thesis, Laboratoire Systèmes et Transport - Université de
Technologie de Belfort-Montbéliard.

MEIGNAN, D., CRÉPUT, J.-C., AND KOUKAM, A. 2008. A coalition-based metaheuristic for
the vehicle routing problem. In IEEE Congress on Evolutionary Computation. 1176–1182.

MEISELS, A., KAPLANSKY, E., RAZGON, I., AND ZIVAN, R. 2002. Comparing performance
of distributed constraints processing algorithms. In AAMAS-02 Workshop on Distributed
Constraint Reasoning. Number 5. 86–93.

174 Cooperative Self-Organisation for Optimization under Constraints

Bibliography

MINTON, S., JOHNSTON, M. D., PHILIPS, A. B., AND LAIRD, P. 1992. Minimizing conflicts:
A heuristic repair method for constraint satisfaction and scheduling problems. Artif.
Intell. 58, 1-3, 161–205.

NOEL, V. 2011. Component-based software architectures and multi-agent systems: Mutual
and complementary contributions for supporting software development (to appear).
Ph.D. thesis, Université de Toulouse (Paul Sabatier), France.

NOEL, V. AND ARCANGELI, J.-P. 2011. Frameworks, architectures et composants: revisiter
le développement de systèmes multi- agents. In Conférence Francophone sur les Architectures
Logicielles (CAL). Laboratoire d’Informatique Fondamentale de Lille, 23–32.

NOWOSTAWSKI, M. AND POLI, R. 1999. Parallel genetic algorithm taxonomy. In KES. 88–92.

OMICINI, A. 2001. Soda: Societies and infrastructures in the analysis and design of agent-
based systems. In AOSE. Lecture Notes in Computer Science, vol. 1957. Springer, 185–193.

OUELHADJ, D. AND PETROVIC, S. 2009. A survey of dynamic scheduling in manufacturing
systems. J. Scheduling 12, 4, 417–431.

PAPADIMITRIOU, C. H., SCHÄFFER, A. A., AND YANNAKAKIS, M. 1990. On the complexity
of local search (extended abstract). In STOC. 438–445.

PARUNAK, H. V. D. AND BRUECKNER, S. 2004. Engineering swarming systems.
Methodologies and Software Engineering for Agent Systems 11, 341–376.

PARUNAK, V. D. 1987. Manufacturing Experience with the Contract Net. In Distributed
Artificial Intelligence. Pitman Publishing: London and Morgan Kaufmann: San Mateo, CA,
285–310.

PAVÓN, J. AND GÓMEZ-SANZ, J. J. 2003. Agent oriented software engineering with
ingenias. In CEEMAS. Lecture Notes in Computer Science, vol. 2691. Springer, 394–403.

PEZZELLA, F., MORGANTI, G., AND CIASCHETTI, G. 2008. A genetic algorithm for the
flexible job-shop scheduling problem. Computers & OR 35, 10, 3202–3212.

PICARD, G. 2004. Méthodologie de développement de systèmes multi-agents adaptatifs et
conception de logiciels à fonctionnalité émergente. Ph.D. thesis, Université Paul Sabatier,
Toulouse, France.

PICARD, G., BERNON, C., AND GLEIZES, M. P. 2005. Emergent timetabling organization. In
CEEMAS. Lecture Notes in Computer Science, vol. 3690. Springer, 440–449.

PICARD, G. AND GLIZE, P. 2006. Model and analysis of local decision based on cooperative
self-organization for problem solving. Multiagent and Grid Systems 2, 3, 253–265.

PLAZA, E., ARCOS, J. L., AND MARTIN, F. 1997. Cooperative Case-Based Reasoning. Vol. 1221.
Spriger-Verlag, 180–201.

PLAZA, E. AND MCGINTY, L. 2005. Distributed case-based reasoning. Knowledge Eng.
Review 20, 3, 261–265.

Cooperative Self-Organisation for Optimization under Constraints 175

Bibliography

PRASAD, M. V. N. 2000. Distributed case-based learning. In ICMAS. 222–230.

PRASAD, M. V. N., LESSER, V. R., AND LANDER, S. 1996. Retrieval and reasoning in
distributed case bases. Journal of Visual Communication and Image Representation, Special
Issue on Digital Libraries 7, 1, 74–87.

