/ .

"6EORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADWNIS?M"
PROJECT ADMINISTRATION DATA SHEET

-

- x x| omeimat | navuum‘no. |
Project No. G-36-602 - g-rm/m , DATE 2/16/83" )
Froio;:t Directos: Marc H. Craham ‘ - wm ms ‘
Sponsor: National Science Foundation : : : I

Washington, DC 20550 I - ST g
Type Agresment: _ Grant No. IST-8217441 | ’

Award Period: From 6/1/83 To 11/30/85  (Performance) 2/’28}36‘3 (Reporn) - .
Sponsor Amount: Total Estimated: $100,993 Funded: 8 100,993 "ot
Cost Sharing Amount: §_5,315 .- Cost Sharing No: G—36-333
Tithe: “Canonical Queries as a Query Answering Device (Informat fon Science)"

. .
ADMINISTRATIVE DATA OCA Contact __John W. Burdette x4820
1) Sponsor Technicsl Contact: 2) Sponsor Admin/Contractusi Mstters:
Michael J. McGill .~ © __Idele Kruithoff
Information Science & Technology National Science Foundation
Room 236 | i Washington, DC 20550
National Science Foundation . Phone: (202) 357-9653
Phone: (202) 357-9554 ‘
Defense Priority Rating: NA Military Security Classification: NA

(or) Company/industriat Propristary: NA_—

RESTRICTIONS
See Attached
YTeavel: Foreign travel must have prior approval — Contact OCA in each case. Domestic travel requires sponsor

NSF Supplemental Information Sheet for Additional Requirements.

approval where totsl will exceed greater of $500 or 125% of approved proposal budget category.
Equipment: Title vests with GIT

COMMENTS:
*Includes a 6 month unfunded flexibility period.

COPIES TO:

Research Administrative Network. R i i Research Communications (2)
Ressarch Property Management "¢ Reports Coordinator (OCA Project Fp ‘0
Other

Accounting , GTRI




'[] Final invoice or Finai Fiscal Report ”

Final Report of Inventions Patent questiatinaire aent to P,

[]. Sovt. Property Inventory & Related Cortificats.
| ] Classified Material Certificate ,
[ ot

Continues Project No.

* Project Director _
Ressarch Administrative Network
Research Property Mlmm

. vy -

Procursment/GTRI Supply Smiea

Ressarch Security Services




Annual Report 1984
NSF-IST-82-17441
Canonical Queries

Marc H. Graham, P1

Georgia Tech ICS graduate students Ke Wang, Steve Ornburn, Gita Ran-
garajan, and Amy Lapwing were supl;orted under this grant for different periods.;
The paper “Thé Power of Canonical Queries” was written with Alberto
Mende.lzon. The paper “On the Complexity and Axiomatizability of Consistent

Database States,” with Moshe Vardi appeared in Principles of Database Systems

(PODS) March 84. These papers deal with the expressive power of Canonical

Queries.




The Power of Canonical Queries

by
Marc H. Graham**
and

Alberto O. Mendelzon**++

September 1983

“School of Information and Computer Science:
Georgia Institute of Technology
Atlanta, Georgia 30332

“*CSRG
University of Torento
Toronto, Ontario
Canada

“Research supported in part by the National Science Foundation grant IST 3217441

lesearch supported in purt by the Nutural Seience and Engineering Research Counetl of Canaau.

This document was prepared with a Xerox Star 3010 system.




1. Introduction

The approach to formal data semantics which has come to be called "weak
instance theory” began with the work of Honyeman [H] as a means of integrating the
relations of a multirelation database for the purpose of checking constraints. It was
soon recognized, by Sagiv [S] and also by Yannakakis [Y], that the theory leads
naturally to an extremely powerful and concise query language, called window
functions by some authors ([MRW] (MU V] and called canonical queries here. This
paper analyzes the expressive power of these queries. We show that canonical
queries are expressible in first order loéic if we allow infinitely many axioms. These

axioms are shown to be full multirelational implicational dependencies as defined by

Fagin [F]. The bulk of the paper is concerned with characterizing the case when
canonical queries may be finitely axiomatized in tirst order logic. This occurs

precisely when the query is expressible in the relational algebra.

Maier, Ullman and Vardi [MUV] have considered these questions as well. The
present work was done independently and differs from their work in the following

Nays.

Proposition 1 establishes the existence of representative instances even when
the chase is not guaranteed to terminate. We consider 'the result of a non-
rerminating chase to be undefined. In the same spirit, conipactness is not used in the
p'mof of Lemma 1. Proposition 7. although a simple observation, does not appear in

iMUVL.?

A new definition of boundedness appears in Theorems 1 and 2. In these
theorems we take up a problem ignored in [MUV]: the behaviour of canonical

jueries on inconsistent states. We do this for a technical reason: a relational

algebra expression is defined for every state. canonical queries only for consistent




ones. Theorems 1 and 2 present two different attacks on this problem. In Theorem1,
we remove all equality generating'dependencies in the manner suggested by Beeri
and Vardi (BV]. All states are then consistent and the results of canonical queries on
the subset of originally consistent states are preserved. In Theorem 2, we consider

queries which distinguish consistent and inconsistent states.

The proof of the “hard part” of these results (the implication 5=4 in Theorem

. 3
1) ismade very easy by the presence of Lemma ; This lemma establishes a well

known piece of folklore as fact.

2. Definition and Notation

2.1 Basic Definitions

We begin with a finite set of attributes which we denote U and call the
usiverse. Following standard notation in the area, upper case letters near the front
of the alphabet: A. B. A;, A, ... indicate single attributes. Those toward the end of
the alphabet: X.Y.....represent setsofatiributes. The set {A} isoften denoted A
T | .‘fUY iswritten XY . Toeach A¢l’ is associated an infinite domain domfA).

distinet Aq A in U, domfAi), domi A} are either identical or disjoint.

Let RcU. R isthenarelation scheme. A tuple for R isa function assigning

t.-sach A€R avaluein dom(A). The term row will be freely used for tuple in
ce rtain contexts. If XCR. t/ X/ denotes the restriction of the function ¢ to the

attributes in X.

A relation instance [ for R isasetof tuples for R. The size of an instance [,

denoted fIf. is the number of tuples it contains. We often restrict our attention to

tizite relations. If X.Z.l, the projection onto .\ of an instance { of R. denoted




Mx(D={t(X]|tel}). If R is a collection of relation schemes of U, then R isa
database schema for U. We do not in general insist that R cover U, i.e..that

UR=U.

A state p ofaschema R isanassignment to each R¢R of an instance for R.

The size of a state is the sum of the sizes of its instances:

FERNT
e R .
We define an inclusion relation among states in a natural way. If p. » are states of

R, 70 if dRICHR) forevery ReR. If [ isaninstance and R aschema for U, we

define 1/g(l) to be the state p of R given by  R)-=1iptl) foreach ReR.

A tableau for a.universe U is an instance for U over an extended set of
domuins. For each A¢eU, we form the tableau domain tdom(A) from dom(A) by
adding infinitely many variables. Elementsof U ¢;;dom(A) are called constants. If
dom: \;)=dom(A}), then tdom/A;) =tdomi A i else the sets are disjoint. From now
on the term instance will denote a tableau withﬁut variables. A tagged tableau for U
is a rableau over the set of attributes U J{Tay/ where Tag is an attribute assumed
not " -bein U. Further, tdomiTag, isdisjoint from any attribute domain in U. The
va. sin tdomiTag: will always be given a special interpretation, namely as
reiz: n schemes.

Fableaux provide a uniform notation for the expression of data dependencies,

con; .active queries and database states.

A (unirelational) data dependency for a universe U is a pair d= <T.x>

where T is atableauover U and x isone of the following




if x is an equality assertion of the form a =b, then d is an equality
generating dependency or egd. (It is conventional to assume the symbols
a. b appearin the tableau T.)

if x isatableau then d isatuple generating dependency, or tgd. If

every symbol appearing in the tableau x also appearsin the tableau T,
then d isatotal or full dependency. In thiscase x may be assumed to
contain (or abusively, to be) a single tuple. Otherwise. if x contains

symbols notin T, then d is partial or embedded.

This definition of dependency is based on the work of Beeri and Vardi [BV].
The parallel to the implicational dependencies of Fagin [F] isimmediate. The
quantitier "unire -lationa‘l" in the above indicates that these dependencies can be
written in a first order language with a single predicate letter of -arity the cardinality
of U. "1e class of multi-relational dependencies can be captu:"ed‘ through the use.of

tagged :ableaux. as follows.

A\ nuiti-relational data dependency for a datubase schema R over a universe

['. 4 T.x> isadata-dependency for U in which T, and x if d isatgd, are
tagge 1bieaux. Two extra conditions are imposed: (i) thetagsof T and x are
re.lau's schemes of R: 17744 TUx)CR. (ii) tuples may agree only as they are allowed
to by t:: :irtags: t/A/=u/B| implies A€¢t{Tag/ ;md Beu/Tag/. (Of course,

t/{A]-- ... 3] ispossible only if tdom{A) =tdom(B).) Finally, a multi-relational tgd
d=<T.S >, isconsidered full if for each s€S and each Ae€s/Tag/. s[A/ appearsin

T.

l.:t »-be a state ofa schema R over universe /. The tableauof p Ty, isa

taggea "ubleau over U defined as follows (this detinition gives Tj only up to




isomorphic renaming of variables): Foreach R¢R, each tép(R), arow v of T, has
v[R]=t. Foreach Ae¢U-R, v/A] isavariable appearing nowhere else in T,.

Finally, v/Tag/=R and no other rows appear in Tj.

A queryon aschema R with target list X, isa function from states of R to

instances of X. A conjunctive query q on aschema R with targetlist X isa full

multi-relational tgd on schema RU{X}. If g= <T.x>. then T isatagged tableau
on R, x isasingle tuple and x{Tag/=X. To define the function described by a

conjunctive query, we introduce the idea of a homomorphism.

Define SymtT)=Upep(1ia(T)) where T isatableauon universe U. A

homomorphismon T isany function with domain Svm(T). If n isa homomorphism

on T, then weallow n toalso ~~~=~-ent itsextensin~* ..ud tableaux. That
I8, n(t)=n ¢ (thé composition of nand ¢); ., _.+1+¢T} Ahomomorphism
preserves o set of symbols C ifit is the identity on C. A constant preserving
homomornpism preserves the set of constants (recall this is the set Ugeydom(A)). A
tag preserving hdmomorphism isa hoxﬁomorphism extended by the identity on

tdom: Ta- .

Th. lation between tableaux whick is central to this paper is that of

homomor ..\icembeddabilitv. If T. S aretableauxona universe U, then T is

ho.momor:‘nically embeddable into S if there exists a homomorphism n on T such
that n(T: 3. T and S are homomorphically equivalent if each may be embedded
into the other. For certain applications, we may require the homomorphism to
preserve some set of symbols. If either of T or S or both are tagged and n is non-
tag preserving we may write n(T)CS to mean (n(/Tp( THC(Hy(S)). In some

circumstaaces the set of all homomorphisms embedding T into S is of interest. as

in the folinwing definition.




A tableau T satisfies a dependency d= <T.x> iffor every homomorphism g
embedding T into T

if x is the equality assertion a =b, then n(a)=n(b);

if x is the tableau S, then n can be extended to a homomorphism p on

Sym(SUT) (i.e. u restricted to Sym/T) is n) with u(S)cTs.

(For multirelational dependencies we may consider only tag preserving
homombrphisms.) A tableau satisfies a set of dependencies D if it satisfies each

dependency .1 D.

We can now describe conjunctive queries as functions. Let ¢q= <T.{t} > bea
conjunctive quexj); for a schema-R and p astateof R. The relation g(p)={n(t)| n a
tag preserviny homomorphism embedding T into T,}. Itiscustomary to further |
restrict the homomorphisms to be constant preserving. When that is done, the class
of conjunctiv: queries includes al.l queries expressible by relational algebra
expressions :sing a restricted formi of selection. projection and product [C;\it]. Union

may be mod: ied by considering finite sets of.conjunctive queries [SY).

Theri. e [{ABUJ, [MMS] is a fundamental process in the study of databases. [t
is a means - - transforming, if possible, an arbitrary tableau into one which satisfies

agiven set.: dependencies. Let d = <T.x> beadependencyand n a

homomorphi.im on T. The pair ¢ = <d.n > iscalled a transformation. If S isa
tableau and 1 embeds T into S, then : issaid to be enabled. The application of an

enabled transformation ¢ toa tableau S, denoted «/S) is a tableau whose definition

depends on the nature of the dependency d.




If d isan egd, so that x isa =5, then one of the symbols n(a), n(b)
replaces the other everywhere it appearsin S. It is customary to give a
disambiguating rule for the choice of the replacement. When n(a). q(b)
are disiinct constants, ¢ is a contradiction and it is usual to assign

S)=02.

Q

If d isatgd, so that d= <T.V >, then n is extended to a homomorphism
pon TUV and uS)=SUw V). The extension of n to p is restricted so
that . isone-to-oneon Sym(V)-Sym(T) and for each y¢SymiV)-Sym(T),

p(yi- SymuS), thatis, w(y) is a new variable.

It is customary to denote chaseyXT) as the limitof the pr()ce&.‘.s of applying

' transformations those dependencies are chosen from the set D, starting with the
tableau T. If D contains only full dependencies and a disambiguating rule is given
for the application of egds (see above), chaserx T) is unique and effectively
computable. Otherwise, it is at best defined only upto isomorphism and whenever D

contains partia: dependencies, this limit is not clearly defined.
2.2 Consisten . weak instances, canonical queries

Let » bé tate of aschema R overa universe U. Let D be asetof
"depéhdencies 1 - (7. Following Honeyman [H], see also [GMV], we define a weak
instance for p - ith respectto D asan instance [ of U such that pcrir(l) and [
satisfies D. W denote the set of all suéh fihite weak instances as weak/D p) and
we say p is consistent with D if weak(D.p)=@. We denote the set of all statesof R

ceasistent with D as CONS(R.D).

Let Svmr..- =Up.R(UAR Al R1)) be the setofall symbols appearing in the

state p. A representative instance for p with respect to a set of dependencies D isa




st -

Lok

possibly infinite weak instance for p such that every element of weak(D,p) is the

image, undef someSym( p) preserving homomorphism, of the representative

instance. We can show that every consistent state has a representative instance.

Proposition 1. If p¢CONS(R.D), then p has a representative instance. Further, all
»epresentativeinstances-for-p are équivatentvia-Symtp) -preserving

hemomorphisms’

Proof. EetT,J bectenmentsof weaktB-py. We take the direct product of the
2 Lt

elements of weak:(:)p;. This is an instance over the universe U for which the
attribute domainj w be denoted xdm‘n('A). are sequenci of countable length, Itis
convenien\t and customary to consider these sequences functionSon the set of
natural numbers. N. So for the instance we have for each A,

xdom/A) ={f[f:N—:iom(A)}. However, we may identi fyin xdom(A), that function
f such that flii=: foreach i€ N with theelement a€dom/d). Thi.s allows us to

consider xdom/.\. asan extension of dom(A).

Let I be this direct product. Itsdefinition requires that we number the

elements of wea/ ).p). Having doﬁe so, we have by definition
o= (<t Lf, > | <fli), .. £ ())> €1 € weakiD.p) for every i€N}

Itis well kn« vn that dependencies are preserved under direct products, that

is, | satisﬁes' D.

A«q‘a'-‘f .
Further, for I € weak(D.p) (eacly, the natural map 7‘ (#) = j’f")
e ————
l'li2<f,f.,...fm>‘- <f(i)'..;fm£i_)—>j/u‘ M
( [ S _’l e . "“,G

homomorphically embeds | onto [ ."n, is Q:;m('p) preserving since f=a iff % .

M

o Uppress

fluu=a forevery - therefore n (f)=a: It remains toshow p'ﬁra{al).




for any R€R, let u€p(R). Each I € weak(D.p) containsatuple with u /R/=u.

Therefore [ contains atuple u such that u[R/=u.M

This proposition is stronger than the results of Honeyman [H], Sagiv [S],

Mendelzon ([Me] and Maier, Ullman and Vardi [MUV] in that it does not depend on

ips . . kemouﬁph_;eqﬂg
the chase. As noted by those authors, chasep(T,), if it exists, isa-zopresentetive

Erubed da bl
e ancefon\© Cuey elowewtof weak (D, p) .

Let XCU. The ranonical query on X with respect to schema R and set of

dependencies D. denuted ?X/R,D/ or just ?X when R and D are known from

context. is a function irom CONS(R.D) 1o instancesof X defined hy
- /XI R-D/\'I" '—"'._‘Iéwmkr I).p'( ”.’(([))

The definition does r: ¢ provide an effective computation of ?X/R.D/ and indeed
such a computation r:iay not exist. However, the representative instance can be used
to compute ?X/R.D/ vhen it can itself be effectively found. Define C- projection Hne
as projection with re-uect to elements of C only:

.f/f.\f' M= 4t€ll 4T and fAIEC foreach \€X:

Proposition 2. .:  (CONS(R.D) and [ is a representative instance for p, then 7/
” :
- 2 <. -
?Xtp) = 1>m&11) <

u
M . - 0"&"’ :
- ~We have xE.’@'.n iff foreach [€weak(D.pj, @exists tel with

, . : . T, L) & .
t{y/=x iffthereexi- 5 t€ lwith @t’) =t where™13 SN preservingg—itnne
homorphisim and 1 ) =[. Itis easy tosee thatfor A €y v/A/€ Qi p). This

comes from the fact that for each [€weak/D.p) there is a J€weak!D p) with

@n}(‘[)_r’@/m(ﬂ-: .| indeed J. can be formed by isomorphically renaming each
“—element of Bvm(I) mip) byanelementnotin Sym(l). ) therefore x€2X(p) iff
x€ <) A | Vppteen




Proposition 2 replaces an intersection of infinitely many projections with a
single projection of an infinite relation. This brings us no closer to an effective
computation. We now show, as stated earlier, that no such effective
computation exists. ’

Proposition 3.
1) There exist X, R, D such that ?X/R,D/ is not effectively computable.

2) There exists no «niform, effective procedure for determining if 2X/R,D/ is
computable for arbitrary X. R, D. '

Proof. (1) The complete:.ess problem is determining for all triples { <;.R,D >},

“whether ?R(p)=p(R) for every R¢R. The completeness problem is shown to be
undecidable in [GMV] where (2) the set { <R.D > [ completeness of states of R with

respect to D is decidable; is shown to be not recursive. -
. ' Uppre-coal

In contrast to progosition 3, in the case that cﬁase,,('@p) iseffectively
S
computable, s«l?X(p).

Proposition 4. If chas (p) exists, then .

=T IXip) =@O "/ chasep(tp) )

/

B

Proof. [n this ca.e ha»e,,@g is embeddable via Symip) preserving
Womorphmm intpsTit onto) every elementof weak(D p) [GMV]. Therefore
@\ '"'l'(chase,,@ﬁg‘.’.\ a). On the other hand itisqnly a small abuse of notation

(
‘\tostate chasep(Ep/€we: =1 D.p). So ﬁ,f’" ""chase,,‘cg 2¢X(p).

A query E is said to Be monot.omc if p2o implies EfpJi2Eln).

Proposition 5. Canonical queries are monotonic.

Proof. The inclusion » _.- imp.ies weak(D p)Cweak(D o). The proposition follows. -




We allow only finite states. Suppose however we were to allow states of

arbitrary size. It would still be possible to define weak instances for these states

and therefore cannénical queries as well. Proposition 5 remains true in this case
without modification to its proof. Proposition 5 therefore establishes that
canonical queries are monotonic everywhere, not merely over states of finite size.

}!f;z Dhis is crucial to the development of section 4, below.

On the other hand, not all expressions of the relational algebra define
monotonic queries. We will say thata query £ onschema R iscanonicalifthereis
some set of dependencies i, such that Ea?X/R,D/. We know then that notall

queries expressed in relational algebra are canonical, T he reverse inclusion is also

not true.

It is well known that no expression.of the relational algebra is equivalent to the
transitive closure of a binury relation. [AU], [Im], [Z]]. Let R be a binary relation
symbol and let d be the dependency which expresses the transitivity of R:

Ixyx(RxyARyz=Rzxz)

Then ?R b’R }{d} ] isthe :nsitive closure function, since. directly from the
definition, ?R[dR}.{d,‘ [t ;s thesmallest relation containing [ which is transitive.

We state these facts as a p::position,

Proposition 6. The set of ¢::::onical queries is incomparable to the set of queries

which may be eipressed in the relational algebra.
3. The Logic of canonical queries. . ' -

[n this section we pre:.:nt canonical queries in a logical framework. We do this

tc make more apparent the closeness of our approach to the approach of artificial

-11-




C,M‘:"

intelligence which treats querying as logical inference. [GN@ We alsodoitto .

prepare ourselves for the results of the next section.

Let U be a universe. [t is necessary to fix an ordering on the elements.of U1t
R isaschemaover U. the first order language (with equality) Lgr has neither
function nor constant symbols. T he predicates of LR are the schemes of R. Thus if
ReR istheset {A;,,...A; /. then LR hasan m-ary predicate symbol R. Let S bea
relation scheme. For notational ease we will denote the language associated with a
schema RU{S} as Lr. s ratherthan Lpy,s). However, we always assume a new
predicate symbol, that is, a s* nbol not in LR, appearsfor S in LR s, even when

SeR.

Let XSU and D bea set of unirelational dependencies on U. Consider the

followin-g set of sentences ¥ in the language Lpx.v -

(containing instan.e)
(dependencies)

where = .. A,

o

The finite models of =. :noted struc/), can be written as triples <»/.£>
where p¢CONS(R.D). [cwe: -D.p) and £22X/R.Df(p). Let C be formed by
reducing .;;truc{r) to Lrpx: toatis. C={<p,> | peCONSIR.D)and <2 ?XIR.DJ(p)}.
Let Dgr_x be the collection oi nsequences of ¥ inthe language Ly x: thatis. the
elements of Dr_x are sentencesin Ly _y which holdin every element of struc ).
Clearly, the members of C satisfy the sentences of Dg x: thatis, CCstructDg x). .

