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Abstract.

We construct cosmological models consisting of large numbers of identical, regularly

spaced masses. These models do not rely on any averaging procedures, or on the

existence of a global Friedmann-Robertson-Walker (FRW) background. They are

solutions of Einstein’s equations up to higher order corrections in a perturbative

expansion, and have large-scale dynamics that are well modelled by the Friedmann

equation. We find that the existence of arbitrarily large density contrasts does not

change either the magnitude or scale of the background expansion, at least when

masses are regularly arranged, and up to the prescribed level of accuracy. We also

find that while the local space-time geometry inside each cell can be described as

linearly perturbed FRW, one could argue that a more natural description is that

of perturbed Minkowski space (in which case the scalar perturbations are simply

Newtonian potentials). We expect these models to be of use for understanding and

testing ideas about averaging in cosmology, as well as clarifying the relationship

between global cosmological dynamics and the static space-times associated with

isolated masses.

http://arxiv.org/abs/1005.0788v3
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1. Introduction

The Friedmann-Robertson-Walker (FRW) model is ubiquitous in modern cosmology,

and is widely believed to be a good model for a universe with a matter content that

is approximately uniformly distributed over large scales. FRW has had great success

in fitting a variety of cosmological observations, but is not without its problems. In

particular, it has the apparent defect of requiring large amounts of dark matter and

dark energy in order to be compatible with observations. More fundamentally, it

relies on the implicit assumption that it is permissible to use non-local ‘average’ energy

densities in Einstein’s equations, which are a set of local field equations. The difficulties

involved with this are exacerbated by the diffeomorphism covariance of the theory, which

means that there is in general no preferred set of space-like hypersurfaces with which to

perform an average over at all. What is more, even if a suitable and unique averaging

scheme is found, it seems we will still be left with a back-reaction effect due to the

non-commutativity of averaging and evolution under Einstein’s equations [1, 2]. These

issues require further study in order to be fully understood.

One way to make progress in this area is to construct alternative models that

are approximately homogeneous and isotropic on the largest scales, but that do not

involve any averaging procedures. We will survey some of the relevant literature on

progress toward this goal in the section that follows, and then proceed to present our

own approach to constructing a cosmological model that is composed of discrete masses,

rather than a continuous fluid. This model will appear homogeneous and isotropic

when coarse-grained over the largest scales, but will also be able to accommodate

arbitrarily large local density contrasts. The validity of this model will be based solely on

Newtonian and post-Newtonian perturbative expansions about Minkowski space, which

are generally considered to be able to easily model large density gradients without

breaking down (for a recent discussion of the potential difficulties involved in modelling

the corresponding situation with a perfect fluid filled, perturbed FRW cosmology see,

e.g., [3]).

The model we construct is one in which isolated masses are arranged in a regular

array, which by application of the Israel junction conditions is a solution of Einstein’s

equations up to a specified level of accuracy. Contrary to some previous results in the

literature, we show that discretisation of the matter content does not affect the global

expansion of the space-time, which proceeds in just the same way as a perfect fluid FRW

solution with the same energy density and spatial curvature, up to the required accuracy.

This result says nothing about what happens in the more realistic situation of irregularly

arranged masses, but does show that, in at least some situations, perturbed FRW is a

good description of a universe with (arbitrarily) large density contrasts. Establishing the

existence of such situations is of interest not only for limiting the possible consequences

of inhomogeneity on the large-scale expansion of the Universe, but also for testing the

viability of proposed methods of accounting for more general inhomogeneity in the

Universe: If they predict modifications to the large-scale expansion in configurations
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where it is known that none should occur, then one may choose to question their viability.

In Section 2 we survey some of the literature on inhomogeneous cosmological

models, concentrating in particular on studies that have similarities to the approach used

here, and highlighting predictions of deviations from the usual Friedmann expansion.

In Section 3 we present the type of model we will be considering, and the perturbative

expansion we deploy is outlined in Section 4. Section 5 treats the geometry inside

each of the primitive cells of our structure as being perturbed Minkowski space, and

finds the corresponding cosmological evolution, after the Israel junction conditions have

been applied. A similar analysis is then performed in Section 6, this time around a time

dependent background. In Section 7 we relate the time independent and time dependent

approaches used in the preceding two sections, and in Section 8 we show that the model

we have constructed has identical large-scale expansion to a perfect fluid filled FRW

cosmology with the same energy density and large-scale spatial curvature. In Section 9

we consider the problem of determining cosmological observables, such as redshifts and

luminosity distances, and in Section 10 we conclude.

2. Previous Results

Before proceeding with our study, let us briefly review some of the relevant literature

on cosmological models containing discrete masses, and the affect of structure on the

evolution of the Universe. These studies have frequently suggested that the presence of

inhomogeneity in the Universe could affect its global expansion rate.

One of the first studies to include discrete masses in a cosmological model was that

of McVittie [4]. Here a space-time geometry similar to the Einstein static universe was

considered, and McVittie concluded that if instead of having a perfectly homogeneous

and isotropic matter content, it was instead the case that a number, n, of singularities of

mass m were allowed to develop, then the corresponding spatial volume of the universe

would be

V =
16M3

π

(

1 +
2nm

M

)

>
16M3

π
= VEinstein, (1)

where M is the total mass in the universe, and VEinstein is the spatial volume of the

perfect Einstein static universe. McVittie then reasoned that because the spatial volume

of such a universe was larger after structures were allowed to form, that this signalled

instability of the Einstein static universe, which requires a particular value of V in

order to exist. For the present purposes one could interpret this result as saying that

the presence of discrete structures changes the scale of the cosmological solution.

The next significant development we are aware of, in terms of cosmological models

containing discrete structures, is due to Einstein and Strauss [5]. Here the authors

embed discrete masses into an FRW background by excising spherical regions of

the homogeneous fluid, and replacing them with vacuoles containing singularities at

their centres. The space-time inside each ‘vacuole’ is then well modelled by either

Schwarzschild geometry, or perturbed FRW (provided the vacuole is small compared to
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Figure 1. The maximum of expansion in the Lindquist-Wheeler model, a
(max)
LW

, as a

fraction of the corresponding maximum in a closed FRW universe with the same energy

density and spatial curvature, a
(max)
FRW

. The abscissa gives the number of cells in the

Lindquist-Wheeler lattice, N .

the Hubble scale of the background solution). The resulting structure is often referred

to as a ‘Swiss cheese universe’, and is an exact solution of Einstein’s equations when

Schwarzschild geometry is used. In these models the presence of the singularities does

not affect the expansion of the background FRW space-time. One should, however,

be aware that this is true by construction: The vacuoles all have exactly FRW

boundary conditions, and are not allowed to intersect in the usual application of the

model. Furthermore, one could question whether the requirement of spherical symmetry

restricts the possible behaviours that might otherwise be possible. In the present

study we will lift the requirements of perfect FRW boundary conditions and spherical

symmetry, although the models we consider are still highly symmetric.

