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Abstract

In the 1960s, statistical physicists discovered a fascinating algorithm for counting perfect matchings in
planar graphs. Valiant later showed that the same problem is #P-hard for general graphs. Since then, the
algorithm for planar graphs was extended to bounded-genus graphs, to graphs excluding K3,3 or K5 as a
minor, and more generally, to any graph class excluding a fixed minor H that can be drawn in the plane with
a single crossing. This stirred up hopes that counting perfect matchings might be polynomial-time solvable
for graph classes excluding any fixed minor H. Alas, in this paper, we show #P-hardness for K8-minor-free
graphs by a simple and self-contained argument.

1 Introduction

A perfect matching in a graph G is an edge-subset M ⊆ E(G) such that every vertex of G has exactly one incident
edge in M . Counting perfect matchings is a very well-studied problem in counting complexity. It already starred
in Valiant’s seminal paper [24] that introduced the complexity class #P, where it was shown that counting perfect
matchings is #P-complete. The problem has driven progress in approximate counting and underlies the so-called
holographic algorithms [25, 6, 4, 5]. It also occurs outside of counting complexity, e.g., in statistical physics, via
the partition function of the dimer model [22, 16, 17]. In algebraic complexity theory, the matrix permanent is
an important algebraic analogue of perfect matchings counts [1]. Indeed, evaluating permanents is equivalent to
counting perfect matchings in bipartite graphs: Given a bipartite input graph G on n+ n vertices with its n× n
bi-adjacency matrix A, the permanent per(A) counts exactly the perfect matchings in G.

Algorithms for restricted graph classes. A long line of research, dating back to the 1960s, identified
structural restrictions on G that facilitate the problem of counting perfect matchings. For the graphs of regular
lattices [22, 16], and more generally, for planar graphs G, it is possible to flip the signs of some entries in the
adjacency matrix to obtain a matrix A such that

√
det(A) counts the perfect matchings in G [17]. The entries

to be flipped are determined by a so-called Pfaffian orientation of G, which can be computed in linear time for
planar graphs. Overall, a polynomial-time algorithm for counting perfect matchings in planar graphs follows, the
so-called FKT method.

Little [18] and Vazirani [27] later generalized the FKT method from planar graphs to the more general class
of graphs excluding K3,3 as a minor. Such graphs can be obtained inductively by “gluing together” planar graphs
and K5. Little showed that K3,3-free graphs still admit a Pfaffian orientation by combining Pfaffian orientations
of the individual parts, and Vazirani later obtained a polynomial-time and poly-logarithmic space algorithm for
finding such an orientation.

Still working with Pfaffian orientations, it was shown by Gallucio and Loebl [14] and Tesler [23] that perfect
matchings can be counted in time 4gnO(1) for graphs G that are embedded on a surface of genus g. In other
words, the problem is fixed-parameter tractable in the parameter g. These algorithms use Pfaffian orientations to
express the number of perfect matchings in G as a linear combination of 4g determinants. (A simplified algorithm
by the authors [11] bypasses the explicit use of Pfaffian orientations and instead reduces in a black-box manner
to 4g instances of counting perfect matchings in planar graphs.)
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The mold of Pfaffian orientations was broken by Straub, Thierauf and Wagner [21], and Curticapean [7],
who independently designed polynomial-time algorithms for counting perfect matchings in graphs excluding a
K5-minor. As such graphs do not necessarily admit Pfaffian orientations, a different algorithmic approach was
needed: In hindsight, the new algorithms transferred the protrusion replacement technique from parameterized
complexity [2] into the counting setting.

Moreover, a standard dynamic programming approach shows that counting perfect matchings is fixed-
parameter tractable in graphs of bounded tree-width t. This can be improved to 2tnO(1) time [26], where the
base 2 is optimal under the strong exponential-time hypothesis [10].

Towards excluding general fixed minors. Every tractable graph class mentioned above excludes some fixed
minor H: Starting from a graph G in the class, it is not possible to obtain that fixed graph H by deleting
edges/vertices and contracting edges. For example, planar graphs exclude K3,3 and K5, bounded-genus graphs
exclude sufficiently large complete graphs, and bounded-treewidth graphs even exclude large grids. It is therefore
natural to ask whether we can count perfect matchings in any graph class excluding fixed minors.

