2,370 research outputs found

    Texture analysis of MR images of patients with Mild Traumatic Brain Injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our objective was to study the effect of trauma on texture features in cerebral tissue in mild traumatic brain injury (MTBI). Our hypothesis was that a mild trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection but could be detected with texture analysis (TA).</p> <p>Methods</p> <p>We imaged 42 MTBI patients by using 1.5 T MRI within three weeks of onset of trauma. TA was performed on the area of mesencephalon, cerebral white matter at the levels of mesencephalon, corona radiata and centrum semiovale and in different segments of corpus callosum (CC) which have been found to be sensitive to damage. The same procedure was carried out on a control group of ten healthy volunteers. Patients' TA data was compared with the TA results of the control group comparing the amount of statistically significantly differing TA parameters between the left and right sides of the cerebral tissue and comparing the most discriminative parameters.</p> <p>Results</p> <p>There were statistically significant differences especially in several co-occurrence and run-length matrix based parameters between left and right side in the area of mesencephalon, in cerebral white matter at the level of corona radiata and in the segments of CC in patients. Considerably less difference was observed in the healthy controls.</p> <p>Conclusions</p> <p>TA revealed significant changes in texture parameters of cerebral tissue between hemispheres and CC segments in TBI patients. TA may serve as a novel additional tool for detecting the conventionally invisible changes in cerebral tissue in MTBI and help the clinicians to make an early diagnosis.</p

    Visual and Contextual Modeling for the Detection of Repeated Mild Traumatic Brain Injury.

    Get PDF
    Currently, there is a lack of computational methods for the evaluation of mild traumatic brain injury (mTBI) from magnetic resonance imaging (MRI). Further, the development of automated analyses has been hindered by the subtle nature of mTBI abnormalities, which appear as low contrast MR regions. This paper proposes an approach that is able to detect mTBI lesions by combining both the high-level context and low-level visual information. The contextual model estimates the progression of the disease using subject information, such as the time since injury and the knowledge about the location of mTBI. The visual model utilizes texture features in MRI along with a probabilistic support vector machine to maximize the discrimination in unimodal MR images. These two models are fused to obtain a final estimate of the locations of the mTBI lesion. The models are tested using a novel rodent model of repeated mTBI dataset. The experimental results demonstrate that the fusion of both contextual and visual textural features outperforms other state-of-the-art approaches. Clinically, our approach has the potential to benefit both clinicians by speeding diagnosis and patients by improving clinical care

    Detection of Brain Injury Using Different Soft Computing Techniques: A Survey

    Get PDF
    The detection of brain injury is one of the important and difficult task in the field of medicine. If the brain injuries are not detected in time, then it can cause serious problems in patients and sometimes can even lead to death. Traumatic brain injury (TBI) is one of the major causes of mortality and poor quality of life among the survivors. Various imaging techniques are available for taking the images of the brain so that the injuries can be detected. Magnetic resonance imaging (MRI) is one of the common medical imaging technique used for the delineation of soft tissues such as that of the brain. This paper analyses few of the methods and their performances that have been proposed for the detection of the brain injury. In these methods different soft computing techniques such as artificial neural networks (ANN), k nearest neighbor (k-NN), support vector machine (SVM), Parzan window, etc. were used for the classification of abnormal and normal brain images. Before classification feature extraction and reduction were done using the methods such as DWT, GLCM, PCA, etc. DOI: 10.17762/ijritcc2321-8169.15030