In 1957 the problem of cosmological models containing discrete masses was returned

to by Richard Lindquist and John Archibald Wheeler [6]. These authors attempted to

build a cosmological model in analogy to the Wigner-Seitz construction of solid-state

physics. The basic idea here is to construct a regular lattice of cells, and then solve

the field equations by approximating the influence of all cells external to the one under

consideration as being spherically symmetric. In the context of general relativity this

results in the space-time inside each cell being uniquely given by Schwarzschild geometry,

and unlike the case of solid-state physics, results in a non-zero normal derivative of the

relevant field at the boundary of each cell. The lattice therefore undergoes a global

expansion, that can be compared to the Friedmann solutions of FRW cosmology. By

considering spatially closed lattices Lindquist and Wheeler deduced that the expansion

of their model had the same functional form as the usual Friedmann solution, but with

a different scale of expansion, as shown in Fig. 1. Luminosity distances and redshifts

in this model were calculated in [7] and [8], where deviations from the corresponding

quantities in FRW cosmology were identified. The problem of finding an exact 2-



Cosmology Without Averaging 5

body solution within this framework has also been addressed recently in [9]. While

compelling, however, the Lindquist-Wheeler model suffers from the problem of relying

on an approximation scheme that is difficult to quantify. In the present study we attempt

to produce a similar model to that created by Lindquist and Wheeler, but with a more

clearly defined set of approximations.

More recent studies on the affect of structure on the expansion of the Universe

often come under the title ‘back-reaction’, or ‘macroscopic gravity’. Let us consider the

case of macroscopic gravity first. The basic idea behind this approach is that when

describing an ‘average’ cosmological evolution we are not necessarily interested in the

local expansion rate any any particular point in the Universe, but rather in the non-local

expansion inferred from observations made over large distances. Now, while Einstein’s

equations are thought to be the appropriate ones to describe the local curvature of

space-time, if we consider non-local quantities, such as ‘average’ expansion, then we

may need a different set of equations. The problem of how averaging should best be

performed in general relativity is a difficult, and still somewhat open question. Progress

toward solving this problem has, however, been made by Zalaletdinov in his macroscopic

gravity theory, which modifies Einstein’s equations by including gravitational correlation

correction terms [10]. Applying this approach to cosmological solutions Coley, Pelavas

and Zalaletdinov have found that there exist homogeneous and isotropic exact solutions

to the macroscopic field equations in which the correlation tensor takes the form of a

spatial curvature term [11]. This result again supports the idea that the formation of

structure in the Universe could lead to a change in scale of the global expansion.

Finally, let us return to studies of the ‘back-reaction’ problem. The basic idea here

is that averaging over a space-like hyper-surface, and evolution of the same hyper-surface

under Einstein’s equations, do not commute, so that if we wish to successfully evolve

an averaged space forward in time we should add corrections to Einstein’s equations.

The affect of these extra terms is what is known as the back-reaction of the structures

that form in the Universe on the overall expansion, and is a subject that has recently

attracted much attention (see, e.g., [12] for a review and references). It was shown in [13]

that for scaling solutions to exist in this approach then the extra terms in the effective

Friedmann equation should either appear as an effective massless scalar field, or with

the same form as the spatial curvature term. The former case is inconsequential for the

expansion of the late Universe, but if the latter is true then this once again points to

a change in scale of the global cosmological dynamics (although one should be aware

that the spatial curvature term in the effective Friedmann equation here does not have

to scale as it usually does in FRW cosmology).

We consider the results of these previous investigations more than sufficient

motivation to further investigate models with a discretized matter content.
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3. A Lattice of Discrete Masses

Our aim is to further develop the ideas outlined above by constructing a well defined

cosmological model in which the Universe is filled with a large number of identical,

regularly spaced masses, but has no fluid filled background cosmology. To achieve this

we begin as Lindquist and Wheeler did, by considering a number of cells that are regular

polytopes, and that are identical to each another up to spatial translations and rotations.

At the centre of each cell we then place a non-rotating, chargeless object of mass m.

These cells will act as the building blocks of our model, and our objective is to arrange

them in such a way as to construct a smooth, geodesically complete space-time‡.

To satisfy Einstein’s equations we must have that the geometry inside each cell

satisfies Rab = 0 in the exterior region of the central mass, and that the boundaries

between cells satisfy the Israel junction conditions in vacuum: That the induced metric

and extrinsic curvature of the boundary are the same on either side [14, 15]. The

high degree of symmetry in the situation we are considering makes these conditions

considerably simpler than they are in general. Mirror symmetry of any two cells about

their mutual boundary means that the induced metrics on either side of that boundary

are automatically identical. The conditions of identical extrinsic curvature are less

trivial, but the symmetry of the situation is again very useful.

In Figure 2 we show a cross-section of the two cells we are trying to match in some

coordinates xa for the first cell, and xâ for the second cell. The extrinsic curvature

in the first cell is then given by K
(1)
ab = n

(1)
a;b, where n

(1)
a is the space-like unit vector

normal to the boundary, and pointing out of the cell. In the second cell, the extrinsic

curvature is similarly given as K
(2)

âb̂
= n

(2)

â;b̂
, where n

(2)
â is again the space-like unit vector

normal to the boundary, but this time pointing into the cell. The covariant derivatives

in these expressions should be taken with respect to the space-time geometry of the cell

in question. The conditions for identical extrinsic curvature of the boundary on either

side are then

∂xa

∂ξi
∂xb

∂ξj
K

(1)
ab =

∂xâ

∂ξi
∂xb̂

∂ξj
K

(2)

âb̂
≡ Kij, (2)

where ξi are intrinsic coordinates on the boundary. From the symmetry of the situation,

however, it can be seen that we could just as easily have calculated the extrinsic

curvature of the boundary in the second cell by taking the covariant derivative of an

inward pointing normal vector in the first cell, as illustrated in Figure 2. As this vector

is given by −n
(1)
a we must have Kij = −Kij in order to satisfy (2), or equivalently

Kij = 0. (3)

The junction conditions are therefore satisfied if, and only if, the 2+1 dimensional

boundary is extrinsically flat.

Now that boundary conditions for each of the cells are known, the field equations

within each cell can be solved. These are simply the vacuum Einstein equations, Rab = 0.

‡ Up to the possible existence of singularities at the centre of each cell.
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Figure 2. A schematic of the vectors involved in matching two cubic cells with central

mass m. n
(1)
a and n

(2)
â

are space-like unit vectors normal to the boundary. The dashed

vector is −n
(1)
a , and is mirror symmetric with n

(2)
â

.

Note, however, that without boundary conditions these equations do not have a unique

solution. We therefore need Eq. (3) to find the space-time geometry inside each cell.