Wea now demonstrate the reverse inclusion.

Lemmal. C=structDgr.x’




Proof. We need only show struc! DR x)SC, by preceeding remarks. So let <p,§>¢C.
Let dom be the set of all values appearing in p and expand the language Lr x.u by

adding gach element of dom as a constant. In the expanded language, let
Dj;={(R(aj.....an) [for each R¢R where <ay,....an ?ép(R)}
Do={-X(ay,...am) | <aj....am>¢¢ and al;édom}
D3 ={a=b[for each pair of distinct elen’tents ofdom/.

Now Y'=y¥UD;UD»UD3 is an inconsistent set of sentences. Suppose otherwise. If
M is a structure for ¥’, then M:{/). the'int.erpretation of U in M. isa weak
instance for p with respectto D s0 p¢CONS(R.D)[GMV]. It must be therefore that
£2?X(p), as <p,6>¢€C. So there isa tuple x€?X(p)-€. Now x€¢?X(p) implies

eyl M.( U}) so by the projection axiom, xe M(X). But ~X(x)€x’ so M isnota
model of »’. - '

We note that D;UD»UD;; s a finite set of sentences in the expanded languaye.

Therefore, the conjunction nf its .-lements. denoted d, is a quantifier free sentence of

the language Ly x augmenter: ith the set dom of constants. Furthermore.
<p,t> satisfies d. On theoth:  1and. from the inconsistency of &' we may
conclude, ¥+ —~d. Noting that ' .3 constant free, we may conclude r-/vxi ~d)
where x is the vector of all clenr 'ntsof dom appearingin d, interpreted as
variables. In short, /¥xj( —-d) i- nelementof D x, so <p,t> i’sltrucr D|{x). We

may therefore conclude structDy x/cC. -

Corollarv 1. DR x isequivalent to a set of total, multirelational equality and tuple

enerating dependencies.
b




Proof. Consider the formula ~d in the proof of the lemma. This may be rewritten
as (d;—doVvd3) where d; is t:; conjunction of elements of Dy; do,d; the- aRe
disjunctions of the elements of D3, D:,j respectively, these latter appearing in in
positive (i.e., unné;gated) form. By a result due to McKinsey [McK], extended by
Graham and Vardi [GV], since £ containsonly dependencies, for some atomic |

formula e of DoUD3, we must have —{vx)Xd;—e). <

In light of this corollary, we will write Dr_x as ERUTR,x where ER is the set
ofegd’s and TR, x is the set of tgd’s :nentioned above. [t is known [GV] that the set
strucfERr) of finite models of ER is —.»xac‘tly CONS(R.D). Itis natura! to consic!er the
set struc/ Tr_y/; thatis, it is naturul to consider canonical queries on states not
required to be consistent. We can do this by removing all egd’s from D and

replacing them with “nearly equivalent” tgd’s as follows.

Let d=<T.a=b> beanegd. Let Ay,.... A, be the attributes of u such that
o = ’
fa.bjcdom(A;). "Bor—mefuig-ay For :uach such i let w; . wi, bea pairoftupleson the
universe U.satisfyin'g wi lAil=c¢. wifAil=b, w;[Bl=w;[B] forall B=4, and
Sym({w; wi }))NSym(T}={a.bf. Th .. 1gd translation of d is the set

U : ¢ u}'w;b.)' < TU{IU_[)},w;" > }

The egd free version of a set of dept :dencies D, denoted D* is formed by replacing
each egd in D with its tgd translai.on. Let Eg” and TR x*/ be the set of egd’s and

tgd’s respectively which make up :. ¢ ¢ asin corollary 1.

Lemma 2
HER=@
D TR =TRX

Proof. 1) Immediate. 2)[BV???]-




Combining this result with lemma 1 we have,

Corollary 2. 1) struc(TR,x) ={ <p.£ > [<2?XIR,D"/(p)}
“p¢CONS(R,D), then ?XIR,D/(p) =?X[R,Dl(p) +~

This result states the canonical queries defined with respect to D* are
identical to the queries defined with respect to D when the former are restricted to
CONS(R.D). 1t is useful to state the following result, whose proof is immediate from
corollary 2.

Corollary 3. 2XIR.D(p) =N{e] <p.& >~ struc(Tg_x)} -

&

These lemmas and their corgllanes can be viewed in the following way. They
vha
( w\ state that calculation of a canonical query is the essence‘denvatmn of a tuple

—

u
‘ generatmg dependem.y The elements of @

can be seen as nwearelatlonal depende ncies by the s

are multirelation dependencies. They

ple expedient of lgnoring the
tag attribute in their tableaux. This iransforms an element of @
Upp o

embedded dependency in the languave @ which is easily seen to be logu.al

into an

consequence of D. Recalling a resuit -t Beeriand Vardi's[BV?], we have that for
each tuple X€’X/R.Dj(p), thereex -schasesequence of finite length {possibly 0)

NY Loamd =S Y
whichaddsarowuto T with /@

The reader may wonder whethe: - he set of finite structures .
{<pt>[e="XIR,Djp)} isfirst order 1xiomatizable. We have shown Tg_yx to be a
first order axiomatization of structures containing "all the truth.” Is it possible to

axiomatize those structures containing "only the truth?" Interestingly, this question

can be answered either way, depending on how it is phrased.

We have restricted ourselves to ti:e consideration of finite structuresonly as

models. Suppose that f is any function trom database states to instances of the
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scheme X and consider the pairv <p,flo)>. Asboth p and flp) are finite, this pair
may be described by a single sentence of the form "if the state is exactly p, then the
instanceof X is exaci;ly flp)." Theset {<p,flp)>} is exactly the set of finite models
of the (infinite) set of sentences so constructed. T his procedure is hardly effective nor
very informative. Furthermore, these sentences are not dependencies. The fact that
TRr,x containsonly tuple generating dependencies of a particular form is vital to the

results of the next section.

If we consider the collection of all models of a given set of first order sentences.
we discover that it is impossible in gener-| to axiomatize the exact answers to
canonical queries. The transitive closurt of a binary relation may serve us again as
a counterexample. Let R, R” be binary relation symbols. Consider both as giving
two different edge relations on the same set of nodes. For each k&, itis possible to
write "for eo pair for which an arc appearsin R*, is there a path of length &
between them in R . Each finite subset . the set of all such sentences is consist;ent
with an axiomatization of the tran‘si tive closure of nonempty relations, should such
an axiomatization exist. But by the prin-iple of ccmpactness, which applies here as
the full collection of models is considerev- nosuch axiomatization can exist. E very

arcin R* mustcorrespond toa pathin  of some finite length.

This discussion justifies a beliet th::: the result of corollary 3 is as close as one

can get to canonical queries with first orcder sentences.
4. Algebraic canonical queries.

In this section we consider those queries which are both canonical and
expressible in the relational algebra. (Queries expressible in the relational algebra
‘will hereinafter be called algebraic.: We will rely on the well known equivalence of

the relational algebra and relational calculus. We restrict the class of expressions

:6'_




we will allow in two ways. We consider these restrictions to be matters of

convenience.

First, we do not allow constants. Dependencies are written in a constant-free
language, as in the prior éection. Allowing constants in our expression language
merely confuses matters. Secondly, we do not allow equality. This is in conformity
with the w;)rk of Chandra and Merlin [CM]. We adopt this restriction in this section
(we abandon it in the next) as we are considering here the canonical queries defined
by an egd-free set of dependencies. Every state is consistent with such a set of
dependenciés and thus each canonical query is déﬁned on every state. This
simplifies our discussion. When D is egd-free, the set of sentences £ of section 3 is
written in a language without equality. Thus our prohibition of equality is similar

to our prohibition of constants.

Formulae of the relational calculus are customarily interpreted only in finite
states. As they are also formulae of first order logic it will be convenient to
interpret them over states of arbitrary size. _

om TTT—— '
Lemma 3. Suppose E iswa=® monotonic a: 'ty expressible ina

relational calculus without equality. Th:- E isexpressible asa union of

conjunctive queries. —

v oo -
ProofSuppose E may be expressed as wix.,...x,) using ‘domain’ calculus
notation. Weshow is (equivalent to) a positive, existential formula;i.e.,itis
constructed from atomicf formul{using 3.\, v as theonly connectives. But these

formulae are exactly unions of conjuntive queries.

We show first the existential part. Suppose p isastate and pFw(a,.....q

that is, the tuple ‘a,.....a /€E/p). Suppuse we have astate v relatedto p in




the following way: for each scheme R, p(R) isthe intersection of o(R) with the
’ ws"l_&ﬂfs

appropriate cross product of a fixed set of conetratnts ( fixed in the sense that the

same set of constants is used to form each relation 055) In this case, p iscalleda

submodel of 6, ¢ an extension of p. As 0Jp, we have (al, s a;)EE( o).

Generalizing this arguement, we see that the sentenWa language expanded

a
with constantv( wa,,....a) )is preserved under extensions; thatis, iftruein fny
WAnoe-

state it is true in all extensions of that state. Therefore y isexistential by the dual

of theorem 3.2.2 of%:;mgl

To show the positive parf, we will show that everywhere monotonic queries are

preserved under homomorphisim; thatis, if ‘a,....,a )€E(p) and’ p is
homomorphically embeddable in astate o via a homomorphisim h, then

' <h{a,).. h(ak)>€E'( But then the formula y exprebsmg E is posntxve by
theorem 3.2.4 of the above cited text. |

We define a strong homomorphisim as:.ne wh'}b:h preseves negative as well
as positive atomic formu.lae: that is, .if <b....b,>€p(R) then <h(b,),.. |
J(b ) >€a(R), where h takesit%%e leav«; -0 the reader the tagt of showing that
any existential sentege is prexeived under st - 7\:{ homomorphisims.

(cf,.Enderton p91 f].

Now suppose h is a homomorphism of ¢ into ¢ and fa,.....a, J)€E(p/. We
must show <h(a,)....h(ak)>€E(;7 If his :trong wearedone. Forany <b,,..
b,>€p(R) with <h(b,}....h(bk)>€c(}R)add <b,...b, > to piR). Let p' be
the result of all such‘additions. 'So p'2p andtherefore ‘a,.....aJ€E(p’) by |
monotonicity. Now h is astrong homorphism, from p’ to 0 so <hfa))...
hfa. ) >€Efgjsince the sentence wfa,.....a.; has beenshown to be existential.

(.Recallvi)s the formula expressing E.) -—{
A :
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In lemma 3 we depend on the assumption that the query is everywhere
monotonic, not just monotonic on finite states. Of the theorems used in the proof,
that concerning preservation under extensions has been shown to be false in the
case that only finite states are considered. [(Gurevich]. The status of the lemma

itself is this case is unknown [op.cit].

We now produce now dijunetion of those canonical queries which are

algebriacl

It is obvious that the appearance of a tuple in the result of a canonical query
depends upon the existence of certain tuples in the database state. We may wish to
know how many such tuples must appear in the state to support a tuple in the query.
If te?X(p). isit pessible to bound the size of a substate oCp with t€?X(0) which
bound is independent of the size of p? Note that in the case of transitive closure, it is

not possible to do this. This motivates the following definition.

Definition A schema R is X-bounded with respect to a set of dependencies D
(for some X asetof attributes), if there exists an integer &k such that for every state

p.te?2X(p) implies there exists a substate nCp wi -~ Jofs k and t€2X(o).

Maier, Uliman and Vardi [(MUV] proposed : notion of boundedness which we
will show equivalent to ours. Their idea is based .n the computation of canonical

queries via the chase.

Definition A schema R is X-chase-bounded with respect to a set of
dependencies D (for some X asetof attributes), if there exists an integer & snch
that for every state p, t€ ?2X(p) implies there exists a sequence of transformations on
the dependencies in D which introducesa row v intw T with w/X/=t. which

sequence is of length not greater than k.
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We should point out that qualification that D be finite is crucial to the
meaningfulness of this definition. Forif D is replaced with its semantic closure (the

set of all dependencies it implies), then every schema is X-chase-bounded with k=1.

There is yet a third, equivalent notion of boundedness. Consider the set TR x '
of the prior section. We will say that TR, x is finitely covered when it is equivalent to

some finite subset of itself. By ‘equivalence’ here, we mean finite equivalence. TR, x

is finitely equivalent to some set ¥ if the equality struc(TR x)=struc/L) holds.

Theorem 1. Let R be aschema and D afinite set »i'unirelational dependencies on a

universe U/. The following are equivalent.
1) R is X-bounded with respect to D.
2)'R is X-chase-bounded with respect to D.
3)Tr,x is ﬁnitel& covered.
4) ?X/R,D/ isequivalent to a finite union of conjunctive Queries.
- 3) 2X[R,D] isequivalent toan expressi'on of = - relational algebra.
Proof. 1=2 Let ki be the integer required bv 1e definition of X -bounded.

There are, up to isomorphism, finitely many states of size k. Each has oniy
finitely many "x-consequences:" thatis, ?X(p) is aiways finite. For each row of
?X(p) for each p thereis asequence of some finite length which introduces this
consequence into Tp. The length, %, of the longest sequence among these proofs is

the bound ::equired for R tobe X-chase-bounded.

2=] Immediate.




1=3 Asbefore, let k) be the bound required by the definition of X-bounded. _
We claim that TR, x need contain nodependency d = <T.x> with |T| >ko. But this

is immediate.

3=4 Each of the dependenciesin TR x isidentical in format to a conjunctive
queryon R with target list X. Set E to be the union of the (finitely many) '

conjunctive queriesin T x. We claim E(p)=?X(p) for every state p.

By construction we have <p.E(p)>¢€struc(TRr x), thatis E( b) 2?X(p). For the
reverse inclusion, we can show that for every £2?X(p). .2E(p). Thatis, Efp) =2X(p),

by co.rollary 3.

So let veE(p). By definition of E, thereisan element <T.x >¢Tr x and some
homomorphism n with o(T)ST, (n tag preserving) and n(x)=v. But <Tx> isan
" elementof TR x soany ¢ with <p.t>¢€struc{TRr x) rr;ust'satisfy <T.x>; thatis,

n(x)€¢, thatis vet
'4=5 Immediate.
5=4 From lemma 3 and proposition 3. ‘

4=1 The bound is the number of conjuncts in th. :argest clause of the

expression. -

5. Boundedness with respect to consistency

In the preceding section we were concerned with the ﬁhiteness of the set Trx
oftgd's in the language LR _x implied by the dependencies, containing instance, and

projection axioms defining the canonical queries. A similar question can be asked

about the set ER ofequality generating dependencies so implied.




Fact: [GV) The set ER is finite iff there is an integer k such that any

inconsistent state of R has an inconsistent substate of size not exceeding k. -
Thus we say R isbounded with respect to consistency if ER is finite.

Despite the similarity of this fact to the equivalencies in theorem 1, we now
show by example that boundedness with respect to consistency and algebraicness are

mutually independent.

If D contains no egd’s, then ER isempty. Soin particular, the transitive
closure example (see section 4) is bounded with respect to vonsistency but not

algebraic.

Let F bea §et of functional dependencies over some universe U and let
SAT(UF) be the setof all instances of U which satisfy F. Let A be the set
{nyt/le SAT(U F)} forsome VSU. As pointed out by Ginsberg and Zaddian [GZ],

A need notbe SAT(V.G) for any set of functional dependencies G. Hull has
| recently shown that in that case E;v; is not finite [H]. But notice that
A =.CONS({V},F) and that for any XSU, ?2X{{V}]. F iseizher identically empty (if

X Z V) orisequivalent to the appropriate projection. St "y x is certainly finite.

We will say a schema R isalgebraicifforevery X. 'X/R,D/ isalgebraic. If D
containsonly typed equality generating dependencies, aigebraicness is implied by

boundedness with respect to consistency.

Propositiori 6. Suppose D is a setof typed egd’s and R is bounded with respect to

consistency with D. Then R isalgebraic.

Proof. Suppose not. From the hypotheses and prior results. we know




1) there is an integer kg such that an inconsistentstate of R contains an
inconsistent substate of size not exceeding ko;

2) Forsome XCU and every integer k;, there exists a state p with at
least k; tuples and a tuple x¢?X(p) and x¢?X(0) for any proper substate
o of p.

Letting & be the integer of point 1 above, construct a consistent state as
described in point 2 of size at least k/X/..Let this state be 0. Recalling that D
‘contains only egd’s, we note that the row of chaseT) with x-valuex (x is the X-
value given in point 2 above) must correspond to a tuple v¢s R) for some R and

XZR.

Let v bea I-1 mapping of Sym(s) which is the identity on symbols of the tuﬁle
‘v and takes all other symbolsof o to s;ymbols not in o. Let p= oUv(n). To see that p
is not co.l_asistent with D, let u be any tuple of o such that u/A/=x{A/ for some .
Ae¢X-R. Theegd <Tp,ulA]=v(ulA])> is aconsequence of D but ufA J=v(ulA D by
construction. Conséquently there must be a substate poAGp with k or fewer tupies
such that D implies <Tp,.ufA/=v(u{A])>. This substate xnust contain some rows

of v(a) (although not necessarily u or v(u)).’

Let n bethe mapping on Tp, defined by: n(t) =t ift- . n(t)=v if tev(n). Now
n is a homomorphism embedding T,, into T, since for e\:rery U,,Ev(.o). vi€a, and
every attribute B, vy/B/=v,(B/ only if vi/fB|=v(B]=v,[B]. So n is homomorphism
enablingin T, a transformation on dependency <Tp . ulAl=vulAD>.
Application of this transformation to T, will set t/A/=x. But /o(T, )/ <k. Repeat

this arguement for each A€X-R. This will uncover a substate o'Co with

- Jo’/<n/X[ and x?/g’). this contradicts our choice of .4




We now take up the task of tightening the results of Theorem 1. We wish to
characterize algebraic canonical qﬁeries defined with respect to a set of dependencies
which include egd’s. Equivalently, we wish to consider queries defined exactly on _
the set CONS(R.D). We face an immediate syntactic difficulty: an expression of the
relational algebra is necessarily defined on all states of R, without regard to their
inclusion in CONS(R.D). Thus we must expand the domain of ?X/ R, D/ if we wish
to find any algebra expression to which it is equivalent. A method of doing this is
given by Corollaries 2 and 3 of section 3: replacing D with Def. This method is
exploited in Theorem 1. We seek in this section an expansion which distinguishes '
consistent from inconsistent states more precisely. Many such expansions are

possible. We adopt the following.

For a setof attributes X of cardinality n, we define the X-product ofa state p

as

X e xldomiANNSymip)

That is, an X-product is the set of all combinations of symbolsin p which respect the
domain definitions. We define ?X/R. D/p) to be the X-product of p when
p€CONS(R.D). This definition reflects the standard logical nc:'ion that everything is
a consequence of an inconsistent set of sentences. It also preser . »s the monotonicity

of canonical queries, as any superset of an inconsistent state is :nconsistent.

.

The expanded function will not always distinguish consisient frohx inconsistent
states. Cdnsider a four attribute universe with two schemes: /.\B.CD/} and the
functional dependency A -+ B. If the domains of these attributes are pairwise disjoint
(the “typed” case), then ?C isidentically the C-product in every state. Similarly,

?CD isthe CD-product in some consistent states. We can describe sets of attributes

for which this behaviour is impossible.




Let d=<T.a=b> beanegd. The repeat.irig symbols of d are those elements
of Sym(T) with more than one appearance in d (a and b are presumably repeating
symbols.) The agree set of d is the set of attributes labelling the columnsof T in
which the repeating symbols occur. (See Ginsburg and Hull 7? [GH].) If X contains
the agree set of some egd in or implied by a set of dependencies D, then ?X/ R, D /(p)
satisfies d exactly when p¢CONS(R,D). [Not quite: we need 2 symbols of
dom(A) in p.] We will exploit this fact in Theorem 2. We must first expand the

class of relational algebra expressions we allow.

As we have allowed egd’sin D, we must allow equality in our expressions. We

" definea conjuctive query with inequalities to be a conjunctive query plus a set of
pairs of symbols called inequality assertions (and written a=b). Svif q isa

conjunctive query with inequality

q=<<Tx>S8>

and p isastate, q(p) =(Wx)MT)STp. v a homomorphism and va’=vb) for each
- a=b in 8). (The expansion of conjunctive queries to include inequalities was first

made by Klug (K].)

We recall that DR x isthe setof all multirelational egd’s av full tgd’s which
are consequences of the set £ defined i.n section 3. Again, Dr x i said t.o’be finite if

itis finitely equivalent to a finite subset of itself.

Theorem 2. Let X contain the agree set of some egd implied by a set of dependencies

D. [Do I need this?| For any schema R, the following are equivalent:

.1) R is bounded with respect to consistency and X-bounded.

2) DRr.x is finite.




3) 2X[ R, D/ isequivalent to a union of conjunctive queries with
inequalities.

4) ?X[ R, D] is equivalent to an expression of the relational algebra.

Proof. The equivalence 12 follows from Theorem 1 and the fact mentioned
earlier. We show 2=3 by construction. (A proof of 2=4 exists which omits this step.

We find this procedure more informative.)

Construct a conjunctive query for each element of TR x as before. Let E, be

the union of these queries For each element of ER, proceed as follows:

Let <T.a=b> be an element of Ff'n. Let W={wg/Re¢R, wriTag/=R} bea
collection of tagged rows shéring no symbols with each other or with Sym(T). Let
v{,....up be rows with tag X which rows result from permuting the symbols in |
UReR(UAex{wRr[AJ/A€R}) in all ways consistent with the domain definitions.

Construct the set of conjunctive queries with inequalities
{<<TUW.u; > {a=b}>|1sisp).

Let E, be the union of all these queries.

We claim the unionof E ,UE, calculates ?X/ R,D /. The proof is a nefore with the

observation that if any element of ER is violated by a state, the set ¢ queries so

constructed will force the result to be the appropriate X-product.

