4 research outputs found

    The Project IM-CLeVeR - Intrinsically Motivated Cumulative Learning Versatile Robots: A Tool-box for Research on Intrinsic Motivations and Cumulative Learning

    Get PDF
    The goal of this paper is to furnish a tool-box for research on intrinsic motivations and cumulative learning based on the main ideas produced within the Integrated Project "IM-CLeVeR - Intrinsically Motivated Cumulative Learning Versatile Robots". IM-CLeVeR is a project funded by the European Commission under the 7th Framework Programme (FP7/2007-2013), \u27\u27Challenge 2 - Cognitive Systems, Interaction, Robotics\u27\u27, grant agreement No. ICTIP- 231722

    Toward Computational Motivation for Multi-Agent Systems and Swarms

    Get PDF
    Motivation is a crucial part of animal and human mental development, fostering competence, autonomy, and open-ended development. Motivational constructs have proved to be an integral part of explaining human and animal behavior. Computer scientists have proposed various computational models of motivation for artificial agents, with the aim of building artificial agents capable of autonomous goal generation. Multi-agent systems and swarm intelligence are natural extensions to the individual agent setting. However, there are only a few works that focus on motivation theories in multi-agent or swarm settings. In this study, we review current computational models of motivation settings, mechanisms, functions and evaluation methods and discuss how we can produce systems with new kinds of functions not possible using individual agents. We describe in detail this open area of research and the major research challenges it holds

    Keep focussing: striatal dopamine multiple functions resolved in a single mechanism tested in a simulated humanoid robot

    Get PDF
    The effects of striatal dopamine (DA) on behavior have been widely investigated over the past decades, with "phasic" burst firings considered as the key expression of a reward prediction error responsible for reinforcement learning. Less well studied is "tonic" DA, where putative functions include the idea that it is a regulator of vigor, incentive salience, disposition to exert an effort and a modulator of approach strategies. We present a model combining tonic and phasic DA to show how different outflows triggered by either intrinsically or extrinsically motivating stimuli dynamically affect the basal ganglia by impacting on a selection process this system performs on its cortical input. The model, which has been tested on the simulated humanoid robot iCub interacting with a mechatronic board, shows the putative functions ascribed to DA emerging from the combination of a standard computational mechanism coupled to a differential sensitivity to the presence of DA across the striatum
    corecore