As we will discuss in the next section, we expect this space-time to be well described by

the usual Newtonian and post-Newtonian approach. This does not, however, mean that

the entire cosmological model can be described in a single Newtonian frame-work: The

Newtonian descriptions valid within each cell cannot describe arbitrarily large numbers

of cells simultaneously. This should be clear from the fact that on scales of the order of

a Hubble length we expect recessional velocities to approach the speed of light. Rather,

the way in which the Newtonian descriptions that are valid within the domain of each

individual cell should be related to one another can be deduced from the boundary

conditions, Eq. (3), and will be spelled out in the sections that follow.

Unlike most approaches to building a cosmological mode, the current one does not

require us to write down one line-element that is valid for the entire observable Universe.

Instead, due to the periodicity of the structure we are considering, it is sufficient to

consider only a single cell. Once we know the geometry, extent, and rate of expansion of

any one cell, we then know the space-time geometry of the entire universe (up to regions

were our approximations break down, as should be expected, for example, in the early

universe, or near the Schwarzschild radius of a compact object).

One could also, conceivably, consider more complicated structures than the simple

polychora described above. As long as it can be shown that the space-time geometry

is symmetric about the boundaries between cells, then the junction conditions will still

be satisfied by Eq. (3), and the global space-time geometry can again be deduced in

the manner just described. In such a case, however, there may be more than a single

type of primitive cell to consider. We will not try and construct such situations here,

preferring instead to concentrate on the simplest structures possible: Those built from

a single repeated polytope.
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4. Perturbative Expansion

We will not attempt to proceed by looking for an exact solution to Einstein’s equations,

as we expect this would be prohibitively difficult. Instead we will treat the problem

perturbatively, and within each cell will expand with respect to some small parameter:

ǫ ∼
v

c
, (4)

where v is the typical velocity associated with the type of objects we will be considering,

and c is the speed of light. For planetary and galactic systems it is almost always the case

that v/c . 0.01. Furthermore the Newtonian potentials associated with such systems

are nowhere greater than φ ∼ 10−4, except within the vicinity of black holes and neutron

stars. We can therefore assign

φ ∼ ǫ2. (5)

Given that the evolution of these systems are governed by the motion of their

constituents we also have that ∂/∂t ∼ v · ∇, which implies that

|∂/∂t|

|∂/∂x|
∼ ǫ, (6)

so that time derivatives add an extra order of smallness. Booking in orders of smallness

in this way is familiar from the usual approach to post-Newtonian gravitational physics

[16]. Here, however, we will be concerned with the vacuum region outside of the central

mass of each of our cells. We therefore need not consider the orders of smallness

associated with rest mass density, pressure, or any other form of energy density.

We expect the expansion we have just described to be applicable as long as the

size of each cell is large compared with the Schwarzschild radius of its central mass, and

as long as the number of cells within one cosmological horizon is also large. That is,

we will be considering situations in which the bulk of the interior of each cell is well

described by the usual Newtonian and post-Newtonian gravitational physics. We will

not be concerning ourselves here with what happens near the singularities that may

exist at the centre of each cell, and will not allow the cells to be so large that their

boundaries would appear to have a recessional velocity any greater than ∼ 0.01c. In

fact, we will have in mind throughout this article cells that are about 1Mpc wide, with a

Milky Way sized mass at their centre, so that φ ∼ 10−7 at the edge of each cell. This is

well within the limits just mentioned. For further details of the perturbative expansion

used in post-Newtonian physics we refer the reader to [16].

Let us now consider specifically the motion of our cell boundaries, whose trajectory

we will take to be tangent to the 4-vector Xa. If na is normal to this boundary then we

can write that the boundary has 4-velocity

ua ≡
dXa

dτ
=
dt

dτ

(

1;
dXµ

dt

)

, (7)

where τ is proper time along Xa, and µ runs over spatial indices, and that the condition

uana = 0 then gives (for dt/dτ 6= 0)

nt = −nµ
dXµ

dt
. (8)
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Hence, if dXµ/dt ∼ O(ǫ), so that it has the order of magnitude associated with a velocity

in the perturbative expansion just outlined, then
nt

nµ
∼ ǫ. (9)

It then follows that nt has an O(ǫ) of smallness compared to nµ, which is expected to be

∼ 1. Rather than explicitly quoting ǫ in what follows, we will instead simply state that

quantities have a certain order of smallness associated with them. That this smallness

is prescribed by a factor of ǫ should be taken to be implicit.

5. Fluctuations About a Static Background

5.1. Large-scale Evolution Equations

We can now address the question of the space-time geometry inside of each cell, and

the motion of the cell boundaries that results from Eq. (3). Our initial ansatz for the

geometry inside a cell will be linear perturbations around a Minkowski background.

This is the standard way to model the weak gravitational fields around massive objects.

For this, we will use the ‘conformal Newtonian’ gauge, where the line-element is written

ds2 = −(1 + 2φ)dt2 + (1− 2ψ)(dx2 + dy2 + dz2). (10)

Here the functions φ and ψ are gravitational potentials, and in general relativity we

have the well known result that ψ = φ.

Using the perturbative expansion outlined in Section 4, we can now write the lowest

non-trivial order of each component of the extrinsic curvature of the boundary at the

edge of one of our cells as

Kabdx
adxb = (nt,t − nµφ,µ) dt

2 + (nµ,t + nt,µ) dx
µdt

+ (nµ,ν + 2ψ,µnν − δµ,νψ,σnσ) dx
µdxν , (11)

where indices µ, ν, σ denote spatial components. The Ktt and Kµν terms should be

expected to have O(4) corrections here, and the Ktµ and Kµt terms O(3) corrections.

The time component of the unit vector normal to Σ has been assigned an O(1) of

smallness in comparison to the space-like components here, as discussed in Section 4.

Now, let us apply the coordinate transformation from Eq. (2) to the expression in

Eq. (11), in order to find Kij. To explicitly give the coordinates ξi required for this let us

first pick out a preferred space-like direction x, which is orthogonal to the boundary at

point where it is at its closest to the central mass. Such a direction can always be made

to correspond to one of the coordinates in Eq. (10) by performing spatial rotations. The

remaining two spatial directions are then uniquely defined up to a rotation, and we will

denote these directions by the indices A,B,C etc.. We can now choose coordinates on

the boundary at x = X(t, xA) to be given by ξi = (t, xA). Finally, let us define two new

derivative operators which act along the boundary in time-like and space-like directions:

˙ ≡ ua∂a = ∂t +X,t∂x

|A ≡ ma∂a = ∂A +X,A∂x,
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where ua and ma are time-like and space-like vectors in the boundary in planes of

constant xA and t, respectively. The extrinsic curvature of the boundary can then be

written in the coordinate basis of ξi as

Kijdξ
idξj =

(

ṅt + Ẋṅx − nµφ,µ

)

dt2 +
(

ṅA + nt|A +X|Aṅx + Ẋnx|A

)

dxAdt

+

[

nA|B +X|Anx|B − (ψ,CnC − ψ,xnx)
(

δAB +X|AX|B

)

− 2
(

δABψ,xnx − ψ,AnB − ψ,xX|AnB − nxψ,AX|B

)

]

dxAdxB, (12)

where space-time dependent quantities, such as derivatives of φ and ψ, should implicitly

be taken to be evaluated on the boundary. This expression can now be simplified by

making use of the orthogonality of na with respect to ua and ma. This gives us

nt = − nxX,t (13)

nA = − nxX,A, (14)

which allows us to write Eq. (12) as

Kijdξ
idξj = − nx

[

(

Ẍ + φ,x −X|Aφ,A

)

dt2 +
(

(X|A)˙ + (Ẋ)|A

)

dxAdt

+
(

X|AB + (ψ,x −X|Cψ|C)(δAB +X|AX|B)
)

dxAdxB
]

. (15)

The boundary conditions in Eq. (3) can now be straight-forwardly applied to (15).

