3,416 research outputs found

    Local wavelet features for statistical object classification and localisation

    Get PDF
    This article presents a system for texture-based probabilistic classification and localisation of 3D objects in 2D digital images and discusses selected applications. The objects are described by local feature vectors computed using the wavelet transform. In the training phase, object features are statistically modelled as normal density functions. In the recognition phase, a maximisation algorithm compares the learned density functions with the feature vectors extracted from a real scene and yields the classes and poses of objects found in it. Experiments carried out on a real dataset of over 40000 images demonstrate the robustness of the system in terms of classification and localisation accuracy. Finally, two important application scenarios are discussed, namely classification of museum artefacts and classification of metallography images

    IVUS-based histology of atherosclerotic plaques: improving longitudinal resolution

    Get PDF
    Although Virtual Histology (VH) is the in-vivo gold standard for atherosclerosis plaque characterization in IVUS images, it suffers from a poor longitudinal resolution due to ECG-gating. In this paper, we propose an image- based approach to overcome this limitation. Since each tissue have different echogenic characteristics, they show in IVUS images different local frequency components. By using Redundant Wavelet Packet Transform (RWPT), IVUS images are decomposed in multiple sub-band images. To encode the textural statistics of each resulting image, run-length features are extracted from the neighborhood centered on each pixel. To provide the best discrimination power according to these features, relevant sub-bands are selected by using Local Discriminant Bases (LDB) algorithm in combination with Fisher’s criterion. A structure of weighted multi-class SVM permits the classification of the extracted feature vectors into three tissue classes, namely fibro-fatty, necrotic core and dense calcified tissues. Results shows the superiority of our approach with an overall accuracy of 72% in comparison to methods based on Local Binary Pattern and Co-occurrence, which respectively give accuracy rates of 70% and 71%

    Hyperspectral colon tissue cell classification

    Get PDF
    A novel algorithm to discriminate between normal and malignant tissue cells of the human colon is presented. The microscopic level images of human colon tissue cells were acquired using hyperspectral imaging technology at contiguous wavelength intervals of visible light. While hyperspectral imagery data provides a wealth of information, its large size normally means high computational processing complexity. Several methods exist to avoid the so-called curse of dimensionality and hence reduce the computational complexity. In this study, we experimented with Principal Component Analysis (PCA) and two modifications of Independent Component Analysis (ICA). In the first stage of the algorithm, the extracted components are used to separate four constituent parts of the colon tissue: nuclei, cytoplasm, lamina propria, and lumen. The segmentation is performed in an unsupervised fashion using the nearest centroid clustering algorithm. The segmented image is further used, in the second stage of the classification algorithm, to exploit the spatial relationship between the labeled constituent parts. Experimental results using supervised Support Vector Machines (SVM) classification based on multiscale morphological features reveal the discrimination between normal and malignant tissue cells with a reasonable degree of accuracy

    Supervised Content based Image Retrieval using Fuzzy Texton and Shearlet Transform

    Get PDF
    In this paper we proposed, a novel framework to assist and automate the diagnosis of diseases from computer-based image analysis method using Content-based image retrieval (CBIR). CBIR is the process of retrieving related images from large database collections by using low level image features such as color, texture and shape etc. we have used fuzzy texton and discrete shearlet transform to extract texture and shape features. The aim is to support decision making by retrieving and displaying relevant past cases visually similar to the one under examination with relevance feedback using Support Vector Machines

    Resolution invariant wavelet features of melanoma studied by SVM classifiers

    Get PDF
    This article refers to the Computer Aided Diagnosis of the melanoma skin cancer. We derive wavelet-based features of melanoma from the dermoscopic images of pigmental skin lesions and apply binary C-SVM classifiers to discriminate malignant melanoma from dysplastic nevus. The aim of this research is to select the most efficient model of the SVM classifier for various image resolutions and to search for the best resolution-invariant wavelet bases. We show AUC as a function of the wavelet number and SVM kernels optimized by the Bayesian search for two independent data sets. Our results are compatible with the previous experiments to discriminate melanoma in dermoscopy images with ensembling and feed-forward neural networks

    K-Space at TRECVid 2007

    Get PDF
    In this paper we describe K-Space participation in TRECVid 2007. K-Space participated in two tasks, high-level feature extraction and interactive search. We present our approaches for each of these activities and provide a brief analysis of our results. Our high-level feature submission utilized multi-modal low-level features which included visual, audio and temporal elements. Specific concept detectors (such as Face detectors) developed by K-Space partners were also used. We experimented with different machine learning approaches including logistic regression and support vector machines (SVM). Finally we also experimented with both early and late fusion for feature combination. This year we also participated in interactive search, submitting 6 runs. We developed two interfaces which both utilized the same retrieval functionality. Our objective was to measure the effect of context, which was supported to different degrees in each interface, on user performance. The first of the two systems was a ‘shot’ based interface, where the results from a query were presented as a ranked list of shots. The second interface was ‘broadcast’ based, where results were presented as a ranked list of broadcasts. Both systems made use of the outputs of our high-level feature submission as well as low-level visual features

    Hybrid image representation methods for automatic image annotation: a survey

    Get PDF
    In most automatic image annotation systems, images are represented with low level features using either global methods or local methods. In global methods, the entire image is used as a unit. Local methods divide images into blocks where fixed-size sub-image blocks are adopted as sub-units; or into regions by using segmented regions as sub-units in images. In contrast to typical automatic image annotation methods that use either global or local features exclusively, several recent methods have considered incorporating the two kinds of information, and believe that the combination of the two levels of features is beneficial in annotating images. In this paper, we provide a survey on automatic image annotation techniques according to one aspect: feature extraction, and, in order to complement existing surveys in literature, we focus on the emerging image annotation methods: hybrid methods that combine both global and local features for image representation
    • …
    corecore