The equivalence 3¢4 is as before. Note that a conjunctive query with
inequality is monotonic, so Lemma 2, suitably modified, holds for the larger class of

expressions considered here.

We complete the chain by demonstrating 3=22, If <<T.x>.5> isanelement

of the union given by (3), construct the sentence




(T 28
where T'=A{R(wIR]) |w(Tag| =R, weT}
x"=X( :c).
s'=v{a=b/a=beS}

and y is the vector of all variables appearing in this sentence. We claim this
sentence is implied by £ (by (3)) and apply the res'ult of McKinsey referenced earlier
to reduce the resulting finite set to a subset of DR x, as before. We then claim this
set to be finitely equivalentto DR x. |Does this really work? Ithink so but I’'m

passing on. The next paragraph can also be used to prove this (or 4=2)| +4

The weakening assumption in this theorem is a result of the particular
expansion of canonical queries which we've adopted. Suppose we were to choose an
exp_ansfon which distinguish consistent and incor}sistént states via some first-order
property. In other words, suppose there exists, withrespect to this putative |
expansion, a sentence y on a single predicate (of arity the cardinal'ity of X) such that
¢ istrue at ?2X/ R.D [(p) éxactly when p isconsistent. If ?2X is algebrafc, the first
order formula ¢ which expresses ?X can be tomposed with g to produ.e a sentence
of LR true of a state p exactly when p is consistent. (This composition isthe
syntactic exercise of replacing the atomic formulae of :p with the formuia ¢, due
care being taken to rename variables as appropriate.) But in that case. ER is finite,

by the results of [GV].

8. Discussion and Conclusions

We have considered the question: When is a canonical query algebraic, i.e., -

equivalent to an expression of the relational algebra? It is natural to ask the

converse question. When is an expression of the relational algebra equivalent to




some canonical query? The answer is the same. Such an expression must be
monotonic and therefore equivalent to a union of conjunctive queries. Each such
query is essential!y a multirelational_tgd, which may be considered a unirelational
tgd simply by ignoring the tags. Thus each monotonic expression E givesrise to a
setof tgd’'s D such that E=?X[ R, D ] (X the "target scheme” of E). Every

monotonic expression is canonical for some set of dependencies.

In the above discussion, we chbse D after having seen the expression E. The
reader may object to this procedure, considering the dependencies to come "first” and
the queries only “later”. Butis this order correct? The purpose of canonical queries,
window functions [MRW] (MUV] and ur;iversal relation interfaces [KU] is to make
some set of queries very easy to formulate. Which set of queries should this be? We
believe the database administrator, in cooperation with the end users, knows very
well which queries are important. The depéndencieé and perhaps even the schema
may be derived from the queries, rather than conversely. It is usual to declare the
dependencies to be derived from “nature”, that is, from knowledge of the application.

We do not dispute this. We have shown that they describe an inferencé engine for

the calculation of certain pre-selected queries.
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Marc H. Griham
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Abstract

A database is consistent with respect to a set Z.of
tependencies if it hus a weak instance. A weak instanic is

a universal relation that satisfies . and whose projections’

on the relation schemes are supersels of the relations in the
database. In this paper we investigate the complexity of

testing consistency and the logics that can axiomatize con- .

sistency, relative t0 a fixed set T of dependencies. If T is
allowed to include embedded dependencies, then con-
sistency can be non-recursive. If I consists only of total
dependencies. then consistency can be tested in polynomial
time. The degree of the polynomial can, however, be arbi-
trarily high. Consistency can be axiomatized bul not
finitely axiomatized by equality generating dependencies.
 If embedded dependencies are allowed then consistency
cannot be finitely axiomatized by any effective logic. If,
on the other hand, only total dependencies are allowed
then consistency can be finitely axiomatized by fixpoint
logic.

1. Introduction

Soon afler the introduction of the relational modl
[C1). he important role of semantic specification was real-
ized [C2.AN]. The purpose of semantic specification is to
define which databases are semontically meaningtul, called

Yo be prescated in the rd ACM S:mp. on Principles of
Ditabase Systems, Waicrioo, Aprit 1983

&

* The research reponed here was dane vhiic this author was
at Stanford Univerdty and supporied by & Weirmapn
Post- Boctoml FFerlewabip and M OUSR gram 80-0212,

consistent in database terminology. The languuges us;:d for
semantic specification are logical languages. Thus, the
database is cunsistent if and only if it satisfies certain sen-

- tences in the language. An examplc of such a languige is
- the language of functional dependencies [C2].

Traditionally, Lhe logic used for semantic
specification languages was first-order logic. The reason for
that is probably the fact that this is the logic that most
rescarchers a.ud practitioners were familiar with, Receatly,

| however. researchers in the area of semantic specilication

realized that there docs not seem to be a straightforward -

- way of specifying semantics of databases with fncomplete

informdtion by means of firsi-order logic [Ho).

The situation is as follows. In principle, there is a
c&m:eptual dawbase with complete information, called
weak instance in dalabasc lerminology, (Hat completely
describes reality. The semantics of this idealized database

" is given in first-order logic. In praciice, however, we very
 often do nol have all the information needed to describe

reality. That is. the actual dawbase does not contain
enough information to uniquely dotermine the conceptual
databasc. llow we do know whether our partial descrip-
tion of reality is semantically mcaningful? The intwitive
answer is that it is semantcally mcaninglul if it can be
completed o a full description of rcality. This is the
justification for the definition in [Ho] that an actnal data-
buse. which miy have incomplete information, is consisient
if it con be completed to a consistent datibuse with com-
plete information,




While this definition was readily adopled by
researchers and (riggered numerous investigations of its
implications (e.g., [GMV, Sa, MUV). its logical aspects
were not yet investigated.

A logic consists of three cssential components: a
language, a class of structures and a satisfaction relationship
between structures and sentences in the language. The
notion of structure in database theory is well undersiood:
databases are essentially finite relational structures. What
we are interested here is in the language and satisfaction
relationship components. Specifically. we try o answer the
two following questions: .

(1)  What is the complexity of (esting consistency?
(2) What is the language required o axiomatize con-

sistency? .

More formaily, we are given a set T of first-order sen-
tences that the conceptual database (with complete infor-

mation) is supposed to satisfied. Let CONS(Z) be the
class of acwal dJatabase (with incomplete information) that
can be completed o satisfy . We try to find out what is

the complexily of recognizing databascs in CONS(Z) and
whether we can axiomatize it, that is. construct a set
(preferably finite) ' of sentences in some language such
that CONS(Z) is exactly the class of actual databases that
salisfy ='. We are interested here in the case where the

conceptual database is required lo satisfy first-order sen-

tences of a special form. the so called data dependencies
[BVL. Fa2]. This class of sentences is considered to be
appropriate (0 semantic specification of databases with
complete information. '

Qur first finding is that there exists a set T of eid's
such that CONS(2) is not recursive! We are hence forced
to resurict ourselves 1o the subclass of foal {or full) depen-
dencies [BV1. Fa2]. In this cuse we show that CONS(Z)
is in PTIME. The degree of the polynuomial can, however,
be arbitrarily high!

With this in mind we tumn to the issie of axioma-
tizability. By using classic model-theoretic techniques, we

show that consistency is axiomatizable by first-order logic
and even by dependencics, but is not finitely axiomatizable
by first-order logic. The fact that consistency can be tested
in polynomial time. and the strong connection between
polynomial time computation and fixpoint logic shown in
[Im.Var2], suggest that fixpoint logic might be the right
logie to axiomatize consistency. - indeed, the deepest result
in the paper is that consistency is finitely axiomatizable by
fixpoint logic. _

We discuss some “philosophical™ aspects of our
work in the concluding part of the paper.

2. Basic Delinitions

2.1. Tuples, Relations, and Databases

Auributes are symbols Laken from a given finite set
U called the universe. We use the letters 4.8,C,- - 1o
denote attributes and X.Y,- -+ 0 denote sets of autri-
butes. Sets of attributes are also called relation schemes for
reasons to become clear shortlv. As a convention, we do
not distinguish between the attribuic 4 and the set {4},
and we denote the union of X and Y by XY.

With each attribute A4 is associated an infinite set
called its domain, denoted DOM(A). The domain of a set
X of auribuwes is DOM(X )= LEJDOM(A ). An X-walueis .

Acx

a mapping w:X —DOM(X). such that w(A)EDOM(A)
for all A€X. A tuple is an X-value for some X. A rela-
tion on a relation scheme X is a finite set of X -values. We
use a,b,.c, -+ to denote elements of the domains,
s.2,-++ o dencte tuples. and /.J.-+- 1o denote rela-
tions. : '
A database scheme is a sequence R=(Ry....,R;)
k
of relation schemes such that U=|_JR,. We will occa-
’ il

sionally consider ¢/ as a database scheme. meaning (U).
A sequence I=(/..... {y) of relations on R, ..., R,,
cocrespondingly, is called a daicbese on R. Lot
I=,..... L) and J=(/, ....J) be dalabases on R.

We say that | is contained in J, denoted ICY, if InCln




-

form=1....k.

For an X-value w and a set YCX we denote the
restriction of w to Y by w(Y]. We do not distinguish

between w[4} which is an A-value, and w(A), which is

an element of DOM(A). Let / be a relation on X. Then
its projection on Y. denoted /{Y), is a relation on Y,
I[Y)={w[Y):w€EI}. Let R be a database scheme. We

‘associate with R a projection map 1y, defined as follows.
Let / be a relation on U. Then (/) is the sequence
(Z[R\}....I[R.D. which is a daabase on R. The set of :
all auribute values in a relation / is VAL(/)= Hxl[A].

and the sct of values in a dawbase. [ is

A
VALM)=JVAL(l)). The database 1 is nonempty i
1=l

VAL()= 3.

2.2. Dependencies

A waluation is a  partial mapping

a: DOM(U)=DOM(U) such that for all A€V and
a€DOM(A) we have a(a)EDOM(A). We say that a is a
valuation on a tuple w (resp.. relation /, database 1) if it is -
defined on ¥AL(w) (resp.. VAL(I), VAL()). Leta bea
valuation on a tuple w, then a(w) is the tuple aow (i.c.a

composed ‘with w). Valuations ‘are defined on relations
and databases in the nawral way, ie., they are defined on
relations (uple-wise, and they are defined on databases
relation-wise.

For any given application only a subclass of all pos-
sible databases is of interest. This subcluss is defined by

semantic constraints that are to be satisfied by the dawa-
bases of interest. A family of constraints that was exten-

sively studied in the literature is the family of dependea-
cles

A twple generating drpendency (abbr. 1gd) says that if '
some luples. sausfying certain equalities exist in the data-

base. then some other Luples (possibly with some unknown
valucs). must ulso exist in the dutabase. Formally, 4 @d

on a Jdimabase scheme R is a pair <L.J> of nonempty data- ¢

bascs on R. 1t is satisfied by a database K on R if for

every valuation a on 1. such that a(l)CK, there exist a
valuation 8 on | and J that agrees with @ on VAL(1) such
thut ANICK. f VALWUICVAL() then <1J> is a total 1gd
(abbr. tgd).

An equality generating dependency (abbr. egd) says
that if some uples, sausfying certain equalities exist in the
database, then some values in these tuples must be equal.
Formally. an egd on a datibase scheme R is a pair
<l.ay=ay> where | is a database and {a;.a,}CVAL()). It
is satisfied by a database K on R if for every valualion a
on | such that a(l)GCK we have ala)=ala). A func-
tional dependency (abbr. fd) is a statement X—>Y. It is
satisfied by a relation / on U if for every two tuples u and
vin [, if u[X])=v[X] then u[Y]=v[Y] It is equivalent-to
an egdon U.

We will use the term dependencies or embedded
dependencies (o refer 10 the class 1gd's and cgd’s, and we
will use the term sotal 1o refer w thé class of ugd's and
egd's. We note that dependencics are equivalent to first-
order seniences of a special syntax [Fa2],

2.3. Satisfaction and Consistency

If we are given a database scheme R and a set Z of
dependencies on R, then it is quite obvious how to define
the class of semantically meaningful databascs on R. [t is
just the collection

SAT(R.D)={1:1 is a databuse on R that satisfies T}.

However, a basic idea in database theory is that of
universal relation imtertace [MUV]. According to this
approach. conceptually the database is a single relation on
U, and consequently the scmantic specification has to be
given as a sc1 of dependencies on U. In practice, how-
ever. information is oflen given to us not as tuples on U
but in smaller units. wplcs on subsets of I/, and some
informmtion may even be missing. The database scheme
R={R...... R} describes the actual database, and its
relatons reflects parts of the bigger corceptual database.




Such a dawabase on R is semantically meaningful if indced

it reflects a meuningful conceptual relation on U

This lead Honeyman [Ho] to the [ollowing

definition!. Let = be a set of dependencies on U, and let
1=(I, ....1:) be a database. on a dalabase scheme
R=(Ry, ....Rg). We say that | is consistent with respect

to Z. if there exists a relation / on U. such that
1ESAT(U.Z) and ICme(l). [ is called a weuk instance
for I. Note that 1 does not reflect exactly the breakdown

of the information in lw smaller units of information, but .

rather it reflects a subset of that information, since /; can
be a proper subset pf I[R,]. We denote the set of du’m-
bases on R that are consistent with respect to Z by
CONS(R,2). .

We now define a condition on database schemes
that will play an imponant role when it comes (o axioma-
tizability of consisicncy. A set Z of depenidencies over U
is said 0 be m-bounded with respect 1o u database scheme

R. for some natural number m, if for every database 1 on
R, we have that | is in CONS(R.Z) if and only if for all
|VAL(J)|<m, we have that J is in |
CONS(R.X). We say that £ is bounded with respect 1o R .

JC1 with
if it is m-bounded with respect to R for some m.

3. Complexity

Several researchers investigated the complexity of
testing satisfaction and consistency [BV2,GMV.MSY.,Y].

What they Lried to do is to find the complexity of the set

KU L.2>: I€SAT(U,Z)} and the sel
{<R.I.Z>:1ECONS(R.Z)}. In this coniext several lower
bounds were shown. We find these lower bounds some-
what misleading. In a specific application the databuse

administrator hus a specific universe Uy, a specific database

scheme Rg and a specific set 2o of dependencies that
describe the semantics of the application. Thus. he has no
interest in the comnlexity of the above mentioned sets, but
rather he is intcresied in the complexity of the seis

! We use the gencralization in [GMV] of the original ideas

in {110} .

SAT(UyZ) and the set CONS(R,. Z,). Thus, what seems
to be of interest in general is the complexity of the sets
SAT(U.Z) and CONS(R.X) for fixed U, R, and 2 In
the terms of [Var)] we are imercsted here the the data
complexity rather then the expression complexity or the
combined complexity. ’

Let us considef first satisfaction.
Lemma 1. [Cha] Let R be a databuse scheme and-let T be

a finite set of dependencies on U. Then SAT(R.Z) is in
LOGSPACE. =

Unlike satisfaction, the complexily of consistency
depends on the kind of dependencies we have in 2.

Theorem 1.

(1) Let R be a database scheme, and let T be a finite
set of .embedded dependcncies on U. Then
CONS(R.Z) is recursively enumerable.

(2) There ‘exist-a universe U and a finite set £ of
* embedded de_pendcnci: on U such that
CONS(U.Z) is not recursive.

(3) The set of pairs (R.X), where = is a finite set of
embedded dependencies on U and CONS(R,Y) is
recursive, is not recyrsive.

fdea of Prool.

()  Given a databasc on R, we just have 0 enumerate
all relations on U and check whether any of them is
a weak instance for the database.

(2) First, by reduction from the word problem for finite
sentigroups {Gu]. we construct a universe U and a
finite set I of dependencies on U such that the set
{o:0isan egd and X logically implics 6} is not
recursive. Then, we shaw thit this sct is Turing-

" reducible to CONS(U.Z). The reduction involves
exponentially (in the length of the given egd) many
lests for consistency.

(3)  The claim follows from a general characterizition of
undecidable properties of sets of dependencies in
[Varl) ®




Theorem 1 strengthens the results in [GM V] that the set

{<R.L.2>: Z is a set of cmbedded dependencies and

IECONS(R.Z)}.

is not recursive. Both results indicate very strongly that
the weak instance approach is not practical when embed-
ded dependencies are necessary to specify the semantics of
the application. When all dependencies in Z are total, the
situation is radically different. '

Theorem 2.

(1) Let R be a database scheme, and fet I be a finite
set of total dependencies on U. Then CONS(R.Z)
is in PTIME.

(2) There is a universe U and a finite set T of total

dependencies on U such that CONS(U.Z) is

logspace _complete in PTIME.

(3) ~ For every natural number &, there exist a universe
U, and finite set I, of total dependencies on Uy,
such that CONS(Uy.Z;) can not be accepted in
DTIME(n*).

Idea of Proof.

(1) 1n [GMV. Ho] there is an algorithm to test for con-

sistency. Given a database, the algorithm tries o |
It either succeeds,
demonstrating consistency, or it fails, proving that

construct a weak instance.

there does not exists a weak instance. The complex-
ity of the algorithm is O(a’), where n is the size of
the dutabase and / is the size of R and Z.

(2) Hardness for PTIME is proven by reduction from
the path system problem of [JL}.

(3) By a generic reduction from deterministic polyno-
mial lime Turing machines. @

Theorem 2 strengthens the result in [GMYV] that the set

{<RLX>: Z is a sct of 1otal dependencies and

IECONS(R.2)}.

is logspace complete in EXPTIME. [t shows that testing
consistency of | with respect (0 Z is polynomial in the size
of I and cxponential in the size of Z.

It is interesting to note in connection with Theorem
2, that if T consisis of fd's. then CONS(R. Z) can be
accepted in time O(alogn) and linear space, by computing
the closure of some congruence refation as in [DST}

Let us now consider hounded sets of dependencies.
Intuitively, it scems that it should be easier lo test con-
sistency with respect to bounded sets than for general ones.

Theorem 3. Let R be a database scheme, and let Z be a
sel of dcpendencies on U, such that Z is bounded’ with
respect o R. Then CONS(R, Z) is in LOGSPACE.

Idea of Proof. Assume that Z is m-bounded with respect
to R. To check that IECONS(R.2) it suffices o check
that JECONS(R.Z) for all JCI such that | VAL(J)| <m.

It is easy to verify that checking each J requires space log-
arithmic in the sizeof |. 8@ ‘

4. Axiomatizability

A subject of great interest in mathematical logic is
tKat of axiomatizability. Given a cluss § of structures, the
logician trics to axiomatize it by defining a logic A, which
consists of a language L and a satisfaction relationship
between structures and sentences in L. $ is axiomatizable
by A if there exists a set £ of sentences of A. such that a
structure Af is in & it and only if M satisfics all sentences .
in Z. Il T is finite, then Q is finitely axiomatizable by A
This notion of axiomatizability cpables us 10 clussify the
expressive power of logics according (o the clusses of struc-
Lures that they can axiomatize or finitely axiomatize.

"We first try to axiomatize consistency by first-order
logic. We liave o bear in mind. however, that every class
of datubases is axiomatizable by first-order logic. This fol-
lows from the tuct that every ditabasc can be described,
up to iscmorphism, by a single fist-order sentence. The



axioms for the class are the ncgations of the descriptions of
all dawbases not in the class. In fact. one cun show that

every class of databases is even axiomatizable in a proper
subset of first-order logic. This subset which we call
universal-existential logic, is the set of all first-order sen-
tences whose prefix consists of a string of universal
quantifiers followed by a string of existential quantifiers.
Thus. axiomatizability results for first-order logic are not
interesting, unless they Wik about tinite axiomatizability or
about a propér subset of universal-existential logic.

The proof of next theorem uses disjunctive equality-
generating dependencies. A disjunctive equality-generaling
dependency (abbr. degd) on a dutabase scheme R is a pair

<1.8, where 1 is a finite database und § is a sequence of

equalities a=bhy, ...,0 =b with
{ay ... .5 }JQVAL(D. It is satisfied by a database K on
R if for every valuation a on | such that a()CK we have
that cither a{ay)=alby), or ... or ala;)=a(b;). Observe

unit length. oo

‘Theoren 4. Let R be a database schem.e. andlet T bea

set of dependencies on /. Then CONS(R,Z) is axioma-
tizable by egd's. '

Ildea of Prool. The proof goes in three steps. First, using
the method of diagrams [CK] we show that COVS(R,Z) is
axiomatizable by degd's. That is, there exists a set ' of
degd's on R such that CONS(R.Z)=SAT(R.Z). Now,
using the fact that I is a set of dependencics. which are
Hom sentences. we show that CONS (R, X) is closed under
direct products. Finally, using the last fact. we prove by
McKinsey's technique [McKi] that we can assume without

loss of generality that all the degd's in X' are actually

egds. ®

The above resull is interesting theoretically, but does
not really have practical significance because the sct of
egd’s promised by the theorom can be non-recursive!
What we would like to have is finite axiomatizability by

first-order logic. because then we would be able o apply
Lemma 1. and get logarithinic space complexity. Now,

Theorem 3 gives us a case where consistency can be tested
in logarithmic space. nunely, when the given set of dcpen-
dencics is bounded with respect 0 the database scheme.
Can it be that Theorem 3 is just a corollary of Lemma 1?
The answer is posilive.

Theorem 5. Let R be a dutabase scheme. and let T be a

" set of dependencics on U. Then CONS(R.Z) is finitely

axiomatizable by egd's if and only if T is bounded with
respect to R |

ldea of Proof. 1f CONS(R.Z) is finilely axiomatizable by
cgd’s. then CONS(R.Z)=SAT(R.Z") for some finite set
z of egd's. Let

- m=max{k:<l.a;=a,>€Z and | VAL(1)| =k}. Then 2

is m-bounded with respect to R. Conversely, if X is m-
bounded with respect to R, then CONS(R.X) is axiomatiz-

aple by egd's <l.a)=a;> with | YAL(l)|=m. ®m

Theorem 5 leaves open the possibility that con-

-~ sistency is finitcly axiomatizable by first-order logic though
that an egd is a degd where the sequence of equalities iSof o by egd's. However, since first-order satisfaction can be
' | tested in logarithmic space. finite axiomatizability of con-

 sistency by first-order logic will entail. by Theorem 2, that

PTIME=LOGSPACE! This suggests the following result.