We find that our lattice is a solution of Einstein’s equations (to lowest order in our

perturbative expansion) if the boundary satisfies the conditions:

Ẍ = −
√

1 + (X|A)2 (n · ∇φ)|X +O(4) (16)

and

X|AB = (δAB +X|AX|B)Ẍ +O(4) (17)

together with (X|A)˙ = (Ẋ)|A = 0 + O(3), where we have now taken ψ = φ, and where

we have used nana = 1. On the RHS of these equations we have also used the notation

∇ = ∂µ, and made explicit that the gradient of φ should be evaluated at x = X .

The potential φ must of course also satisfy the field equation Rab = 0 in the bulk

of the cell, which gives us the equations:

∇2φ = 0 +O(4) (18)

and

(∇φ),t = 0 +O(5). (19)

If Eqs. (16)-(19) are satisfied, then our lattice is a cosmological solution to Einstein’s

equations, up to the specified order, with arbitrarily large density contrast, and without

any averaging having been performed.
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5.2. Cosmological Solutions

Above we have derived the evolution equations for a lattice constructed from a large

number of individual cells, each of which contains an isolated central mass. In this case

the metric fluctuations φ can be seen to be given simply by the usual solutions to the

Newtonian Poisson equation in vacuum, with Neumann boundary conditions specified

on X via Eq. (16). One can then see from Eq. (16) that if (n · ∇φ)|X > 0 (so that the

force due to the central mass is attractive) then the boundaries must follow trajectories

along which Ẍ < 0. The global expansion must therefore always be decelerating. Eq.

(17) then tells us that we must also have X|yy and X|zz < 0, so that in the coordinates

of Eq. (10) the boundaries are concave, when viewed from inside the cell (as is supposed

to be implied in Figure 2).

The first thing that one can now find is the equation of motion of the element of

the boundary that is closest to the central mass of the cell. We will label the position

of this closest point as Xc(t) = X(t, 0, 0). From our choice of coordinate we then have

Xc|y = Xc|z = 0 and (n · ∇φ)|Xc
= φ,x|Xc

, so that Eq. (16) becomes

Ẍc = −φ,x|Xc
+O(4). (20)

This boundary element is therefore in free fall in the potential φ, and the shape of the

boundary at this point is given simply by Xc|yy = Xc|zz = −φ,x|Xc
. Given Eq. (20) for

Xc, we can now see that the solution for X at all other y and z is given by

X = Xc +
1

2
Ẍc(y

2 + z2) +O(4). (21)

Direct substitution of this expression into Eq. (16) and (17) shows it to be a solution,

up to the required order, as long as y and z are always small compared to ∼ Ẋ−1. This

condition should always be true as long as each individual cell is small compared to the

Hubble scale of the lattice, which is the situation we outlined to begin with.

Now, if φ is a solution to the Newtonian Laplace equation, (18), then one may expect

the solutions of Eq. (20) to obey the classification scheme of the usual Newtonian n-

body problem given by Saari [17]. Roughly speaking, this corresponds to the following:

If dX/dt is large enough then X → t at late-times, otherwise X → t2/3 or we have

eventual recollapse. More directly, at some time t = t0 one can place an initial boundary

at x = X(t0, y, z) and give it some initial velocity Ẋ(t0, y, z). Eqs. (16) and (17) then

tell us what φ,x|X and Ẍ are along the boundary at t = t0. This is enough information

to evolve the boundary forward in time, obtaining X and φ,x|X at every t, and for every

y and z. It is therefore also sufficient to provide the necessary Neumann boundary

conditions with which we can solve Eq. (18) for φ(xµ) at every t. Of course, this can

only be done in ways that satisfy Eq. (19), and the required properties of the solutions of

Eq. (18). In particular, the ‘maximum principle’ of harmonic functions tells us that as

long as gravity is attractive near the central mass then the boundary cannot accelerate.
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6. Fluctuations About Time-dependent Backgrounds

6.1. Large-scale Evolution Equations

We can also consider modelling the space-time inside each cell as fluctuations about

time-dependent FRW backgrounds, such that the line-element can be written as

ds2 = −(1 + 2Φ)dt̂2 +
a2(1− 2Ψ)

[1 + k
4
(x̂2 + ŷ2 + ẑ2)]2

(dx̂2 + dŷ2 + dẑ2), (22)

where a = a(t̂) and k =constant. We are using hatted coordinates here, and capital Φ

and Ψ, to distinguish these quantities from the coordinates and potentials used in the

previous section.

Substituting Eq. (22) into the Einstein equations Râb̂ = 0 gives us that a and Φ

must satisfy the following equations in the bulk of the cell

a2
,t̂

a2
= −

2∇̂2Φ

3a2
−

k

a2
+O(4) and

a,t̂t̂
a

=
∇̂2Φ

3a2
+O(4), (23)

where (a∇̂Φ),t̂ = 0 + O(3), where Ψ = Φ and where ∇̂ = ∂µ̂ is the spatial derivative

operator in the hatted coordinate system. These are clearly just the Friedmann

equations, with ∇̂2Φ/a2 ∝ 1/a3 acting as a pressure-less dust term. If ∇̂2Φ = 0, as

in the previous section, then the background space-time is Milne. More generally a(t̂)

behaves as in an FRW universe with dust and spatial curvature. From Eq. (23) it can

also be seen that we should assign to k an O(ǫ2) of smallness§.

