5 research outputs found

    New tools for the classification and filtering of historical maps

    Get PDF
    6openInternationalBothHistorical maps constitute an essential information for investigating the ecological and landscape features of a region over time. The integration of heritage maps in GIS models requires their digitalization and classification. This paper presents a semi-automatic procedure for the digitalization of heritage maps and the successive filtering of undesirable features such as text, symbols and boundary lines. The digitalization step is carried out using Object-based Image Analysis (OBIA) in GRASS GIS and R, combining image segmentation and machine-learning classification. The filtering step is performed by two GRASS GIS modules developed during this study and made available as GRASS GIS add-ons. The first module evaluates the size of the filter window needed for the removal of text, symbols and lines; the second module replaces the values of pixels of the category to be removed with values of the surrounding pixels. The procedure has been tested on three maps with different characteristics, the “Historical Cadaster Map for the Province of Trento” (1859), the “Italian Kingdom Forest Map” (1926) and the “Map of the potential limit of the forest in Trentino” (1992), with an average classification accuracy of 97%. These results improve the performance of classification of heritage maps compared to more classical methods, making the proposed procedure that can be applied to heterogeneous sets of maps, a viable approachopenGobbi, Stefano; Ciolli, Marco; La Porta, Nicola; Rocchini, Duccio; Tattoni, Clara; Zatelli, PaoloGobbi, S.; Ciolli, M.; La Porta, N.; Rocchini, D.; Tattoni, C.; Zatelli, P

    Fine spatial scale modelling of Trentino past forest landscape and future change scenarios to study ecosystem services through the years

    Get PDF
    Ciolli, MarcoCantiani, Maria Giulia1openLandscape in Europe has dramatically changed in the last decades. This has been especially true for Alpine regions, where the progressive urbanization of the valleys has been accom- panied by the abandonment of smaller villages and areas at higher elevation. This trend has been clearly observable in the Provincia Autonoma di Trento (PAT) region in the Italian Alps. The impact has been substantial for many rural areas, with the progressive shrinking of meadows and pastures due to the forest natural recolonization. These modifications of the landscape affect biodiversity, social and cultural dynamics, including landscape perception and some ecosystem services. Literature review showed that this topic has been addressed by several authors across the Alps, but their researches are limited in space coverage, spatial resolution and time span. This thesis aims to create a comprehensive dataset of historical maps and multitemporal orthophotos in the area of PAT to perform data analysis to identify the changes in forest and open areas, being an evaluation of how these changes affected land- scape structure and ecosystems, create a future change scenario for a test area and highlight some major changes in ecosystem services through time. In this study a high resolution dataset of maps covering the whole PAT area for over a century was developed. The earlier representation of the PAT territory which contained reliable data about forest coverage was considered is the Historic Cadastral maps of the 1859. These maps in fact systematically and accurately represented the land use of each parcel in the Habsburg Empire, included the PAT. Then, the Italian Kingdom Forest Maps, was the next important source of information about the forest coverage after World War I, before coming to the most recent datasets of the greyscale images of 1954, 1994 and the multiband images of 2006 and 2015. The purpose of the dataset development is twofold: to create a series of maps describing the forest and open areas coverage in the last 160 years for the whole PAT on one hand and to setup and test procedures to extract the relevant information from imagery and historical maps on the other. The datasets were archived, processed and analysed using the Free and Open Source Software (FOSS) GIS GRASS, QGIS and R. The goal set by this work was achieved by a remote sensed analysis of said maps and aerial imagery. A series of procedures were applied to extract a land use map, with the forest categories reaching a level of detail rarely achieved for a study area of such an extension (6200 km2 ). The resolution of the original maps is in fact at a meter level, whereas the coarser resampling adopted is 10mx10m pixels. The great variety and size of the input data required the development, along the main part of the research, of a series of new tools for automatizing the analysis of the aerial imagery, to reduce the user intervention. New tools for historic map classification were as well developed, for eliminating from the resulting maps of land use from symbols (e.g.: signs), thus enhancing the results. Once the multitemporal forest maps were obtained, the second phase of the current work was a qualitative and quantitative assessment of the forest coverage and how it changed. This was performed by the evaluation of a number of landscape metrics, indexes used to quantify the compaction or the rarefaction of the forest areas. A recurring issue in the current Literature on the topic of landscape metrics was identified along their analysis in the current work, that was extensively studied. This highlighted the importance of specifying some parameters in the most used landscape fragmentation analy- sis software to make the results of different studies properly comparable. Within this analysis a set of data coming from other maps were used to characterize the process of afforestation in PAT, such as the potential forest maps, which were used to quantify the area of potential forest which were actually afforested through the years, the Digital Ele- vation Model, which was used to quantify the changes in forest area at a different ranges of altitude, and finally the forest class map, which was used to estimate how afforestation has affected each single forest type. The output forest maps were used to analyse and estimate some ecosystem services, in par- ticular the protection from soil erosion, the changes in biodiversity and the landscape of the forests. Finally, a procedure for the analysis of future changes scenarios was set up to study how afforestation will proceed in absence of external factors in a protected area of PAT. The pro- cedure was developed using Agent Based Models, which considers trees as thinking agents, able to choose where to expand the forest area. The first part of the results achieved consists in a temporal series of maps representing the situation of the forest in each year of the considered dataset. The analysis of these maps suggests a trend of afforestation across the PAT territory. The forest maps were then reclassi- fied by altitude ranges and forest types to show how the afforestation proceeded at different altitudes and forest types. The results showed that forest expansion acted homogeneously through different altitude and forest types. The analysis of a selected set of landscape met- rics showed a progressive compaction of the forests at the expenses of the open areas, in each altitude range and for each forest type. This generated on one hand a benefit for all those ecosystem services linked to a high forest cover, while reduced ecotonal habitats and affected biodiversity distribution and quality. Finally the ABM procedure resulted in a set of maps representing a possible evolution of the forest in an area of PAT, which represented a similar situation respect to other simulations developed using different models in the same area. A second part of the result achieved in the current work consisted in new open source tools for image analysis developed for achieving the results showed, but with a potentially wider field of application, along with new procedure for the evaluation of the image classification. The current work fulfilled its aims, while providing in the meantime new tools and enhance- ment of existing tools for remote sensing and leaving as heritage a large dataset that will be used to deepen he knowledge of the territory of PAT, and, more widely to study emerging pattern in afforestation in an alpine environment.openGobbi, S

