5 research outputs found

    A spatial mediator model for integrating heterogeneous spatial data

    Get PDF
    The complexity and richness of geospatial data create specific problems in heterogeneous data integration. To deal with this type of data integration, we propose a spatial mediator embedded in a large distributed mobile environment (GeoGrid). The spatial mediator takes a user request from a field application and uses the request to select the appropriate data sources, constructs subqueries for the selected data sources, defines the process of combining the results from the subqueries, and develop an integration script that controls the integration process in order to respond to the request. The spatial mediator uses ontologies to support search for both geographic location based on symbolic terms as well as providing a term-based index to spatial data sources based on the relational model. In our approach, application designers only need to be aware of a minimum amount about the queries needed to supply users with the required data. The key part of this research has been the development of the spatial mediator that can dynamically respond to requests within the GeoGrid environment for geographic maps and related relational spatial data

    Canonical queries as a query answering device (Information Science)

    Get PDF
    Issued as Annual reports [nos. 1-2], and Final report, Project no. G-36-60

    Agreement graphs and data dependencies

    Get PDF
    The problem of deciding whether a join dependency [R] and a set F of functional dependencies logically imply an embedded join dependency [S] is known to be NP-complete. It is shown that if the set F of functional dependencies is required to be embedded in R, the problem can be decided in polynomial time. The problem is approached by introducing agreement graphs, a type of graph structure which helps expose the combinatorial structure of dependency implication problems. Agreement graphs provide an alternative formalism to tableaus and extend the application of graph and hypergraph theory in relational database research;Agreement graphs are also given a more abstract definition and are used to define agreement graph dependencies (AGDs). It is shown that AGDs are equivalent to Fagin\u27s (unirelational) embedded implicational dependencies. A decision method is given for the AGD implication problem. Although the implication problem for AGDs is undecidable, the decision method works in many cases and lends insight into dependency implication. A number of properties of agreement graph dependencies are given and directions for future research are suggested
    corecore