13 research outputs found

    Parameterizing the permanent: Hardness for fixed excluded minors

    Get PDF

    Approximating the Center Ranking Under Ulam

    Get PDF

    Almost Shortest Paths with Near-Additive Error in Weighted Graphs

    Get PDF
    Let G=(V,E,w)G=(V,E,w) be a weighted undirected graph with nn vertices and mm edges, and fix a set of ss sources SVS\subseteq V. We study the problem of computing {\em almost shortest paths} (ASP) for all pairs in S×VS \times V in both classical centralized and parallel (PRAM) models of computation. Consider the regime of multiplicative approximation of 1+ϵ1+\epsilon, for an arbitrarily small constant ϵ>0\epsilon > 0 . In this regime existing centralized algorithms require Ω(min{Es,nω})\Omega(\min\{|E|s,n^\omega\}) time, where ω<2.372\omega < 2.372 is the matrix multiplication exponent. Existing PRAM algorithms with polylogarithmic depth (aka time) require work Ω(min{Es,nω})\Omega(\min\{|E|s,n^\omega\}). Our centralized algorithm has running time O((m+ns)nρ)O((m+ ns)n^\rho), and its PRAM counterpart has polylogarithmic depth and work O((m+ns)nρ)O((m + ns)n^\rho), for an arbitrarily small constant ρ>0\rho > 0. For a pair (s,v)S×V(s,v) \in S\times V, it provides a path of length d^(s,v)\hat{d}(s,v) that satisfies d^(s,v)(1+ϵ)dG(s,v)+βW(s,v)\hat{d}(s,v) \le (1+\epsilon)d_G(s,v) + \beta \cdot W(s,v), where W(s,v)W(s,v) is the weight of the heaviest edge on some shortest svs-v path. Hence our additive term depends linearly on a {\em local} maximum edge weight, as opposed to the global maximum edge weight in previous works. Finally, our β=(1/ρ)O(1/ρ)\beta = (1/\rho)^{O(1/\rho)}. We also extend a centralized algorithm of Dor et al. \cite{DHZ00}. For a parameter κ=1,2,\kappa = 1,2,\ldots, this algorithm provides for {\em unweighted} graphs a purely additive approximation of 2(κ1)2(\kappa -1) for {\em all pairs shortest paths} (APASP) in time O~(n2+1/κ)\tilde{O}(n^{2+1/\kappa}). Within the same running time, our algorithm for {\em weighted} graphs provides a purely additive error of 2(κ1)W(u,v)2(\kappa - 1) W(u,v), for every vertex pair (u,v)(V2)(u,v) \in {V \choose 2}, with W(u,v)W(u,v) defined as above. On the way to these results we devise a suit of novel constructions of spanners, emulators and hopsets

    Being Fast Means Being Chatty: The Local Information Cost of Graph Spanners

    Full text link
    We introduce a new measure for quantifying the amount of information that the nodes in a network need to learn to jointly solve a graph problem. We show that the local information cost (LIC\textsf{LIC}) presents a natural lower bound on the communication complexity of distributed algorithms. For the synchronous CONGEST-KT1 model, where each node has initial knowledge of its neighbors' IDs, we prove that Ω(LICγ(P)/logτlogn)\Omega(\textsf{LIC}_\gamma(P)/ \log\tau \log n) bits are required for solving a graph problem PP with a τ\tau-round algorithm that errs with probability at most γ\gamma. Our result is the first lower bound that yields a general trade-off between communication and time for graph problems in the CONGEST-KT1 model. We demonstrate how to apply the local information cost by deriving a lower bound on the communication complexity of computing a (2t1)(2t-1)-spanner that consists of at most O(n1+1/t+ϵ)O(n^{1+1/t + \epsilon}) edges, where ϵ=Θ(1/t2)\epsilon = \Theta(1/t^2). Our main result is that any O(poly(n))O(\textsf{poly}(n))-time algorithm must send at least Ω~((1/t2)n1+1/2t)\tilde\Omega((1/t^2) n^{1+1/2t}) bits in the CONGEST model under the KT1 assumption. Previously, only a trivial lower bound of Ω~(n)\tilde \Omega(n) bits was known for this problem. A consequence of our lower bound is that achieving both time- and communication-optimality is impossible when designing a distributed spanner algorithm. In light of the work of King, Kutten, and Thorup (PODC 2015), this shows that computing a minimum spanning tree can be done significantly faster than finding a spanner when considering algorithms with O~(n)\tilde O(n) communication complexity. Our result also implies time complexity lower bounds for constructing a spanner in the node-congested clique of Augustine et al. (2019) and in the push-pull gossip model with limited bandwidth

