1,617 research outputs found

    Hierarchical reinforcement learning as creative problem solving

    Get PDF
    publisher: Elsevier articletitle: Hierarchical reinforcement learning as creative problem solving journaltitle: Robotics and Autonomous Systems articlelink: http://dx.doi.org/10.1016/j.robot.2016.08.021 content_type: article copyright: © 2016 Elsevier B.V. All rights reserved

    Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes

    Get PDF
    I argue that data becomes temporarily interesting by itself to some self-improving, but computationally limited, subjective observer once he learns to predict or compress the data in a better way, thus making it subjectively simpler and more beautiful. Curiosity is the desire to create or discover more non-random, non-arbitrary, regular data that is novel and surprising not in the traditional sense of Boltzmann and Shannon but in the sense that it allows for compression progress because its regularity was not yet known. This drive maximizes interestingness, the first derivative of subjective beauty or compressibility, that is, the steepness of the learning curve. It motivates exploring infants, pure mathematicians, composers, artists, dancers, comedians, yourself, and (since 1990) artificial systems.Comment: 35 pages, 3 figures, based on KES 2008 keynote and ALT 2007 / DS 2007 joint invited lectur

    AI Researchers, Video Games Are Your Friends!

    Full text link
    If you are an artificial intelligence researcher, you should look to video games as ideal testbeds for the work you do. If you are a video game developer, you should look to AI for the technology that makes completely new types of games possible. This chapter lays out the case for both of these propositions. It asks the question "what can video games do for AI", and discusses how in particular general video game playing is the ideal testbed for artificial general intelligence research. It then asks the question "what can AI do for video games", and lays out a vision for what video games might look like if we had significantly more advanced AI at our disposal. The chapter is based on my keynote at IJCCI 2015, and is written in an attempt to be accessible to a broad audience.Comment: in Studies in Computational Intelligence Studies in Computational Intelligence, Volume 669 2017. Springe

    Robot Mindreading and the Problem of Trust

    Get PDF
    This paper raises three questions regarding the attribution of beliefs, desires, and intentions to robots. The first one is whether humans in fact engage in robot mindreading. If they do, this raises a second question: does robot mindreading foster trust towards robots? Both of these questions are empirical, and I show that the available evidence is insufficient to answer them. Now, if we assume that the answer to both questions is affirmative, a third and more important question arises: should developers and engineers promote robot mindreading in view of their stated goal of enhancing transparency? My worry here is that by attempting to make robots more mind-readable, they are abandoning the project of understanding automatic decision processes. Features that enhance mind-readability are prone to make the factors that determine automatic decisions even more opaque than they already are. And current strategies to eliminate opacity do not enhance mind-readability. The last part of the paper discusses different ways to analyze this apparent trade-off and suggests that a possible solution must adopt tolerable degrees of opacity that depend on pragmatic factors connected to the level of trust required for the intended uses of the robot
    • …
    corecore