As before, let us again consider a cell boundary at x̂ = X̂(t̂, ŷ, ẑ). The extrinsic

curvature of such a 2+1 dimensional surface is now given, in the coordinates of Eq. (22),

by

Kâb̂dx
âdxb̂ =

(

nt̂,t̂ −
1

a2
nµ̂Φ,µ̂

)

dt̂2 +
(

nµ̂,t̂ + nt̂,µ̂ − 2
a,t̂
a
nµ̂

)

dxµ̂dt̂ (24)

+

[

nµ̂,ν̂ +
(

kxµ̂ + 2Ψ,µ̂

)

nν̂ − δµ̂ν̂

((

1

2
kxσ̂ +Ψ,σ̂

)

nσ̂ + aa,t̂nt̂

)]

dxµ̂dxν̂ ,

where quantities with hatted coordinates should be taken to correspond to those

associated with the time-dependent geometry given in Eq. (22). We can now proceed

as in the previous case, making analogous definitions, to find the extrinsic curvature on

a boundary at x̂ = X̂(t̂, xÂ) to be

Kîĵdξ
îdξ ĵ = − nx̂

[(

¨̂
X + 2

ȧ

a
Ẋ +

1

a2
Φ,x̂ −

1

a2
X̂|ÂΦ,A

)

dt̂2

+

(

(X̂|Â)˙ + (
˙̂
X)|Â − 2

ȧ

a
X̂|Â

)

dxÂdt̂

+
(

X̂|ÂB̂ − J (t̂, X̂, xÂ)
(

δÂB̂ + X̂|ÂX̂|B̂

))

dxÂdxB̂
]

, (25)

§ We could choose to rescale k to 0 or ±1, but in this case we would also have to rescale all other

dimensionful quantities, so the overall perturbative expansion would remain unchanged.
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where we have defined

J (t̂, X̂, xÂ) ≡ aȧ
˙̂
X −Ψ,x̂ +Ψ,ÂX̂|Â −

1

2
kX̂ +

1

2
kxÂX̂|Â. (26)

The junction conditions given in Eq. (3) now tell us that the boundary must satisfy the

following equations, to lowest order in our expansion:

¨̂
X

X̂
= − 2

ȧ

a

˙̂
X

X̂
−

Φ,x̂

a2X̂
+
X̂|ÂΦ,Â

a2X̂
+O(4) (27)

and

X̂|ÂB̂ = J (t̂, X̂, xÂ)
(

δÂB̂ + X̂|ÂX̂|B̂

)

+O(4) (28)

with (X̂|Â)˙ =
(

˙̂
X
)

|Â
= 2(ȧ/a)X̂|Â +O(3). These equations must be satisfied, together

with the bulk field equations, (23), in order to have a viable global solution to Einstein’s

equations.

6.2. Cosmological Solutions

Eqs. (23), (27) and (28) admit as a solution a lattice cell with boundaries that are static

in the coordinates of Eq. (22). In this case, X̂ must satisfy

X̂|ÂB̂ = −
k

2

(

X̂ − X̂|Ĉx
Ĉ
)(

δÂB̂ +X|ÂX|B̂

)

+O(4), (29)

for all t̂, which has the solution

X̂ = X̂0

(

1−
k

4

(

ŷ2 + ẑ2
)

)

+O(4), (30)

where X̂0 is a constant. As X̂ is not a function of t here, the global expansion of the

space-time is fully specified by a(t̂) alone. Eq. (27) then tells us that for Eq. (29) to

hold we must require

n̂ · ∇̂Φ|X̂ = 0 +O(4) (31)

on the boundary. Now, it also clear from Eq. (23) that the potential Φ must satisfy

a∇̂2Φ = c1 +O(4), (32)

where c1 is a constant in both t̂ and xµ̂, and is O(2) in smallness. This equation has the

solution

Φ =
ΦN

a
+
c1
6a

(x̂2 + ŷ2 + ẑ2) +O(4), (33)

where ΦN = ΦN(x
µ̂) is the Newtonian potential that satisfies ∇̂2ΦN = 0. The extra non-

Newtonian term must occur for all time-dependent backgrounds other than the Milne

universe, and “appears due to the fact that in the present case we have no embedding

in the Euclidean space” [5]. We will call this term the vacuum potential.

The solutions (29) and (33) above can be seen to satisfy the condition (31) if, and

only if,

c1 = −
3

X̂
ΦN,x|X̂ . (34)
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One can then see that if the Newtonian potential is attractive, so that ΦN,x̂ > 0, then

boundaries stay at fixed X̂ if, and only if, c1 < 0. It can also be seen from Eq. (30) that

for k = 0 a boundary at static X̂ must be in a plane of x̂ =constant, while for k < 0 or

k > 0 the boundary must be either convex or concave, respectively, when viewed from

inside the cell in the coordinates of Eq. (22). It is also clear from Eq. (23) that the

functional form of a(t̂) in each of these cases must be the same as in an FRW universe

with the same k.

Let us also note that solutions with boundaries at static X̂ require the forces from

the Newtonian and vacuum potentials in Eq. (33) to be in unstable equilibrium. This

is due to the force from the Newtonian potential being attractive and growing as X̂

becomes smaller, while the force from the vacuum potential pushes the boundary to

greater X̂ (as long as c1 < 0), and grows with X̂ . So, if the boundary should be

perturbed to slightly large X̂ , then the vacuum potential should come to dominate, and

cause d2X̂/dt̂2 > 0. This does not, however, correspond to acceleration in the more

cosmologically relevant proper distance R = aX̂ , which from Eqs. (23), (27) and (33)

can be seen to be given by d2R/dt̂2 = −a−2ΦN,x̂|X̂ . As in the case of static backgrounds,

the expansion of the global lattice is therefore always decelerating (in terms of the proper

distance, R), as long as the force from the Newtonian potential is attractive.

7. Relating Time-dependent & Time-independent Descriptions

One could now ask if it is possible to remove the vacuum potentials by transforming the

X̂ = X̂(ŷ, ẑ) solutions above to different homogeneous and isotropic backgrounds. We

find that this is indeed possible under the coordinate redefinitions

t̂ = t−
a,t(t)

a(t)

(x2 + y2 + z2)

2
+O(3) (35)

x̂ =
x

a(t)

[

1−

(

c1
6a3(t)

+
k

4a2(t)

)

(x2 + y2 + z2)

]

+O(4) (36)

ŷ =
y

a(t)

[

1−

(

c1
6a3(t)

+
k

4a2(t)

)

(x2 + y2 + z2)

]

+O(4) (37)

ẑ =
z

a(t)

[

1−

(

c1
6a3(t)

+
k

4a2(t)

)

(x2 + y2 + z2)

]

+O(4). (38)

The argument of a is made explicit here, as it is now the case that a(t̂) 6= a(t). Instead

we have to Taylor expand to find

a(t̂) = a(t)

(

1−
a2,t(t)

a(t)

(x2 + y2 + z2)

2

)

+O(4). (39)

The line-element that results is then the static one specified in Eq. (10), with

φ =
ΦN

a(t̂)
+O(4). (40)
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We can then see that a boundary at X̂ = X̂0(1−(ŷ2+ ẑ2)k/4)+O(4), in the coordinates

of Eq. (22), is equivalent to the solution given in Eq. (21) with

Xc(t) = a(t)X̂0

(

1 +
kX̂2

0

4

)

+O(4). (41)

The constant k then determines the asymptotic form of Xc(t) in the usual way that is

familiar from the solutions to the Friedmann equation.

