6,679 research outputs found

    Second order scattering descriptors predict fMRI activity due to visual textures

    Get PDF
    Second layer scattering descriptors are known to provide good classification performance on natural quasi-stationary processes such as visual textures due to their sensitivity to higher order moments and continuity with respect to small deformations. In a functional Magnetic Resonance Imaging (fMRI) experiment we present visual textures to subjects and evaluate the predictive power of these descriptors with respect to the predictive power of simple contour energy - the first scattering layer. We are able to conclude not only that invariant second layer scattering coefficients better encode voxel activity, but also that well predicted voxels need not necessarily lie in known retinotopic regions.Comment: 3nd International Workshop on Pattern Recognition in NeuroImaging (2013

    Self-Similar Anisotropic Texture Analysis: the Hyperbolic Wavelet Transform Contribution

    Full text link
    Textures in images can often be well modeled using self-similar processes while they may at the same time display anisotropy. The present contribution thus aims at studying jointly selfsimilarity and anisotropy by focusing on a specific classical class of Gaussian anisotropic selfsimilar processes. It will first be shown that accurate joint estimates of the anisotropy and selfsimilarity parameters are performed by replacing the standard 2D-discrete wavelet transform by the hyperbolic wavelet transform, which permits the use of different dilation factors along the horizontal and vertical axis. Defining anisotropy requires a reference direction that needs not a priori match the horizontal and vertical axes according to which the images are digitized, this discrepancy defines a rotation angle. Second, we show that this rotation angle can be jointly estimated. Third, a non parametric bootstrap based procedure is described, that provides confidence interval in addition to the estimates themselves and enables to construct an isotropy test procedure, that can be applied to a single texture image. Fourth, the robustness and versatility of the proposed analysis is illustrated by being applied to a large variety of different isotropic and anisotropic self-similar fields. As an illustration, we show that a true anisotropy built-in self-similarity can be disentangled from an isotropic self-similarity to which an anisotropic trend has been superimposed

    Combining local regularity estimation and total variation optimization for scale-free texture segmentation

    Get PDF
    Texture segmentation constitutes a standard image processing task, crucial to many applications. The present contribution focuses on the particular subset of scale-free textures and its originality resides in the combination of three key ingredients: First, texture characterization relies on the concept of local regularity ; Second, estimation of local regularity is based on new multiscale quantities referred to as wavelet leaders ; Third, segmentation from local regularity faces a fundamental bias variance trade-off: In nature, local regularity estimation shows high variability that impairs the detection of changes, while a posteriori smoothing of regularity estimates precludes from locating correctly changes. Instead, the present contribution proposes several variational problem formulations based on total variation and proximal resolutions that effectively circumvent this trade-off. Estimation and segmentation performance for the proposed procedures are quantified and compared on synthetic as well as on real-world textures

    Modeling of evolving textures using granulometries

    Get PDF
    This chapter describes a statistical approach to classification of dynamic texture images, called parallel evolution functions (PEFs). Traditional classification methods predict texture class membership using comparisons with a finite set of predefined texture classes and identify the closest class. However, where texture images arise from a dynamic texture evolving over time, estimation of a time state in a continuous evolutionary process is required instead. The PEF approach does this using regression modeling techniques to predict time state. It is a flexible approach which may be based on any suitable image features. Many textures are well suited to a morphological analysis and the PEF approach uses image texture features derived from a granulometric analysis of the image. The method is illustrated using both simulated images of Boolean processes and real images of corrosion. The PEF approach has particular advantages for training sets containing limited numbers of observations, which is the case in many real world industrial inspection scenarios and for which other methods can fail or perform badly. [41] G.W. Horgan, Mathematical morphology for analysing soil structure from images, European Journal of Soil Science, vol. 49, pp. 161–173, 1998. [42] G.W. Horgan, C.A. Reid and C.A. Glasbey, Biological image processing and enhancement, Image Processing and Analysis, A Practical Approach, R. Baldock and J. Graham, eds., Oxford University Press, Oxford, UK, pp. 37–67, 2000. [43] B.B. Hubbard, The World According to Wavelets: The Story of a Mathematical Technique in the Making, A.K. Peters Ltd., Wellesley, MA, 1995. [44] H. Iversen and T. Lonnestad. An evaluation of stochastic models for analysis and synthesis of gray-scale texture, Pattern Recognition Letters, vol. 15, pp. 575–585, 1994. [45] A.K. Jain and F. Farrokhnia, Unsupervised texture segmentation using Gabor filters, Pattern Recognition, vol. 24(12), pp. 1167–1186, 1991. [46] T. Jossang and F. Feder, The fractal characterization of rough surfaces, Physica Scripta, vol. T44, pp. 9–14, 1992. [47] A.K. Katsaggelos and T. Chun-Jen, Iterative image restoration, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 208–209, 2000. [48] M. K¨oppen, C.H. Nowack and G. R¨osel, Pareto-morphology for color image processing, Proceedings of SCIA99, 11th Scandinavian Conference on Image Analysis 1, Kangerlussuaq, Greenland, pp. 195–202, 1999. [49] S. Krishnamachari and R. Chellappa, Multiresolution Gauss-Markov random field models for texture segmentation, IEEE Transactions on Image Processing, vol. 6(2), pp. 251–267, 1997. [50] T. Kurita and N. Otsu, Texture classification by higher order local autocorrelation features, Proceedings of ACCV93, Asian Conference on Computer Vision, Osaka, pp. 175–178, 1993. [51] S.T. Kyvelidis, L. Lykouropoulos and N. Kouloumbi, Digital system for detecting, classifying, and fast retrieving corrosion generated defects, Journal of Coatings Technology, vol. 73(915), pp. 67–73, 2001. [52] Y. Liu, T. Zhao and J. Zhang, Learning multispectral texture features for cervical cancer detection, Proceedings of 2002 IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp. 169–172, 2002. [53] G. McGunnigle and M.J. Chantler, Modeling deposition of surface texture, Electronics Letters, vol. 37(12), pp. 749–750, 2001. [54] J. McKenzie, S. Marshall, A.J. Gray and E.R. Dougherty, Morphological texture analysis using the texture evolution function, International Journal of Pattern Recognition and Artificial Intelligence, vol. 17(2), pp. 167–185, 2003. [55] J. McKenzie, Classification of dynamically evolving textures using evolution functions, Ph.D. Thesis, University of Strathclyde, UK, 2004. [56] S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Transactions of the American Mathematical Society, vol. 315, pp. 69–87, 1989. [57] S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674–693, 1989. [58] B.S. Manjunath and W.Y. Ma, Texture features for browsing and retrieval of image data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 837–842, 1996. [59] B.S. Manjunath, G.M. Haley and W.Y. Ma, Multiband techniques for texture classification and segmentation, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 367–381, 2000. [60] G. Matheron, Random Sets and Integral Geometry, Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, New York, 1975

    Classification of ordered texture images using regression modelling and granulometric features

    Get PDF
    Structural information available from the granulometry of an image has been used widely in image texture analysis and classification. In this paper we present a method for classifying texture images which follow an intrinsic ordering of textures, using polynomial regression to express granulometric moments as a function of class label. Separate models are built for each individual moment and combined for back-prediction of the class label of a new image. The methodology was developed on synthetic images of evolving textures and tested using real images of 8 different grades of cut-tear-curl black tea leaves. For comparison, grey level co-occurrence (GLCM) based features were also computed, and both feature types were used in a range of classifiers including the regression approach. Experimental results demonstrate the superiority of the granulometric moments over GLCM-based features for classifying these tea images
    corecore