53 research outputs found

    Hybrid image representation methods for automatic image annotation: a survey

    Get PDF
    In most automatic image annotation systems, images are represented with low level features using either global methods or local methods. In global methods, the entire image is used as a unit. Local methods divide images into blocks where fixed-size sub-image blocks are adopted as sub-units; or into regions by using segmented regions as sub-units in images. In contrast to typical automatic image annotation methods that use either global or local features exclusively, several recent methods have considered incorporating the two kinds of information, and believe that the combination of the two levels of features is beneficial in annotating images. In this paper, we provide a survey on automatic image annotation techniques according to one aspect: feature extraction, and, in order to complement existing surveys in literature, we focus on the emerging image annotation methods: hybrid methods that combine both global and local features for image representation

    06171 Abstracts Collection -- Content-Based Retrieval

    Get PDF
    From 23.04.06 to 28.04.06, the Dagstuhl Seminar 06171 `Content-Based Retrieval\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Apple scab detection using CNN and Transfer Learning

    Get PDF
    Received: January 11th, 2021 ; Accepted: April 10th, 2021 ; Published: April 22nd, 2021 ; Correspondence: [email protected] goal of smart and precise horticulture is to increase yield and product quality by simultaneous reduction of pesticide application, thereby promoting the improvement of food security. The scope of this research is apple scab detection in the early stage of development using mobile phones and artificial intelligence based on convolutional neural network (CNN) applications. The research considers data acquisition and CNN training. Two datasets were collected - with images of scab infected fruits and leaves of an apple tree. However, data acquisition is a time-consuming process and scab appearance has a probability factor. Therefore, transfer learning is an appropriate training methodology. The goal of this research was to select the most suitable dataset for transfer learning for the apple scab detection domain and to evaluate the transfer learning impact comparing it with learning from scratch. The statistical analysis confirmed the positive effect of transfer learning on CNN performance with significance level 0.05

    A Fuzzy Logic based Privacy Preservation Clustering method for achieving K- Anonymity using EMD in dLink Model

    Get PDF
    Privacy preservation is the data mining technique which is to be applied on the databases without violating the privacy of individuals. The sensitive attribute can be selected from the numerical data and it can be modified by any data modification technique. After modification, the modified data can be released to any agency. If they can apply data mining techniques such as clustering, classification etc for data analysis, the modified data does not affect the result. In privacy preservation technique, the sensitive data is converted into modified data using S-shaped fuzzy membership function. K-means clustering is applied for both original and modified data to get the clusters. t-closeness requires that the distribution of sensitive attribute in any equivalence class is close to the distribution of the attribute in the overall table. Earth Mover Distance (EMD) is used to measure the distance between the two distributions should be no more than a threshold t. Hence privacy is preserved and accuracy of the data is maintained

    Matching sets of features for efficient retrieval and recognition

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 145-153).In numerous domains it is useful to represent a single example by the collection of local features or parts that comprise it. In computer vision in particular, local image features are a powerful way to describe images of objects and scenes. Their stability under variable image conditions is critical for success in a wide range of recognition and retrieval applications. However, many conventional similarity measures and machine learning algorithms assume vector inputs. Comparing and learning from images represented by sets of local features is therefore challenging, since each set may vary in cardinality and its elements lack a meaningful ordering. In this thesis I present computationally efficient techniques to handle comparisons, learning, and indexing with examples represented by sets of features. The primary goal of this research is to design and demonstrate algorithms that can effectively accommodate this useful representation in a way that scales with both the representation size as well as the number of images available for indexing or learning. I introduce the pyramid match algorithm, which efficiently forms an implicit partial matching between two sets of feature vectors.(cont.) The matching has a linear time complexity, naturally forms a Mercer kernel, and is robust to clutter or outlier features, a critical advantage for handling images with variable backgrounds, occlusions, and viewpoint changes. I provide bounds on the expected error relative to the optimal partial matching. For very large databases, even extremely efficient pairwise comparisons may not offer adequately responsive query times. I show how to perform sub-linear time retrievals under the matching measure with randomized hashing techniques, even when input sets have varying numbers of features. My results are focused on several important vision tasks, including applications to content-based image retrieval, discriminative classification for object recognition, kernel regression, and unsupervised learning of categories. I show how the dramatic increase in performance enables accurate and flexible image comparisons to be made on large-scale data sets, and removes the need to artificially limit the number of local descriptions used per image when learning visual categories.by Kristen Lorraine Grauman.Ph.D

