725 research outputs found

    Automated detection of extended sources in radio maps: progress from the SCORPIO survey

    Get PDF
    Automated source extraction and parameterization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper we present a new algorithm, dubbed CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parameterization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, including also different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the ASKAP-EMU survey. The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.Comment: 15 pages, 9 figure

    Semantic Object Parsing with Graph LSTM

    Full text link
    By taking the semantic object parsing task as an exemplar application scenario, we propose the Graph Long Short-Term Memory (Graph LSTM) network, which is the generalization of LSTM from sequential data or multi-dimensional data to general graph-structured data. Particularly, instead of evenly and fixedly dividing an image to pixels or patches in existing multi-dimensional LSTM structures (e.g., Row, Grid and Diagonal LSTMs), we take each arbitrary-shaped superpixel as a semantically consistent node, and adaptively construct an undirected graph for each image, where the spatial relations of the superpixels are naturally used as edges. Constructed on such an adaptive graph topology, the Graph LSTM is more naturally aligned with the visual patterns in the image (e.g., object boundaries or appearance similarities) and provides a more economical information propagation route. Furthermore, for each optimization step over Graph LSTM, we propose to use a confidence-driven scheme to update the hidden and memory states of nodes progressively till all nodes are updated. In addition, for each node, the forgets gates are adaptively learned to capture different degrees of semantic correlation with neighboring nodes. Comprehensive evaluations on four diverse semantic object parsing datasets well demonstrate the significant superiority of our Graph LSTM over other state-of-the-art solutions.Comment: 18 page

    Superpixel based sea ice segmentation with high-resolution optical images: analysis and evaluation.

    Get PDF
    By grouping pixels with visual coherence, superpixel algorithms provide an alternative representation of regular pixel grid for precise and efficient image segmentation. In this paper, a multi-stage model is used for sea ice segmentation from the high-resolution optical imagery, including the pre-processing to enhance the image contrast and suppress the noise, superpixel generation and classification, and post-processing to refine the segmented results. Four superpixel algorithms are evaluated within the framework, where the high-resolution imagery of the Chukchi sea is used for validation. Quantitative evaluation in terms of the segmentation quality and floe size distribution, and visual comparison for several selected regions of interest are presented. Overall, the model with TS-SLIC yields the best results, with a segmentation accuracy of 98.19% on average and adhering to the ice edges well

    Automatic Segmentation of Trees in Dynamic Outdoor Environments

    Get PDF
    Segmentation in dynamic outdoor environments can be difficult when the illumination levels and other aspects of the scene cannot be controlled. Specifically in orchard and vineyard automation contexts, a background material is often used to shield a camera\u27s field of view from other rows of crops. In this paper, we describe a method that uses superpixels to determine low texture regions of the image that correspond to the background material, and then show how this information can be integrated with the color distribution of the image to compute optimal segmentation parameters to segment objects of interest. Quantitative and qualitative experiments demonstrate the suitability of this approach for dynamic outdoor environments, specifically for tree reconstruction and apple flower detection application
    • …
    corecore