We have now shown that one can describe the space-time geometry inside each of

our cells as either linearly perturbed FRW, as in Eq. (22), or as linearly perturbed

Minkowski space, as in Eq. (10), and that these two descriptions are equivalent to

each other up to a coordinate transformation. One could argue, however, that the

more natural description is in terms of the static coordinate system of Eq. (10). In

these coordinates the perturbations can be consistently described as being solely due to

Newtonian potentials. This is not true in the FRW coordinates, where an additional

potential of the form Φ ∼ r2 is also required within each cell (unless one wants to use an

open, empty Milne universe as the background cosmology). If one were to choose to use

the FRW description, it would therefore seem necessary to understand the effects that

these potentials have on observable quantities, which are discussed further in Section 9.

Using the Newtonian (static) description, for calculations of luminosity distances etc.,

however, requires taking into account boundary condition between the different regions

in which Newtonian descriptions are internally applicable. This will also be discussed

in Section 9.

8. Comparison with Perfect Fluid FRW Cosmology

As discussed in Section 2, it has been suggested that the formation of structure in the

Universe could lead to modifications of the expected FRW cosmological expansion, and

in particular the scale of expansion. We will now use the model described in the previous

section to address this issue. As already shown, the functional form of the constraint

and evolution equations are the same as the Friedmann equations of FRW. This does

not, however, guarantee that the solutions of these equations are identical to FRW

solutions. In particular, we need to verify that the energy density corresponding to a

given expansion rate is the same as expected from FRW, and that in spatially curved

solutions the scale of expansion is also as expected.

8.1. Spatially Flat Cosmologies

First of all let us consider a spatially flat model. In this case a(t) is scale-invariant,

and so we only need to check that the value of the expansion rate for a given energy

density is the same as prescibed by the usual Friedmann equation. To do this, we will

find numerical solutions for the potentials φ and Φ that satisfy

∇2φ = ∇̂2Φ−
c1
a

= O(4), (42)
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Figure 3. The potential Φ satisfying the field equation (42), and the boundary

conditions (43) with a central mass of approximately Milky Way size, in a 1Mpc sized

cubic cell, and in the plane z = 0.

with boundary conditions given by

(n · ∇φ)|X +X|AA = n̂ · ∇̂Φ|X̂ = O(4), (43)

and with a singularity at the centre of the cell. This solution is shown in Figure 3, for

a central mass approximately as massive as the Milky Way , in a cubic cell of width

1Mpc. We can then verify that, for fields satisfying Eqs. (42) and (43), we have

(n · ∇φ)|X ≃ −
4π

3
ρX, (44)

∇̂2Φ ≃ −4πa2ρ, (45)

where ρ = m/V , m is the central mass, and V is the spatial volume of the cell (in either

coordinate system, to the required accuracy). The ≃ sign here means equal up to terms

of O(4). Substituting Eq. (44) into (16), or Eq. (45) into (23), we then recover the

usual Friedmann equation, up to corrective terms of O(4). The expansion rate for a

given density is therefore the same as in a perfect FRW universe, to the required order.

This result can also be obtained from Gauss’s theorem by noting that from Eqs. (31)

and (32) we have

1

a2

∫

V

∇̂2ΦdV =
1

a2

∮

n̂ · (∇̂Φ)dS = O(4), (46)

=
c1V

a3
+ 4πm+O(4) (47)

where integrals are performed over the volume of a cell, V , enclosed by the surface, S,

and m is the mass of a central singularity. It is then clear that c1 = −4πρa3 + O(4),

which on substitution into Eq. (23) again gives the usual Friedmann equation, up to

terms of O(4).
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Finally, we point out that the ρ occurring in Eqs. (44) and (45) does not correspond

to a local energy density, and hence that these equations should not be considered as

actual field equations themselves (as they are in studies of perturbed FRW solutions,

with perfect fluids), but rather as a derived consequence of the field equations. What

has then be shown above is that the large-scale evolution of a spatially flat universe can

be recovered, up to some prescribed level of accuracy, even when the matter content

is arbitrarily inhomogeneous (at least, when the matter is arranged in a regular way).

This result relies only on the validity of local perturbative expansions about Minkowski

space in the vicinity of isolated masses, which is not often considered an ambiguous

procedure. This is not the same thing as taking for granted the validity of the usual

perturbed FRW approach and showing that regions of space-time can then be described

locally as perturbed Minkowski space. In that case the large-scale expansion is given

by the assumed global background, rather than as a consequence of any boundary

conditions.

8.2. Non-flat Cosmologies

Now let us consider models with non-zero spatial curvature. In these cases the

corrections to Eqs. (42) and (43) due to the curvature are of O(4) only, and hence

do not affect our numerical calculation of φ. Furthermore, the RHS of Eqs. (44) and

(45) are also only corrected by O(4) terms. It is therefore the case the energy density in

the spatially curved models is also the same as in the usual FRW Friedmann equations,

up to the required order of accuracy. It now remains to confirm this is also true for the

spatial curvature terms in Eqs. (16) and (23).

In order to compare the scale of expansion in the models we have been considering

to the usual FRW perfect fluid solutions we need to know if the k appearing in Eq. (23) is

the same as K, which determines the global spatial curvature of the homogeneous FRW

solutions. Global curvature in the lattice models has not yet been shown to be equal

to k, which so far only describes spatial curvature inside of each cell in the coordinates

used in Eq. (22), and the position of the boundaries via Eq. (30).

Global curvature in the lattice models should be inferred using the angle at which

the different faces of a single cell meet. To see this, consider a lattice made from cells

that are a single repeated regular polytope. the resulting structure is then known as

a polychoron, and there are 6 different convex polychora with which we could model a

lattice with positive spatial curvature [18]. Now, take as an example the largest of these

configuration, which contains 600 simplexes, and is known as a hexacosichoron. It has 5

simplexes meeting around each edge of every face of every cell, and so in order to create

such a structure we would need the angle with which the cell boundaries described by

Eq. (30) meet to be 360◦/5 = 72◦, in a hyper-surface orthogonal to the world-line of a

time-like observer on the edge of the cell face. This angle can be seen to depend on the

value of k in Eq. (30), and once it has been achieved the global curvature of the lattice

is set by the curvature K of the hyper-sphere with an image of the same polychoron on
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its surface volume.

We can now note that the boundary positions of each cell, when considered as an

image on a global hyper-sphere, should be described by geodesics of that hyper-sphere,

due to the symmetry about each boundary. Ensuring that Eq. (30) describes a geodesic

in such a space therefore allows us to compare k, from the boundary position equation,

with K from the geodesic equations on the hyper-sphere. To do this, we differentiate

Eq. (30) twice with respect to some affine parameter, λ, along a curve in the boundary,

giving

Ẍ = −
k

2
X0

(

ẏ2 + ż2 + yÿ + zz̈
)

+O(4), (48)

where over-dots here denote differentiation with respect to λ. Using the metric of a

hyper-sphere with spatial curvature K,

ds2 =
dx2 + dy2 + dz2

(1 + K
4
(x2 + y2 + z2))2

, (49)

we then find that in order for Ẍ , ÿ and z̈ to describe a geodesic we must have

Ẍ = −
KX

2

(

ẏ2 + ż2
)

+O(4), (50)

ÿ =
Ky

2

(

ẏ2 − ż2
)

+Kzẏż +O(4) (51)

z̈ =
Kz

2

(

ż2 − ẏ2
)

+Kyẏż +O(4), (52)

where we have used the result X|A ∼ O(1) to assign Ẋ an O(1) of smallness, compared

to ẏ and ż. Substituting these expressions into Eq. (48) then gives

k = K +O(4). (53)

We have therefore shown that the boundaries described by Eq. (30) are, in fact,

geodesics of the hyper-sphere given in Eq. (49) when Eq. (53) is satisfied. The global

curvature of lattice must therefore be given by k, with only corrections up to O(4)

allowed.