    Operating system profiling via latency analysis

    Get PDF
    Operating systems are complex and their behavior depends on many factors. Source code, if available, does not directly help one to understand the OS’s behavior, as the behavior depends on actual workloads and external inputs. Runtime profiling is a key technique to prove new concepts, debug problems, and optimize performance. Unfortunately, existing profiling methods are lacking in important areas—they do not provide enough information about the OS’s behavior, they require OS modification and therefore are not portable, or they incur high overheads thus perturbing the profiled OS. We developed OSprof: a versatile, portable, and efficient OS profiling method based on latency distributions analysis. OSprof automatically selects important profiles for subsequent visual analysis. We have demonstrated that a suitable workload can be used to profile virtually any OS component. OSprof is portable because it can intercept operations and measure OS behavior from user-level or from inside the kernel without requiring source code. OSprof has typical CPU time overheads below 4%. In this paper we describe our techniques and demonstrate their usefulness through a series of profiles conducted on Linux, FreeBSD, and Windows, including client/server scenarios. We discovered and investigated a number of interesting interactions, including scheduler behavior, multi-modal I/O distributions, and a previously unknown lock contention, which we fixed.

    Learning and inference with Wasserstein metrics

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages 131-143).This thesis develops new approaches for three problems in machine learning, using tools from the study of optimal transport (or Wasserstein) distances between probability distributions. Optimal transport distances capture an intuitive notion of similarity between distributions, by incorporating the underlying geometry of the domain of the distributions. Despite their intuitive appeal, optimal transport distances are often difficult to apply in practice, as computing them requires solving a costly optimization problem. In each setting studied here, we describe a numerical method that overcomes this computational bottleneck and enables scaling to real data. In the first part, we consider the problem of multi-output learning in the presence of a metric on the output domain. We develop a loss function that measures the Wasserstein distance between the prediction and ground truth, and describe an efficient learning algorithm based on entropic regularization of the optimal transport problem. We additionally propose a novel extension of the Wasserstein distance from probability measures to unnormalized measures, which is applicable in settings where the ground truth is not naturally expressed as a probability distribution. We show statistical learning bounds for both the Wasserstein loss and its unnormalized counterpart. The Wasserstein loss can encourage smoothness of the predictions with respect to a chosen metric on the output space. We demonstrate this property on a real-data image tagging problem, outperforming a baseline that doesn't use the metric. In the second part, we consider the probabilistic inference problem for diffusion processes. Such processes model a variety of stochastic phenomena and appear often in continuous-time state space models. Exact inference for diffusion processes is generally intractable. In this work, we describe a novel approximate inference method, which is based on a characterization of the diffusion as following a gradient flow in a space of probability densities endowed with a Wasserstein metric. Existing methods for computing this Wasserstein gradient flow rely on discretizing the underlying domain of the diffusion, prohibiting their application to problems in more than several dimensions. In the current work, we propose a novel algorithm for computing a Wasserstein gradient flow that operates directly in a space of continuous functions, free of any underlying mesh. We apply our approximate gradient flow to the problem of filtering a diffusion, showing superior performance where standard filters struggle. Finally, we study the ecological inference problem, which is that of reasoning from aggregate measurements of a population to inferences about the individual behaviors of its members. This problem arises often when dealing with data from economics and political sciences, such as when attempting to infer the demographic breakdown of votes for each political party, given only the aggregate demographic and vote counts separately. Ecological inference is generally ill-posed, and requires prior information to distinguish a unique solution. We propose a novel, general framework for ecological inference that allows for a variety of priors and enables efficient computation of the most probable solution. Unlike previous methods, which rely on Monte Carlo estimates of the posterior, our inference procedure uses an efficient fixed point iteration that is linearly convergent. Given suitable prior information, our method can achieve more accurate inferences than existing methods. We additionally explore a sampling algorithm for estimating credible regions.by Charles Frogner.Ph. D
    • …
    corecore