RAJABINASAB, A. AND MANSOUR, S. 2011. Dynamic flexible job shop scheduling with
alternative process plans: an agent-based approach. The International Journal of Advanced
Manufacturing Technology 54, 1091–1107.

ROBERTSON, P., LADDAGA, R., AND SHROBE, H. E. 2001. Introduction: The first
international workshop on self-adaptive software. In IWSAS. Lecture Notes in Computer
Science, vol. 1936. Springer, 1–10.

ROUGEMAILLE, S., ARCANGELI, J.-P., GLEIZES, M. P., AND MIGEON, F. 2009. Adelfe
design, amas-ml in action. In ESAW. Lecture Notes in Computer Science, vol. 5485.
Springer, 105–120.

ROUGEMAILLE, S., MIGEON, F., MAUREL, C., AND GLEIZES, M. P. 2008. Model driven
engineering for designing adaptive multi-agents systems. In ESAW. Lecture Notes in
Computer Science, vol. 4995. Springer, 318–332.

RUSSELL, S. AND NORVIG, P. 2003. Artificial Intelligence: A Modern Approach, 2nd edition ed.
Prentice-Hall, Englewood Cliffs, NJ.

SERUGENDO, G. D. M., GLEIZES, M. P., AND KARAGEORGOS, A. 2005. Self-organization in
multi-agent systems. Knowledge Eng. Review 20, 2, 165–189.

SERUGENDO, G. D. M., GLEIZES, M. P., AND KARAGEORGOS, A. 2006. Self-organisation
and emergence in mas: An overview. Informatica (Slovenia) 30, 1, 45–54.

SHEN, W., HAO, Q., YOON, H. J., AND NORRIE, D. H. 2006. Applications of agent-
based systems in intelligent manufacturing: An updated review. Advanced Engineering
Informatics 20, 4, 415–431.

SILAGHI, M.-C. AND YOKOO, M. 2009. Adopt-ing: unifying asynchronous distributed
optimization with asynchronous backtracking. Autonomous Agents and Multi-Agent
Systems 19, 2, 89–123.

SMITH, R. G. 1980. The contract net protocol: High-level communication and control in a
distributed problem solver. Computers, IEEE Transactions on C-29, 12, 1104 –1113.

SUTTON, R. S. 1999. Reinforcement learning: Past, present and future. In SEAL. Lecture
Notes in Computer Science, vol. 1585. Springer, 195–197.

TALBI, E.-G. 2009. Metaheuristics - From Design to Implementation. Wiley.

TAMILARASI, A. AND KUMAR, T. A. 2010. An enhanced genetic algorithm with simulated
annealing for job-shop scheduling. International Journal of Engineering, Science and
Technology 2, 1, 144–151.

176 Cooperative Self-Organisation for Optimization under Constraints

Bibliography

VALCKENAERS, P., HADELI, K., GERMAIN, B. S., VERSTRAETE, P., AND BRUSSEL, H. V.
2006. Emergent short-term forecasting through ant colony engineering in coordination
and control systems. Advanced Engineering Informatics 20, 3, 261–278.

VAN PETEGHEM, V. AND VANHOUCKE, M. 2008. A genetic algorithm for the multi-mode
resource-constrained project scheduling problem. Working papers of faculty of economics
and business administration, ghent university, belgium, Ghent University, Faculty of
Economics and Business Administration.

VERBEECK, K. 2004. Coordinated exploration in multi-agent reinforcement learning. Ph.D.
thesis, COMO, Vrije Universiteit Brussel, Belgium.

WANG, Y.-C. AND USHER, J. M. 2005. Application of reinforcement learning for agent-
based production scheduling. Eng. Appl. of AI 18, 1, 73–82.

WAUTERS, T., MARTINEZ, Y., CAUSMAECKER, P. D., NOWÉ, A., AND VERBEECK, K.
2010. Reinforcement learning approaches for the parallel machines job shop scheduling
problem. International conference on interdisciplinary research on technology, education
and communication, Kortrijk, 25-27 May 2010.

WAUTERS, T., VERBEECK, K., BERGHE, G. V., AND CAUSMAECKER, P. D. 2011. Learning
agents for the multi-mode project scheduling problem. JORS 62, 2, 281–290.

