5,652 research outputs found

    Energy Efficient Transmission over Space Shift Keying Modulated MIMO Channels

    Full text link
    Energy-efficient communication using a class of spatial modulation (SM) that encodes the source information entirely in the antenna indices is considered in this paper. The energy-efficient modulation design is formulated as a convex optimization problem, where minimum achievable average symbol power consumption is derived with rate, performance, and hardware constraints. The theoretical result bounds any modulation scheme of this class, and encompasses the existing space shift keying (SSK), generalized SSK (GSSK), and Hamming code-aided SSK (HSSK) schemes as special cases. The theoretical optimum is achieved by the proposed practical energy-efficient HSSK (EE-HSSK) scheme that incorporates a novel use of the Hamming code and Huffman code techniques in the alphabet and bit-mapping designs. Experimental studies demonstrate that EE-HSSK significantly outperforms existing schemes in achieving near-optimal energy efficiency. An analytical exposition of key properties of the existing GSSK (including SSK) modulation that motivates a fundamental consideration for the proposed energy-efficient modulation design is also provided

    Adaptive Demodulation in Differentially Coherent Phase Systems: Design and Performance Analysis

    Full text link
    Adaptive Demodulation (ADM) is a newly proposed rate-adaptive system which operates without requiring Channel State Information (CSI) at the transmitter (unlike adaptive modulation) by using adaptive decision region boundaries at the receiver and encoding the data with a rateless code. This paper addresses the design and performance of an ADM scheme for two common differentially coherent schemes: M-DPSK (M-ary Differential Phase Shift Keying) and M-DAPSK (M-ary Differential Amplitude and Phase Shift Keying) operating over AWGN and Rayleigh fading channels. The optimal method for determining the most reliable bits for a given differential detection scheme is presented. In addition, simple (near-optimal) implementations are provided for recovering the most reliable bits from a received pair of differentially encoded symbols for systems using 16-DPSK and 16- DAPSK. The new receivers offer the advantages of a rate-adaptive system, without requiring CSI at the transmitter and a coherent phase reference at the receiver. Bit error analysis for the ADM system in both cases is presented along with numerical results of the spectral efficiency for the rate-adaptive systems operating over a Rayleigh fading channel.Comment: 25 pages, 11 Figures, submitted to IEEE Transactions on Communications, June 1, 201

    A universal space-time architecture for multiple-antenna aided systems

    No full text
    In this tutorial, we first review the family of conventional multiple-antenna techniques, and then we provide a general overview of the recent concept of the powerful Multiple-Input Multiple-Output (MIMO) family based on a universal Space-Time Shift Keying (STSK) philosophy. When appropriately configured, the proposed STSK scheme has the potential of outperforming conventional MIMO arrangements

    Analysis and design of three-stage concatenated color-shift keying

    No full text
    Visible Light Communication (VLC) relies on abundant unlicensed bandwidth resources. As an attractive high-data-rate modulation scheme designed for VLC, Color Shift Keying (CSK) assisted modulation is analysed. We commence our study from an uncoded M-CSK scheme relying on the joint Maximum Likelihood (ML) Hard-Detection (HD) of three colors, when communicating over an AWGN channel, where both empirical and analytical results are provided. We invoke EXtrinsic Information Transfer (EXIT) charts for designing a Maximum A-posteriori Probability (MAP) based Soft-Detection (SD) aided iterative receiver jointly detecting the three colors. Based on the EXIT characteristics of M-CSK, we design different signal labeling strategies for diverse color constellations and detection schemes, which are capable of achieving a substantially improved Bit Error Ratio (BER) performance. Thus, given a fixed transmission power, a CSK system using our proposed signal labeling is capable of increasing the reliable data transmission distance by about 30%

    Near-Capacity Turbo Coded Soft-decision Aided DAPSK/Star-QAM for Amplify-and-Forward based Cooperative Communications

    No full text
    Multilevel Differential Amplitude and Phase-Shift Keying (DAPSK) schemes do not require any channel estimation, which results in low complexity. In this treatise we derive the soft-output probability formulas required for a soft-decision based demodulation of high-order DAPSK, in order to facilitate iterative detection by exchanging extrinsic information with an outer Turbo Code (TC). Furthermore, when the TC block size is increased, the system operates closer to the channel capacity. Compared to the identical-throughput TC assisted 64-ary Differential Phase-Shift Keying (64-DPSK) scheme, the 4-ring based TC assisted 64-ary DAPSK arrangement has a power-efficiency improvement of 2.3 dB at a bit error rate (BER) of 10-5 . Furthermore, when the TC block size is increased, the system operates closer to the channel capacity. More specifically, when using a TC block length of 400 modulated symbols, the 64 DAPSK (4, 16) scheme is 7.56 dB away from its capacity curve, while it had a reduced gap as low as 2.25 dB, when using a longer TC block length of 40 000 modulated symbols. Finally, as a novel application example, the soft-decision M-DAPSK scheme was incorporated into an Amplify-and-Forward (AF) based cooperative communication system, which attains another 4.5 dB SNR improvement for a TC block length of 40 000 modulated symbols

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Quantum-limited measurements of optical signals from a geostationary satellite

    Full text link
    The measurement of quantum signals that traveled through long distances is of fundamental and technological interest. We present quantum-limited coherent measurements of optical signals, sent from a satellite in geostationary Earth orbit to an optical ground station. We bound the excess noise that the quantum states could have acquired after having propagated 38600 km through Earth's gravitational potential as well as its turbulent atmosphere. Our results indicate that quantum communication is feasible in principle in such a scenario, highlighting the possibility of a global quantum key distribution network for secure communication.Comment: 8 pages (4 pages main article, 4 pages supplementary material), 9 figures (4 figures main article, 5 figures supplementary material), Kevin G\"unthner and Imran Khan contributed equally to this wor
    corecore