On the positive side, Curticapean [7] and Eppstein and Vazirani [13] lifted the algorithms for K3.3-minor-
free and K5-minor-free graphs to H-minor-free graphs for any graph H that can be drawn in the plane with a
single crossing, which includes H = K3,3 and H = K5. (Note that excluding single-crossing minors H yields
different graph classes than the class of single-crossing graphs themselves. In fact, counting perfect matchings
in graphs with a constant number of crossings can be reduced easily to the FKT method.) These algorithms
run in fixed-parameter tractable time f(k)nO(1) for some function f depending only on the size k of an excluded
single-crossing minor. Note that the exponent of n does not grow with k.

On the negative side, parameterized complexity rules out such fixed-parameter tractable algorithms for
counting perfect matchings in k-apex graphs [11]; these are the graphs that are planar up to deleting k vertices.
More precisely, it was previously shown by the authors that counting perfect matchings is #W[1]-hard on k-apex
graphs, suggesting that algorithms for this problem require ng(k) time for g ∈ ω(1). As k-apex graphs exclude
Kk+5-minors, algorithms for counting perfect matchings in Kt-free graphs in turn require ng(t) time for g ∈ ω(1).
This result however still leaves open the possibility that, for any fixed t ∈ N, some polynomial-time algorithm
counts perfect matchings in Kt-free graphs with an exponent depending on t.

In fact, such algorithms seemed within close reach: Robertson and Seymour’s graph structure theorem [19]
shows that graphs G excluding a fixed H-minor can be obtained as clique-sums of graphs that are near-embeddable
on surfaces of fixed genus. Very roughly speaking, this means that G is glued together from certain pieces, similar
to graphs excluding K3,3 or K5, but with some “upgrades”. These upgrades involve raising the genus in the
decomposition pieces from 0 to some constant depending on H, adding a constant number of apex vertices
(vertices that can connect arbitrarily to the remainder of the piece), and adding a constant number of vortices
(graphs of bounded path-width that are aligned with the boundary of a face).

Algorithms for counting perfect matchings support most of these upgrades: The problem is fixed-parameter
tractable in bounded-genus graphs, while apex vertices can be handled by brute-force in nO(1) time, and the
general gluing operation can be handled similarly as in the simpler case of excluded single-crossing minors. It
only remains to handle vortices. However, even a minimal example of vortices was unresolved: We say that a
ring blowup is a graph obtained from a drawing of a planar graph by cloning each vertex on the outer face into
two copies, as shown in Figure 1. In the terminology of the graph structure theorem, ring blowups are certain
planar graphs with a single vortex. Progress towards polynomial-time algorithms for counting perfect matchings
in H-minor-free graphs was halted because such algorithms were not even known for ring blowups.

Our results. We show that counting perfect matchings remains #P-hard in ring blowups. By known general
results in graph minor theory [15], this implies the existence of a graph H such that counting perfect matchings is
#P-hard in H-minor-free graphs. Additionally, we show that ring blowups exclude K8-minors. (Note that they
can contain K7-minors, as Figure 5 shows.) We then obtain our main theorem:

Theorem 1.1. Counting perfect matchings is #P-hard in graphs excluding K8-minors.

A weaker version of this theorem was previously announced in a survey on parameterized counting [9]. To
prove Theorem 1.1, we reduce from the #P-hard problem of counting perfect matchings in a graph G. Our
reduction hinges upon a particular sign-crossing gadget (see Figure 2) that can be used to remove crossings at
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Figure 1: A ring blowup.

the cost of disrupting the perfect matching count: After inserting a sign-crossing gadget between crossing edges
e, f ∈ E(G), perfect matchings that contain both e and f are counted with a factor −1, and only perfect matchings
containing at most one of e or f are counted properly. Such sign-crossing gadgets were previously used in the
theory of matchgates [3] and in the hardness proof for counting perfect matchings in k-apex graphs [11]. In our
proof, sign-crossings are used to transform G into a ring blowup while preserving the perfect matching count. By
a surprisingly simple construction, we can ensure that sign-crossings come in equivalent pairs, so that any −1
factors introduced by sign-crossings cancel via (−1)2 = 1.