WEBER, W., RABAEY, J. M., AND AARTS, E. 2005. Ambient Intelligence. Springer.

WEISS, G. 1999. Multiagent Systems, A modern Approach to Distributed Artificial Systems. MIT
Press.

WELCOMME, J.-B., GLEIZES, M. P., AND REDON, R. 2006. Self-regulating multi-agent
system for multi-disciplinary optimisation process. In EUMAS. CEUR Workshop
Proceedings, vol. 223. CEUR-WS.org.

WELCOMME, J.-B., GLEIZES, M.-P., AND REDON, R. 2009. A self-organising multi-
agent system managing complex system design application to conceptual aircraft design.
International Transactions on Systems Science and Applications, Self-organized Networked
Systems 5, 3, 208–221.

WEYNS, D., BOUCKÉ, N., HOLVOET, T., AND DEMARSIN, B. 2007. Dyncnet: A protocol for
dynamic task assignment in multiagent systems. In SASO. 281–284.

WEYNS, D., HOLVOET, T., SCHELFTHOUT, K., AND WIELEMANS, J. 2008. Decentralized
control of automatic guided vehicles: applying multi-agent systems in practice. In
OOPSLA Companion. 663–674.

WILF, H. S. 1986. Algorithms and complexity. Prentice Hall.

WINSTON, W. L. 2003. Operations Research: Applications and Algorithms, 4 ed. Duxbury Press.

WOOLDRIDGE, M. J. 2009. An Introduction to MultiAgent Systems (2. ed.). Wiley.

WU, B. 1994. Manufacturing Systems Design & Analysis: Context & Techniques. Springer.

Cooperative Self-Organisation for Optimization under Constraints 177

Bibliography

WÜRTZ, R. P. 2008. Organic Computing. Springer.

XIANG, W. AND LEE, H. P. 2008. Ant colony intelligence in multi-agent dynamic
manufacturing scheduling. Engineering Applications of Artificial Intelligence 21, 1, 73–85.

ZAMBONELLI, F., JENNINGS, N., AND WOOLDRIDGE, M. 2003. Developing multiagent
systems: The gaia methodology. ACM Trans. Softw. Eng. Methodol. 12, 3, 317–370.

178 Cooperative Self-Organisation for Optimization under Constraints

List of Figures

1.1 Classical Optimization Methods Classification [Talbi, 2009] 20

1.2 Example of an execution of the Branch & Bound on the Travelling Salesman
problem with 4 cities . 21

1.3 Meta-heuristics Classification from Johann Dréo via Wikimedia Commons . . 23

1.4 The principle of different Single Point Search Techniques [Meignan, 2008] . . . 24

1.5 From a DCOP (a) description to the Asynchronous Distributed Constraint
Optimization (ADOPT) (b) Depth-First Search (DFS) tree and communication
graph . 30

1.6 Resolution of the 3-colouring graph problem using OptAPO 32

1.7 Shortest path fund by an ant colony . 34

1.8 Functional & Physical decomposition of the manufacturing control problem . . 36

1.9 DynCNET Basic Protocol [Weyns et al., 2007] 38

1.10 The marking of the most attractive candidate solution and the evaporation of
those not rediscovered . 39

1.11 The Reinforcement Learning mechanism where an agent A receives an input
(i) describing the current state (s) of the environment. Given its Decision
(D) module, the agent chooses an action (a) that changes the state of the
environment. The value of this state transition is then sent back to the agent
through a reinforcement signal (r) . 40

1.12 The Case-Based Reasoning Cycle [Aamodt and Plaza, 1994] 43

1.13 A task-method decomposition of the four steps of the CBR process [Aamodt
and Plaza, 1994] . 44

2.1 Adaptation: changing the function of the system by changing the organisation 54

2.2 The different modules of a cooperative agent [Bernon et al., 2004] 55

2.3 ADELFE Methodology [Rougemaille et al., 2009] 59

2.4 AMAS Meta-Model [Rougemaille et al., 2008] 61

Cooperative Self-Organisation for Optimization under Constraints 179

List of Figures

2.5 AMAS Modelling Language (AMAS-ML) agent description [Rougemaille et al.,
2008] . 61

2.6 AMAS-ML diagrams for the behavioural rules of an agent [Rougemaille et al.,
2008] . 62

2.7 A minimal µ-architecture of an agent . 64

3.1 Example of agent interactions . 74

3.2 Inform about incompetence Non Cooperative Situation (NCS) rule diagram . . 76

3.3 Inform about incompetence and send the address of the qualified agent NCS
rule diagram . 76

3.4 Improving agent acquaintances NCS rule diagram 77

3.5 Informing other agents of the agent interests NCS rule diagram 77

3.6 Improving agent acquaintances or information NCS rule diagram as current
information is insufficient to reach the agent goal 77

