419,142 research outputs found

    Scaled outdoor experimental studies of urban thermal environment in street canyon models with various aspect ratios and thermal storage

    Get PDF
    Street aspect ratios and urban thermal storage largely determine the thermal environment in cities. By performing scaled outdoor measurements in summer of 2017 in Guangzhou, China, we investigate these impacts on spatial/temporal characteristics of urban thermal environment which are still unclear so far. Two types of street canyon models are investigated, i.e. the ‘hollow’ model resembling hollow concrete buildings and the ‘sand’ model consisting of buildings filled with sand attaining much greater thermal storage. For each model, three street aspect ratios (building height/street width, H/W = 1, 2, 3; H = 1.2 m) are considered. The diurnal variations of air-wall surface temperatures are observed and their characteristics are quantified for various cases. The daily average temperature and daily temperature range (DTR) of wall temperature vary significantly with different aspect ratios and thermal storage. During the daytime, wider street canyon (H/W = 1) with less shading area experiences higher temperature than narrower ones (H/W = 2, 3) as more solar radiation received by wall surfaces. At night, wider street canyon cools down quicker due to stronger upward longwave radiation and night ventilation. For hollow models, H/W = 1 attains DTR of 12.1 °C, which is 1.2 and 2.1 °C larger than that of H/W = 2, 3. Moreover, the sand models experience smaller DTR and a less changing rate of wall temperature than hollow models because larger thermal storage absorbs more heat in the daytime and releases more at night. DTR of hollow models with H/W = 1, 2, 3 is 4.5, 4.6 and 3.8 °C greater than sand models respectively. For both hollow and sand models, wider streets experience a little higher daily average temperature (0.3–0.6 °C) than narrower ones. Our study provides direct evidence in how man-made urban structures influence urban climate and also suggests the possibility to control outdoor thermal environment by optimize urban morphology and thermal storage

    Ammonia based sanitation technology

    Get PDF
    Water-borne sanitation of toilet waste is not a viable option for the estimated 2.6 billion people that lack improved sanitation throughout the world. In Environmental Systems Analysis, source separating sewage systems have proven to be of interest, since both energy and nutrients are saved compared with conventional systems. As the urine and faecal matter contribute with the majority of nutrients to wastewater but constitute a small part of the volume, these fractions are suitable for nutrient recycling to agriculture. The potential content of pathogenic (disease causing) microorganisms makes it a necessity to sanitise the material before use as a fertiliser, especially as many pathogens are zoonotic, infecting both man and animal. The main objective of this study was to evaluate ammonia based sanitation technology for source separated urine and faeces aiming for production of safe fertilisers. To achieve this objective, the inactivation kinetics of several groups of organisms was investigated in relation to concentration of free ammonia, NH3, temperature and dry matter content. Inactivation of Ascaris suum eggs, Salmonella spp. Enterococcus spp., S. Typhimurium phage 28B, an f-specific RNA phage MS2 and a coliphage ΦX 174 was monitored in spiked human urine and faeces. Storage of urine diluted 1:0, 1:1 and 1:3 with water was studied at 4, 14, 24, and 34°C. Faecal material, source separated dry, was treated with urea at concentrations ranging from 0.5% to 2% at 14, 24, and 34°C. Faecal material with ash amendments was studied at 24 and 34°C, separately and with supplementary addition of 1% urea. Temperature was found to be a key factor for the efficiency of the ammonia based sanitation, both through synergy and by affecting transformation of ammonia into NH3. At 34°C the NH3 concentrations in urine and faecal material resulted in short decimal reduction (D) values for microorganism concentrations, except for the bacteriophage 28B, which showed little inactivation in stored faecal material. At 24°C, treatments of both urine and faeces with NH3 concentrations of 50 mM and above gave significant reductions whereas at lower concentrations (urine 1:3 and storage of faecal matter) little inactivation of bacteriophage 28B and ascaris eggs was observed. This means that urine must be collected as concentrated as possible in order to contain sufficient ammonia to reduce pathogens by storage. Treatment with urea, a 2% addition resulted in stable pH and NH3 concentrations that resulted in fast Salmonella spp. inactivation even at 4°C and 14°C, and inactivation of ascaris and the bacteriophage at temperature 24°C and above. Coverage with ash and lime during collection can give an enhanced pathogen inactivation when later treated in closed containers. Accompanying urea treatment of faeces collected with ash is possible but with a high pH (>10) in the material urea will not be degraded and thus not contribute to inactivation

    Local climate change and the impacts on hydrological processes in an arid alpine catchment in Karakoram

    Get PDF
    Climate change and the impacts on hydrological processes in Karakoram region are highly important to the available water resources in downstream oases. In this study, a modified quantile perturbation method (QPM), which was improved by considering the frequency changes in different precipitation intensity ranges, and the Delta method were used to extract signals of change in precipitation and temperature, respectively. Using a historical period (1986-2005) for reference, an average ensemble of 18 available Global Circulation Models (GCMs) indicated that the annual precipitation will increase by 2.9-4.4% under Representative Concentration Pathway 4.5 (RCP4.5) and by 2.8-7.9% in RCP8.5 in different future periods (2020-2039, 2040-2059, 2060-2079 and 2080-2099) due to an increased intensity of extreme precipitation events in winter. Compared with the historical period, the average ensemble also indicated that temperature in future periods will increase by 0.31-0.38 degrees C/10a under RCP4.5 and by 0.34-0.58 degrees C/10a under RCP8.5. Through coupling with a well-calibrated MIKE SHE model, the simulations suggested that, under the climate change scenarios, increasing evaporation dissipation will lead to decreased snow storage in the higher altitude mountain region and likewise with regard to available water in the downstream region. Snow storage will vary among elevation bands, e.g., the permanent snowpack area below 5600 m will completely vanish over the period 2060-2079, and snow storage in 5600-6400 m will be reduced dramatically; however, little or no change will occur in the region above 6400 m. Warming could cause stronger spring and early summer stream runoff and reduced late summer flow due to a change in the temporal distribution of snowmelt. Furthermore, both the frequency and intensity of flooding will be enhanced. All the changes in hydrological processes are stronger under RCP8.5 than those under RCP4.5. In Karakoram region, the transformations among different forms of water resources alter the distributions of hydrologic components under future climate scenarios, and more studies are needed on the transient water resources system and the worsening of flood threats in the study area

    Response of hydrological processes to input data in high alpine catchment : an assessment of the Yarkant River basin in China

    Get PDF
    Most studies of input data used in hydrological models have focused on flow; however, point discharge data negligibly reflect deviations in spatial input data. To study the effects of different input data sources on hydrological processes at the catchment scale, eight MIKE SHE models driven by station-based data (SBD) and remote sensing data (RSD) were implemented. The significant influences of input variables on water components were examined using an analysis of the variance model (ANOVA) with the hydrologic catchment response quantified based on different water components. The results suggest that compared with SBD, RSD precipitation resulted in greater differences in snow storage in the different elevation bands and RSD temperatures led to more snowpack areas with thinner depths. These changes in snowpack provided an appropriate interpretation of precipitation and temperature distinctions between RSD and SBD. For potential evapotranspiration (PET), the larger RSD value caused less plant transpiration because parameters were adjusted to satisfy the outflow. At the catchment scale, the spatiotemporal distributions of sensitive water components, which can be defined by the ANOVA model, indicate that this approach is rational for assessing the impacts of input data on hydrological processes

    Conclusions and implications of automation in space

    Get PDF
    Space facilities and programs are reviewed. Space program planning is discussed

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology

    A Well Regulated Right: The Early American Origins of Gun Control

    Get PDF
    • …
    corecore