2 Preliminaries

To give a self-contained proof of Theorem 1.1, we first state some preliminaries from counting complexity and graph
minor theory. Graphs G will be undirected and may be edge-weighted; we implicitly consider w : E(G) → Q to
be the weight function. Given a vertex v ∈ V (G), we write I(v) for the set of edges incident with v. Furthermore,
given a set S ⊆ V (G), we write G[S] for the subgraph of G induced by S.

2.1 Counting and gadgets. We define counting problems as functions #A : {0, 1}∗ → Q, where inputs
(graphs, formulas, numbers) are implicitly encoded as bitstrings. For example, #SAT asks to count the satisfying
assignments to Boolean formulas. Likewise, when given as input a graph with edge-weights from a constant-sized1

set W ⊆ Q, the problem #PerfMatch asks to determine the quantity

(2.1) #PerfMatch(G) =
∑

M⊆E(G) is a
perfectmatching

∏
e∈M

w(e).

We say that #A admits a polynomial-time Turing reduction to #B if #A can be solved in polynomial time
with an oracle for #B, and we say that #B is #P-hard if #SAT admits such a reduction to #B. Our hardness
proofs are based on the following theorem:

Theorem 2.1. ([24, 12]) Counting perfect matchings is #P-hard, even for unweighted 3-regular graphs.

Our reductions rely on certain gadgets, so-called matchgates. Most importantly, given a drawing of a not
necessarily planar graph G with crossing edges e, f ∈ E(G), we can replace the crossing by the planar sign-crossing
gadget shown in Figure 2a. The resulting graph essentially counts perfect matchings in G, but with a significant
twist: Any perfect matching M ⊆ E(G) containing both e and f is weighted by an additional factor of −1. In
other words, every perfect matching M is weighted by

χe,f (M) :=

{
−1 {e, f} ⊆M,

1 otherwise.
(2.2)

1Assuming constant size ensures that #PerfMatch(G) can be represented with polynomially many bits.
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(a) The sign-crossing gadget is inserted into a

crossing between edges e, f and drawn into a small
disk to avoid introducing further crossings. We call

e1, e2, f1, f2 the external edges of the gadget.

1 1 −1 01 0

∅

(b) The top row shows, up to symmetry in the last two cases, the

possible configurations with 0, 2 or 4 external edges. The middle
row shows the possible extensions by matchings within the gadget.

The bottom row lists the total weighted sums of these extensions.

Figure 2: The planar sign-crossing gadget introduced by Cai and Gorenstein [3].

Note that a “perfectly planarizing” crossing gadget that does not introduce negative signs would render the
#P-hard problem of counting perfect matchings polynomial-time solvable by reduction to the FKT method. It
can even be shown unconditionally that no such gadget exists [3].

The claimed functionality of the sign-crossing gadget follows from standard techniques in the area of so-called
Holant problems, see [25, 3, 8]. In the following, we give a self-contained proof.

Lemma 2.1. Let G be a weighted graph that is drawn in the plane with crossing edges e, f ∈ E(G) of weight 1,
and let G′ be obtained by inserting a sign-crossing gadget as in Figure 2a. Then, with χe,f as in (2.2), we have

#PerfMatch(G′) =
∑

M⊆E(G) is a
perfectmatching

χe,f (M)
∏
e∈M

w(e).

Proof. Let X = {e1, e2, f1, f2} be the external edges of the sign-crossing gadget S inserted at e, f , as shown in
Figure 2a. Let G′′ = G′−V (S) be the graph obtained from G′ by removing all vertices of S. For a subset T ⊆ X
of external edges, write V (T ) for the endpoints of edges in T . Any perfect matching M ⊆ E(G′) can be obtained
by (i) choosing a subset T ⊆ X to include into M and then (ii) extending the chosen subset T by independently
choosing a perfect matching in S − V (T ) and one in G′′ − V (T ). It follows that

(2.3) #PerfMatch(G′) =
∑
T⊆X

#PerfMatch(S − V (T ))︸ ︷︷ ︸
=:s(T )

· #PerfMatch(G′′ − V (T )).