With the energy density and spatial curvature terms on the RHS of Eq. (23) being

equal to their values in the corresponding FRW solutions, the scale of expansion of the

lattice model must therefore also be equal to that of the FRW solutions. We have now

shown that the large-scale dynamics of these models are indistinguishable from those of

perfect fluid FRW solutions with the same global energy density and spatial curvature,

up to the required accuracy. As we have also shown that the geometry inside each cell

can be described as perturbed FRW geometry, it then follows that the background FRW

solution of each cell can also be taken to be the global solution. We have therefore shown

that a global perturbed FRW space-time geometry is sufficient to describe the situation

of n regularly spaced discrete masses, with no corrections beyond O(4) required (unless

one wants to describe the region close to a compact object, or the early universe).



Cosmology Without Averaging 19

9. Observables in a Lattice

We have so far considered the space-time geometry of a universe composed of a large

number of discrete objects, nearby to each of which post-Newtonian gravity is a good

approximation. The large-scale evolution of the global space-time has then been deduced

through the applications of Israel junction conditions between the different local patches,

and it has been found that the usual linearly perturbed FRW cosmology is still a

good approximation to the space-time geometry (as long as one does not approach

a singularity) even though the density fluctuations are arbitrarily large. These results

are promising evidence for the applicability of perturbed FRW cosmology to at least

some situations in which the density contrast is large. It does not, however, guarantee

that cosmological observations in these space-times will be similar to those made in a

perfect FRW space-time. We will consider this problem in the present section.

There are, of course, a great number of studies on observable quantities such

as redshift and luminosity distance in inhomogeneous cosmological models. This is

particularly true in the case of perturbed FRW cosmology, where the relevant formalism

was first given by Kristian and Sachs [19]. With regards to other approaches, the ‘Swiss

cheese’ models, in which Einstein-Strauss vacuoles [5] or spherical Lemâıtre-Tolman-

Bondi patches [20]-[22], are embedded in a perfect FRW background have also been

well studied [23]-[29]. Such studies allow for the contribution of non-linear and non-

perturbative effects, but only for spherically symmetric inhomogeneities with perfect

FRW boundary conditions. Observables in non-FRW models with regularly spaced

discrete masses were studied in [7] and [8], using the Lindquist-Wheeler model.

Here one could proceed with calculating redshifts and luminosity distances in at

least two different ways: (i) Within the context of the perturbed FRW geometry given

by Eq. (22), or (ii) in terms of the static geometry given by Eq. (10). In either case

the results should be the same, and the first step is to calculate the photon trajectories

within each cell. These should satisfy the geodesic and null constraint equations

kakb;a = 0 and kaka = 0, (54)

where ka is the 4-vector tangent to the null geodesics. In either of the two cases

mentioned above one must then deal with the boundary conditions between cells, in

order to propagate photons over cosmologically relevant distance scales. This should

proceed as follows: One should define a congruence of time-like geodesics that are

comoving with the boundary of the first cell, which can be labelled ua1 . One can then

decompose ka1 into components tangential and orthogonal to ua1 as

ka1 = (−ub1kb1)(u
a1 + na1), (55)

where na1ua1 = 0, and na1na1 = 1. The frequency and direction of a photon that passes

by an observer on the boundary are then given by −ua1ka1 and na1 , respectively. Here

we have used subscript 1 on space-time indices to denote that these quantities are being

evaluated in the coordinates used in the first cell.
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Now consider an observer on the boundary of the second cell following a curve in the

time-like congruence ua2 , into which the photon is propagating. A similar decomposition

to Eq. (55) can be performed, and the frequency and direction of the photon measured

by this observer are given by −ua2ka2 and na2 . As the observer on the boundary of the

first cell is to be identified with the observer on the boundary of the second cell, when

the junction conditions are applied, the frequency and direction of photons measured

by the two observers should be the same. The quantities −ua2ka2 and na2 are therefore

given by

− ua2ka2 = −ua1ka1 (56)

na2 =
∂xa2

∂xa1
na1 , (57)

where (∂xa2/∂xa1) denotes the relevant transformation between the two coordinate

systems. These four equations provide enough information to calculate the four

components of ka2 , when ka1 is known. We therefore have the initial conditions we

need to propagate the congruence of null geodesics through the second cell, where the

same procedure as just described can be applied again and again to propagate through

large numbers of cells.

With a knowledge of the 4-vector ka we can now calculate cosmological redshifts

and luminosity distances in the model under consideration. The first of these quantities

is given by the expression

1 + z =
(−uaka)|e
(−ubkb)|o

, (58)

where, as already explained, −uaka corresponds to the frequency of a photon measured

by an observer following a curve in ua, and we have used subscripts o and e to denote

the points on the null curve where observation and emission occur. There is some

ambiguity here in exactly how one chooses the congruences ua, as the space-time is

a vacuum outside of the central object of each cell, and so no preferred set of curves

given by a background fluid can be assumed. As long as one is consistent in how such

congruences are chosen from cell to cell, however, the differences should be small between

the different possible choices, as long as the relative velocity between two observers

following the curves in the two congruences is also small.

Finally, in order to obtain luminosity distances, one needs to integrate the Sachs

optical equations along the null curves that were found above. These are:

dθ

dλ
+ θ2 − ω2 + σ∗σ = −

1

2
Rabk

akb (59)

dω

dλ
+ 2ωθ = 0 (60)

dσ

dλ
+ 2σθ = Cabcd(t

∗)akb(t∗)ckd, (61)

where θ, ω and σ are the expansion, rotation and complex shear scalars, respectively, λ

is an affine parameter along the curve, and ta is a complex vector field obeying taka = 0,

tata = 0 and ta(t∗)a = 1. Here, Rab is the Ricci tensor and Cabcd is the Weyl tensor. In
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propagating photon trajectories between cells one should transform ta in a similar way

to ka. As always, once the θ, ω and σ are known along the null trajectories, then the

angular diameter distances can be calculated by rA ∝ exp
{∫ o

e
θdλ

}

, and the luminosity

distances by rL = (1 + z)2rA.

We will now make some comments about the procedure outlined above, which will

not be performed explicitly here. Firstly, we note that in perfect fluid FRW cosmology

the RHS of Eq. (59) is non-zero and the RHS of Eq. (61) is zero, while in the present

situation the exact opposite is true: The RHS of Eq. (59) is zero and the RHS of Eq.