Theorem 6 There is a universe U, a finite set T of total
dependencies on U, and a database scheme R, such that
CONS(R.Z) is not finitcly axiomatizable by frst-order

jlognc.

Idea of Proof. Let U={A4.B,C}. R={AB,AC}, and
Z={A—C.B—C}. We now show by an ultruproduct

~ argument® [CK] that CONS(R.Z) is not finitely axiomatiz-

able by first-order logic. m

In view of the last iwo thcorems, we would like to
be able to tell. given a database scheme R and a set of
dependencies . whether 2 is bounded with respect to R.
Unfortunately, there is no eflective test for boundedness.

Theorem 7. Tac following set of pairs ({/.2), where 2 is
a finite set of dependencies on U and X is bounded with

2 Thus we have to g0 1o infiniw staucturcs in order to prove
a cluin abou linile Mtruciures.




respect to U, is not recursive.

Idea of Proof. The claim follows from a general characier-
ization of undecidable properies of sets of dependencies in
[Varl). = '

We do not know whether boundedness is decidable when
we restrict ourselves to total dependencies. We believe
that if we restrict ourselves to funclional dependencies,
then it is decidable. _

Since we can not finitely axiomatize consistency by
first-order logic. we try to do it by higher-order logics.
Studying the definiion of consisiency we observe that
essentially it consists of existentially quantifying over - ‘nik
instances, which are relations over a possibly extended
domain. The logic of such definition is called in
mathematical logic many-soried projective logic [Fe}. [tis a
very powerful logic, whose satisfaction relationship is not
necessarily recursive (by Theorem 1; see also [Ha)). One
can try 1o bound the size of the extended domain in order
to make the satisfaction relationship recursive [MZ], but
Theorem 1 implies that when'the given dependencies are
embedded this can not be done.

Let us now consider the case that the given depen-
dencies are total. As we shall see in this consistency can
be finitely axiomatized by the fixpoint logic of [AU,CH].

Lev P be a new n-ary relation name. and let
L(R.P) be the language obuained by adding P o L(R).
The fixpoint sentences of L(R) are of the form LFP(g).
where @ is a first-order formula of L(R.P) with free vari-
ables x. .. ..X,, where P occurs positively. Let M be a
structure of L(R) with domain D. Let Q be the minimal
n-ary relution on the domain of M, such that the sen-
tenoes V) oo X (P(xy . o0 o X0 )=0P) is satisfied in the
structure (A7.Q) of the language L(R.P). The relation @
is the least fixpoint of ¢ in the structure M. We now
define the satisfaction relationship: M satisfies LFP () if
¢€=D". The fullowing facts hold for fixpoint logic.

(1) Any class of databases that is finitely axiomatizable
in fixpoint logic is in PTIME [CH).

(2) There is a class of databases that is finitely axioma-
tizable in fixpoint logic and is logsp_nce complete in
PTIMEC [Var2].

(3) Let @ be a class of databases that include a linear
order relation. such that @ is in PTIME. Then Qs
finitely axiomatizuble by fixpoint logic [Im,Var2]
(The linear order scems 10 be essential in order to
simulate Turing machines.)

There are two reasons (o suspect that consistency
with respect 10 total dependencies can be finitely axioma-
tized by fixpoint logic. The first reason is, in view of the
aforementioncd facts. that consistency with respect to total
dependencies can be iested in polynomial time. The
second reason is that from the algorithm for testing con-
sistency of [GMYV,Ho] it follows that conmsistency with
respect to (otal dependencies can be axiomatized by
fixpoint logic over exiénded domains. Both observation
show that with some “extra™ tool. either a linear order or
an exiended domain. we can finitely axiomatized con-

. sistency by fixpoint logic. The question is whether we can

. do it without the “extra™ wol. The answer is positive.

: Theorem 8. Let R be a datubase scheme, and let X be a
finite set of total dependencies on U, then CONS(R.X) is -

fnitely axiomatizable by-fixpoint logic.

idea of Proof. It turns out that the extended domain is not
essential. The information conveyed by the new elements
can be captured by relations over the old elements. These
relations can be defined by fixpoint logic. The construc-
tion. however. is very involved. The length of the fixpoint
sentence needed to axiomatize CONS(R, Z) is exponential
in the lcngth of Z! m

" 5. Philosophical Remrks

Another use of logical languages in relational data-

~ base mauagement syslem is as query languages. The result

of applying a formula of the language to a database is the
set of all wples that satistv the formuta. An example of
such a language w the refational caleulus [C3]. The logic

used for query languages was ulso wraditionally lisst-order




logic. However. in the Iaét few years, it was realized that
first-order logic does not have a sufficient expressive power
as a query language. This_was realized first by Aho and

Ullman [AU), -who observed hat transitive closure is not -

first-order definable (this fact was originally proven in
[FalD. Following that obscrvation, several works investi-
gated higher-order logics for query languages, e.g.. [CH,
MZ, Var2]

One can also object to the exclusive use of first-

order logic in database theory on an “ideological” basis.
The reason for the prominence of first-order logic in
mathematical logic is that first-order logic is mathemati-
cally tractable and has very rich proof and model theories‘.
eg.. we have completeness and compactaess theorems.
However, mathematical logic usually deals with general
structures. either finite or infinite. In database theory, one
usually wishes to consider only finite structures. Under
this restriction many of the nice properties of first-order
logic evaporate. In particular, we do not have complete-
ness and compactness. Thus, there is no a priori reason o
prefer first-order logic to other logics, and one should base

his preference on practical considerations, such as ease of .

use and computational complexity.

First-order logic has the advantage of almost being a

“lingua franca”. It is'a logic with which many practition-

ers are familiar. unlike the more esoteric higher-order lcg-
ics. On the other hand, if one takes polynomial Lime as a
yardstick for computational tractability, then there is evi-

dence that fixpoint logic is the ratural logic for finite struc-

wres [Im. Varl Our resulis strengthen this evidence by
showing that fixpoint logic ruther tun first-order logic is
the adequate logic lo specify semantics of databascs with
incomplzic information. We believe that [ixpoint logic
should be given far more attention than it has been given

in the past.
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ABSTRACT

Functijonal dependency has bounded structures(exponential size) in the size
of schema.Many well done results have been obtained. egwality generating depen-
dency (EGD) as extension of FD has arbitraryly large structure for given database
schema. Jsolating the proper subset of EGD each of which is equivalent to a set of
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sufficient conditjon for the equivalence of a EGD and a set of FD will be found,
and a polynomial algorithm for testing such condition is given. Finally, the
equivalence condition for simple EGD will be shown to be equivalent to 3 acycli-
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1. Notation and conecept

Attributes are symbols taken from a given finite set U called universe. Sets of attributes are

called relation schem'e.

With each attribute ‘A is associated a infinite set called its domain,denoted as dom(A). We

assume that different attribute A has disjoint dom(A).An Y-value is a mapping ¥ — (U DOM(A)
ASY

such that m (A )€dom (A) for all ACY . A tuple is an Y-value for some Y.A relation on a relation

scheme UJ is a finite set of U-value.

A eqsal:;ty generating dependency on a relation scheme R is a pair o=< T ,8 =b >,where
tableau T is a set of variable tuples ( or simply tuple), and & and b are two variabies from the
tuples in T'. The EGD is typed if no variable appears in more than one column of T and @ and
b come from the same column of T'. Notice that FD is a EGD with T containing two tuples.A
homomorphism h from tableau .Tl to tableau T'; is a mapping from s;ymbols in T to symbols in

T, such that if v is a symbol of A column in T',then h(v) is also a symbol of A column in T

Chase of a set of dependencies D on tableau T is a repeating process of finding a homomor-

phism from tableau I” of some d€D to T, make the tra.nsfomiation specified by d on T (either




add a tuple or equate two symbols) until no change can Ee made.Fc;r a set of dependencies D and
a EGD 0=« T,a =} >,testing if D =c can be done by chasing D on T and seeing if « ;;nd b
are ever equated during the chase, D |=¢ iff a an.d b are equated (see [1]).

Let =< T={tt5...t4 },2;=23> be typed EGD on universe U, where z, and z, are sym-

bols of X column and X € U. We define

a(tit;)= |J {4 |A€U and[A]=¢[A)},

1i<5<h
we define <5,5;> to be a partition of T such that 51CT,8,CT,5(JSs=T and
ILx (S)NI1x (S2)=9
Let

FD¢s sp5(of={Y=X | Y= (J a(t,4)},
4E€S 1, €5,

define
FD (o)={FD <s,.s,>(¢’) | sl <5,,53>for o}.
Lemma 1: For any typed EGD o on U,0 |=FD (o).
Proof: since FD(o)={FD <sl,s’>(d) | all <8,,8 g>for ol,we only need to prove -
o [=FD (g, 5,5(0) for all <§,,5;>. by the construction of FD <8,59>(9),FD <5,,5,5(2) looks
like that in figure 1. Obviously,there exists a homomorphism h such that
h(t)=s," for all €S,

h(t")=62’ for all tjESg,

and

h(z)=y,,
h(z 2)=!2.

80 0 [=FD 5 5.5(0)]
We hz;ve proved that FD (o) is implied by o.next lemma shows that FD (o) is the only FD
imﬁlied byo.
Lemma 2: For any typed EGD @, if ¢ =W —A then FD (o) =W —A ,where WCU,A€U.

Proof:




' Case_ 1,A=X.
tableau form for W —A is shown in figure 2. since ¢ =W —A ,there exists a homomor-
phism h such that 4 (T )=T" and & (2,)=y1,h (3)=yothat is ,T can be partitioned into S, and
Sg such that
LES if A8 )=S{,
t;€Sq4f A (8 }=S3,
obviously,[ T (S1)NILx (52)=9,

where W 2 a(tt' rtj);
t'-ESI. JES’

but | J (% ,¢; Y X €FD (o),

"' ESl,tj ES’
so FD (o) =W—X.
Case 2, A #X,
Since h and o is typed, there exists no homomorphism h such that
h(z)=y,,

h (‘3)=,2n
because z; and z; are value of X, y, and y; are values of A, so oEW—A ,contradict,ioh.ao A

X can not be the case.-|

Corol]ary 8: for any typed EGD o, if o is equivalent to a set of FD F, then F' |= FD (o).

Proof: by lemma 2, we have FD (o) |=F. -Since F |=e, and by lemma 1, ¢ |=FD (o), so
F [=FD (o) therefore, F |=| FD (o).

2. Eéuiva.lence of a EGD and a set of FD

From corollary 3, we only need to consider the equivalence between ¢ and FD (o).
Lemma 4: For any typed EGD o on U, FD (o) =0 if there exists a chain t.-l,t,‘-a * - &, where ¢
is any tu;;le in T containing symbol z, t;, is any tuple in T containing Qymbol 23,4, €T, such

that either X €a (4, 4, ) or a(4,,4;, )2 W for some W, where W —X €FD (o), for 1<k <I.

Proof: let W; =X € FD (o) correspond to pair , and 4  such that a (b4 +x)2 W,-b(if

k+1 (4

Xéa(tya k,t ), we apply FD sequence W; SX W mX - W

—X to T, we always

-1




change the symbol of second tuple to that of first one. Finally, we will change z; to z,,therefore
FD(0) =0
In the next of the paper,we will say that the chain Ly t, 4 having the property in

lemma 4 js covered by FD (o). Now we give the ma.m theorem for equivalence condition.
Theorem § : For any typed EGD 0=< T ,2,==25,> on U,0 is equivalent to a set of FD iff there
exists a chain of T &, &, * * * & covered by FD (o).
Proof: if

by lemma 4, FD (o) |=o, by lemma 1, o0 |=FD (¢), so FD(¢) | o.

only if

if there is no such chain covered by FD (o), then z, and z; can never be equated during

the chase of T by FD (o), 3o FD (o) péa, by corollary 3, o is not equated to set of FD.

3. Algorithm for testing the equivalence.

The algorithm will test whether there exists a chain by tig " 4

, in T covered by

FD (a).Given a EGD o, the algorithm constructs a agree set graph G,~(V,E), where
V={t1,t‘3 o B LE={e;j | e is labled by a(; ;)55 }. L-et T,, be the set of all t.-E&'
such that & [X]=z, , let T, be the set of all #; €T such that ¢; [X]|=z,,the algorithm will test
whether deleting attributes in & (& ¢;) from G, makeé T,, and 7, disconnect. If so, (8,4;) will
be a candidate gqlge for the chain covered by FD (o), because a(¢;,8;)DFD Sy s’>(a), where §,
contains T, ,and S; contains T, ,and $; is disconnected from S; after deletingb attributes in
a(4,t;) form G, Having found all the candidate edges, a path of candidate edges and edges con-
taining X from 4 €T, to ¢; €T,  will be a chain covered by FD (o) (if it exmt.s)

Algorithm : Test whether FD (o) |=| o.

Input: A typed EGD o=< T ={t,,t3,... & },2;=22> on universe U.

Output: "yes” and a chain covered by FD (o) if FD (¢) | o; "no”, otherwise.

Method:

1. Construct a undirected graph G ,=(V ,E),where V={t,.t§ ),




E={e;; labled with a(t,4;) ]| ivéj}.

2. for each ¢;; EE ,do following : copy @, into G, ,deleting attributes in a(f;,¢;) from G . for
each 4 €T, , run DFS algorithm on the resulting graph to decide whether ¢ is connected to some
t;€T,,. If no such ¢; €T, exists, mark ¢;; as candidate in G,

3. Delete ¢;; in G, if a(%,t;) is neither marked candidate, nor X €a(4,¢;), call the resulting
graph G ; .Notice that when deleting ¢;; from G,, the attributes.in a (% ,t;) is not deleted from
other edge in G .

4. For each 4 €T, , run DFS on G . If some ¢; is connected to some {; €T,, by path & .4 .4 ,
return *yes” and the path , stop. otherwise, return "no * and stop. -

Theorem 6 : The algorithm is correct.

Proof: If FD (o) = o, from theorem 4, there exists a chain 4 ,¢; ... covered by FD (0). That is,

for each (t,-ht;‘ 4+ cither a(t;,, )2 W for some W—X€FD(o), or X €a(t, .8, ), where

-

t€T.,, 4€T,, W=FD (5 s,>(0) for some partition <§1,82> and T, cs,7,,C5, Obvi-

2,=

will be

U

ously, (if X¢a (t;,,t;-, 4)) » deleting @ (t;‘,t.-,ﬂ) will disconnect §, from S, so ¢;
marked as candidate, so 4 ,%,...5; is a path consisting of either cmdidgte edges or edges contain-
ing X, so the algorithm will réturn ”‘yes" and a chain that can be covered by FD (o')..

| If FD (o) jp4 o, from theorem 5, there is no chain covered by FD (q).Suppose that the algo-
rithm returns *yes”, thén the path returned by the algorithm will be a chain Qvered by FD (o),
contradiction, so the algorithm must return "no”. -

In general, there are 217l partitions <S,,52> ,80 a obvious algorithm for finding FD (o)
will be exponential time of |T|. If o is not reduced in the sense that the number of tuples in o is

not minimal, the algorithm will be very time-consuming.

4. P-acyclicity and equivalence property for simple, reduced EGD

A EGD o=<T,z,=z,> is simple if there is at most one kind of repeating symbol in each

column of T . formally, that is

a(&,t;)MN6 (e 4)Sa(t;,4) for all 4,4, 4 €T




A EGD a'=<T,.;rl=zg> is reduced if T contains minimal number of tuples, that is

,yemoving any tuple from T will result in an unequivalent EGD.

For reduced EGD o , we can assume that G, consists of one connected component including
both tuples containing z, and tuples containing z;. Now we define hypergraph for reduced EGD
o. Hypergraph H,=(N ,E) for EGD o=(T ,2 =z, is defined as

E={e;=|J a(ti t;) | 4€T},N=all attridutes in E,
er

.
that is, each hyperedge ¢; in E,ia a repeating attributes (the attributes having repeating value in
T) for tuple €T . Since ¢ is reduced , we assume that H, is one connected component.There is
one to one correspondence between H, and G,: each node ¢ and its outgoing edges in &G,
corregponds to hyperedge ¢;, the union of outgoing labels for ¢ is equal to ¢;; each edge ¢;; in
G, corresponds to ¢;(M)¢;. On the other hand, each node A in H, corresponds to attribute A in

the labels of G, and each edge ¢; in H, corresponds to a node & and its outgoing etiges. We
adopt standard notations oé subhypergraph, induced hypergraph, articulation set ,and acyclicity
for hypergraph H, frc'am [2]. .

Cori'eséonding notations should be easily defined for G ,there whenever a attribute is

removed from one edée, it is also removed from whole G,. In following theorem, the proof i's
based on G ,, since it is eagily related to éovered chain in G ,.

One important property of simple EGD is that each node A in H, {or label A in G, )
corresponds to exactlj' one repeating value in A column of T. Therefore no distinction needs to
be made between attribute and its repeating value in H, (or G, ). From thls ‘we have another
important property of simple EGD, edge transitivity, that is, in H,,

A Ee; Al and A €¢; (M ¢y implies AEe;(Me;.

orin G,

A Ec;; and A €ejp implics A Eey .
We will see that this transitivity property play a crucial rule in the proof of following theorem.

Let (N,E) be a hypergraph, and let F be a subset of E, let ¥ be the set of nodes that is the




union of the members of F. We- say thaf F is guarded if there is an edge f (called guard ) inF
such that for each edge ¢ of the hypergraph that is not in F, we have ¢ % €f - We say that F
is closed if for each edge ¢ of the hypergraph there is an edge f in F such that ¢ N &S . It fol-
lows easily that every guarded set of edges is closed.

We will use a-acyclicity, S-acyclicity defined in [3]. Especially, we will use the definition
that a reduced hypergraph is a-acyclicity iff every nontrivial, connected closed set of (full) edges
has an articulation set (see (3]), and we make use of definition that a hypergraph is S-acyclic iff
every subhypergraph of it is a-acyeclic.

Lemma 7 : Suppose o is typed, simple ,reduced EGD on U, and FD (¢) =0 and ¢,t;,...4; is a
chain covered by FD (o), then
a(;,t;)Ca(M,M+1) i<M <y, -
for any 1<i <j <I.
Proof: Since FD (o) |=6,th'ere is a shortest chain ¢,,¢,...4; that is covered by FD (¢) and since o is
reduced ,¢,¢5...4 are the only tuples in 0. We first note that X can appear in G, at most once,
' otherwise,by simplicity of o , we can get a shorter chain that is covered by FD (o) (dashed chain
in figure 3).
For any 1<M < [T| ,and for any 1<{ <M M+1<;<|T|:
1. ifi==1,y=l, ' -
if X¢a (M ,M+1) ,then ¢ (1,/)Ca (M ,M+1),0therwise,
if X€a (M ,M+1),then
if M=1,M+1=l then a(1,/)Ca(M ,M +1),0therwise,
if 1<M or M+1<! then for all 1<k <M or for M+1<}’ <-l ,from the case we
have proved, we have -
either a (1,/ )Ca (k ,k+1) (since X &A (k ,k +1)),
ora(l,l)Ca (¥ ¥ +1) (since X ¢A (¥ ,k* +1)).
But ¢ is simple, by the edge transitivity, we imve a(1,)Ca(M ,M+1).

2. ifil<iorj<l,



if X¢a (M, M-+1), suppose o (i,7)Ea (M, M+1)then a (i,5)-a (M ,M+1)%8, so remov-
ing attributes in @ (M,M+1) will not disconnect ¢ and ¢;, but since ¢,,25...5f is covered by
FD (o), there must be some k <i (or k > ;) such that a (k,k+1)Ca (M ,M +1). Since o is simple,
that s, '

a(f1,52)M8 (F354) 28 (¢1,54)

s0 & (k,E+1)=a (k k+1)\e (M ,M+1)Ca(k,M+1) , that is, e (k k+1)Ca(k,M+1).
Since M>k+1 (if k <i), we have a shorter chain £1,9...5 furs1.tj-& that is covered by
FD (o) (see figure 4), contradiction to that the original one is shortest, so a (1,5 )C a-(M ,M +1) for
i<M<j. |
if X€a (M, M+1),then
if M={,M+1=j then ¢ (i,7)Ca(M,M+1),
“if § <M or M+1<j, then from the case we have proved, for all s <k <M or all
M+1<F <, |
cither a (¢,5)C a (k ,k +1) (since X ¢a (k ,k +1)),
ora(i,j)Ca (¥ & +1) (since X ¢a (K, & +1)).
Since o is simple ,by edge transitivity, we have a (1,5 )éa (M,M+1)
Another way to state this theorem is that if ¢,,¢5...4; is a chain éovered by FD (), deleting
attributes in a (1,4 +1) (1<+¢ <!),including those c;)ntaining X, will disconnect 7, and 7,,.
Lemma 8 : let C be a guarded set of edges of a hypergraph, an articulation set for C is an arti-
culation set for the entire hypergraph. |
Proof : see lemma 6.1 in [4].-
Lemma 9: Suppose EGD ¢ is S-acyclic and ¢ is simple, if S;(M|S; is an articulation set of & such
that deleting attributes in S; (M S; produces connected components C,Cs...Cy, let C1,C3...G)
be C),C3...C; with the deleted attributes added back, then the subhypergraph C; conta;ining S;

and subhypergraph C; containing S; both are guarded set of o.

