18,272 research outputs found

    Repetition Detection in a Dynamic String

    Get PDF
    A string UU for a non-empty string U is called a square. Squares have been well-studied both from a combinatorial and an algorithmic perspective. In this paper, we are the first to consider the problem of maintaining a representation of the squares in a dynamic string S of length at most n. We present an algorithm that updates this representation in n^o(1) time. This representation allows us to report a longest square-substring of S in O(1) time and all square-substrings of S in O(output) time. We achieve this by introducing a novel tool - maintaining prefix-suffix matches of two dynamic strings. We extend the above result to address the problem of maintaining a representation of all runs (maximal repetitions) of the string. Runs are known to capture the periodic structure of a string, and, as an application, we show that our representation of runs allows us to efficiently answer periodicity queries for substrings of a dynamic string. These queries have proven useful in static pattern matching problems and our techniques have the potential of offering solutions to these problems in a dynamic text setting

    High-speed noise-free optical quantum memory

    Full text link
    Quantum networks promise to revolutionise computing, simulation, and communication. Light is the ideal information carrier for quantum networks, as its properties are not degraded by noise in ambient conditions, and it can support large bandwidths enabling fast operations and a large information capacity. Quantum memories, devices that store, manipulate, and release on demand quantum light, have been identified as critical components of photonic quantum networks, because they facilitate scalability. However, any noise introduced by the memory can render the device classical by destroying the quantum character of the light. Here we introduce an intrinsically noise-free memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We consequently demonstrate for the first time successful storage of GHz-bandwidth heralded single photons in a warm atomic vapour with no added noise; confirmed by the unaltered photon statistics upon recall. Our ORCA memory platform meets the stringent noise-requirements for quantum memories whilst offering technical simplicity and high-speed operation, and therefore is immediately applicable to low-latency quantum networks

    Feel the beat: using cross-modal rhythm to integrate perception of objects, others, and self

    Get PDF
    For a robot to be capable of development, it must be able to explore its environment and learn from its experiences. It must find (or create) opportunities to experience the unfamiliar in ways that reveal properties valid beyond the immediate context. In this paper, we develop a novel method for using the rhythm of everyday actions as a basis for identifying the characteristic appearance and sounds associated with objects, people, and the robot itself. Our approach is to identify and segment groups of signals in individual modalities (sight, hearing, and proprioception) based on their rhythmic variation, then to identify and bind causally-related groups of signals across different modalities. By including proprioception as a modality, this cross-modal binding method applies to the robot itself, and we report a series of experiments in which the robot learns about the characteristics of its own body

    Perception as a Dynamic Activation of Relational Matrices

    Get PDF
    Here we present an experimental model to be applied to the storage and retrieval of information based on an associative information system’s sensory and motor state change data, aiming to represent the dynamics of a dynamic perceptual system. The model and database implementation use a universal information storage structure holding both data and metadata within the same structure. This model is characterized by the emphasis on associative information about the represented system derived from raw data, which are in their turn produced by the associative system’s interactions with the environment. Instead of defining objects using descriptive relations, this model stores relations between occurents where the represented system is not replicated in its various components, but defined by its relations when they occur. This model therefore represents the dynamics and interaction of systems such as human perception, rather than imposing artificial boundaries and qualities. In essence, the model is an alternative to perceptual knowledge accumulation, which, as we show, can be applied to a database design

    Human factors issues associated with the use of speech technology in the cockpit

    Get PDF
    The human factors issues associated with the use of voice technology in the cockpit are summarized. The formulation of the LHX avionics suite is described and the allocation of tasks to voice in the cockpit is discussed. State-of-the-art speech recognition technology is reviewed. Finally, a questionnaire designed to tap pilot opinions concerning the allocation of tasks to voice input and output in the cockpit is presented. This questionnaire was designed to be administered to operational AH-1G Cobra gunship pilots. Half of the questionnaire deals specifically with the AH-1G cockpit and the types of tasks pilots would like to have performed by voice in this existing rotorcraft. The remaining portion of the questionnaire deals with an undefined rotorcraft of the future and is aimed at determining what types of tasks these pilots would like to have performed by voice technology if anything was possible, i.e. if there were no technological constraints

    Demonstrating Quantum Error Correction that Extends the Lifetime of Quantum Information

    Full text link
    The remarkable discovery of Quantum Error Correction (QEC), which can overcome the errors experienced by a bit of quantum information (qubit), was a critical advance that gives hope for eventually realizing practical quantum computers. In principle, a system that implements QEC can actually pass a "break-even" point and preserve quantum information for longer than the lifetime of its constituent parts. Reaching the break-even point, however, has thus far remained an outstanding and challenging goal. Several previous works have demonstrated elements of QEC in NMR, ions, nitrogen vacancy (NV) centers, photons, and superconducting transmons. However, these works primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to extend the lifetime of quantum information over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of coherent states, or cat states of a superconducting resonator. Moreover, the experiment implements a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode, and correct. As measured by full process tomography, the enhanced lifetime of the encoded information is 320 microseconds without any post-selection. This is 20 times greater than that of the system's transmon, over twice as long as an uncorrected logical encoding, and 10% longer than the highest quality element of the system (the resonator's 0, 1 Fock states). Our results illustrate the power of novel, hardware efficient qubit encodings over traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming the basic concepts to exploring the metrics that drive system performance and the challenges in implementing a fault-tolerant system
    • …
    corecore