(61) is non-zero. This appears to have been first noticed by Bertotti in [30]. Now, while

the Ricci curvature source term is switched off in the present case, the σ∗σ term in Eq.

(59) becomes non-zero, due to the Weyl term on the RHS of Eq. (61) being non-zero.

It has been argued by Weinberg that the effect of the non-zero shear in Eq. (59) should

entirely replace the missing Ricci curvature term, so that the luminosity distance is, in

fact, unaffected by the matter being clumped [32]. This argument is essentially based

on conservation of photon number, but has since been shown to be questionable [33]. In

particular, Weinberg’s argument neglects the occurrence of caustics in the congruence

of null geodesics along which we observe. Caustics should be expected to occur when

shear is allowed to be non-zero, as it necessarily has to be here. Furthermore, Weinberg’s

argument relies on spatial areas taking the same value in clumpy cosmological models

as they do in FRW ones, and on being able to make large numbers of observations over

the entire sky. With finite observations made at relatively low redshifts (z . 1), shear

has in fact been shown, for at least some inhomogeneous cosmological models, to remain

relatively low along typical geodesics [7, 34]. We expect this to be true in the present

situation as well, so that θ ≃ 1/λ when z . 1. The neglect of shear in this way is

sometimes known as the Dyer-Roeder approximation [35], and while it is expected to

be a good approximation for most situations at low redshifts, it may not be so at high

redshifts. The effect that shear can have on the CMB sky has been discussed in [33],

where the consequences of caustics in particular are considered.

It now remains to consider redshifts along null geodesics. These are usually taken as

being prescribed by the ratio of scale factors at different points on a curve, as in FRW

cosmology, although this does not necessarily have to be the case in inhomogeneous

models, and in general one should calculate it using Eq. (58). In the Lindquist-Wheeler

model it was recently found that a non-negligible deviation from the FRW value of

redshift can occur [7]. For the model being considered here, we do not expect a repeat

of this result. The reason for this is that we can choose the time-like congruence ua

to be that of an observer at fixed spatial position, in the coordinates of Eq. (22).

Observers following such a congruence will not be geodesic, but this does not matter,

and it should only be a small correction if one wishes to consider geodesic observers, as

peculiar velocities in the coordinates of Eq. (22) are all O(1) small. Now, if the 4-vector

tangent to the null geodesics, ka, were the same as in FRW then we would expect exactly

the same redshift along each curve. Here we should expect small perturbations to this

field, so the actual redshift should also be corrected. Assuming the photon trajectories
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do not pass too close to the Schwarzschild radius of any central masses, however, these

corrections are expected to be small, as is the case in Swiss cheese models [23]. We

therefore do not expect large deviations from the expected FRW results on redshift, as

were found in [7], although one would need to perform the explicit numerical integration

described above to be sure.

The picture we have outlined here is quite similar to that used by Holz and Wald

in their “new method for determining cumulative gravitational lensing effects” [36]. In

this work the authors use Newtonian potentials to calculate the shear and expansion

of a bundle of null geodesics as it passes through a region, updating the redshift using

FRW relations as they leave one region and enter the next. This is just the situation

here: Inside each cell the space-time can be well described by the perturbed Minkowski

space of Eq. (10), and by propagating geodesics between cells one should pick up a

similar redshift to that expected from FRW cosmology (up to possible effects caused by

perturbations to ka, as just discussed).

10. Discussion

In summary, we have considered n-body cosmological models that do not require any

averaging procedures. These models have been constructed using a lattice made from a

large number of symmetric cells, each containing identical central masses. By applying

appropriate junction conditions between cells we then find a set of evolution equations

that specify the motion of the cell boundaries, and hence the global evolution of the

space-time. In all of the cases we have considered we find that the cell boundaries

must be in free fall, and decelerating in their expansion away from the cell centres.

We find that the space-time geometry inside each cell can be described as fluctuations

around either static or time-dependent FRW backgrounds. In order to apply the FRW

description one must include potentials of the form Φ ∼ r2, whose gradients must be of

the same order of magnitude as the Newtonian potentials that are also present. Treating

the space-time inside each cell as fluctuations around Minkowski space, however, requires

Newtonian potentials only. One may then consider perturbed Minkowski space to be a

more natural local description of the space-time.

We have compared the resulting large-scale dynamics of the cosmological model

under consideration with those of a perfect fluid FRW cosmology. We find that for

spatially flat universes the expansion rate for a given energy density has just the expected

FRW value. Furthermore, we have compared the scale of expansion of non-flat models

with spatially curved perfect fluid FRW universes and found that they are also the same,

up to the required accuracy. We emphasize that this result does not follow directly from

the fact that the space-time geometry inside each cell can be written as perturbed FRW:

It could, in principle, have been the case that the scale of curvature of the global lattice

was different from the scale inferred from the relevant FRW background used inside

each cell (in fact, from a number of the previous studies discussed in Section 2, it would

seem that one may have expected such a result). Instead, what we find here is that
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discretisation of the matter content of the Universe does not have to affect the global

background rate of expansion.

These results are a consequence of explicitly solving boundary conditions between

different regions that can, individually, be described as perturbations around highly

symmetric backgrounds. That such a description is possible within each cell does not,

however, automatically mean that one can treat the entire Universe as fluctuations

around a single universal FRW background. Such a result has to be shown to be

true by reconstructing the global geometry from the local geometry that is appropriate

within each of these regions. This is what we have done here, finding that for the

simple case of regularly spaced masses a single global FRW background with small

perturbations around it is a perfectly adequately description of the entire space-time.

That a global FRW background is a valid description in the present case, however, does

not automatically mean that this will also be true for irregular arrangements of massive

objects. Such a result remains to be shown.

As already discussed, the model we have considered here can be interpreted

solely in terms of perturbations about Minkowski spaces (albeit a different Minkowski

space within each cell). That this is possible gives one greater reason to expect our

perturbative expansion to be valid in the regime of non-linear density contrasts than is

the case in globally FRW perfect fluid cosmology. As discussed in [3], there are terms at

higher orders in the latter case that one may expect to blow up when δρ/ρ becomes large.

With the former case of Newtonian and post-Newtonian fluctuations about Minkowski

space, however, the situation is different. The terms that could potentially blow up are

absent, and hence we have greater confidence in the applicability of the post-Newtonian

description of these systems when density contrasts are large.

To determine whether or not the results we have found here carry over to more

realistic models of the Universe, where masses are irregularly spaced, and dispersed

matter is also present, will require further study, and more refined models. However,

we do expect our results to be of use for constraining the possible effects that structure

formation could have on the background expansion of the Universe, as well as for testing

the viability of mechanisms that have been constructed in order to correct for back-

reaction and averaging: If corrections are predicted in situations where it is known

that none occur, then the frame-work within which they have been identified should be

questioned.
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