Proof: let node(H) be all the attributes in hypergraph H.Obviously,o== y Cy . since C; and
1<T<h




(o] are symmetric, we only brove for O’,-’. .
For any edge S, €H ,~C; ,let S,€C; , | £, for any attributes A €S, :

case 1: if A Enode (C;’), since node occuring in only one edge does not appear in the graph,
so by simélicity of o , A wil] connect C and C/ ,50 AES; ()$; otherwise C; and C; will keep
connected after deleting S; nS, , 80 A€S;.

case 2: if A ¢node (C/ ), then A ¢S5, Mynode (C; J.
In all case,S, Mynode (C/" )T S;
Lemma 10: Suppose o is typed EGD and I, and H, are subhypergraph of H,. let H,T'H,
denote tbz';t Hg is guarded set of H,then for subhypergraphs C,,C; and Cs of H, with
C12 C32 Cs (hyperedge containment), if C\I'C; and Col'Cy, then C,I'Cs. |
Proof : Let ¢s€C's be the guarded edge of Cs with respect to (g let ¢,€C; be the guard of (5
with respect to Cy, for an.y e.IEO' 1, we have

e1Mnode (Co)C e Mnode (Ca)Mnode (Cs)_C_e,ﬂnoJe (Cs)Ces

80 ¢ J‘C;—I ' '

In_the following, we will use G, instead of H,, and al the notations of hypergraph and
lemmas about hypergraph are applica,.l)le' to G,. |
Theorem 11 : Suppose o is reduced, simple EGD,then FD (0) =0 iff o is S-acyclic.
Proof : | ‘

only if

If FD (o) =0, there exists ;; chain £,,¢5...4 covered by FD (o). Since o is reduced,t,,t5...4;
are the only tuples in o. Suppose there exists a S-cycle C in hypergraph of o, C has at least one
edge (2,4 41) on chain ¢,,t5- - - § (see figure 5). From lemma 7, a(v,7)SA (k,k+1), for any
t; and¢; that lay at opposite side of (& ,8, 1), all such pairs will be disconnected after removing
attributes in a (k,k +1),80 C is not fB-cycle, contradiction.So no S-cycle 1n hypergraph of o, ¢ is
Bacyclic.

if

Since o is simple and reduced, the hypergraph of o is exactly one component containing




both ¢, and &,

If FD (o) |==a, and since o is simple and reduced, from the prbof of lemma 7, o has exactly
one tuple t,, containing z, and one tuple ¢, . containing zo. So if & contains more than one &, or
more than one ¢, , we can imme_dia.te]y conclude that FD (o) p£o, therefore, we only prove for the
case that ¢ contains exactly one ¢, and t,,. For any articulation set ¢;;:

If removing e;;- does not disconnect t.; from t,'va,then work on the subhypergraph obtained
by adding back the deleted attributes to the component containing ¢, and ¢, g

If removing ¢;; disconnects &, and ¢, g work on the 2 subhypergraphs containing ¢; and
t; ,respectively, mark e;;

From lemma 9 and lemma 1(, each proper subhypergraph we work on is guarded set of o.
Furthermore, since o is S-acyclic and eﬁch guarded set is closed set ,and guarded set we are work-

ing on is connected, so it is also a-acyclic.From lemma 8, any its articulation set is also that of

whole hypergraph of .o ,we @ch_for ai'ticulation set in the subhypergraph, hut treat this articu-
lation set as that of o, and classify it as above with respect to whole hypergrg.ph. Iherefo.re, by
working on some subhypergraph,we should really means working on *most recent subhypergrabh”
contained in "global subhyi)efgraph” suggested as above. .

This is a recursive decomposition, each time ,we work on proper subhypergraph of provious
one.(also a subhypergraph of o) . Since o has only finite number of edges, finally we will end up
with the situation that the subhypergraph to be decomposited is single node for G, (or single
hyperedge for H, ) edge, in this case, our decomposition ends.

Since; all the marked edges form connection between subhypergraphs in the decomposition
hierarchy,all these'edges are connected and since at any level of decomposition, t; . and ¢, o re in

same or different ”local subhypergraph”,so t, and ¢, . will be connected by these marked edges,

then any path from f, to &, in these connected articulation sets is covered by FD (o). so

FD(0) =01,
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1. Introductioq.

Independence has been studied by many researchérs in database theory. As
_mentioxied by Beeri et. al. [BBG], independence meets the aesthetic principle of
‘separation’ or ‘one thing in one place.” The research fresented here constitutes
an attack on the desirability of independence within the context of weak instance

theory.

In all the contexts in which independence has beeﬂ studied, it has the ‘follow-
ing essential description: Some set of ‘local’ properties is sufficient to guarantee
some set of ‘global’ properties. Within weak instance theory, it takes the follow-
ing form: A database state within which ea:ch relation satisfies the dependencies
local to it has a 'weak instance, i.e., is consistent. This problem does not arise in
practice. In practice one does not encounter states about which only this local
satisfaction property is known. One encounters instead the following problem:
Given a state which is known to be consistent and a suggested modification to

* that state, should the modification be allowed; that is, will the modified state b;a

consistent? We call this the maintenance problem.
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As mentioned in [GY], very fast solutions to the maintenance problem are
needed in practice. We assume that states are large and modifications are fre-
quent. In such an environment, reading the entire state is not a viable solution to
the maintenance problem. Thus ‘very fast’ must mean sublinear. One of our key
results .is that all su‘t;linear solutions to the maintenance problem are constant
time solutions. In otiler words, a very fast maintenance algorithm runs in time
independent of the size of the database state. (This depends on our model of

* computation.)

Within weak instance theory, independence has been studied by Sagiv [S1]
[S2], Graham and Yannakakis [GY] and Honeyman and Sciore [HS]. These
authors restricted themselves to the case that the universal dependencies are a set
of functional dependencies plus the joiﬁ dependency for the scheme. In this case,
independent schemes have a constant time maintenance algorithm.! It is not hard
to see ‘that there are schemes having a' constant tiine maintenance algorithm
which are not independent. The classic ‘City, Address, Zip’ problem is a' case in
point. The design algorithm of Biskup et. al. [BDB] 'pro_duces the scheme {CAZ,
ZC} (recall the fd’s are CA —+Z, Z —C). This scheme is not independent, but it

is constant time maintainable. (For example, to insert a tuple <z,c> into ZC,

retrieve any tuple of the form (c ' ,a ,z> in CAZ and verify ¢! =c.)

| We give below a characterization of constant time maintainable schemes in
the general case, i.e., without restricting the set of universal dependenciés. (We
consider only typed dependencies here, primarily for notational com.renience.) A
key result is that the set of consistent states of such a scheme is axiomatized by a
set of embedded functional dependencies only. (Were we to relax the restriction

to typed dependencies, these would become binary egd’s.) We then turn to the

1 This does not hold in general. It does not hold if the local egd’s are not binary.
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case of fd’s plus a single jd. We discuss a recognition algorithm and the mainte-

nance algorithm.

Brosda and Vossen [BV] address concerns quite similar to ours. They use
the modified foreign key constraint first introduced by Sagiv [S1]. They present a
techniq;le for verifying inserﬁs in constant time. Their method of handling deletes,
however, takes linear time in our model. For us, deletes are free and we do not

take their constraint._

As shown by Sagiv [S3] and Atzeni and Chan [AC], schemes independent
with respect to a set of fd’s and a single.jd are algebraic, that is, the canonical
queries [GM] or projections of representative instances can be expressed in the
relational algebra. Although we have yet to complete this phase of the research,
it would seem that the same property holds for schemes constant time maintain-
able with respect to such a set of dependencies and indeed, by the same tech-

niques. (This will not hold in the general case, by results of Sagiv.)

It seems then that the two concrete advantages of independent schemes are
also advantages of constant time maintainable ones. Independent schemes are left
with only the aesthetic advantage of separation. This is intuitively unsatisfyiﬁg.

Aesthetics should translate into practice.

(However, we must be honest. The recognition algorithm given below is
exponential time. A lower bound is not known. Independence may- reassert itself
here, but at least one of the authors thinks it will not. Should the recognition

problem prove intractable, that would be a concrete, but rather odd, justification

of independence viz @ viz constant time maintainability.)




2. Definitions and notation

. In the interest of time and space, we will assume the reader to be familiar
with the concepts of relational theory. In particular, we assume familiarity with
the notions tagged and untagged tableauz, functional and join .dcpendencz;cs, tuple
and equality generating, single and multirelational dependencies, homomor'phisms,
satisfaction, closure of a sel of attribules, embedded fd’s, local salisfaction. We
denote by SAT(D) the set of all states, of the scheme in which the (possibly mul-
tirelational) dependencies of D are written, which satisfy D. We also assume the
reader to be familiar with the basic concepts of weak instance theory. We denote
by CONS(R,D) the set of states of the scheme R which are consistent with (have
a weak instance satisfying) D . Here D is universal for R, that is, is a set of sin-

gle relation dependencies over the underlying universe |_JR.

Note that consistency is in its essence an existential, second order notion.
We ask “Does there exist a weak instance for the state!” On the other hand,
satisfaction is a first order notion. We ask “Is the state a model of D "’ The two

ideas are connected by the following réult, due to Graham and Vardi:
Fact.[GV] For every R,D there exists a set of equality generating dependen-

cies ¥ such that

CONS (R,D )=SAT ()

of cburse the dependencies in ¥ are multirelational and their tableaux all use the
scheme R; whereas, the dependencies in D are all universal for R. One should
note that ¥ is not necessarily recursive. By the same token, neither is
CONS (R,D ) [GMVI].

Now let T be a tableau or state.2 For {z,y }C T we define

2 The terms “tableau’” and “state’ are synonymous in this paper.




.-
v(z,y)={c | z[A]=c=y|A] for some A}

v(z)=Jv(zw)

y€T
yF#sx

In short, v(z ) is the set of symbols or values of z which repeat. The function v

can be extended further in a natural way so that we have

v(T)= v(z)

z€T

So, v(T) is the set of repeating symbols of T. We also define a function a
which returns attributes ~ of values. For any set of values V,
a(V)={A | V"dom (A )7#0}. We consider only disjoint- attribute domains
(the typed case) so a is well defined. The notation a(z,y) abbreviates
a (v(z,y)). Similarly for-a(z), a(T). Wé often need to consider values, rather
than attributes, as we will consider tableaux which ‘are not simple, that is, in
which more than one repeating symbol _may appear in a given coluﬁm. So v gives

us more information than a does.

3. Extensions and extensibility.
Let T={tq, . .., t, } be a tableau. An eztension of tyin T is a sequence

<u 0 - Y ) where uy=t, and u; ET. Duplicates are allowed in an extension.

We associate with an extension as defined above, a sequence of sets of attri-
butes <Yo, ce e, Yp> whose definition depends on a set of universal dependencies

D. We set Yo=a(t,) and for 0<s <p

Ye=(Ufs (4 8)NY; | 7 <IN AR ()




where we define
1) for any tuple ¢, R(t) is the relation or tag of &
2) X denotes the closure of X under the fd’s implied by D .

The notion of an extension is a geheralization of the notion of extension join

defined by Honeyman [H].

Given an extension E =<u O - Uy ), we define the set

v(E)= {wl4] | A€T:)

Fix, for the remainder of ‘this paper, a scheme R and a set of unirelational
dependencies D, which is universal for R. Let T be a tableau over R and let
t€T. We say ¢ is extendible in T if there exists an extension of ¢ in T, E such
that v(E)2v(T). The inclusion may be improper as v(£) may contain non-
repeating symbols of T. We say T is everywhere estendible if each t€T is
extendible. | | |

4. Model of Computation

We assume the database to be stored on an associative memory which

responds to requests of the form

(v.2)

where R is a reia‘tion scheme (in R) and ¥ is a boolean combination of .equality
formula A =a where A €ER and a €dom (A ). The memory responds by return-
ing, if it exists, some tuple of R making ¥ true, where this is defined in the
natural way. The request is said to succeed in this case. Otherwise it is said to
. Jasl. We charge unit time for each request. We do this to discard from considera-

tion the problems of data structuring. As we are interested primarily in lower

bounds, these will carry over to the more realistic case.




5. The maintenance problem

Let £ be the set of egd’s such that SAT (£)=CONS (R,D ) (where R, D
were fixed earlier). Let (T,z =y )GE, t€T. The maintenance problem

<t ,< T T =y ),R,D) is the decision problem which has as its set of instances

{(u ) | u an R(t) tuple, pECONS(R,D )}

A “yes’ instance of <t ,(T-,:c =y ),R,D) is defined by: for every homomorphism
h:T —p| J{u}, if h(¢t)=u then h(z)=h(y).

Suppose an algorithm A solves the (t,(T,:c =y >,R,D> problem. For any
instance (u ,p) of this problem define # A(<u ,p)) to be the number of requests
made by A on the instance (u ,p). We say A solves (t ,(T,z =y >,R,D> in con-

stant time if there exists an integer k£ such that

k>4 A((u ,p)) for all (u ,p}

Theorem 1. There exists ‘a constant | time algorithm solving
(t ,(T Z =y ),R,D) if and only if ¢ is extendible in T.

For the proof of theorem 1 to work, it is necessary to make, without loss of
generality, an assumption oﬁ the elements of £ having the effect that v (T ) is not
unnecessarily large. The assumption will also ensure that £ is nonredundant.

‘.The «T,z =y >,R,D> and (R,D) maintenance problems can be deﬁnéd in
the obvious way. We have as an immediate corollary of theorem 1:

Corollary. The «T T =j >,R,D> maintenance problem can be solved in con-

stant time if and only if T is everywhere extendible.

Less immediately, we also have
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Theorem 2. The (R,D) maintenance problem can be solved in constant
time if and only if every element of ¥ is everywhere extendible.

For theorem 2 we need to show that the condition of the theorem implies
that ¥ is finite. We show tha.t; the tableaux in X are simple.

The everywhere extendibility of a tableau T depends only on the set of
embedded functional dependencies. We can shew that, if T is everywhere exten-
dible, the egd <.T T =y >€2 is implied by the embedded fd’s. Therefore we have

the following result, which gives us the subtitle of this paper.
Theorem 3. The <R,D> problem has a constant time solution onmly if
CONS (R,D }=CONS (R,F) for a set of embedded, functional dependencies, F .
From inspection of the proof of theorem 1 we also have ‘

Theorem 4. If the (R,D} problem has no constant time solution, it has no

sublinear solution.

6. The case of fd’s and a single jd.

We now consider the case that D is of the form F | )R where F is a set of
functional dependencies. We say that F | J¥R is constant time maintaimible, or
ctm, if the maintenance problem (R,F U)KR) has a constant time solution.

Theorem 5. _Let G be the set of functional dependenc;ies implied by
F UBKR. If FIJ)KR is ctm, then R embeds a cover of G and
CONS (R,F | J%R)=CONS (R,G ).

Note that theorem 2 of [GY] is a corollary of this result. We now give a brief
discussion of an algorithm for determining if F U)KR is ctm and another for
solving the (R,F U)KR) maintenance problem, if it is.

We borrow from the work of [GY]. The algorithm given there determines

that F | J%R is not independent by finding a non-trivial, multirelational egd in
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. We check this egd to see if its tableau is everywhere extendible. If it is, the
algorithm must look for other violations of independence. We must be able to

decide when the algorithm has seen enough.

Bo_rrowing and modifying the ‘notation of [GY], we construct a set of
tableaux T={T§(4) | RER,A €| R, ¢ an integer} with the following pro-
perty. For any state p of R, for any ¢t Ep(R ), if E is a non-trivial extension of ¢
in p with A€a(E), there is an element T§(4)EYT and a homomorphism
h:T4 (A )—E. Further, if we assume E is not unnecessarily long, then 4 is onto.
(The tableau E is the set of tuples in the sequence E.) We can show | T | to be
bounded by an exponential in ||[F| J¥R|| as each Tj(A) corresponds to a
derivation of R —A. (In fact, T need not be explicitly formed, so that the algo-
rithm does not require exponential space. It remains to be seen whether it can be
made to run in polynomial time.) Pairs of elements of T of the form. T(4),
T4(A), i5£5 form, in the manner of the proof of theorem 4 of [GY], the egd’s
we check for everywhere exten-dibility. (This is assuming A¢R. If AER, ‘each
‘TE(A) is an egd.) We call this set of egd’s &' . (Include the embedded fd’s in
L’ ) If the elements of £’ are everywhere extendible, then we can show
SAT (' )=SAT (X)=CONS (R,F|_J*R).

First thot_lgh, we show how to solve the (R,F U)KR) problem when
FJXR is ctm. Given an instance (u.p) of (R,F | JXR), check that p| J{u} is
locally satisfying and then extend u maximally in p- At tlﬁs writing, this process
requires having an embedded cover H of G where H;=G* | R,, a cover which
is hard to obtain. There is some hope that this problem can be made to disap-
pear. This algorithm requires no more than | H | requests and the algorithm
accepts <u ,p> if the extension reveals no contradiction. If that occurs, we can

show pU{u}GSAT(E’ ); that is, the extension of no tuple of p produces a con-

tradiction in p|_J{u}.
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To show SAT (X' )=CONS(R,F|_J%R), we follow the proof of theorem 5
of [GY]. We expand any element of SAT (¥’ ) to a join consistent state. The key

is to show that each step of the expansion preserves membership in SAT (X ).

The join of the final state is a weak instance for the original state, as in [GY].
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1. Introduction

The database literature contains many examples of actions on abstract data types which
can be correctly implemented with nonserializable schedules of reads and writes. We mention

one such example here.

Example 1. Consider transactions T, and T, each of which adds a new tuple to a rela
tion in a relational database, Assume the tuples added have different keys. A tuple add is pro-
cessed by first allocating and filling in a slot in the relation’s tuple file, and then adding the key
and slot number to a separate index. Assume that T}’s slot updating (S;) and index insertion
(I;) steps can each be implemented by a single page read followed by a single page write (writ-

ten RT;, WT; for the tuple file, and RI;, WI; for the index).

Here is an interleaved execution of T and T,:

RT\WT\RT,;WT,RI,WI,RI, WI,.
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This is a serial execution of S| S; I, I;,. Now I, and I, clearly commute, since they are inser-
tions of different keys to the index. Furthermore, I; cannot possibly conflict with S5, since
they deal with entirely different data structures. So the intermediate level sequence of steps is
equivalent to the sequence S, I; S, I, which is a serial execution of T, T;. We have demon-
strated serializability of the original execution in layers, appealing to the meaning (semantics)
of the intermediate level steps (S; and I;). But note that the sequence we gave may be a non-
serializable execution of T, T, in terms of reads and writes, since the order of accesses to the
tuple file and the index are opposite. If the same pages are used by both transactions, it will be
a non-serializable execution. It is instruct.ive also to observe that the sequence RT, RT, WT,
WT, ... is not serializable even by layers. It does not correctly implement the intermediate
operations S, and Sg.‘

A similar observation, which has received less attention, applies to recovery from action

failure. The following example is an illustration of this interesting phenomenon.

Example 2. Consider T, and T, as defined above, but suppose that the index insertion
steps I; and I, each require reading and possibly writing several pages (as they might, for
example, in a B-tree). We now write RIj(p), WI,(p) for reading and writing index page p.

Consider the following interleaved execution of T, and T,:
RT\WT\RT,WT,RI,(p)RIy(q) WI{q) WIy(r) WI(p)RI\(p) WI,(p)

The pair of index page writes WI,(q) WI,(r) may be interpreted as a page split. This is serializ-
able by layers, since at the level of the slot and index operations we are executing the sequence
Sy 8 I I,, as in Example 1. But we encounter the following difficulty if we subsequently
decide to abort Ty: The index insertion /; has seen and used page p, which was written by T,
in its index insertion step. If we attempt to reproduce the page structure which preceded the
page operations of \Tg, we will lose the index insertion for T;. Worse yet, if T continues trying
to operate on the index based on what it has seen of p, the structural integrity of the index

could be violated. Thus it appears that we cannot reverse the page operations of T, without

first aborting 7). But there is still a way to reverse the index insertion of T, just by deleting
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the key inserted by T,. Consider the following sequence:
S$18, 1,1, D,

The illustrated schedule is clearly correct, as long as the keys inserted by T, and T, are distinct,
because we do not care whether the original page structure has been restored. We only need to

restore the absence of the key in the index.

In this u-rork, we present generalisations of serializability and atomicity which account for
many such examples. The generalization arises from the observation that a transaction (or
atomic action) is frequently a transformation on absiract states which is implemented by a
sequence of actions on concrete states. The usual definition of serializability requires equality of
concrete states. We call this concrete sertalizabdity, to distinguish it from equality of abstract
states, which we call abstract serializabdily. Since many different concrete states in an imple-
mentation may represent the same ai)stract state, abstract serializability is a less restrictive
correctness condition than concrete serializability. An immediate application of abstract serial-
izability is to explain the correctness of apparently nonserializable schedules such as those
described by Schwars and Spector in [8] and by Weihl in [10]. If results returned by actions are
considered part of the state, correctness conditions for read-only transactions, such as those

described by Garcia-Molina in [2], can also be expressed.

The generalization of atomicity is analogous. The usual definition of an atomic action
requires that it execute to completion or appear not to have happened at all. We introduce the
idea of abstract atomicily, which is analogous to abstract serializability: A schedule of actions is
abstractly atomic if it results in the same abstract state as some schedule in which only the
non-aborted actions have run. Concrete atomicity corresponds to the more usual definition: the
final state is the same as one that would have resulted from running only the concrete actions

which were called by non-aborted abstract actions.

A widely accepted folk theorem states that it is necessary to use knowledge of the seman-

tics of actions to achieve more concurrency than serialization allows. While we could address

the semantics of specific atomic actions case by case, this is a tedious process. Instead, we
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describe a systematic method of using easily obtained knowledge about their semantics. A basic
theorem of this paper, in a result related to the results of Beeri et. al. in [1], says that we can
serialize at the individual levels of abstraction. Between levels, we need only to insure that the
serialization order is preserved. Thus, in the above example, once the slot manipulation has
been completed, locks on the page may be released. It is not necessary to wait until T} is com-
plete. This has the effect of shortening transactions and thereby increasing concurrency and
throughput. The analogous result holds for atomicity: we show that, for schedules which are

serializable by layers, atomicity need only be enforced within each level of abstraction.