Now observe that any set T ⊆ X with s(T ) 6= 0 must have even cardinality, as S − V (T ) would otherwise
have an odd number of vertices, and hence, no perfect matchings. The values of s(T ) for sets T ⊆ X of even
cardinality are calculated in Figure 2b: Each column in the figure depicts such a set T in the top row, with the
perfect matchings of S − V (T ) listed below it. The value s(T ) = #PerfMatch(S − V (T )) is then obtained in the
bottom row as the weighted count of the listed perfect matchings.

We see that any T ⊆ X with s(T ) 6= 0 is consistent in that it includes none/both of {e1, e2} and none/both
of {f1, f2}. Given such a consistent set T , define T̃ ⊆ {e, f} by forgetting subscripts, i.e., include e into T̃ iff
{e1, e2} ⊆ T , likewise for f . The term in (2.3) corresponding to T counts precisely those perfect matchings M in
G with M ∩ {e, f} = T̃ , except that s(T ) introduces a factor of −1 if T̃ = {e, f}. This proves the lemma.

If several crossings are replaced by sign-crossing gadgets, Lemma 2.1 can be applied inductively; each gadget
introduces a sign factor. A particularly interesting situation occurs when edges are drawn as curves rather than
straight lines, as two edges e and f may then cross more than once. This will prove very useful in the next section.

Corollary 1. Let G be an unweighted graph that is drawn in the plane. Choose t ∈ N crossings and write
ei, fi ∈ E(G) for the edges involved in the i-th crossing. Let G′ be obtained by inserting a sign-crossing gadget at



each of the t chosen crossings. Then we have

#PerfMatch(G′) =
∑

M⊆E(G) is a
perfectmatching

t∏
i=1

χei,fi(M).

2.2 Graph minor theory. A graph H is a minor of G, written H � G, if H can be obtained from G by
repeated edge deletions and contractions and vertex deletions. This is equivalent to the existence of a minor
model of H in G.

Definition 2.1. A minor model of H in G is a collection of pairwise disjoint branch sets Sv ⊆ V (G) for
v ∈ V (H) such that (i) each set Sv for v ∈ V (H) induces a connected subgraph of G, and (ii) for every edge
uv ∈ E(H), some edge of G runs between Su and Sv.

The Hadwiger number η(G) of a graph G is the maximum k ∈ N with Kk � G. The colored sets in Figure 5
show minor models of K7 in ring blowups, proving that the Hadwiger number of such graphs can be at least 7.

A plane graph is a planar graph that is given together with a concrete planar embedding. We define a
particular graph class from plane graphs by “blowing up” their outer faces, see Figure 1.

Definition 2.2. Given a plane graph Q̂ with outer face O, the blowup of Q̂ is the graph obtained by successively
replacing each vertex v ∈ O by two clones v1, v2 having the same neighborhood as v, and then adding the edge
v1v2. We call v1 and v2 blowup vertices. A ring blowup is any subgraph of the blowup Q of a plane graph Q̂.
We also call Q̂ a reduct of Q.

G S G′

Figure 3: A clique-sum.

The notion of clique-sums will feature prominently in Section 4.

Definition 2.3. Let G and G′ be two graphs with not necessarily disjoint
vertex sets, and assume that S = V (G) ∩ V (G′) is a clique in G and G′. A
clique-sum G⊕S G

′ is any graph that can be obtained from the union G ∪G′
by deleting some edges with both endpoints in S.

A standard separator argument bounds the Hadwiger number of clique-
sums by those of their constituents, see [15, Lemma 2.1] for a proof.

Fact 2.1. For any graphs G,G′ and any clique-sum G ⊕S G′ for S =
V (G) ∩ V (G′), we have η(G⊕S G

′) ≤ max{η(G), η(G′)}.

For a proof sketch, note that no minor model of Kt can simultaneously
place some branch sets entirely within V (G) \ S and others entirely within
V (G′) \S. Hence all branch sets intersect V (G) or all intersect V (G′). In the first case, we can delete all vertices
from V (G′) \ S without losing edges between branch sets, since S is a clique. The second case is symmetric.