    Segmentation et indexation d'objets complexes dans les images de bandes dessinées

    Get PDF
    In this thesis, we review, highlight and illustrate the challenges related to comic book image analysis in order to give to the reader a good overview about the last research progress in this field and the current issues. We propose three different approaches for comic book image analysis that are composed by several processing. The first approach is called "sequential'' because the image content is described in an intuitive way, from simple to complex elements using previously extracted elements to guide further processing. Simple elements such as panel text and balloon are extracted first, followed by the balloon tail and then the comic character position in the panel. The second approach addresses independent information extraction to recover the main drawback of the first approach : error propagation. This second method is called “independent” because it is composed by several specific extractors for each elements of the image without any dependence between them. Extra processing such as balloon type classification and text recognition are also covered. The third approach introduces a knowledge-driven and scalable system of comics image understanding. This system called “expert system” is composed by an inference engine and two models, one for comics domain and another one for image processing, stored in an ontology. This expert system combines the benefits of the two first approaches and enables high level semantic description such as the reading order of panels and text, the relations between the speech balloons and their speakers and the comic character identification.Dans ce manuscrit de thèse, nous détaillons et illustrons les différents défis scientifiques liés à l'analyse automatique d'images de bandes dessinées, de manière à donner au lecteur tous les éléments concernant les dernières avancées scientifiques en la matière ainsi que les verrous scientifiques actuels. Nous proposons trois approches pour l'analyse d'image de bandes dessinées. La première approche est dite "séquentielle'' car le contenu de l'image est décrit progressivement et de manière intuitive. Dans cette approche, les extractions se succèdent, en commençant par les plus simples comme les cases, le texte et les bulles qui servent ensuite à guider l'extraction d'éléments plus complexes tels que la queue des bulles et les personnages au sein des cases. La seconde approche propose des extractions indépendantes les unes des autres de manière à éviter la propagation d'erreur due aux traitements successifs. D'autres éléments tels que la classification du type de bulle et la reconnaissance de texte y sont aussi abordés. La troisième approche introduit un système fondé sur une base de connaissance a priori du contenu des images de bandes dessinées. Ce système permet de construire une description sémantique de l'image, dirigée par les modèles de connaissances. Il combine les avantages des deux approches précédentes et permet une description sémantique de haut niveau pouvant inclure des informations telles que l'ordre de lecture, la sémantique des bulles, les relations entre les bulles et leurs locuteurs ainsi que les interactions entre les personnages

    Text/Graphics Separation in Color Maps

    No full text
    corecore