Another contribution is a much more realistic { but slightly more complicated) model than
the usual straight-line model of transactions (as presented, for example, by Papadimitriou in
[7]). The model presented here accounts for the flow of control in programs, such as “if-
then-else”” and ‘‘while’’ statements, without introducing nearly as much complexity as is
present in [1]. The most interesting result involving the model is that, while it affects the
classes of abstractly serializable and conclfetcly serializable schedules in potentially profound
ways, the class of CPSR schedules is essentially the same. This is because interchanges of
non-conflicting actions preserves the flow of control within an action as well as the resulting

state. It does not appear that any authors have previously addressed this issue.

The definitious of abstract and concrete serializability and atomicity do not suggest practi-
cal .implementations. It is widely accepted, however, that the largest claﬁs of serialisable
schedules which is recognizable in any practical sense is the class of conflict-preserving serialis-
able schedules. A similar situation may hold for atomicity. We define here a class of conflict-
based atomic schedules which can be executed efficiently. This is the class of restorable
schedules, in which no action is aborted before any action which depends on it. This class may
be viewed as dual to the class of recoverable schedules defined by Hadzilacos in [4]: A schedule
is recoverable if no action commits before any action which it depends on. In a restorable

schedule, aborts can be efficiently implemented by executing state-based undo actions for each

child action of an aborted action.
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Finally, this work addresses a problem mentioned but not specifically addressed by Beeri
et. al. in [1], which is the use of knowledge about abstract data types and state equivalence in
serialization. The ‘‘fronts” of [1], which must be computed from an actual history of the sys-
tem, can be determined in this context from information easily provided by a programmer:
namely, from the call structure of the system and a ‘‘may conflict prediqatae” which describes
which actions_may conflict (i.e., not commute) with each other. The use of knowledge about
abstractions and state equivalence permit description of legal interleavings in a simpler and
more direct manner than in [1] or in Lynch’s multi-level model in [6], where the set of legal

interleavings must be given directly.

Similarly, the semantic information used for recovery can be provided easily by the pro-
grammer. The undos must themselves be actions (which will have to be coded if they are not
“‘natural” actions for the abstraction). In each action, there must be a case statement which
specifies the undo action for each set of states. For example, if the forward action is **‘Add key
x to index I'’ then for the set of index states in which the index does not already contain x, the
undo is ‘“‘Delete key x from index I'’. For the set of index states in which the index already

contains x, the undo action is the identity action.

2. The Model

We first describe the model for a single level of abstraction. The essential difference
between this model and the straight-line model used by Papadimitriou in [7] is that the flow of
control is reflected in the model. The essential difference between this model and those in [1]
and [6] is that the construction of the set of legal interleavings is simple and visible in the
model. Some notation will be needed to describe the levels of abstraction.

Notation: Let §; be an abstract state space and let Sy be a concrete state space. Let A,

be a set of abstract actions and Ag be a set'of concrete actions. Let p:So—S; be a partial

function from concrete to abstract states. If p(¢t) = & for concrete state ¢ and abstract

state s, then ¢ represents o.

The intuition is that concrete states are used to represent abstract states and concrete actions




are used to implement abstract actions. Not every concrete state represents a valid abstract
state. Furthermore, the same abstract state may be represented by several different concrete
states. However, we do expect that every abstract state is represented by some concrete state,
that is, p(Sy) = S,.

Actions map states to states according to a meaning function. The meaning function for a
concrete [abstract] action is a function m : Ao—b2s°xs° [m : A,—b2s‘xs‘]. It is interpreted as fol-
lows: if (s,t) ¢ m(a) for an action a then when executed on state s, the action s can terminate
in state ¢. Actions are nondeterministic, that is, there may be more than one terminal state ¢
for a given initial state s.

Abstract actions are implemented by programs over concrete actions. These programs
generate sequences of concrete actions. For the sake of concreteness, we present one way of
generating these sequences here. However, we do not assume that any particular method of
generating the sequences is used. In proofs, we assume only that each program is associated
with a set of sequences of concrete actions, which is the set of sequences tﬂe program would
generate when running alone, and that new programs can be constructed from existing pro-
grams by concatenation. This operation amounts to running the first program to completion
and then initiating the second program. The reader should note that when two programs run
concurrently, one or both of them may generate a sequence of actions that would not be gen-

erated if they ran alone. Such sequences may be unacceptable.

A single concrete action is a program, and we will also regard any regular expression over
actions as a program. We borrow notation from dynamic logic (see Harel, [5]) for a concise
way to describe a program. If a and B are programs, new programs may be formed by concate-

nation (« ; A is a program); union (ay Aisa program); or closure (o’ is a program).
The meanings of these constructs are defined recursively as follows:

The meaning of a ; 8 is to execute first a and then S:

m(a;pB) = {(s,) (T u)((s,8) e m(a) and (s,t) e m(B))}
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programs, ignoring the order of concatenation.

. The meaning of a|J B is to execute either a or §:

m(ay f) = m(a)y m(8).

The meaning of a’ is to execute « sero or more times.
m(a®) = {(s0,8) KT 01,0, * - * ,00-1)(V1<i<)((81,8) € m(a))}.

Conditional execution of statements is modelled by actions which are identity on all states
on which they are defined. These actions are called predicate actions and can be described by
giving a predicate which is true for all states on which the predicate action is to be defined. For
example the action (z = 0)? is identity on all states in which the variable z is 0 and undefined
elsewhere. The statement ‘‘if z > 100 then z :=—z — 100 else z := 0’ is then modelled by
(p;a)yu (7;0), where p is the predicate action (z > 100)f, a is the action z :=2z - 100,
and b is the action z :=— 0.

Notation: For any subset C of 55 X S let

p(C) ={(e,t) |(3(z.9) € C )(p(2) =2 and p(y) =1)}

We say that an abstract action is implemented by a program of concrete actions if p maps
the meaning of the concrete program to the meaning of the ‘abstract action. We will also
require that if the program is initiated in a valid state then it must terminate in a valid state.

Definition: A concrete program a tmplements an abstract action a if and only if

(1) m(a) =p(m(a)) and
(2) for everyl pair (a,b) € m(a), if p(a) is defined then p(b) is also defined.
We now prove a technical lemma about implementations which will be useful in a subsequent

section.

Lemma 1. Let a and b be abstract actions implemented by concrete programs o and S,
respectively. Then m(a;b) =p(m(a;8)).

Proof: First we show that p(m(a;8))Cm(a;b). Let (s,t) € p(m(a;8)). Then there are




states ¢ and d with p(¢) =s and p(d) =t and (c,d) ¢ m(a;f). Thus there is a state b
with (¢,b) € m(a) and (5,d) ¢ m(8). Since a implements & and p(c) is defined, p(8) is
also defined. Therefore, (p(¢).p(8)) € p(m(a)) =m(a) and
(p(8),0(d)) € p(m(B)) =m(b). It follows from the definition of concatenation that
(8,8) =(p(c).p(d)) € m(a;b).

Now we show that m(a;b) C p(m(a;8)). Let (,£) € m(a;b). There is a state
weS, such that (s,u) ¢ m(a) and (u,t) e m(b). Since m(a) —p(m(a)) snd
m(b) =p(m(B)) there are states b,e¢,d e Sy such that p(c) =s, p(d) =¢, and
p(b) =u; (c,b) e m(a); and (b,d) e m(B). ‘Therefore (¢,d) ¢ m(a;f) and

(a,t) =(p(c),p(d)) € p(m(e;B)).

Corollary 1 to Lemma 1. Let a and b be abstract actions implemented by concrete pro-
grams a and #. Then the abstrax;t. action ¢ having m(¢) =m(a;d) can be implemented
by the concrete program 7y =a;f.

Proof: From Lemma 1, we have that m(c) =m(a;d) =p(m(a;B)) =p(m(7)). We
| need only show that if (s,t) ¢ m(q) and p(s) is defined, then p(t) is defined. But if
(s,t) ¢ m(~) then .(a,t) ¢ m(a;B) and therefore there is a 4 ¢ Sg such that.(#,u) e m(a)
and («,t) e m(B). Assume that p(s) is defined. Since o implements a, p(u) is defined.

Since g implements b, p(t) is defined.

Corollary 2 to Lemma 1. Let a,, - - * ,8, be abstract actions implemented by concrete
actions ay, * * * ,0,. Then the abstract action ¢ defined by ay; - - - ;8. can be implemented
by the program ay; - - - ;a,

Proof: The proof is by a simple induction on the number of actions n.
Induction Base: If there is only one action a,, the result is immmediate from the

definitions.

Induction Hypothesia: For all sets of abstract actions of size less than or equal to n—-1, the
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Induction Step: By the induction hypothesis, ay; ‘' -;a,_; is implemented by
ay; - - ;0e_1. Using Corollary 1 to Lemma 1, we conclude that
TURRRT MHY M THERST N8Y H 9

In keepix;g with the use of an initializing action in [7], we assume that the database has
been initialized to concrete state I in the domain of p (p(I) is the initial abstract state). It will
often be useful to restrict the meaning function to those pairs whose initial state is I.

Notationt: The restricted meaning function for program a is defined

mi(a)={(I,7) KI,7) ¢ m(a)}. The restricted meaning function for abstract action a is

defined m,(zy(a)={(p(1),0(3)) Ko (I),p(3)) ¢ m(a)}.

If  implements a then m,(y(a) =p(my(a)). Associated with each program is a set of possi-
ble computations of the program, one for each sequence of concrete actions which can be exe-
cuted to completion.

Definitiont: A computation of an abstract action a having program o is a sequence

m;( C) is nonempty.
A computation of a set a,, - - - ,a, of concurrent abstract actions is an interleaving of the con-
crete actions in computations for ay, * -  ,a, which can be run to completion.

Definition: A concurrent computation of the set a;, - - - ,a, of abstract actions is an inter-

leaving C of computations of the individual actions such that m;(C) is nonempty.
3. Serializable Computations

3.1. Serializability of Abstract Actions

The set of concurrent computations for a collection of actions will in general be hard to

characterize. It may be even harder to characterize the ones which are correct. We discuss a

relatively simple subset of these computations, those that behave, in some sense, like serial
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(non-interleaved) computations.
Definition: A (complete] log L is a set A, of abstract actions, a sequence Cp of concrete
actions, and a mapping \;:C—A such that Ay (c) is the abstract action & ¢ A; on whose
behalf ¢ is run. C}, is a prefix of some concurrent computation of A;. A partial log L is
a log in which Cj is a prefix of a concurrent computation of Ay .
Definitions are stated and results proved for complete logs unless otherwise stated. Usually,
the e:dension to partial logs is trivial.
Notation: We will write m(Cp) for m(e¢); - - - ;¢,) where Cp = {¢;, * - * ,c,} and we
assume that ¢; precedes ¢; for 1 < j.
We will write ¢ <; d when ¢ precedes d in the sequence Cj.

We consider serial computations to be correct.

Definition: Consider a log L containing abstract actions A; = {a,, - - *,e,} imple-
mented by programs {a,, - - * ,a,}. The log L is seral if Cy is a computation of the pro-
| gram ay,(y); * * * ;@x(s) fOr some permutation 7 of {1, - - - ,n}

We also consider a computation to be correct if it results in an abstract state that would result
from some serial log. The following definition allows the use of knowledge about abstractions
in determining the correctness of an interleaving'. Depending on the abstraction, this can be a
very different class of interleavings from those that would ordinarily be viewed as serializable.

. Definition: A log L is abstractly serializable if and only if there is a permutation n of

The next definition defines a class of serializable logs more closely related to the usual
class of serializable schedules.

Definition: A log L is concretely serializable if and only if there is a permutation = of

Definition: For both abstract and concrete serializability, the sequence x(1), * - - ,#(n) is
called the serialization orderof L.

A partial log L is serial (concretely serializable, abstractly serializable) if there is a complete
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serial (concretely serializable, abstractly serializable) log M such that Cy is a prefix of Cy.

Concrete serializability, which requires that concrete states be the same, is more restric-

tive than abstract serializability, which requires only that abstract states be the same.

Theorem 1: If the log L is concretely serializable then it is abstractly serializable.
Proof: Let Ay, ={a,, - -+ ,a,} and let a; implement a;. Since L is concrébely serializ-

able, there is a permutation 7 of {1, - - - ,n} such that

ml( CL) o ml(at(l); e ;al(l))
We define an abstract action b =a,(1); ' ;8x(s). By Corollary 2 to Lemma 1, b can be
implemented by the concrete program § =ay,(1); * * * ;@ (a)- In other words,

m(ae(r); - * * s8e(n) =m(b) =p(m(B)) =p(m(azq); - - - i@x(n)))-

This theorem can easily be extended to partial logs. For a partial log L which is concretely seri-
alizable, there is a concretely serializable complete log M such that Cj, is a prefix of Cyy. By
the above theorem, M is also abstractly serializable; hence L is abstractly serialisable.

Concrete serializability is not identical to SR as defined in [7] because of the non-
determinism and because it is necessary to check that the reordered collection of actions is a
computation. If abstract actions are implemented only by straight-line programs, as in [7], then
any serial schedule of the concrete actions in a concurrent computation is still a computation.
But this is not the case in our model. Consider abstract actions A, and Aj, where
A =((z €0)?;(y:=1)U ((z >0)f;(y :=2)) and A, = (z :=1). Suppose that in

the initial state z is 0. The sequence
(z:=1);(z £0)?; (y =1)

is not a computation, although any other interleaving of these concrete actions is. Thus we

~
\
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cannot interchange actions of a computation arbitrarily and expect the result to remain a com-
putation. A subsequent lemma gives one mechanism by which we can verify that a transforma-

tion of a computation is still a computation.

It should be noted that this model reduces to the model in [7] if the concrete actions are
deterministic reads and writes with the obvious meanings assigned to tixem and if all programs
are constructed by concatenation only. It was shown in [7] for these concrete actions that con-
crete serializability is NP-complete. Without more information about the semantics of the
actions, however, and about the abstraction function, we cannot say anything about the com-

plexity class of cither concrete or abstract serializability.

For this reason, neither abstract nor concrete serializability has significance as a definition
of a class of schedules which we can recognize. However, abstract serializability is a valuable
correctness condition for explaining the correctness of schedules such as the one in the opening
example. In a subsequent section, we generalize this use of abstract serializability to explain
the correctness of a large class of schedules, many of which are not concretely serializable. But
first, we translate another standard serializability result to the new model of program execution.

Definition: Actions ¢ and b commaute if m(a ; b) = m(b ; ¢). Otherwise, ¢ and b

conflict.

Definition: Let C and D be sequences of concrete actions. We say that C=<D if they

are identical except for interchanging the order of two nonconflicting concrete actions,

that is, actions ¢ and d such that m(c;d) = m(d;c). The transitive, reflexive closure of
=2 is denoted by ==+,
The following lemma provides the basic mechanism for establishing that a permuted computa-
tion is still a computation. We use it to verify that a serial (non-interleaved) sequence of con-
crete actions could actually have been requested by the given atomic actions, that is, it is a
semantically as well as syntactically valid sequence of actions.
Lemma 2: If L is a log and if D =+ C, and D is constructed from Cp by interchanging

nonconflicting operations ¢ and d such that A\(¢)$\(d), then there is a log M with
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Ay =A;, Cy =D and \yy =);. Furthermore, m(C) =m(Cy).
Proof: There are sequences of concrete actions 4 and § such that Cp =<y;e¢;d;6 and
D =~;d;e;5. Therefore
m(Cp) ={(s,¢) | (Su,v)((s,8) ¢ m(7) and (u,v) € m(c;d) and (v,t) e m(8)}.
Since m(c;d) =m(d;c) and XAy (c)7r(d), we have that

m(D) ={(a,t) | (Fu,v)((s,4) ¢ m(v) and (u,v) € m(d;e) and (v,t) ¢ m(6)}
=m(C).
Therefore D is a computation of A; (or prefix of a computation of A;) exactly when C;
is, and M is a log exactly when L is. Since we did not use the completeness of L, the

results hold for either complete or partial logs.

Definition: Logs L and M are equivalentif Ay = Ay, A\; = y,and Cp, =+ Cy. If L is

equivalent to M for a serial log M, then L is conflict-preserving serializable.

Theorem 2: If a log L is conflict-preserving serializable, then it is concretely serializable.
Proof: Let A, ={a,, " *,8,}. If L is conflict-preserving serializable then there is a
serial log M such that Ay, =A;, Cy ~# Cp, and Ay, =);. By asimple induction using

Lemma 2 to prove the induction step, m;(Cr) =m;(Cy).

Suppose that a; is implemented by «;. By the definition of a serial log, there is a
permutation 7 of {1, - - - ,n} such that Cy =aqg(1); " * * ;0(s)- Hence for this permuta-

tion

Therefore L is concretely serializable.

3.2. Layered Serializability

In this section, the definitions of serializability are extended to multiple levels of abstrac-

tion and the basic result on serializability is stated. We make two simplifying assumptions; how
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to weaken them will be discussed subsequently. The assumptions are:
(1) the levels of abstraction are totally ordered; and

(2) an action calls subactions belonging to the next lower level of abstraction only.

We assume a system with n levels of abstraction.
Notation: The concrete state at level 1 is S;_;. The abstract state is 5;. The abatraction
mapping at level ¢ is p;:S; —S;. The set of concrete actions is C;. The set of abstract

actions is A; ={a;,, - * ° a,-',,',}. The number of abstract actions at level ¢ is k;. Concrete

actions at level 1 are abstract actions at level +—=1. Thus C; = A;;l.
Given a collection A, of top-level actions, concurrent execution of the actions is described by a
collection of logs.
Definition: A complete system log L is a set of complete logs L,, : * - ,L, such that L; is a
complete log for level 1 and the concrete actions in the log L; are the same as the abstract
actions in the log L;_;. A partial system log L is a set of partial logs L,, - - - ,L, such that
L; is a partial log for level ¢ and the concrete actions in the log L; are a subset of the
abstract actions in the log L;_ ;. The top-level log for a system log L consists of the top-
level abstract actions (A, ), the bottom-level concrete actions (C,), and the mapping from
" concrete to abstract actions constructed by composing Aj, - * * ,\,.
Definition: The system log L is abstracly (concretely) serializable by layers if each L; is
abstractly (concretely) serializable and there is a serialization order on A; ; which is the
same as the total order on C;. We will denote this serialization order ;.
The following theorem justifies the practice of ‘‘serializing by layers’’, that is, providing seriali-
zation for the individual levels of abstraction and forgetting subaction conflicts (e.g., releasing
locks) as soon as the action at the next higher level is complete.
Theorem 3: If a system log L is abstractly serializable by layers then its top-level log is
abstractly serializable.

Proof: Assume first that L is complete. Then by the definition of abstract serializability

by layers, the following holds for each i:
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pimi(CL)) C m, (n(8ie1)i * " " 58ie ()

where #; gives the serialization order, and AL'_ =C’-.'+1 =iy (1) 7 30ix (k) It follows

by induction on the number of levels that

If L is partial, then we can extend the sequence of concrete actions to a computation

having the above properties. Thus the result also holds for partial logs.

Corollary 1 to Theorem 3: If a system log L is concretely serializable by layers, then its
top-level log is abstractly serializable.
Prooft By Theorem 1, the log is abstractly serializable by layers. It follows immediately

from Theorem 3 that the log described is abstractly serializable.

Definition: If a system log is serializable by layers and if each log L; is conflict-preserving

serializable, then the set of logs is called conﬂict-preaem&g serializable by layers (LCPSR).
Since all practical serialization methods recognize only subsets of the set of CPSR logs, the fol-
lowing two results are the interesting ones, from tte practical point of view.

Corollary 2 to Theorem 3: If a system log L is conflict-preserving serializable by layers

then its top-level log is abstractly serializable.

Proof: By Theorem 2, the system log is concretely serializable by layers. Hence it is

abstractly serializable by layers and the result follows from Theorem 3. .

Theorem 4: Membership in LCPSR can be tested in time O(c+a2) where c is the

number of concrete actions in the system log and a is the number of abstract actions in

the system log.

Proof: For each i, construct the conflict graph for level ¢ as described in [9]. The nodes

of this graph are the abstract actions in A, . There is an edge from node s to node & if

there are concrete actions ¢,d ¢ Cp_such that M) =a, M(d) =b, ¢ and d conflict, and

c<yd. This graph can be constructed in time proportional to the number of actions in
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Cp,- If the graph is acyclic, then level § is CPSR. Acyclicity can be tested in time propor-

tional to the square of the number of actions iin A,

It only remains to test whether there is a serialization order x; on level ¢ which is
consistent with the order <, . This can be tested at the time the edges are added to the
graph for level ¢: if there is an edge from @ to b then there is a serialization order con-
sistent with <, if and only if a <p..0

In practice, the only order that would be known for a system log would be the order on C,.
The order <y, is any topological sort of the order given by the conflict graph for-level -1,
Any topological sort is acceptable, because if there is no sequence of edges between a and b
then there is no conflict between any children of abstract actions ¢ and b in a computation of
{a,b}, so that A;'(a);A;}(b) ~# N['(b);M;}(s). Also, there can be no other conflicting
actions between any children of a a.nd‘ b. Therefore, a and & can be viewed as having exe-

cuted in either order.

3.3. Ordering the Layers

We are not usually given a linearly ordered collection of levels of abstraction in a system.
Instead we may have packages of actions. We expect that there will be pairs of actions within a
single package may conflict. Usually, actions in different packages will not conflict, but there
are exceptions. Consider a relational database which may be accessed by two packages: one of
the packages consists of relational operators, the other of matrix operators. We can imagine
relations which are entirely numerical which may be accessed by both packages. Thus opera-

tions may conflict between packages.
We describe, intuitively, how to determine a linear collection of levels. We require that

all actions in a single package are at the same level. Also, any two packages containing actions

which may potentially conflict must be at the same level. Finally, two packages must be at the

same level if they have members which recursively call each other.
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To compute a linear order which satisfies these conditions, draw a directed graph
representing the call structure of the system: if an action in package A calls an action in pack-
age B, then there is an edge from A to B. Add edges in both directions between packages
containing potentially conflicting actions. Collapse all cycles in this graph to a single node
(these cycles represent either conflict or mutual recursion or a combination), and label the new
node by the set of packages on the cycle. The resulting acyclic graph defines a partial order on
sets of packages. This partial order can be converted to a total order by picking an equivalence
relation on the node labels which is a congruence with respect to the partial order: that is, if
P, <P, in the partial order, then for every @,=P, and Q,=P,, @,<Q:.

