19,172 research outputs found

    Development of a bio-inspired vision system for mobile micro-robots

    Get PDF
    In this paper, we present a new bio-inspired vision system for mobile micro-robots. The processing method takes inspiration from vision of locusts in detecting the fast approaching objects. Research suggested that locusts use wide field visual neuron called the lobula giant movement detector to respond to imminent collisions. We employed the locusts' vision mechanism to motion control of a mobile robot. The selected image processing method is implemented on a developed extension module using a low-cost and fast ARM processor. The vision module is placed on top of a micro-robot to control its trajectory and to avoid obstacles. The observed results from several performed experiments demonstrated that the developed extension module and the inspired vision system are feasible to employ as a vision module for obstacle avoidance and motion control

    Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS - a collection of Technical Notes Part 1

    Get PDF
    This report provides an introduction and overview of the Technical Topic Notes (TTNs) produced in the Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS (Tigars) project. These notes aim to support the development and evaluation of autonomous vehicles. Part 1 addresses: Assurance-overview and issues, Resilience and Safety Requirements, Open Systems Perspective and Formal Verification and Static Analysis of ML Systems. Part 2: Simulation and Dynamic Testing, Defence in Depth and Diversity, Security-Informed Safety Analysis, Standards and Guidelines

    An autonomous satellite architecture integrating deliberative reasoning and behavioural intelligence

    Get PDF
    This paper describes a method for the design of autonomous spacecraft, based upon behavioral approaches to intelligent robotics. First, a number of previous spacecraft automation projects are reviewed. A methodology for the design of autonomous spacecraft is then presented, drawing upon both the European Space Agency technological center (ESTEC) automation and robotics methodology and the subsumption architecture for autonomous robots. A layered competency model for autonomous orbital spacecraft is proposed. A simple example of low level competencies and their interaction is presented in order to illustrate the methodology. Finally, the general principles adopted for the control hardware design of the AUSTRALIS-1 spacecraft are described. This system will provide an orbital experimental platform for spacecraft autonomy studies, supporting the exploration of different logical control models, different computational metaphors within the behavioral control framework, and different mappings from the logical control model to its physical implementation
    • …
    corecore