5,372 research outputs found

    Black Holes and Instabilities of Negative Tension Branes

    Get PDF
    We consider the collision in 2+1 dimensions of a black hole and a negative tension brane on an orbifold. Because there is no gravitational radiation in 2+1 dimensions, the horizon area shrinks when part of the brane falls through. This provides a potential violation of the generalized second law of thermodynamics. However, tracing the details of the dynamical evolution one finds that it does not proceed from equilibrium configuration to equilibrium configuration. Instead, a catastrophic space-time singularity develops similar to the `big crunch' of Ω>1\Omega >1 FRW space-times. In the context of classical general relativity, our result demonstrates a new instability of constructions with negative tension branes.Comment: 18 pages, 3 figures, uses RevTeX. Minor typos fixed. References and one footnote adde

    Cosmology Without Averaging

    Get PDF
    We construct cosmological models consisting of large numbers of identical, regularly spaced masses. These models do not rely on any averaging procedures, or on the existence of a global Friedmann-Robertson-Walker (FRW) background. They are solutions of Einstein's equations up to higher order corrections in a perturbative expansion, and have large-scale dynamics that are well modelled by the Friedmann equation. We find that the existence of arbitrarily large density contrasts does not change either the magnitude or scale of the background expansion, at least when masses are regularly arranged, and up to the prescribed level of accuracy. We also find that while the local space-time geometry inside each cell can be described as linearly perturbed FRW, one could argue that a more natural description is that of perturbed Minkowski space (in which case the scalar perturbations are simply Newtonian potentials). We expect these models to be of use for understanding and testing ideas about averaging in cosmology, as well as clarifying the relationship between global cosmological dynamics and the static space-times associated with isolated masses.Comment: 24 pages, 3 figures. Corrected and expande

    Friedmann-like universes with torsion

    Full text link
    We consider spatially homogeneous and isotropic cosmologies with non-zero torsion. Given the high symmetry of these universes, we adopt a specific form for the torsion tensor that preserves the homogeneity and isotropy of the spatial surfaces. Employing both covariant and metric-based techniques, we derive the torsional versions of the continuity, the Friedmann and the Raychaudhuri equations. These formulae demonstrate how, by playing the role of the spatial curvature, or that of the cosmological constant, torsion can drastically change the evolution of the classic homogeneous and isotropic Friedmann universes. In particular, torsion alone can lead to exponential expansion. For instance, in the presence of torsion, the Milne and the Einstein-de Sitter universes evolve like the de Sitter model. We also show that, by changing the expansion rate of the early universe, torsion can affect the primordial nucleosynthesis of helium-4. We use this sensitivity to impose strong cosmological bounds on the relative strength of the associated torsion field, requiring that its ratio to the Hubble expansion rate lies in the narrow interval (0.005813,+0.019370-0.005813,\,+0.019370) around zero. Interestingly, the introduction of torsion can \textit{reduce} the production of primordial helium-4, unlike other changes to the standard thermal history of an isotropic universe. Finally, turning to static spacetimes, we find that there exist torsional analogues of the classic Einstein static universe, with all three types of spatial geometry. These models can be stable when the torsion field and the universe's spatial curvature have the appropriate profiles.Comment: Revised article. Section on BBN limits on torsion added. References added and update

    Geodesics, the Equivalence Principle and Singularities in Higher-dimensional General Relativity and Braneworlds

    Full text link
    The geodesics of a spacetime seldom coincide with those of an embedded submanifold of codimension one. We investigate this issue for higher-dimensional general relativity-like models, firstly in the simpler case without branes to isolate which features are already present, and then in the more complicated case with branes. The framework in which we consider branes is general enough to include asymmetric braneworlds but not thick branes. We apply our results on geodesics to study both the equivalence principle and cosmological singularities. Among the models we study these considerations favour Z2Z_2 symmetric braneworlds with a negative bulk cosmological constant.Comment: 20 pages, 2 figures. Accepted by JCAP. Minor proofreading corrections; several references adde

    Geometry of crossing null shells

    Full text link
    New geometric objects on null thin layers are introduced and their importance for crossing null-like shells are discussed. The Barrab\`es--Israel equations are represented in a new geometric form and they split into decoupled system of equations for two different geometric objects: tensor density Gab{\bf G}^a{_b} and vector field II. Continuity properties of these objects through a crossing sphere are proved. In the case of spherical symmetry Dray--t'Hooft--Redmount formula results from continuity property of the corresponding object.Comment: 24 pages, 1 figur
    corecore