16,639 research outputs found

    Isotropy of the velocity of light and the Sagnac effect

    Full text link
    In this paper, it is shown, using a geometrical approach, the isotropy of the velocity of light measured in a rotating frame in Minkowski space-time, and it is verified that this result is compatible with the Sagnac effect. Furthermore, we find that this problem can be reduced to the solution of geodesic triangles in a Minkowskian cylinder. A relationship between the problems established on the cylinder and on the Minkowskian plane is obtained through a local isometry.Comment: LaTeX, 13 pages, 3 eps figures; typos corrected, added references, minor changes; to appear in "Relativity in Rotating Frames", ed. G. Rizzi G. and M.L. Ruggiero, Kluwer Academic Publishers, Dordrecht (2003

    Astrophysical Probes of the Constancy of the Velocity of Light

    Get PDF
    We discuss possible tests of the constancy of the velocity of light using distant astrophysical sources such as gamma-ray bursters (GRBs), Active Galactic Nuclei (AGNs) and pulsars. This speculative quest may be motivated by some models of quantum fluctuations in the space-time background, and we discuss explicitly how an energy-dependent variation in photon velocity \delta c/ c \sim - E / M arises in one particular quantum-gravitational model. We then discuss how data on GRBs may be used to set limits on variations in the velocity of light, which we illustrate using BATSE and OSSE observations of the GRBs that have recently been identified optically and for which precise redshifts are available. We show how a regression analysis can be performed to look for an energy-dependent effect that should correlate with redshift. The present data yield a limit M \gsim 10^{15} GeV for the quantum gravity scale. We discuss the prospects for improving this analysis using future data, and how one might hope to distinguish any positive signal from astrophysical effects associated with the sources.Comment: 37 pages LaTeX, 9 eps figures included, uses aasms4.st

    Velocity of Light in Dark Matter with Charge

    Full text link
    We propose an interesting mechanism to reconcile the recent experiments of the Michelson-Morley type and slowdown of the velocity of light in dark matter with a fractional electric charge when the index of refraction of dark matter depends on the frequency of a photon. After deriving the formula for the velocity of light in a medium with the index of refraction n(ω)n(\omega) in a relativistic regime, it is shown that the local anisotropy of the light speed is proportional to the second order in n(ω)−1n(\omega) - 1. This result implies that the experiments of the Michelson-Morley type do not give rise to a stringent constraint on the slowdown of the velocity of light in dark matter with electric charge.Comment: 10 page

    On the Velocity of Light Signals in the Deep Underwater Neutrino Experiments

    Get PDF
    During the last few years deep underwater neutrino telescopes of a new generation with dimensions close to 100 m or more were taken into operation. For the correct track reconstruction and for the interpretation of light pulses from calibration lasers one has to use the group velocity for light signals. The difference between group velocity leads to an additional delay of about 10 ns for a distance of 100 m between light source and photjmultiplier. From the time of the appearance of the first projects of deep underwater neutrino telescopes in the middle of 70th this fact was never mentioned in the literature.Comment: 4 pages, 2 figure

    D-Foam Phenomenology: Dark Energy, the Velocity of Light and a Possible D-Void

    Full text link
    In a D-brane model of space-time foam, there are contributions to the dark energy that depend on the D-brane velocities and on the density of D-particle defects. The latter may also reduce the speeds of photons linearly with their energies, establishing a phenomenological connection with astrophysical probes of the universality of the velocity of light. Specifically, the cosmological dark energy density measured at the present epoch may be linked to the apparent retardation of energetic photons propagating from nearby AGNs. However, this nascent field of `D-foam phenomenology' may be complicated by a dependence of the D-particle density on the cosmological epoch. A reduced density of D-particles at redshifts z ~ 1 - a `D-void' - would increase the dark energy while suppressing the vacuum refractive index, and thereby might reconcile the AGN measurements with the relatively small retardation seen for the energetic photons propagating from GRB 090510, as measured by the Fermi satellite.Comment: 10 pages, 3 figure

    On the Ultrarelativistic Limit of General Relativity

    Get PDF
    As is well-known, Newton's gravitational theory can be formulated as a four-dimensional space-time theory and follows as singular limit from Einstein's theory, if the velocity of light tends to the infinity. Here 'singular' stands for the fact, that the limiting geometrical structure differs from a regular Riemannian space-time. Geometrically, the transition Einstein to Newton can be viewed as an 'opening' of the light cones. This picture suggests that there might be other singular limits of Einstein's theory: Let all light cones shrink and ultimately become part of a congruence of singular world lines. The limiting structure may be considered as a nullhypersurface embedded in a five-dimensional spacetime. While the velocity of light tends to zero here, all other velocities tend to the velocity of light. Thus one may speak of an ultrarelativistic limit of General Relativity. The resulting theory is as simple as Newton's gravitational theory, with the basic difference, that Newton's elliptic differential equation is replaced by essentially ordinary differential equations, with derivatives tangent to the generators of the singular congruence. The Galilei group is replaced by the Carroll group introduced by L\'evy-Leblond. We suggest to study near ultrarelativistic situations with a perturbational approach starting from the singular structure, similar to post-Newtonian expansions in the c→∞c \to \infty case.Comment: 9 pages, Latex, submitted to Acta Physica Polonica (Jadwisin Conference Proceedings
    • …
    corecore