3.7 Searching for partnership NCS rule diagram 78

3.8 Acquaintances enhancement NCS rule diagram 78

3.9 Looking to be helpful NCS rule diagram . 78

3.10 Conflict NCS rules diagram . 79

3.11 Concurrence NCS rules diagram . 79

3.12 Three NCS detected in scheduling in the manufacturing control problem . . . 80

3.13 The AMAS-ML description of agents having the Constrained Role 81

3.14 The AMAS-ML description of agents having the Service Role 82

3.15 Characteristics µ-components for constrained and service roles 85

3.16 Representations µ-components for constrained and service roles 85

4.1 A radar chart to compare self-? systems . 100

4.2 How does the system reach a solution when confronted to a new problem? . 100

4.3 How does the system adapt to change? . 101

5.1 A factory representation . 108

5.2 Container agent description using AMAS-ML 114

5.3 Container agent states . 115

5.4 The select appropriate qualified station Cooperative Rule for solving the stations
concurrence NCS . 116

5.5 The request alternative station Cooperative Rule for solving the uselessness of
a usage/future usage request NCS . 117

5.6 The exploit improvements Cooperative Rule for solving the suboptimal
affectation NCS . 117

180 Cooperative Self-Organisation for Optimization under Constraints

List of Figures

5.7 The searching for new qualified station Cooperative Rule for solving the
knowledge unproductiveness NCS . 118

5.8 Station agent description using AMAS-ML . 119

5.9 Station agent states . 120

5.10 The help current most critical Container Cooperative Rule for solving the conflict
NCS . 120

5.11 The help future most critical Container Cooperative Rule for solving the conflict
NCS . 121

5.12 The schedules computed by SAFlex for the two studied instances without
(A.) and with (B.) perturbations) (IHM designed by Tony Wauters from the
Vakgroep Informatietechnologie, Departement Industrieel Ingenieur, KaHo
Sint-Lieven, Gent - Belgium. 123

5.13 Evolution of the computation Time (ms) per fabrication cycle for the instance
with perturbations . 124

5.14 The progress of treated container throughout the system execution 124

5.15 Approaches Comparison . 129

5.16 Linear approximation on small intervals of non-linear complex functions . . . 134

5.17 Linear approximation of the weight of a given characteristic Ck 134

5.18 The different interacting entities in SAPBR . 135

5.19 Known Element Agent description using AMAS-ML 140

5.20 The request adjustment service Cooperative Rule for solving the better
interactions partial Uselessness NCS . 141

5.21 Known Characteristic Agent description using AMAS-ML 142

5.22 The request adjustment service Cooperative Rule for solving the Uselessness NCS 142

5.23 Characteristic Weight Agent description using AMAS-ML 143

5.24 The respond to the most critical agent Cooperative Rule for solving the requests
conflict NCS . 144

5.25 The adjust value Cooperative Rule for solving the partial uselessness of the
estimated value NCS . 145

5.26 The percentage of estimated sought characteristics classified accordingly to
the distance (|realValue−estimatedValue|

valueIntervalWidth ∗ 100) between the estimated value and the
original value . 147

Cooperative Self-Organisation for Optimization under Constraints 181

List of Tables

5.1 Messages in SAFlex . 111

5.2 Average results for SAFlex . 122

5.3 Standard deviation over 100 executions . 122

5.4 Average results for SAFlex applied to two instances (simple and large) 125

5.5 Summary of the considered and not considered evaluation criteria introduced
in chapter 4 for the evaluation of SAFlex. 126