3 Reducing to ring blowups

In this section, we show how to transform any unweighted graph G into a ring blowup while preserving the value
of #PerfMatch. The main idea, spelled out in Lemma 3.1 and illustrated in Figure 4, is to arrange the vertices
of G on a circle and then bend the edges of G to push crossings across the perimeter of the circle, where they are
handled via blowups. As an edge e is bent, it will introduce new crossings with other edges g, but our construction
ensures that any such edge g is crossed exactly twice. When we then introduce sign-crossing gadgets at these
crossings, any −1 factors from gadgets are guaranteed to come in pairs, so the overall product of these factors is
1. Hence, going from G to G′, the value of #PerfMatch is preserved via Corollary 1. In Lemma 3.2, we then use
a standard reduction in counting complexity to remove the −1 weights introduced into G′ by sign-crossings.

Lemma 3.1. Let G be an unweighted graph with n vertices and m edges. In polynomial time, we can construct a
ring blowup G′ on O(n + m3) vertices and edge-weights ±1 such that #PerfMatch(G) = #PerfMatch(G′) holds
and all edges incident with blowup vertices of G′ have weight 1.



(a) Initial drawing of G with circle C

(dashed) that induces an inner part
(shaded) and outer part. The segments

`i extending from crossings to C are

drawn as red lines.
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(b) Left: The i-th crossing, involving edges ei, fi, and the edges gi,j crossed

by segment `i. Middle: The edges ei and fi are bent towards the outer part
along `i. Each edge gi,j now crosses each of ei and fi twice. Right: Inserting

sign-crossing gadgets and dragging the top vertices v1, . . . , v4 of outermost

crossing gadgets onto C. The dark ellipses show that G′ is a ring blowup.

Figure 4: How Lemma 3.1 moves crossings to the outer part of G to obtain a ring blowup G′.

Proof. As shown in Figure 4a, we first place V (G) on a circle C in the plane and draw the edges of G as straight
lines inside of C. The placement is chosen such that no three edges intersect in a common point and such that
every ray from the center to the perimeter of C contains at most one point that is a crossing or vertex of G. Both
conditions can be ensured by perturbing an arbitrary placement of V (G) on C.

The circle C divides the plane into two regions; we call the induced subgraphs of G contained in these regions
(both including C) the outer and inner part of G. Initially, the outer part contains no edges.

Let s ∈ O(m2) be the number of crossings in the drawing and let P1, . . . , Ps ∈ R2 be their locations. For each
i ∈ [s], shoot a ray from the center of C to Pi and write `i for the segment of this ray from Pi to the perimeter of
C. The segments are drawn as red lines in Figure 4a. Note that distinct rays are disjoint and contain no vertices
of G. For i ∈ [s] in sequence, write ei, fi ∈ E(G) for the edges involved in crossing Pi, write mi for the number
of edges crossed by segment `i and enumerate the crossed edges as gi,1, . . . , gi,mi

∈ E(G). We bend ei and fi in
a sufficiently narrow neighborhood of `i to cross C, as shown in the middle part of Figure 4b. For any j ∈ [mi],
this process adds two crossings between ei and gi,j as well as two crossings between fi and gi,j .

After all original crossings P1, . . . , Ps are processed in this way, we insert a sign-crossing gadget at each
crossing in the inner part of G, as shown in the right part of Figure 4b. Note that no sign-crossing gadgets
are inserted at crossings in the outer part. To simplify the subsequent argument, we drag some vertices of the
sign-crossing gadgets onto C, as shown in Figure 4b. Overall, we obtain a new graph G′ with edge-weights 1 and
−1, and Corollary 1 shows that

#PerfMatch(G′) =
∑

M⊆E(G) is a
perfectmatching

s∏
i=1

mi∏
j=1

χ2
ei,gi,j (M)︸ ︷︷ ︸

=1

·χ2
fi,gi,j (M)︸ ︷︷ ︸

=1

= #PerfMatch(G).(3.4)

Taking inventory, while going from G to G′, we replaced all crossings from the inner part with planar gadgets
and added no new crossings to the inner part, as different segments `i, `j are disjoint. Via sign-crossings, we added
O(

∑
imi) = O(sm) = O(m3) vertices into the inner part, where we recall that mi is the number of crossings

between segment `i and the edges in G. Each crossing is contained in the outer part and involves edges v1v3 and
v2v4 for some consecutive block of vertices v1, . . . , v4 on the circle C. The vertex blocks of different crossings are
disjoint, so we can define a reduct of G′ by identifying v1 = v2 and v3 = v4 in each block, as shown in Figure 4b.
Then also no edges of weight −1 are incident with blowup vertices. This shows that G′ is a ring blowup satisfying
the specifications of the lemma.

