3 research outputs found

    Implementation of an AMIDAR-based Java Processor

    Get PDF
    This thesis presents a Java processor based on the Adaptive Microinstruction Driven Architecture (AMIDAR). This processor is intended as a research platform for investigating adaptive processor architectures. Combined with a configurable accelerator, it is able to detect and speed up hot spots of arbitrary applications dynamically. In contrast to classical RISC processors, an AMIDAR-based processor consists of four main types of components: a token machine, functional units (FUs), a token distribution network and an FU interconnect structure. The token machine is a specialized functional unit and controls the other FUs by means of tokens. These tokens are delivered to the FUs over the token distribution network. The tokens inform the FUs about what to do with input data and where to send the results. Data is exchanged among the FUs over the FU interconnect structure. Based on the virtual machine architecture defined by the Java bytecode, a total of six FUs have been developed for the Java processor, namely a frame stack, a heap manager, a thread scheduler, a debugger, an integer ALU and a floating-point unit. Using these FUs, the processor can already execute the SPEC JVM98 benchmark suite properly. This indicates that it can be employed to run a broad variety of applications rather than embedded software only. Besides bytecode execution, several enhanced features have also been implemented in the processor to improve its performance and usability. First, the processor includes an object cache using a novel cache index generation scheme that provides a better average hit rate than the classical XOR-based scheme. Second, a hardware garbage collector has been integrated into the heap manager, which greatly reduces the overhead caused by the garbage collection process. Third, thread scheduling has been realized in hardware as well, which allows it to be performed concurrently with the running application. Furthermore, a complete debugging framework has been developed for the processor, which provides powerful debugging functionalities at both software and hardware levels

    Aspects of Code Generation and Data Transfer Techniques for Modern Parallel Architectures

    Get PDF
    Im Bereich der Prozessorarchitekturen hat sich der Fokus neuer Entwicklungen von immer höheren Taktfrequenzen hin zu immer mehr Kernen auf einem Chip verschoben. Eine hohe Kernanzahl ermöglicht es unterschiedlich leistungsfĂ€hige Kerne anzubieten, und sogar dedizierte Kerne mit speziellen BefehlssĂ€tzen. Die Entwicklung fĂŒr solch heterogene Plattformen ist herausfordernd und benötigt entsprechende UnterstĂŒtzung von Entwicklungswerkzeugen, wie beispielsweise Übersetzern. Neben ihrer heterogenen Kernstruktur gibt es eine zweite Dimension, die die Entwicklung fĂŒr solche Architekturen anspruchsvoll macht: ihre Speicherstruktur. Die Aufrechterhaltung von globaler Cache-KohĂ€renz erschwert das Erreichen hoher Kernzahlen. Hardwarebasierte Cache-KohĂ€renz-Protokolle skalieren entweder schlecht, oder sind kompliziert und fĂŒhren zu Problemen bei AusfĂŒhrungszeit und Energieeffizienz. Eine radikale Lösung dieses Problems stellt die Abschaffung der globalen Cache-KohĂ€renz dar. Jedoch ist es schwierig, bestehende Programmiermodelle effizient auf solch eine Hardware-Architektur mit schwachen Garantien abzubilden. Der erste Teil dieser Dissertation beschĂ€ftigt sich Datentransfertechniken fĂŒr nicht-cache-kohĂ€rente Architekturen mit gemeinsamem Speicher. Diese Architekturen bieten einen gemeinsamen physikalischen Adressraum, implementieren aber keine hardwarebasierte KohĂ€renz zwischen allen Caches des Systems. Die logische Partitionierung des gemeinsamen Speichers ermöglicht die sichere Programmierung einer solchen Plattform. Im Allgemeinen erzeugt dies die Notwendigkeit Daten zwischen Speicherpartitionen zu kopieren. Wir untersuchen die Übersetzung fĂŒr invasive Architekturen, einer Familie von nicht-cache-kohĂ€renten Vielkernarchitekturen. Wir betrachten die effiziente Implementierung von Datentransfers sowohl einfacher als auch komplexer Datenstrukturen auf invasiven Architekturen. Insbesondere schlagen wir eine neuartige Technik zum Kopieren komplexer verzeigerter Datenstrukturen vor, die ohne Serialisierung auskommt. Hierzu verallgemeinern wir den Objekt-Klon-Ansatz mit ĂŒbersetzergesteuerter automatischer software-basierter KohĂ€renz, sodass er auch im Kontext nicht-kohĂ€renter Caches funktioniert. Wir prĂ€sentieren Implementierungen mehrerer Datentransfertechniken im Rahmen eines existierenden Übersetzers und seines Laufzeitsystems. Wir fĂŒhren eine ausfĂŒhrliche Auswertung dieser Implementierungen auf einem FPGA-basierten Prototypen einer invasiven Architektur durch. Schließlich schlagen wir vor, HardwareunterstĂŒtzung fĂŒr bereichsbasierte Cache-Operationen hinzuzufĂŒgen und beschreiben und bewerten mögliche Implementierungen und deren Kosten. Der zweite Teil dieser Dissertation befasst sich mit der Beschleunigung von Shuffle-Code, der bei der Registerzuteilung auftritt, durch die Verwendung von Permutationsbefehlen. Die Aufgabe der Registerzuteilung wĂ€hrend der ProgrammĂŒbersetzung ist die Abbildung von Programmvariablen auf Maschinenregister. WĂ€hrend der Registerzuteilung erzeugt der Übersetzer Shuffle-Code, der aus Kopier- und Tauschbefehlen besteht, um Werte zwischen Registern zu transferieren. AbhĂ€ngig von der QualitĂ€t der Registerzuteilung und der Zahl der verfĂŒgbaren Register kann eine große Menge an Shuffle-Code erzeugt werden. Wir schlagen vor, die AusfĂŒhrung von Shuffle-Code mit Hilfe von neuartigen Permutationsbefehlen zu beschleunigen, die die Inhalte von einigen Registern in einem Taktzyklus beliebig permutieren. Um die Machbarkeit dieser Idee zu demonstrieren, erweitern wir zunĂ€chst ein bestehendes RISC-Befehlsformat um Permutationsbefehle. Anschließend beschreiben wir, wie die vorgeschlagenen Permutationsbefehle in einer bestehenden RISC-Architektur implementiert werden können. Dann entwickeln wir zwei Verfahren zur Codeerzeugung, die die Permutationsbefehle ausnutzen, um Shuffle-Code zu beschleunigen: eine schnelle Heuristik und einen auf dynamischer Programmierung basierenden optimalen Ansatz. Wir beweisen QualitĂ€ts- und Korrektheitseingeschaften beider AnsĂ€tze und zeigen die OptimalitĂ€t des zweiten Ansatzes. Im Folgenden implementieren wir beide Codeerzeugungsverfahren in einem Übersetzer und untersuchen sowie vergleichen deren CodequalitĂ€t ausfĂŒhrlich mit Hilfe standardisierter Benchmarks. ZunĂ€chst messen wir die genaue Zahl der dynamisch ausgefĂŒhrten Befehle, welche wir folgend validieren, indem wir Programmlaufzeiten auf einer FPGA-basierten Prototypimplementierung der um Permutationsbefehle erweiterten RISC-Architektur messen. Schließlich argumentieren wir, dass Permutationsbefehle auf modernen Out-Of-Order-Prozessorarchitekturen, die bereits Registerumbenennung unterstĂŒtzen, mit wenig Aufwand implementierbar sind
    corecore