24,004 research outputs found

    Fast and Compact Distributed Verification and Self-Stabilization of a DFS Tree

    Full text link
    We present algorithms for distributed verification and silent-stabilization of a DFS(Depth First Search) spanning tree of a connected network. Computing and maintaining such a DFS tree is an important task, e.g., for constructing efficient routing schemes. Our algorithm improves upon previous work in various ways. Comparable previous work has space and time complexities of O(nlogΔ)O(n\log \Delta) bits per node and O(nD)O(nD) respectively, where Δ\Delta is the highest degree of a node, nn is the number of nodes and DD is the diameter of the network. In contrast, our algorithm has a space complexity of O(logn)O(\log n) bits per node, which is optimal for silent-stabilizing spanning trees and runs in O(n)O(n) time. In addition, our solution is modular since it utilizes the distributed verification algorithm as an independent subtask of the overall solution. It is possible to use the verification algorithm as a stand alone task or as a subtask in another algorithm. To demonstrate the simplicity of constructing efficient DFS algorithms using the modular approach, We also present a (non-sielnt) self-stabilizing DFS token circulation algorithm for general networks based on our silent-stabilizing DFS tree. The complexities of this token circulation algorithm are comparable to the known ones

    Communication Efficiency in Self-stabilizing Silent Protocols

    Get PDF
    Self-stabilization is a general paradigm to provide forward recovery capabilities to distributed systems and networks. Intuitively, a protocol is self-stabilizing if it is able to recover without external intervention from any catastrophic transient failure. In this paper, our focus is to lower the communication complexity of self-stabilizing protocols \emph{below} the need of checking every neighbor forever. In more details, the contribution of the paper is threefold: (i) We provide new complexity measures for communication efficiency of self-stabilizing protocols, especially in the stabilized phase or when there are no faults, (ii) On the negative side, we show that for non-trivial problems such as coloring, maximal matching, and maximal independent set, it is impossible to get (deterministic or probabilistic) self-stabilizing solutions where every participant communicates with less than every neighbor in the stabilized phase, and (iii) On the positive side, we present protocols for coloring, maximal matching, and maximal independent set such that a fraction of the participants communicates with exactly one neighbor in the stabilized phase

    Fast and compact self-stabilizing verification, computation, and fault detection of an MST

    Get PDF
    This paper demonstrates the usefulness of distributed local verification of proofs, as a tool for the design of self-stabilizing algorithms.In particular, it introduces a somewhat generalized notion of distributed local proofs, and utilizes it for improving the time complexity significantly, while maintaining space optimality. As a result, we show that optimizing the memory size carries at most a small cost in terms of time, in the context of Minimum Spanning Tree (MST). That is, we present algorithms that are both time and space efficient for both constructing an MST and for verifying it.This involves several parts that may be considered contributions in themselves.First, we generalize the notion of local proofs, trading off the time complexity for memory efficiency. This adds a dimension to the study of distributed local proofs, which has been gaining attention recently. Specifically, we design a (self-stabilizing) proof labeling scheme which is memory optimal (i.e., O(logn)O(\log n) bits per node), and whose time complexity is O(log2n)O(\log ^2 n) in synchronous networks, or O(Δlog3n)O(\Delta \log ^3 n) time in asynchronous ones, where Δ\Delta is the maximum degree of nodes. This answers an open problem posed by Awerbuch and Varghese (FOCS 1991). We also show that Ω(logn)\Omega(\log n) time is necessary, even in synchronous networks. Another property is that if ff faults occurred, then, within the requireddetection time above, they are detected by some node in the O(flogn)O(f\log n) locality of each of the faults.Second, we show how to enhance a known transformer that makes input/output algorithms self-stabilizing. It now takes as input an efficient construction algorithm and an efficient self-stabilizing proof labeling scheme, and produces an efficient self-stabilizing algorithm. When used for MST, the transformer produces a memory optimal self-stabilizing algorithm, whose time complexity, namely, O(n)O(n), is significantly better even than that of previous algorithms. (The time complexity of previous MST algorithms that used Ω(log2n)\Omega(\log^2 n) memory bits per node was O(n2)O(n^2), and the time for optimal space algorithms was O(nE)O(n|E|).) Inherited from our proof labelling scheme, our self-stabilising MST construction algorithm also has the following two properties: (1) if faults occur after the construction ended, then they are detected by some nodes within O(log2n)O(\log ^2 n) time in synchronous networks, or within O(Δlog3n)O(\Delta \log ^3 n) time in asynchronous ones, and (2) if ff faults occurred, then, within the required detection time above, they are detected within the O(flogn)O(f\log n) locality of each of the faults. We also show how to improve the above two properties, at the expense of some increase in the memory

    Design and analysis of adaptive hierarchical low-power long-range networks

    Get PDF
    A new phase of evolution of Machine-to-Machine (M2M) communication has started where vertical Internet of Things (IoT) deployments dedicated to a single application domain gradually change to multi-purpose IoT infrastructures that service different applications across multiple industries. New networking technologies are being deployed operating over sub-GHz frequency bands that enable multi-tenant connectivity over long distances and increase network capacity by enforcing low transmission rates to increase network capacity. Such networking technologies allow cloud-based platforms to be connected with large numbers of IoT devices deployed several kilometres from the edges of the network. Despite the rapid uptake of Long-power Wide-area Networks (LPWANs), it remains unclear how to organize the wireless sensor network in a scaleable and adaptive way. This paper introduces a hierarchical communication scheme that utilizes the new capabilities of Long-Range Wireless Sensor Networking technologies by combining them with broadly used 802.11.4-based low-range low-power technologies. The design of the hierarchical scheme is presented in detail along with the technical details on the implementation in real-world hardware platforms. A platform-agnostic software firmware is produced that is evaluated in real-world large-scale testbeds. The performance of the networking scheme is evaluated through a series of experimental scenarios that generate environments with varying channel quality, failing nodes, and mobile nodes. The performance is evaluated in terms of the overall time required to organize the network and setup a hierarchy, the energy consumption and the overall lifetime of the network, as well as the ability to adapt to channel failures. The experimental analysis indicate that the combination of long-range and short-range networking technologies can lead to scalable solutions that can service concurrently multiple applications

    Survey of Distributed Decision

    Get PDF
    We survey the recent distributed computing literature on checking whether a given distributed system configuration satisfies a given boolean predicate, i.e., whether the configuration is legal or illegal w.r.t. that predicate. We consider classical distributed computing environments, including mostly synchronous fault-free network computing (LOCAL and CONGEST models), but also asynchronous crash-prone shared-memory computing (WAIT-FREE model), and mobile computing (FSYNC model)
    corecore