To conclude this section, we remark that negative edge-weights can be removed from the graphs constructed
before while staying in the graph class of ring blowups.



Lemma 3.2. The problem #PerfMatch restricted to graphs that are ring blowups with edge-weights ±1 such that
edges of weight −1 are not incident with blowup vertices (that is, restricted to the graphs constructed in Lemma 3.1)
admits a polynomial-time Turing reduction to #PerfMatch in unweighted ring blowups.

A standard proof of this lemma, see e.g. [8], replaces occurrences of the weight −1 with an indeterminate x;
this turns the number of perfect matchings in an n-vertex graph into a polynomial p ∈ Z[x] of degree at most
d = n/2. This polynomial can be evaluated at non-negative integer inputs 0, . . . , d via planar gadgets, and the
value p(−1) can then be recovered from p(0), . . . , p(d) via polynomial interpolation. As Lemma 3.1 guarantees
that edges of weight −1 are not incident with blowup vertices, the planar gadgets introduced in Lemma 3.2 can
be contained within the inner part of the resulting graphs.

Combining Theorem 2.1 (the #P-hardness of counting perfect matchings) with Lemmas 3.1 and 3.2, we
immediately obtain:

Theorem 3.1. The problem #PerfMatch is #P-hard in unweighted ring blowups.

Our proof even shows that #PerfMatch is #P-hard in graphs G that are obtained from plane graphs by
adding edges v1v3 and v2v4 between any disjoint blocks of four consecutive vertices v1, . . . , v4 on the outer face.
However, in the arguments in Section 4, general ring blowups arise naturally.

4 Bounding the Hadwiger number

In this section, we bound the Hadwiger number of ring blowups by 7. We remark that Seese and Wessel [20] gave
an upper bound of 7 on the Hadwiger number of a graph class subsuming the graphs constructed in the previous
section. For completeness, we give a self-contained proof for ring blowups.

First, we show in Lemma 4.1 that it suffices to consider simple ring blowups, that is, blowups of plane graphs
for which all but ≤ 3 vertices are contained on the outer face. In Lemma 4.2, we iteratively remove certain
complications from simple ring blowups. When this process terminates, we obtain graphs that can be handled by
trivial arguments in Lemma 4.3.

Definition 4.1. A simple ring is a plane graph Q with outer face O such that Q − O is a complete graph with
≤ 3 vertices. We call W = V (Q) \ O the inner face of Q.2 A simple ring blowup is any subgraph of the blowup
of a simple ring. (Equivalently, a graph is a simple ring blowup if it has a simple ring as reduct.)

In the following lemma, we adapt an argument by Joret and Wood [15, Lemma 3.4] to render ring blowups
simple without decreasing their Hadwiger number. See Figure 5 for an illustration of the process; the last drawing
shows an example of a simple ring blowup with a single vertex on the inner face. The lemma repeatedly uses
the fact that, given a minor model of a graph H in another graph G, contracting an edge contained a branch set
canonically induces a minor model of H in the resulting graph.

Lemma 4.1. For any ring blowup G, there is a simple ring blowup Q with η(G) ≤ η(Q).

Proof. We abbreviate t = η(G). The lemma holds for t ≤ 4, since there clearly are simple ring blowups containing
K4-minors. We may therefore assume t ≥ 5 in the following.

Let Ĝ be a reduct of G, with outer face O, and let G be drawn as a blowup of Ĝ, as shown in Figure 5. Fix
a minor model S1, . . . , St ⊆ V (G) of Kt in G, define G′ := G and proceed as follows.

1. Delete from G′ all vertices not contained in S1 ∪ . . .∪ St. Then the sets S1, . . . , St still yield a minor model
of Kt in the resulting graph (which we still call G′) as no edges between branch sets were deleted.