    Clinical Applicability of MRI Texture Analysis

    Get PDF
    Radiologisten kuvien tulkinta on perinteisesti perustunut asiantuntijan näköhavaintoihin. Tietokoneavusteisten menetelmien käyttö lisääntyy radiologisessa diagnostiikassa. Tekstuuria eli kuviorakennetta on käytetty erottelevana ominaisuutena kudoksia luokiteltaessa ja karakterisoitaessa. Kuvan kuviorakenteen ominaisuuksia kuvaavia tekstuuriparametreja voidaan laskea erilaisilla matemaattisilla ja signaalinkäsittelymenetelmillä. Tekstuurianalyysi on antanut lupaavia tuloksia magneettikuvien tarkastelussa. Sen avulla on voitu määrittää sekä pieniä hajanaisia että suurempia paikallisia muutoksia. Menetelmällä on mahdollista havaita ihmissilmälle näkymättömiä sekä näkyviä muutoksia. Menetelmää tulisi tutkia edelleen, koska kliinisen menetelmän kehittämistä varten tarvitaan lisätietoa sen soveltuvuudesta erilaisille aineistoille sekä analyysimenetelmän eri vaiheiden optimoimisesta. Tämän väitöstutkimuksen tavoite oli selvittää magneettikuvauksen tekstuurianalyysin kliinistä käytettävyyttä eri kannoilta. Tutkimusaineisto koostui kolmesta potilasmateriaalista ja yhdestä terveiden urheilijoiden joukosta sekä heidän verrokeistaan. Aineisto kerättiin osina Tampereen yliopistollisessa sairaalassa toteutettuja laajempia tutkimusprojekteja, ja mukaan otettiin yhteensä 220 osallistujaa. Ensimmäisessä osatyössä tarkasteltiin pehmytkudoskuvantamista, non-Hodgkin-lymfooman hoitovasteen arviointia tekstuurianalyysilla. Kaksi seuraavaa osatyötä käsitteli keskushermoston kuvantamista: lieviä aivovammoja sekä MS-tautia. Viimeisessä osatyössä arvioitiin liikunnan vaikutusta urheilijoiden ja verrokkien reisiluun kaulan luurakenteeseen. Kudosten ja muutosten vertailuissa oli edustettuna sekä ympäröivästä kudoksesta visuaalisella tarkastelulla erottumattomia että selkeästi erottuvia rakenteita. Lisäksi tutkimuksessa selvitettiin mielenkiintoalueen käsityönä tehtävän rajaamisen ja magneettikuvaussekvenssin valinnan vaikutusta analyysiin. Yhteenvetona todetaan, että tekstuurimenetelmällä on mahdollista havaita ja karakterisoida tutkimukseen valikoidun aineiston edustamia etiologialtaan erilaisia muutoksia kliinisistä 1.5 Teslan magneettikuvista. Tutkimuksessa käsitellyt yksityiskohdat MRI-kuvasarjojen valinnasta sekä mielenkiintoalueiden piirtämisestä antavat pohjaa kliinisen protokollan kehittämiseen. Osa tutkimusaineistoista oli kokeellisia, ja niiden tulokset tulisi vahvistaa laajemmilla kliinisillä tutkimuksilla.The usage of computerised methods in radiological image interpretation is becoming more common. Texture analysis has shown promising results as an image analysis method for detecting non-visible and visible lesions, with a number of applications in magnetic resonance imaging (MRI). Although several recent studies have investigated this topic, there remains a need for further analyses incorporating different clinical materials and taking protocol planning for clinical analyses into account. The purpose of this thesis was to determine the clinical applicability of MRI texture analysis from different viewpoints. This study is based on three patient materials and one collection of healthy athletes and their referents. A total of 220 participants in wider on-going study projects at Tampere University Hospital were included in this thesis. The materials include a study on non-Hodgkin lymphoma, representing soft tissue imaging with malignant disease treatment monitoring; and two studies on central nervous system diseases, mild traumatic brain injury and multiple sclerosis. A musculoskeletal imaging study investigated load-associated physiological changes in healthy participants? bones. Furthermore, manual Region of Interest (ROI) definition methods and the selection of MRI sequences for analyses of visible and non-visible lesions were evaluated. In summary, this study showed that non-visible lesions and physiological changes as well as visible focal lesions of different aetiologies could be detected and characterised by texture analysis of routine clinical 1.5 T scans. The details of MRI sequence selection and ROI definition in this study may serve as guidelines for the development of clinical protocols. However, these studies are partly experimental and need to be validated with larger sample sizes