Our second simplifying assumption was that an action only calls subactions which are at
the next lower level of abstraction. But in pricﬁce, actions may call subactions at the same
level or may skip several levels. In the former case, we may treat the calls to the saine level as
“invisible”, and use only calls to the next lower level of abstraction in serializing. (In fact, this
is the current practice: there are two levels, the top level and the read/write level. Only calls to
reads and writes are noticed by the serialization mechanism.) In the latter case, we may insert

subactions at each intervening level which do nothing but call the next lower level.

4, 'Rewvery from Action Failure

One method of enforcing serializability is to abort actions which violate serializability con-
straints, and every practical serialization technique sometimes uses aborts for this purpose.
Thus serialization contains the possibility of action failure and it is necessary to guarantee
correct recovery from failure to guarantee serializability. The converse is not true, and so we

initially consider failure atomicity without assuming serializability.

The rest of this paper discusses recovery from the failure of a single action by eliminating
its partial effects. Two methods of eliminating partial effects are in common use. One is to roll
the action back by undoing each change it has made. The other is to restore the system from a
checkpoint taken prior to initialization of the action, redoing each subsequent concrete action

other than those called by the aborted action. We develop the conditions which permit use of
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redos in section 4.1 and the conditions which permit use of wndos in section 4.2. In both sec-

tions, we assume a single level of abstraction.

In section 4.3, the results are extended to a multi-level system and a result analogous to
the result for layered serializability is stated. In a multi-level system, serializability is required
to establish that the required sequence of concrete actions in a level of abstraction was imple-

mented by the next lower level.

4.1, Aborting Actions

An abstract action is not inherently atomic, since it is implemented by a sequence of con-
crete actions. If it fails after execution of some of the concrete actions, then the effects of
those actions which have been completed must be eliminated. The process of eliminating any

partial effects of a failed abstract action will be referred to below as an abort of the action.

To abort an action correctly, it is necessary to change the cun;nt state to a state that
could have occurred if the action had not executed at all. Let LOGS be the set of all logs.
(Remember that a log L consists of a set A, of abstract actions, a sequence Gy of concrete
actions, and a mapping A\, :C—A.) We define an operator which chooses a concrete abort action
when it is given a log and abstract action to be aborted:

ABORT : LOGS XA—»( So—Sy)-

The abort must restore some state which could have occurred in executing the abstract actions
in A;-{a}.

Definition: An action generated by the ABORT operator is called an abort. An action is

said to be aborted if its last action is an abort.

A log which contains aborts should appear to be a log which contains all of the non-aborted
actions and none of the aborted actions. We call such a log abstractly atomic.

Definition: A complete log L is abstractly atomic if there is a complete log M having the

following properties:

(1) Ay = Ap-{a | a is aborted in L }and

(2) o(mi(CL)) € p(my(Cu))-
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Note that we have not required that the logs be serializable. Any computation will do accord-
ing to the above definition. Later, to achieve “‘layered atomicity’’, we will assume serializabil-
ity.
Definition: A complete log L containing a.bo;'t.ed actions is concretely atomic if it there is a
complete log M having the following properties:
(1) Ay = AL-{a|a is aborted in L };
(2) my(CL) Cmy(Cu).
We extend the definition of atomicity to partial logs in the obvious way.
Definitions A partial log L is abstractly (concretely) atomic if there is a complete
abstractly (concretely) atomic log M such that Ay =AL, Cy is a prefix of Cy, and A\, is
A restricted to C .

It follows immediately from the definitions that concrete atomicity implies abstract atomicity.

One way to implement abstract atomicity is to restore state I and rerun the actions in Ay.
The state I then serves as a checkpoint. However, an arbitrary choice of M in the above
definition may require re-running the abstract actions, not just the concrete actions. In an on-
line, high-volume transaction system, this is not a practical method. The programs for the
abstract actions may not even be available after they terminate. In such a system, we want
aborts to be simpler. For this reason we will require that the log M have a very simple rela-
tionship to the log L, in fact, that Cy is simply C; minus the children of aborted actions. In
this case, we can restore a final state for m;( C,-\;!'(a)) to implement atomicity.

Notation: As _long as it is clear what log is involved, we will write ABORT(s) for

ABORT(L,a).

Definition: Let L be a log in which action 8 has not been aborted. ABORT(s) is & sim-

ple abort of @ for L if m;(C, ; ABORT(a)) »% ¢ and

m;(Cy ; ABORT(a)) Cmy( G- 2i'(a)).

Clearly, a simple abort of action a in log L exists if and only if m;(C,-\1'(s)) is a prefix of

some computation of A;. The following definitions lead to a characterization of logs and
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actions for which simple aborts exist.

Notation: Given a log L and action ¢ ¢ Cy, let BEFORE(¢) be the partial log having

concrete actions Cpgropp(s) — {8 |b ¢ Cp and b < c}, abstract actions A;, and mapping

Xperore(c) Which is the restriction of A, to the set Cpgrorg(c)- Let

Carter(e) ={b | b ¢ Cp and ¢<yb). (Note that in general we cannot define a log

AFTER(¢).)

The following definition says that an abstract action b depends on an abstract action ¢ if it
has a concrete subaction which follows and conflicts with a concrete subaction of a¢. If an
action b depends on an action @, and if we restrict ourselves to simple aborts, then it may be
necessary to abort § when a is aborted.

Definition: An action b depends on an action @ in a log L if there is some d ¢ \;'(3)

and some ¢ € A !(a) such that d follows ¢ in the order of Cy, @ is not aborted in the log

BEFORE(d), and d and ¢ conflict.

Definition: An action @ of a log L is removable if no action depends on it. A log L is

restorable if every aborted action is removable.

Restorability may be viewed as a dual condition to recoverabdity, which requires that no action
be committed before any action which it depends on. Restorability says that no action is
aborted before any action which depends on it.

Definition: Let C be a sequence of actions ordered by < and let FCC. Fis final in Cif

forevery f ¢ F and ¢ ¢ C-F either ¢ < f or f and ¢ commute.

Note that the set A\;!(a) is final in Cp for any removable action a. It follows from this
that it is the terminal subsequence of some sequence D ==# Cj .

Lemma 3: If action a of log L is removable, then Cp—A;!(e) is a prefix of a computa-

tion of A;.

Proof: We will show by induction on the number of actions in any final set F of opers

tions of C, that C - F is a prefix of a com];utat.ion. The lemma then follows from the

fact that A;'(a) is final in Cp, for all removable actions a.
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Induction Base (F contains only 1 action): Let F ={c}. Then C, =~;¢;6 for some
sequences 4 and &, such that for every d ¢ §, m(¢;d) =m(d;c). Hence C, =* 7;8;¢c

and therefore Cp— {c} =1;6 is a prefix of a-cbmput.ation.

Induction Hypothesis: For every final set F in C, if |[F| < n, then C,- F is a prefix

of a computation of A; .

Induction Step: Suppose |[F|=n. Let F* =F—{c}, where ¢ is the first (or minimal)
element of F with respect to <. Then F'is final in C;, and by the induction hypothesis,
C,-F' is a prefix of a computation. Since ¢ does not conflict with any later action in
C.- F', we can use reasoning similar to the case n =1 to show that C;, - F' =~#* C,- F;e

and therefore C;— F is a prefix of a computation.

Since Cp-\i'(a) is a prefix of a compuﬁﬁon of A;—{a}, we can restore checkpoint /
and rerun all actions in C;—\;!(a) in the order given by <. In fact, the checkpoint can be
taken at any point before the initialization of e¢. Let ¢ be the first action of a. Let
d € {c}U Cpgrore(;)- Then there is a state ¢ such that (I,t) ¢ m(Cpgrors(s)) and

my( Carrer(a)- 2z '(8)) 7% . Any such state ¢ can be used as a checkpoint state.

Lemma 3 can be applied inductively to show that if no dependencies were formed on
abstract actions before they were aborted by a simple abort, then atomicity is guaranteed.

Theorem 5: If L is restorable and if every abort in L is simple, then L is atomic.

Proof: Let {a,, - - - ,a,} be the set of aborted actions. Construct the log M such that

Ay =A,—{ay, " ,8,), Cy =Cp-2;'({ay, " - *,64)), and Ay =X\, restricted to Cy.

Since L is restorable, every aborted action in L is removable. Using Lemma 3 induc-

tively, we see that C,—Az'({a1, - - - ,8,4)) is a prefix of a computation of Ay. This

verifies that M is a log.

Now we must verify that m;(C.) =m;(Cy). To do this, we observe that there

exist 7y, * * * ,7a41 Such that

CL, =71;ABORT(4,);712;ABORT(a5); - * * ;7;ABORT(8,);7a41-
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The meaning of C is given by

m(Cu) ={(1,t) |(I)((1,8) ¢ m(7;ABORT(a,))

But by the hypothesis of the theorem, every abort is simple, so that
mi(7;ABORT(a,,L)) C my(7-2;'(ey)).

and there:fore
m(CL) C m(CL—-Ai'(ay)).

Proceeding inductively, we see that m;(CL) C my(CrL-2;'({ay, - - - ,8.)) =my(Cu).

Theorem 5 suggests a general procedure for aborting actions. When an action ¢ is to be

aborted, abort the set of actions
D(a) ={b | b depends on a}U- {a}.

The abort is done by restoring any concrete state which existed prior to the first concrete action

in A7(D(a)) and then re-running the actions in Cp—-\;'(D(a)) from that point on.

4.2. Rolling Back Actions

' A potentially much faster implementation than checkpoint/restore would simply roll back
the concrete actions in the computation of an aborted action a. For this purpose, we define an
UNDO operator on concrete actions which chooses an inverse concrete action to perform the
roll back. The plan is to implement the ABORT operator on abstract actions as a sequence of
UNDO actions, one for each concrete action called by the abstract action, applied in reverse
order of execution of the concrete actions.

UNDO:C XSo—(So—S0)
This UNDO operator chooses a state-dependent ir;irerse action which will transform the current

state to the state in which the forward action was initiated. Thus we must define the UNDO so

that m(¢ ; UNDO(e,t) ={(¢,t)}. It follows from this definition that if ¢ is the last concrete

action in Cp aad (I,t) e m{C,-{c)) then m(C, ; UNDO(e¢,t)) ={(1,t)}. Furthermore, if
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(I,t) € m(CL-{c}) then m(Cy ; UNDO(¢,t)) =4. In other words, if the final action ¢ was
initiated in state ¢, then UNDO(¢,t) restores the state to ¢ and to nothing else.

Actually, to undo an action ¢, it is not actually necessary that ¢ be the last action of C,
only that ¢ is rot followed by any action which conflicts with UNDO(¢,t) for the state t in
which ¢ was initiated. This is stated in the following lemma.

Lemma 4: If the following conditions hold:

(1) e e Cp;
(2) (I,t) ¢ m(Crerore(e));
(3) no action of Cyrrer(c) conflicts with UNDO(¢,t); and
(4) UNDO(¢,t)€ Carter ()
then

my(Cr ; UNDO(c,t)) ={(1,%) |(¢t,u) ¢ m(Carmzz(e))}-

Proof: By the definitions of Cpgrorg(c) and Carrer(c), CL = Chrrore(c)i¢i Carrer(c)- By

the hypothesis of the Lemma, for every d ¢ Cyrrer(c),
m(d;UNDO(e,t)) =m(UNDO(¢,t);d)
- and
CL;UNDO(¢,t) =3+ Cpgrorg(c)i¢; UNDO(¢,t); Carrer c).
It follows that

m(Cy; UNDO(¢,t)) =m( Cagrorg(c);¢; UNDO(¢,t); Carren (c))

={(s,w) | (3u,v)((s,%) ¢ m(Crerorry())
and (¥,v) € m(c;UNDO(¢c,t)) and (v,w) ¢ m(CAmn(,))}

={(a,w) I(O,t) em(CBm,w(,)) and (t,w) € m(Cm(e))}
Therefore, m;(Cy; UNDO(¢,t)) ={(I,8) |(t,8) € m( Carrer(c)) }

The sequence of concrete actions called by an aborted abstract action @ in a complete log

L should be a prefix ¢ ;e of a computation ¢j; - -;¢ca of a followed by
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allow such sequences.

Definition: The concurrent computations of a set A of abstract actions include all inter-

(2) mi(C) # ¢;
(3) there is at most one UNDO action in C for each ¢ ¢ C;
(4) if there is an action UNDO(¢,t) for ¢ ¢ C then ¢ precedes UNDO(e¢,t) in C
and (1,t) € my( Cperore(c))-
(5) each concrete action is called by exactly one abstract action.
Deflnition: If an action a has called an UNDO then we say that a is aboried and is rolling
back. If it has called an UNDO for every forward action it called, then we say that a is
rolled back.
The definition of a iog is unchanged except for the expanded set of computations.

Definition: The rollback of action & depends on action b in a log L if there is a child ¢ of
¢ and a child d of b such that ¢ <; d; UNDO(c,t) & Cpgrons(s) and
UNDO(d,w) & Cperore(unpole.s)); and d conflicts with UNDO(e¢,t).

~ Definition: A log L is revokable if for each action a € A, the rollback of a does not
depend on any b € Ag.

Theorem 6: If a complete log L is revokable then it is atomic.
Proof: We show that if L is revokable then m;(Cy) C my(Cy) for the log M with

Ay =Ap-{a | a is rolled back in L Jand
Cu =Ci - {c | UNDO(c,t) € CL}—- {UNDO(e,t) |t € So}.

Since for a complete log L, Ay =A;—{a | a 15 aborted in L}, it follows that L is atomic.

The proof is by induction on the number k¥ of UNDOs in Cp.
Induction Base (k =1): Let ¢ be the action with UNDO(¢,t) e Cp and let X\ (¢) =a.
Because L is revokable, there is no action b such that the rollback of a dependson §. In

other words, for every concrete action d in Cy, if ¢ <; d <; UNDO(¢,t) then d com-
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mutes with UNDO(¢,t). This implies that
Cy, =2 * Cperorg();¢; UNDO( ¢,t); CarteR(c)
and therefore

m( Cp) =my( Cperorg(c); ¢;UNDO( ¢,t); Carrer(c))
C my( Cpgrore(c); CaFTER ()
=m;(Cy)-
Induction Hypothesis: If there are fewer than k¥ UNDOs in Cp, then my(Cp) C my(Cy)
for some log M with
Ay =Ap - {a | a tsadbortedin L}.
Cuy =Cp - {¢ |UNDO(c,t) ¢ C }- {UNDO(¢,t) |t e So}
Induction Step: Suppose there are k UNDOs in C,. Consider the first UNDO in the
order <;. Suppose that it is UNDO(e¢,t). Since it is the first, there is no UNDO(d,w)
such that ¢ <; UNDO(d,w) <; UNDO(e,t). Since L is revokable, UNDO(¢,t) com-
mutes with every action d such that ¢ <; d <; UNDO(¢,t). Therefore, using the same
reasoning as for the induction base, and applying the induction hypothesis,
m;(C.) C my( Corrors(c); CartER(c))
C my(Cy).
If the log L is partial, we can extend L to a complete log by adding UNDOs for every incom-
plete action to the end of the log. The order of the UNDOs should be the reverse of the order
of the forward actions. The new log is complete and revokable, therefore by Theorem 6 it is

atomic.

Theorem 6 suggests the following algorithm for aborting actions. If the rollback of an
action will not depend on any action in A, then executed a sequence of UNDOs in reverse
order of the forward actions. If the rollback will depend on some action, recursively abort the

action on which the rollback will depend. Of course, the cascaded aborts can be avoided. To

avoid them, it is necessary to block an abstract action if a rollback-dependency would develop.
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4.3. Layered Atomicity

In this section, we describe the correct abortment of actions in a multi-level system. As
in section 3.3, suppose that we have a system log L. = {L,, - ,L,}. To guarantee that the
sequence of concrete actions at level §+1 is implemented by the abstract actions at level ¢, we

must be able to say that there is an ordering on the non-aborted abstract actions in AL._ which is

the same as the ordering on these actions when they are viewed as concrete actions at level
i+1. But this requires that each level be both serializable and atomic. |
Definition: Let L be a complete log containing aborted actions. Let A,-{a |a i
aborted in L} ={a,, - - - 8,}. L is absiractly serializable and atomic if there is a permuta-

tion 7 of {1, - - - ,n}such that

This is similar, in combining the aspects of computational atomicity with failure atomicity, to
Weihl’s definition of atomicity [10]. As usual, concrete serializability and atomicity implies
abstract serializability and atomicity.

Definition: A system log L is abstractly serializable and atomsc by layers if each log L; is

Theorem 7: If a system log L is abstractly éerializable and atomic by layers then ita top-
level log is abstractly serializable and atomic.

Proof: The proof is by induction on the number n of levels.

Induction ase: If there is only one level, then the top-level log is identical to the log for
that level and is therefore abstractly serializable and atomic by the definition of layered

serializability and atomicity.

Induction Hypothesis: The top-level log is abstractly serializable and atomic if the system
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log is abstractly serializable and atomic by layers and there are fewer than n levels.
Induction Step: Suppose that the system log has n levels. By the definition of layered seri-
alizability and atomicity the level 1 log is abstractly serializable and atomic. Therefore

there is a log M such that Ay =A, - {a | a is aborted in L,} and

pi{m(Cp)) C pi(m(Cu))

=mpl([)(al,ll(l); e ;al,rl(kl))'
By the definition of layered serializability and atomicity Cp g =OLr, (15 ° " i8Le ()
Therefore
m, (1)(81e,(1)s " 3810 ,(a)) =m, (1(CL)

Applying the induction hypothesis to the system log M consisting of the logs Lg, - - - ,L,,

the top level log for M is abstractly serializable and atomic, that is,
p20 * - opa(m, (n(CL,)) C m, 0,40 - 0s(n(CN)

for some log N with Ay =A, - {a | a & aborted in L, }. It follows that

P20 "t Op'(mpl(l)( Cl'l) C "‘nO'eO PN 0’.(1)(CN)

for this same log N.

Corollary 1 to Theorem 7: If each level of a system log L is serializable and restorable,
then its top-level log is abstractly atomic.

Corollary 2 to Thearem 7: If each level of a system log L is serializable and revokable,

then its top-level log is abstractly atomic.

5. Conclusions and Further Work

In summary, we have shown that, with respect to both serializability and failure
atomicity, the correctness of atomic actions can be assured by guaranteeing their correct-
ness at each level of abstraction. The result for serializability alone follows from the

results presented by Beeri et. al. in [1]; but the relative simplicity of the proofs presented

“
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1. Introduction

P

The approach to formal data semantics which has come to be called "weak

" instance theory” b-egan with the work of Honyeman [H] as a means of integrating the
relations of a multirelation database for the purpose of checking constraints. It was
soon recognized, by Sagiv [S] and also by Yannakakis[Y], that the theory leads
naturally to an extremely powerful and concise query' language, called window
functions by some authors [MRW][MUV]and called canonical queries here. This

- paper analyzes the expressive power of these queries. We show that canonical
jqueries are expressible in first order logic it we allow infinitely many axioms. These

axioms are shown to be full multirelational implicational dependencies as defined by

Fagin [(F]. The bulk of the paper is concerned with characterizing the case when
canonical queries may be finitelv axiomatized in first order logic. This occurs

precisely when the query is expressible in the relational algebra.

Maier, Uliman and Vardi [MUV] have considered these questions as well. The

present work was done independently und differs from their work in the following

‘Nays.

Proposition 1 establishes the existence of representative instances even when
:he chase is not guaranteed to terminate. Ve consider i:he result of a non-
cerminating chase to be undefined. In the same spirit, compactness is not used in the
sroof of Lemma 1. Proposition §. although a simple observation, does not appearin

MUV ?

A new definition of boundedness appears in Theorems 1 and 2. In these
theorems we take up a problem ignored in [MUV]: the behaviour of canonical

jueries on inconsistent states. We do this for a technical reason: a relational

algebra expression is defined for every state, canonical queries only for consistent




ones. Theorems 1 and 2 present two different attacks on this problem. In Theorem 1,
we remove all equality generating dependencies in the manner suggested by Beeri
and Vardi [BV]. All states are then consistent and the results of canonical queries on
the subset of originally consistent states are preserved. In Theorem 2, we consider

queries which distinguish consistent and inconsistent states.

The proof of the "hard part” of these results (the implication 5=4 in Theorem
3
1) is made very easy by the presence of Lemma ; This lemma establishes a well

known piece of folklore as fact.

2. Definition and Notation
2.1 Basic Definitions

We begin with a finite set of attributes which we denote U and call the
universe. Following standard notation in the area, upper case letters near the front
of the alphabet: A. B. A;. A/, ... indicate single attributes. Those toward the end of
the alphabet: X.Y..... represent setsof attributes. The set {A/ isoften denoted A
+ 4 XUY iswritten XY . Toeach A¢l is associated an infinite domain dom(A).

distinet A; A; in U, domiAi). domi A:t are either identical or disjoint.

Let RcU. R isthen a relation scheme. A tuple for R isa function assigning

t..wach A€¢R avaluein domiA). The term row will be freely used for tuple in
et ~tain contexts. IF XZR. #/ X/ denotes the restriction of the function ¢ to the

attributes in X.

A relation instance [ for R isasetoftuples for R. The size of an instance /,

denoted [If. is the number of tuples it contains. We often restrict our attention to

'i:nite relations. If X'Z.l. the projection onto A of an instance [ of R, denoted




“nxtD={tX]|tel}). If R isacollection of relation schemesof U. then R isa
database schema for U. We do not in general insist that R cover U, i.e.. that

UR=U.