    Total Completion Time Minimization for Scheduling with Incompatibility Cliques

    Full text link
    This paper considers parallel machine scheduling with incompatibilities between jobs. The jobs form a graph and no two jobs connected by an edge are allowed to be assigned to the same machine. In particular, we study the case where the graph is a collection of disjoint cliques. Scheduling with incompatibilities between jobs represents a well-established line of research in scheduling theory and the case of disjoint cliques has received increasing attention in recent years. While the research up to this point has been focused on the makespan objective, we broaden the scope and study the classical total completion time criterion. In the setting without incompatibilities, this objective is well known to admit polynomial time algorithms even for unrelated machines via matching techniques. We show that the introduction of incompatibility cliques results in a richer, more interesting picture. Scheduling on identical machines remains solvable in polynomial time, while scheduling on unrelated machines becomes APX-hard. Furthermore, we study the problem under the paradigm of fixed-parameter tractable algorithms (FPT). In particular, we consider a problem variant with assignment restrictions for the cliques rather than the jobs. We prove that it is NP-hard and can be solved in FPT time with respect to the number of cliques. Moreover, we show that the problem on unrelated machines can be solved in FPT time for reasonable parameters, e.g., the parameter pair: number of machines and maximum processing time. The latter result is a natural extension of known results for the case without incompatibilities and can even be extended to the case of total weighted completion time. All of the FPT results make use of n-fold Integer Programs that recently have received great attention by proving their usefulness for scheduling problems

    Parallel Algorithms for Small Subgraph Counting

    Get PDF
    Subgraph counting is a fundamental problem in analyzing massive graphs, often studied in the context of social and complex networks. There is a rich literature on designing efficient, accurate, and scalable algorithms for this problem. In this work, we tackle this challenge and design several new algorithms for subgraph counting in the Massively Parallel Computation (MPC) model: Given a graph GG over nn vertices, mm edges and TT triangles, our first main result is an algorithm that, with high probability, outputs a (1+ε)(1+\varepsilon)-approximation to TT, with optimal round and space complexity provided any Smax(m,n2/m)S \geq \max{(\sqrt m, n^2/m)} space per machine, assuming T=Ω(m/n)T=\Omega(\sqrt{m/n}). Our second main result is an O~δ(loglogn)\tilde{O}_{\delta}(\log \log n)-rounds algorithm for exactly counting the number of triangles, parametrized by the arboricity α\alpha of the input graph. The space per machine is O(nδ)O(n^{\delta}) for any constant δ\delta, and the total space is O(mα)O(m\alpha), which matches the time complexity of (combinatorial) triangle counting in the sequential model. We also prove that this result can be extended to exactly counting kk-cliques for any constant kk, with the same round complexity and total space O(mαk2)O(m\alpha^{k-2}). Alternatively, allowing O(α2)O(\alpha^2) space per machine, the total space requirement reduces to O(nα2)O(n\alpha^2). Finally, we prove that a recent result of Bera, Pashanasangi and Seshadhri (ITCS 2020) for exactly counting all subgraphs of size at most 55, can be implemented in the MPC model in O~δ(logn)\tilde{O}_{\delta}(\sqrt{\log n}) rounds, O(nδ)O(n^{\delta}) space per machine and O(mα3)O(m\alpha^3) total space. Therefore, this result also exhibits the phenomenon that a time bound in the sequential model translates to a space bound in the MPC model
    corecore