    AUTOMATED MIDLINE SHIFT DETECTION ON BRAIN CT IMAGES FOR COMPUTER-AIDED CLINICAL DECISION SUPPORT

    Get PDF
    Midline shift (MLS), the amount of displacement of the brain’s midline from its normal symmetric position due to illness or injury, is an important index for clinicians to assess the severity of traumatic brain injury (TBI). In this dissertation, an automated computer-aided midline shift estimation system is proposed. First, a CT slice selection algorithm (SSA) is designed to automatically select a subset of appropriate CT slices from a large number of raw images for MLS detection. Next, ideal midline detection is implemented based on skull bone anatomical features and global rotation assumptions. For the actual midline detection algorithm, a window selection algorithm (WSA) is applied first to confine the region of interest, then the variational level set method is used to segment the image and extract the ventricle contours. With a ventricle identification algorithm (VIA), the position of actual midline is detected based on the identified right and left lateral ventricle contours. Finally, the brain midline shift is calculated using the positions of detected ideal midline and actual midline. One of the important applications of midline shift in clinical medical decision making is to estimate the intracranial pressure (ICP). ICP monitoring is a standard procedure in the care of severe traumatic brain injury (TBI) patients. An automated ICP level prediction model based on machine learning method is proposed in this work. Multiple features, including midline shift, intracranial air cavities, ventricle size, texture patterns, and blood amount, are used in the ICP level prediction. Finally, the results are evaluated to assess the effectiveness of the proposed method in ICP level prediction

    Hyperbaric oxygen therapy for Alzheimer’s dementia with positron emission tomography imaging: a case report

    Get PDF
    A 58-year-old female was diagnosed with Alzheimer’s dementia (AD) which was rapidly progressive in the 8 months prior to initiation of hyperbaric oxygen therapy (HBOT). 18Fluorodeoxyglucose (18FDG) positron emission tomography (PET) brain imaging demonstrated global and typical metabolic deficits in AD (posterior temporal-parietal watershed and cingulate areas). An 8-week course of HBOT reversed the patient’s symptomatic decline. Repeat PET imaging demonstrated a corresponding 6.5–38% regional and global increase in brain metabolism, including increased metabolism in the typical AD diagnostic areas of the brain. Continued HBOT in conjunction with standard pharmacotherapy maintained the patient’s symptomatic level of function over an ensuing 22 months. This is the first reported case of simultaneous HBOT-induced symptomatic and 18FDG PET documented improvement of brain metabolism in AD and suggests an effect on global pathology in AD

    Texture Analysis in Magnetic Resonance Imaging: Review and Considerations for Future Applications

    Get PDF
    Texture analysis is a technique used for the quantification of image texture. It has been successfully used in many fields, and in the past years it has been applied in magnetic resonance imaging (MRI) as a computer-aided diagnostic tool. Quantification of the intrinsic heterogeneity of different tissues and lesions is necessary as they are usually imperceptible to the human eye. In the present chapter, we describe texture analysis as a process consisting of six steps: MRI acquisition, region of interest (ROI) definition, ROI preprocessing, feature extraction, feature selection, and classification. There is a great variety of methods and techniques to be chosen at each step and all of them can somehow affect the outcome of the texture analysis application. We reviewed the literature regarding texture analysis in clinical MRI focusing on the important considerations to be taken at each step of the process in order to obtain maximum benefits and to avoid misleading results

    The pathophysiology of prospective memory failure after diffuse axonal injury - Lesion-symptom analysis using diffusion tensor imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prospective memory (PM) is one of the most important cognitive domains in everyday life. The neuronal basis of PM has been examined by a large number of neuroimaging and neuropsychological studies, and it has been suggested that several cerebral domains contribute to PM. For these activation studies, a constellation of experimental PM trials was developed and adopted to healthy subjects. In the present study, we used a widely used clinical PM assessment battery to determine the lesions attributable to PM failure, with the hypothesis that lesion-symptom analysis using diffusion tensor imaging (DTI) in subjects with diffuse axonal injury (DAI) can reveal the neuronal basis of PM in everyday life.</p> <p>Results</p> <p>Fourteen DAI patients (age: range of 18-36, median 24) participated in this study. PM failure was scored in the range of 0-6 using three sub-tests of the Rivermead Behavioural Memory Test. The PM scores of DAI patients were in the range of 2-6 (median 4.5, inter-quartile range 2.25). The severity of axonal injury following DAI was examined using fractional anisotropy (FA), one of the DTI parameters, at voxel level in each subject. We then obtained clusters correlated with PM failure by conducting voxel-based regression analysis between FA values and PM scores. Three clusters exhibited significant positive correlation with PM score, the left parahippocampal gyrus, left inferior parietal lobe, and left anterior cingulate.</p> <p>Conclusions</p> <p>This is the first lesion-symptom study to reveal the neuronal basis of PM using DTI on subjects with DAI. Our findings suggest that the neuronal basis of PM is in the left parahippocampal gyrus, left inferior parietal lobe, and/or left anterior cingulate. These findings are similar to those of previous activation studies with loading experimental PM tasks.</p
    corecore