1,367 research outputs found

    Perturbed iterative solution of nonlinear equations with applications to fluid dynamics

    Get PDF
    AbstractIn this work a technique has been developed to solve a set of nonlinear equations with the assumption that a solution exists. The algorithm involves nonlinear Gauss-Seidel iteractions and at each iteration the value of the iterate is added to a predetermined perturbation parameter which is computed in terms of quantities already known. This perturbation parameter has two properties: (i) it determines the mode of convergence, that means it shows how many more computations are required so that convergence may be achieved, and (ii) it accelerates the rate of convergence. The algorithm is computationally simple. Several nonlinear equations have been studied. The results seem to be encouraging

    Modelling techniques for biological systems

    Get PDF
    The objective of this investigation has been to develop and evaluate techniques which are appropriate to the modelling and simulation of biological reaction system behaviour. The model used as the basis for analysis of modelling and simulation techniques is a reduced version of the biological model proposed by the IAWPRC Task Group for mathematical modell ing in wastewater treatment design. This limited model has the advantage of being easily manageable in terms of analysis and presentation of the simulation techniQues whilst at the same time incorporating a range of features encountered with biological growth applications in general. Because a model may incorporate a number of different components and large number of biological conversion processes, a convenient method of presentation was found to be a matrix format. The matrix representation ensures clarity as to what compounds, processes and react ion terms are to be incorporated and allows easy comparison of different models. In addition, it facilitates transforming the model into a computer program. Simulation of the system response first involves specifying the reactor configuration and flow patterns. With this information fixed, mass balances for each compound in each reactor can be completed. These mass balances constitute a set of simultaneous non-linear differential and algebraic eQuations which, when solved, characterise the system behaviour

    The Daily Egyptian, November 11, 1988

    Get PDF

    The Daily Egyptian, November 11, 1988

    Get PDF

    Dynamic analysis of Space Shuttle/RMS configuration using continuum approach

    Get PDF
    The initial assembly of Space Station Freedom involves the Space Shuttle, its Remote Manipulation System (RMS) and the evolving Space Station Freedom. The dynamics of this coupled system involves both the structural and the control system dynamics of each of these components. The modeling and analysis of such an assembly is made even more formidable by kinematic and joint nonlinearities. The current practice of modeling such flexible structures is to use finite element modeling in which the mass and interior dynamics is ignored between thousands of nodes, for each major component. The model characteristics of only tens of modes are kept out of thousands which are calculated. The components are then connected by approximating the boundary conditions and inserting the control system dynamics. In this paper continuum models are used instead of finite element models because of the improved accuracy, reduced number of model parameters, the avoidance of model order reduction, and the ability to represent the structural and control system dynamics in the same system of equations. Dynamic analysis of linear versions of the model is performed and compared with finite element model results. Additionally, the transfer matrix to continuum modeling is presented

    A digital computer program for the dynamic interaction simulation of controls and structure (DISCOS), volume 1

    Get PDF
    A theoretical development and associated digital computer program system for the dynamic simulation and stability analysis of passive and actively controlled spacecraft are presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system is used to investigate total system dynamic characteristics, including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. In addition, the program system is used for designing attitude control systems and for evaluating total dynamic system performance, including time domain response and frequency domain stability analyses

    Review of Paul Newman and Martha Ratliff, eds., 'Linguistic Fieldwork'

    Get PDF

    Selection of sampling rate for digital control of aircrafts

    Get PDF
    The considerations in selecting the sample rates for digital control of aircrafts are identified and evaluated using the optimal discrete method. A high performance aircraft model which includes a bending mode and wind gusts was studied. The following factors which influence the selection of the sampling rates were identified: (1) the time and roughness response to control inputs; (2) the response to external disturbances; and (3) the sensitivity to variations of parameters. It was found that the time response to a control input and the response to external disturbances limit the selection of the sampling rate. The optimal discrete regulator, the steady state Kalman filter, and the mean response to external disturbances are calculated

    February 22, 1996

    Get PDF
    The Breeze is the student newspaper of James Madison University in Harrisonburg, Virginia
    corecore