2. Contract every branch set Si not containing blowup vertices. This yields a minor model of Kt in the resulting
graph. The ` ≤ t vertices W = {w1, . . . , w`} resulting from the contraction induce a planar drawing of K`,
so we have ` ≤ 4. We may even assume ` = 3: Otherwise, if ` = 4, then one of the vertices, say w4, would
be enclosed by the cycle on W \ {w4} in the drawing of G′. But then w4 cannot have edges to the t − `
other branch sets, so the t overall branch sets cannot form a minor model of Kt for t ≥ 5.

2Technically, this need not be a face.



(a) The initial graph G with a minor

model of K7, indicated by vertex

colors. For clarity, edges contained in
branch sets are also colored.

(b) Steps 1-2 removed vertices

not contained in branch sets and

contracted the turquoise branch set,
which contains no blowup vertices.

(c) Step 3 successively contracted

all edges that run between blowup

vertices and non-blowup vertices. The
result is a simple ring blowup.

Figure 5: How Lemma 4.1 cleans up a ring blowup while maintaining a Kt-minor.

3. For every edge uv fully contained in a branch set, where u is a blowup vertex and v is not, contract uv into
u. This still yields a minor model of Kt in the resulting graph G′.

Summing up, we see that G′ contains a Kt-minor, so it suffices to prove that G′ is a simple ring blowup. Note
that the ≤ 3 vertices in W form a clique in G′, while all other vertices are blowup vertices. By applying the
operations used to transform G into G′ on the reduct of G, we obtain a reduct of G′ that is a simple ring.

By removing certain “complications”, it is possible to simplify simple rings (and their blowups) even further.

Definition 4.2. Given a simple ring Q̂ with outer face O and inner face W , a complication in Q̂ is

(a) any edge between vertices u, v ∈ O that are not consecutive in the cyclic order of O, or

(b) for any vertex w ∈W , any neighbor o ∈ O of w after its first two neighbors in the cyclic order of O.

Figure 6 illustrates complications of the different types. We show in the following lemma that it suffices to
bound the Hadwiger number of the blowups of triangulated complication-free simple rings. Here, we say that a
graph is triangulated if every face but its outer face is a triangle.

Lemma 4.2. If η(Z) ≤ 7 holds for the blowup Z of any triangulated and complication-free simple ring Ẑ, then
η(Q) ≤ 7 holds for any simple ring blowup Q.

Proof. Let Q̂ be a simple ring with complications, outer face O, and inner face W . Let Q be the blowup of Q̂.
We may assume Q̂ to be triangulated; this can be ensured by adding edges, which does not decrease η(Q).

The goal is to decompose Q̂ along clique-sums into simple rings with strictly less complications; the
triangulation will be kept intact along the way. An inductive application of Fact 2.1 then proves the lemma.
The following notation will be useful: For vertex sets S ⊆ V (Q̂), let B(S) be obtained by replacing each vertex
v ∈ S ∩O with v1 and v2.

We start by removing all complications of type (a). To this end, consider such a complication involving
u, v ∈ O. Define S = {u, v}. There exist sets L,R ⊆ V (Q̂) such that Q̂ is a clique-sum Q̂[L] ⊕S Q̂[R], as shown
in the left part of Figure 6. This in turn means that the blowup Q is a clique-sum Q[B(L)]⊕B(S) Q[B(R)]. Via
Fact 2.1, it suffices to show that Q[B(L)] and Q[B(R)] are K8-minor-free. But Q[B(L)] and Q[B(R)] are the
blowups of Q̂[L] and Q̂[R], which are triangulated simple rings with at least one complication of type (a) less. By
induction, we may therefore assume in the following that Q̂ contains no complications of type (a).

Now consider a complication of type (b) with w ∈W and neighbors u1, u2, u3 ∈ O of w that are consecutive
vertices in the cyclic order of O. Note that we may indeed assume the neighbors to be consecutive, since Q̂ is
triangulated and all complications of type (a) were processed. Define S = {w, u1, u3} and T = S ∪ {u2}. Then



⊕{u,v}

u

v
⊕{w,u1,u3}

w

u1 u2

u3

u4

(a) (b)

P̂

Q̂[T ]
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Figure 6: This figure exemplifies complications of type (a) and (b) in a simple ring Q̂ and illustrates the main
steps in the proof of Lemma 4.2. The outer face of Q̂ is drawn as a thick line. Complications are marked red.
The shading and encircled drawings indicate the clique-sums arising in the proof of Lemma 4.2.