5.6 Average Calculation Time for instances without and with perturbations . . . 130

5.7 Design Domain . 132

5.8 Example of a Design Domain with the definition of a new Element 132

5.9 First sub-problem of the Design Domain Example 133

5.10 Second sub-problem of the Design Domain Example 133

5.11 Messages in SAPBR . 136

5.12 The different possible cases to compute the disorder of a Known Characteristic
in a Sought Characteristic . 139

5.13 The number of estimated sought characteristics for two computation
formulas of the distance. The number is divided into three classes depending
on the distance between the estimated value and the original value and the
percentage of values estimated with a distance less than 13% 146

5.14 The average time needed by a multi-agent system to estimate the value of
a Sought Characteristic, the total computation time and number of agents for
each file. 148

5.15 Summary of the considered and not considered evaluation criteria introduced
in chapter 4 for the evaluation of SAPBR. 149

Cooperative Self-Organisation for Optimization under Constraints 183

	Acronyms
	Introduction Générale
	General Introduction
	State Of the Art: Optimization under Constraints
	Introduction
	Constraint Optimization Problem
	Solving Techniques Overview
	Uninformed Search
	Informed Search

	Heuristics and Meta-Heuristics
	Single Point Search Algorithms
	Population-Based Search Algorithms
	Analysis of Meta-heuristics

	Hybrid Meta-Heuristics
	Analysis of Hybrid Meta-Heuristics

	Distributed Constraint Optimization Problem
	Variables Agentification
	Asynchronous Distributed Constraint Optimisation (ADOPT)
	Optimal Asynchronous Partial Overlay (OptAPO)
	Analysis

	Nature Inspired
	Ant Colony Optimization
	Particle Swarm Optimization
	Analysis

	Domain Entities Agentification
	Direct Communication: Dynamic Contract-Net Protocol
	Indirect Communication: Stigmergy
	Environment Feedback: Reinforcement Learning

	MAS and Meta-heuristics

	Case Based Reasoning Solving Technique
	Analysis

	Conclusion & Discussion

	Theory & Tools for the Study
	Introduction
	The AMAS Theory: Cooperative Self-Organisation
	The Theorem of Functional Adequacy
	Consequence of the Functional Adequacy Theorem
	Achieving Self-Adaptation and Self-Organisation
	Architecture of an AMAS Agent
	Interaction Module
	Skill Module
	Representation Module
	Aptitude Module
	Cooperation Module

	Internal Functioning of an AMAS Agent

	The ADELFE Methodology
	AMAS Modelling Language
	MAY: Make Agents Yourself
	Conclusion and Analysis

	A Generic Agent Model for Complex Problem Solving
	Introduction
	Agent Roles
	Constrained Role
	Service Role

	Agent Interaction and Communication
	Agent Criticality
	Cooperative Rules
	Incompetence
	Unproductiveness
	Uselessness
	Conflict
	Concurrence
	Illustration of some Non Cooperative Situations

	Specification of Agent Modules using AMAS-ML
	MAY Agent Architecture
	Conclusion

	Criteria for the Evaluation of Self-Adaptive Multi-Agent Systems for Complex Problem Solving
	Introduction
	Evaluation of the System at Runtime
	Performance metrics
	Homeostasis & Robustness

	Intrinsic Characterization of the System
	Computational Complexity
	Decentralisation and Local Algorithms

	Development Methodologies Characterization
	Comparative Evaluation
	Main Difference between Self- and Classical Systems
	Conclusion

	Application, Experimentation & Validation
	Introduction
	Manufacturing Control Scheduling Problem
	Dynamic Flexible Job Shop Problem
	The Adaptive Multi-Agent System
	Agent Interactions & Communications
	Agent Criticality
	Data Types
	Container Agent
	Station Agent

	SAFlex Results & Discussions
	Comparative Study & Discussion
	 Learning/Optimization Approach
	On-line Forward Optimization
	Experimental Setup
	Discussion

	Design of Complex Product
	Problem Formalization
	The Adaptive Multi-Agent System
	Agent Interactions
	Agent Criticality
	Data Types & Tools
	Known Element Agent
	Known Characteristic Agent
	Characteristic Weight Agent

	SAPBR Results & Discussions

	AMAS4Opt Evaluation
	Conclusion & Perspectives

	Conclusion Générale
	Conclusion & Perspectives
	List of figures
	List of tables