Q̂ is a clique-sum P̂ ⊕S Q̂[T ] for the simple ring P̂ obtained from Q̂ by removing u2 and adding the edge u1u3,
as shown in the right part of Figure 6. This in turn implies that Q is a clique-sum P ⊕B(S) Q[B(T )], where P

is the blowup of P̂ . We observe that Q[B(T )] has only 7 vertices, so it suffices to exclude K8 from P , where P̂
is a triangulated simple ring that still has no complications of type (a), and complication of type (b) less. By
induction, we may therefore assume that Q̂ has no complications at all. This proves the lemma.

Finally, an elementary case distinction allows us to handle complication-free ring blowups.

Lemma 4.3. For any triangulated and complication-free simple ring Ẑ with blowup Z, we have η(Z) ≤ 7.

Proof. Let O and W with |W | ≤ 3 be the outer and inner faces of Ẑ. Every edge e ∈ E(Ẑ) either has both
endpoints in W , one endpoint in O and W each, or both endpoints of e lie consecutively on O since Z has no
complications of type (a). If W = ∅, then |V (Ẑ)| ≤ 3, since Ẑ is triangulated. In this case, we already obtain
η(Z) ≤ |V (Z)| ≤ 6.

Therefore, assume W 6= ∅ in the following. Then any vertex w ∈ W has ≤ 2 neighbors in O, since Ẑ has no
complications of type (b). Furthermore, since Ẑ is triangulated, any pair of vertices in W shares a neighbor in
O, because Ẑ would otherwise contain a chordless cycle of length 4. This implies the following:

• If |W | ≤ 2, then |O| ≤ 2 and thus η(Z) ≤ |V (Z)| ≤ 6.

• If |W | = 3, then Ẑ and its blowup Z are the following graphs, where |V (Z)| = 9 and |E(Z)| = 30.

Ẑ Z

To obtain a K8-minor from the 9-vertex graph Z, one vertex must be deleted or one edge must be contracted.
Deleting a vertex removes at least 6 edges. Contracting an edge reduces the number of edges by least 3, since
every edge in Z is contained in some K4-subgraph (shown above as colored blobs) and contracting an edge of
K4 yields a K3, thus losing 3 edges. It follows that any 8-vertex minor of Z has at most 27 < 28 = |E(K8)|
edges and therefore cannot be K8.

This covers all cases for |W |, thus proving the lemma.

The proof of our main theorem is now immediate.



Proof. [Proof of Theorem 1.1.] By Theorem 3.1, the problem #PerfMatch is #P-hard in unweighted ring blowups
G. It remains to show that such graphs G exclude K8-minors. By Lemma 4.1, we have η(G) ≤ η(Q) for some
simple ring blowup Q. By Lemma 4.2, we have η(Q) ≤ 7 if η(Z) ≤ 7 holds for all blowups of triangulated and
complication-free ring graphs Ẑ, which in turn is true by Lemma 4.3. This concludes the proof.

5 Conclusion and outlook

We showed that the FKT method for planar graphs cannot be extended to graphs excluding arbitrary fixed
minors. Our work leaves open an exhaustive classification of the minors whose exclusion renders #PerfMatch
polynomial-time solvable. This is not an artifact of our analysis: As Figure 5 shows, the graphs constructed by
our reduction can contain K7-minors, so our reduction inherently fails to address the open case of K7-minor-free
#PerfMatch. This prompts the obvious question:

Question 1. What is the complexity of #PerfMatch in graphs excluding K6 or K7? More generally, given any
fixed graph H, what is the complexity of H-minor-free #PerfMatch?

Turning towards a bigger picture, it is also interesting to investigate which other counting problems benefit
from excluded minors. This can be studied systematically in the framework of Holant problems, of which counting
perfect matchings constitutes a representative example.

In a future version of this paper, we rule out exp(o(
√
n)) time algorithms for #PerfMatch with edge-weights

±1 under the exponential-time hypothesis. Note that graphs excluding fixed minors have tree-width O(
√
n), and

therefore standard algorithms for counting perfect matchings in graphs of bounded tree-width yield matching
exp(O(

√
n)) time upper bounds on H-minor-free graphs.
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