A state p of aschema R isan assignment to each R¢R of an instance for R.

The size of a state is the sum of the sizes of its instances:

'pi= N pilR)
ReR

We define an inclusion relation among states in a natural way. If p, » are states of
R, /-0 if HRICH(R) forevery ReR. If [ isaninstance and R aschema for U, we

define 1/g(l) tobe the state p of R-givenby wR)--1iptl) foreach Re¢R.

A tableau for a universe U is an instance for U over an extended set of
domuins. Foreach :\¢U, we form the tableau domain tdom(A) from dom(A) by
adding infinitely many variables. Elementsof U,¢;-dom(A) are called constants. If
dorm: \i)=dom(Aj). then tdom(A;) =tdomt A:,-). else the sets are disjoint. From now
on the term instance will denote a tableau without variables. A tagged tableau for U
is 1 "ableau over the set of attributes U'1J{Tayj where Tag is an attribute assumed
not " :bein U. Further, tdom(Tag) is disjoint from any attribute domainin U. The
va. ~in tdomiTag) will always be given a special interpretation, namely as

rei:: .n schemes. : .

——

Tableaux provide a uniform notation for the expression of data dependencies,

con; .active queries and database states.

A (unirelational)-data dependency for a universe U isa pair d = <T.x >

where T is atableau over U and x isone of the folldwing




if x is an equality assertion of the form a=b, then d is an equality
generating dependency or egd. (Itisconventional to assume the symbols
a. b appear in the tableau T'.)

if x isatableau then d isa tuple generating dependency, or tgd. If

every symbol appearing in the tableau x also appearsin the tableau T,
then d isa total or full dependency. In this case x may be assumed to
contain (or abusively, to be) a single tuple. Otherwise, if x contains

symbols notin T, then d is partial or embedded.

This definition of dependency is based on the work of Beeri and Vardi (BV].
The parallel to the implicational dependencies of Fagin [F] is immediate. The
quantifier "unirelational” in the above indicates that these dependencies can be
written in a first order language with a single predicate letter of .arity the cardinality
of U. e class of multi-relational dependencies can be captured-through the use of

tagged :ableaux, as follows.

N\ nulti-relativnal data dependency for a database schema R over a universe

[ T.x> is a data dependency for U in which T, and x if d isatgd, are
tagy  ibleaux. Two extra conditions are imposed: (i) the tagsof T and x are
relati: _schemes of R: iITqd TUx)CR: (ii) tuples may agree only as they are allowed
to by t:: :ir tags: #A/=u/B/ implies A¢t/Tag/ and Béu/Tag/. (Of course,

t/A]- . 3] is possible only if tdom(Aj=tdom(B).) Finally, a multi-relational tgd
d= <T.S >, isconsidered full if for each s¢S and each A¢s{Tag/. s{A/ appearsin

T.

It »-be astateofa schema R over universe [/. The tableauof p Ty, isa

taggea "ubleau over U defined as follows (this detinition gives T, only up to




isomorphic renaming of variables): Foreach R¢R, each t¢p(R), arow v of Ty has
v[R]=t. Foreach A¢U-R, v/A] isavariable appearing nowhere else in T,

Finally, v/Tag/=R and no other rows appearin Tp.

A query on a schema R with target list X, is a function from statesof R to

instances of X. A conjunctive query ¢ on aschema R with target list X is a full

multi-relational tgd on schema RU{X}. If q.= <T.x>, then T isatagged tableau
on R, x isasingle tuple and x/Tag/=X. To define the function described by a

conjunctive query, we introduce the idea of a homomorphism.

Define SymuT)=Upe(HA(T)) whgre T isatableau onuniverse U. A
homomorphism on 7' is any function with domain SvrmuT). If  isa homdmorphism -
on T, then Wg allow n to also “-==~-ent its extensin~ * ~ --:ud tableaux. That
is, n(t)=n t(the compositionof nand ¢, ., _-+1t¢T}. A homomorphism
preserves a aiet of symbols C ifit is the identityon C. A constant preserving
homomornpism preserves the set of constants (recall this is the set .U..\( erbm(A)). A
tag preser~ing homomorphismisa honiomorphism extended by the identity on

tdomt Ta- .

Tk iation between tableaux whick is central to this paper is that of

homomor .iic embeddabilitv. If T. S are tableauxon a universe U, then T is

homomor:nically embeddable into S if there exists a homomorphism n on T such
that n(T: 3. T and S are homomorphically equivalent if each may be embedded
into the other. For certain applications, we may require the homomorphism to
preserve some set of symbols. Ifeitherof T or S or both are tagged and 1 is non-
tag preserving we may write n(T)CS to mean (n( /T T))C(II(S)). In some

circumstances the set of all homomorphisms embedding T into S is of interest. as

in the foll,wing definition.




A tableau Ty satisfiesa dependency d= <T x> if for every homomorphism q.
embedding T into T

if x isthe equality assertion a=5, then n(a)=n(b);

if x is the tableau S, then n canbe extended to a homomorphism u on

Svm(SUT) (i.e. u restricted to Sym/T) is n) with w(S)cTo.

(For multirelational dependencies we may consider only tag preserving

homomorphisms.) A tableau satisfies a set of dependencies D if it satisfies each

dependency .1 D.

We can now describe conjunctive queries as functions. Let ¢=<T.{t/> bea
conjunctive query for a schema R and p astate of R. The relation q(p)={n(t)| n a
tag preservins homomorphism embedding T into T,j. Itiscustomary to further
restrict the homomorphisms to be constant preserving. When that is done, the class
of conjunctiv : queries includes all queries expressible by relational algebra
expre.ssions using a restricted form of selection. projection and product [CM]. U'nion :

may be muu- led by considering finite sets of.conjunctive queries [SY].

The . e[ABU]J, [MMS}] is a fundamental process in the study of databases. It
is a means : - transforming, if possible, an arbitrary tabieau into one which sétisﬁes

agiven set.. dependencies. Let d= <T.x> be adependencyand n a

homomorphi.m on T. The pair « = <d.n> iscalled a transformation. If S isa

tableau and , embeds T into S, then ¢ issaid to be enabled. The application of an

enabled transformation : to a tableau S, denoted v S) is a tableau whose definition

~ depends on the nature of the dependency d.




If d isan egd, sothat x isa=>5, thenone of the symbols n(a). n(b)
replaces the other everywhere it appearsin S. Itis customary togivea
disambiguating rule for the choice of the replacement. When n(a), n(b)

are distinct constants, ¢ is a contradiction and it is usual to assign

US)=2.

If d isatgd, so that d=<T.V>. then n isextended to a homomorphism
pon TUV and vS)=SuUuV). The extension of n to p is restricted so
that u is one-to-oneon Sym(V)-Sym/T) and for each y¢SymiV)-Sym(T),

w yr-Symu8S), thatis, py) isa new variable.

It is customary to denute chaseXT) as the limit of the process of applying
transformations z?hose dependencies are chosen from the set D, starting with the
tableau' T. If ) containsonly full dependencies and a disambiguating rule is given
for the applicatinn of egds (see above), chaser¥ T/ is unique and effectively
con;xplutable. Otherwise, it is at best defined only upto isomorphism and whenever D

contains partiui dependencies, this limit is not clearly defined.
2.2 Consisten . weak instances, canonical queries

Let » be tateofaschema R overauniverse U. Let D beasetof
dependéncies: - (7. Following Honeyman [H], see also [GMV], we define a weak
instance for p -ith respectto D asaninstance [ of U such that pcrir(l) and [
satisfies D. W lenote the set of all such finite weak instances as weak/D p) and
we say p is consistent with D if weak(D.p)=@. We denote the set of all states of R

cuasistent with D as CONS( RD,);

Let Svm:.. =UR.RIUAR A R1)) be the set of all symbols appearing in the

state ». A representative instance for p with respect to a set ot dependencies D isa




st |

d, ) fe b

possibly infinite weak instance for p such that every element of weak(D,p) is the .

'image, under some%ym( p) preserving homomorphism, of the representative

instance. We can show that every consistent state has a representative instance.

Proposition 1. If p¢CONS(R.D), then p has a representative instance. Further, all
representativeinstancesfor-p- are équivatentvia-Symtp) presemng

hemomorphisms”

Proof. Eev1 7 tertementsof weaktBpd. We take the direct product of the
i Gt

elements of weak:(i)p). Thisisan instance over the universe U for which the
attribute dotnainj w0 be denoted xdom( A ) are sequem:z':‘;5 of countable length. Itis
convenienit and customary to cunsider these sequences, function§Son the set of
natural numbers. N. So for the instance we have foreach A, _

xdom/A) ={flf-N—:iom(A)}. However, we may identify in xdom/A), that function’
f such that fli) = foreach i€N with the element a€domiA). This allows us to

consider xdom’.A\ ) as an extension of dom(A).

Let I be thisdirect product. Itsdefinition requires that we number the

elements of weal ).p). Having doﬁe so, we have by definition
o= (<t f > <fl(i)..;.f'|n(i)> € I, € weak(D.p) for every i€N}

Itis well kn« vn that'dependencies are preserved under direct products, that

is. | satisfies D.

Further, 'form, the natural mai—’/) IZ‘ (4) = 5“')

G: <Bulyfy> 7 <R 0> ase N
- e —— ‘)"M' ‘ Lo

homomorphicallv embeds 1 onto I . n, is Q_;m('p) preserving since f=a iff

f11=a forevery : therefore n, (f)=a: Itremainstoshow pJnj:l).
M

W UW“M

..




for any R€R, let u€p(R). Each [ € weak(D.p) containsa tuple with u,/R/=u.
Therefore I contains a tuple u such that u[Rl=u.—9‘W

This proposition is stronger than the results of Honeyman [H], Sagiv [S],

Mendelzon [Me] and Maier, Ullman and Vardi [MUV]in that it does not depend on
coee o . Nowowmnphieally
the chase. Asnoted by those authors, chasep(T,), if it exists, is«sepresentetive

Cnbeddalle Mo
L atanceforn C CUery eloumewtof weale (D, p) .

Let XCU. The ranonical query on X with respect to schema R and set of
dependencies D. der:ited ?X/R,D/ orjust ?X when R and D ure known from

context. is a function irom CONS/R.D) to instances of X deflined hy
!XIRD(p) = D€ weakeD ph 1xtD)

The definition does r: .t provide an effective computation of ?X/R.D/ and indeed
such a computation ruay not exist. However, the represent.a.tive instance can be used
to compute ?X/R.D/ 'vhen it can itself be effectively found. Define C- projection /IC
as préjection with re-ect to elements of C only:

u‘.‘k D= dt€ll ¢ and fAIEC foreach \EX:

Proposition 2. ..  (CONS/R.D) and [ isa representative instance for p, then 7/
» »
, Xtpr = 11> &11) < -
/?flud - - 0",'3"" .
—— Wehave x€’f) ) iffforeach /€weak(D.p), Wxists t€l with
t(ﬁz.t iff there exi-.s t€ [with @t;zt ‘where™1 .z‘vnw preservingg—ttcng
homorphisimand 1 |y =/. Itiseasy tosee thatfor A€f) x/ A/€@my p). This
comes from the fact f(%:\t foreach [€weakfD.p) there is a J€weak!D.p) with

@muLGymJ)=2.

{ indeed J, can be formed by isomorphically renaming each

"~ element of"@vmm! p/ byanelementnotin Syml). ) therefore x€2X(p) iff
x€fg = or1). A '

d”""‘"'“*




Proposition 2 replaces an intersection of infinitely many projections with a
single projection of an infinite relation. This brings us no closer to an effective
computation. We now show, as stated earlier, that no such effective
computatmn exists.

Proposition 3.

1) There exist X. R, D such that ?X/R,D/ is not effectively computable.

2) There exists no uniform, effective procedure for determmmg if 2X/R,D/ is
computable for arbitrary X. R, D.

Proof. (1) The complete::ess problem is determining for all triples { <u;.R,D >/,
whether ?Rfp) =p(R) forevery R¢R. The completeness problem is shown to be

undecidable in [G\‘IV ] witere (2) the set { <R.D > [ completeness of states of R with

respect to D is decidable; is shown to be not recursive. -
In contrast to progosition 3, in the case that chase,@p) is’effectively
S }
computable, 53. ?Xip. ’

— :

Propoéition 4. If chasx. @®p) exists, then .
=T T ’Xipi =fijo "7 chasep(tps !
Proof. In this ¢ --hasen@g" is embeddable via Symip) preserving

, \\hoamomorphisim intw/'fiwonto) every element of weak(D.p) [GMV]. Therefore
@\ mvichase(tp))C?X ). On the other hand ynlvasmallabuse of notation

{
to state chase(§p/€we:. 1 D.ps. So b,P'" '”’chase,,\ 2¢Xfps.

\\ /
A query E is said to be monotonic if p2o implies E/p)Ef0).

Proposition 5. Canonical queries are monotonic.

Pruof. The inclusion ,, _.- imp.ies weak(D.piCweak(D . oj. The propusition follows.




We allow only finite states. Suppose however we were to allow states of
arbitrary size. It would still be possible to define weak instances for these states
and therefore cannonical queries as well. Proposition 5 remains true in this case
without modification to its proof. Proposition 5 therefore establishes that -
canonical queries are rxionotdnic everywhere, not merely over states of finite size.

.‘);;, DBhis is crucial to the development of section 4, below.

‘On the other hand., not all expressions of the relational algebra define
monotonic queries. We wiil say thata query E onschema R iscanonical if there is
some set of dependencies :» such that E=?X/R,D/. We know then that not all

. queries expressed in relational algebra are canonical. T he reverse inclusion is also

not true.

It is well known that no expression'of the relational algebra is equivalent to the
transitive closure of a binary relation. [AU1, [Im], [Z1]. Let R be a binary relation

symbol and let d be the dependency which expresses the transitivity of R: |
Yxvx(RxyNRvz=>Rxz)

Then ’R GR}.{d} Jisthe :asitive closure function, since. directly from the
ApNC

definition, ?R[dR}.{d,‘]' ! :the smallest relation containing [ which is transitive.
We state these facts as a pr- position, '

Propusition 6. The set of ¢:::onical queries is incomparable to the set of queries

which may be expressed in the relational algebra. —

3. The Logic of canonical queries. -

In this section we presont canonical queries in a logical framework. We do this

tc make more apparent the closeness of our approach to the approach of artificial




intelligence which treats querying as logical inference. [GN@ We alsodoitto .

" prepare ourselves for the results of the next section.

Let U be a'universe. It is necessary tofix an orde:jing on the elementsof U. If
R is a schema over U, the first order language (with equality) Lg has neither
function nor constant symbols. T he predicates of Lgr are the schemes of R. Thusif
ReR istheset {A;,,...A;, /. then LR hasan m-ary predicate symbol R. Let S bea
relation scheme. For notational ease we will denote the language associated with a
schema RU{S} as Lr_s ratherthan Lgry,s;. However, we always assume a new
predicate symbol, that s, a 5. mbol notin LR, appears for S in LR s, even vhen

SeR.

Let XCU and D be a set of unirelational dependencieson U. Consider the

followin_g set of sentences ¥ in the language LR X v -

(containing instance)
(dependencies)
Projection axiom: :c:..cnUleq  cn)aXley,...ci, )0

where X= .4

-

The finite models of =. :noted struc/X), can be written as triples <p[.£>
where p¢CONS(R.D). [ewe: -D.p) and £22X/R.DI(p). Let C be formed by
reducing structy) to LR x: t-atis. C={<pt>|peCONSIR.D) and ¢2?X/R.DJ(p)}.
Let DR x be the collection oi insequencesof ¥ in the language LRk x: thatis. the
elements of Dﬁ.x are sentences in LR y which hold in every element of struef ¥,
Clearly, the mempers of C satisfy the sentences of DR_x; thatis, CSstruct DR x).

Wea now demonstrate the reverse inclusion.

Lemma l. C=structDy x/




Proof. We need only show struc!Dr x)<C, by preceeding remarks. So let <p,6>¢C.
Let dom be the set of all values appearing in p and expand the language Lgr x.i by

addidg gach element of dom as a constant. In the expanded language, let
Dj={R(aj.....an) | for each R¢R where <aj,....an>¢p(R)}
Do ={-X(ay, am)/ <aj.....am>€¢& and a?edom}
D3 ={azb/foreach pair of distinct elemenis of dom/.

Now ¥ =xUD;uD2UD3 isan Invbnsistent. set of sentences. Suppose ntherwise, If
M isa structure for ¥’, then M: (/). the‘intﬁerpretation of U in M. isa weak
instance for » with respectto D s0 p¢ CONS(R.D)[GMV]. It must be therefore that
£22Xtp), as <p,£>¢€C. So there is a tuple x€?2X(p)-£. Now x€?X(p) implies
xenx.fM-(U)) so by the projection axiom, x€M(.X). But ~X(xj€X’ so M isnota

model of 1’.

. We note that D;UD>UD; s a finite set of sentences in the expanded languaye.
Therefore, the conjunction nf its -lements. denoted d, is a quantifier free senfence 6f .
the language LR x augmenter :th the set dom of constants. Furthermore,
<p,i> satisfies d. On the oth.  1and, from the inconsistency of X’ we may
conclude, *'+-d. Noting that s constant free. we may conclude Y+/vx/» —~d)
where x isthe vector of all clen ‘ntsof dom appearing in d, interpreted as
variables. [n short, 'vx) -d) i- nelementof Dy x, so <p.t>¢structDR x/. We

may therefore conclude structDy x/cC. H

Corollary 1. Dy _x is equivalent to a set of total, multirelational equality and tuple

enerating dependencies.
e ]




Proof. Consider the formula —d in the proof of the lemma. This may be rewritten
as(dj—+dovd3) where d; is tﬁ: conjunction of elements of D;; do, d; the- ORE
disjunctions of the elements of D2, Dg respectively, these latter appearinginin
positive (i.e., unm;gat.ed) form. By a result due to McKinsey [McK], extended by
Graham and Vardi [GV], since T contains only dependencies, for some atomic

formula e of DoUD3, we must have Y—/vx)Xdj—e). =

In light of this corollary, we will write Dr x as ERUTR, x where ER is the set
of egd’'s and TR, x is the set of tgd’s :nentioned above. Itis known [GV] that the set
strucfERJ of finite models of ER is =xactly CONS(R.D). It is natural to consider the
set structTRr_x/: thatis, it is naturul to ;onsider canonical queries on states not
required to be corisistent. We can do this by removing all egd’s from D and

replacing them with "nearly equivalent” tgd’s as follows.

Let d=<T.a=b> beanegd. Let A;..... A, be the attributes of u such that
-ArdEny,. .
fa.bjcdom(A;). For—mele~ay For :uch such i let w; . wi, bea pairoftupleson the
universe U, satisfying wifAil =¢. wiJAil=b, w; /Bl=w;(B] forall B=4, and
Symf{wi_.wi ) NSym(T) ={a,bj. Tt 1gd trapslation of d is the set

U ; o uj-,w' < TU{'”,J,;"‘U-,, > }

The egd free version of a set of dept :dencies D. denoted D* is formed by replacing
each egd in D with its tgd translui:on. Let Ep” and TR x* be the set of egd’s and

tgd’s respectively which make up . ¢ x” asincorollary 1.

Lemma 2
VDER'=02

NTrx'=TrR.X

Proof. 1) Immediate. 2) [BV???]=




Combining this result with lemma 1 we have,

Corollary 2. 1) struc{Tr x) ={ <p.£ > / £2?XIR,D(p)}
peCONS(R.D), then ?X[R,D/(p)=2XIR,D*[(p) .

This result states the canonical queries defined with respect to D* are
/ identical to the queries defined with respect to D when the former are restricted to
CONS(R.D). It is useful to state the following result, whose proof is immediate from
corollary 2.

Corollary 3. 2X{R,DJ(p) ="{t | <p.t>- strudTu,x)} - &

.; | These lemmas and their cor&llanes can be viewed in the following way. They
v

( ”A _ state that calculation of a canonical query is bhe essence ‘derwatxon of a tuple
necd

—

F W ALpL
generaung dependem y. T are multirelation dependencies. They

F‘_QM-&
embedded dependency in the Ianguaze @@ which is easily seen to be logical

consequence of D. Recalling a resuit -t Beeriand Vardi’s[BV?], we have that for
each tuple X€’X/R.D/(p), thereex schasesequence offinite length (possibly 0)
NY Loaadd 2 = ¥ Y
which addsarowuto T, with i@/
The reader may wonder whethe: “he set of finite structures
{<pe>]e="XIRDJp)} isfirst order :xiomatizable. We have shown TR x tobea
first order axiomatization of structurces containing "all the truth.” Is it possible t,o.

axiomatize those structures containing "only the truth?" Interestingly, this question

can be answered either way, depending on how it is phrased..

We have restricted ourselves to tiie consideration of finite structures only as

models. Suppose that f is any function from database states to instances of the




scheme X and consider the pair <p,flp)>. Asboth p and flp) are finite, this pair
may be déscribed by a single sentence of the form "if the state is exactly p, then the
instanceof X is exacﬂy fip)." The set {<p,p)>} is exactly the set of finite models
of the (infinite) set of sentences so constructed. T his prbcedure is hardly effective nor-
very informative. Furthermore, these sentences are not dependéncies. The fact that
TR, x containsonly tuple generating dependencies of a particular form is vital to the

results of the next section.

If we consider the collection of all mndels of a given set of first order sentences.
we discover that it is impossible in gener:l to axiomatize the exact answers t.o»
canonical queries. The transitive closure of a binary relation may serve us again as
a counterexample. Let R, R* be binary relation symbols. Consider both as giving
two different edge relations on the same set of nodes. For each &, it is possible to
write "for no pair for which an arc appearsin R*, is there a path of length k&
| between them in R." Each ﬁnite sﬁbset ut the set of all such sentences is consistent
with an axiomatization of the transitive ciosure of nonempty relations, should such
an axiomatization exist. But by the prin-iple of ccmpactness, which applies here as
the full collection of models is considere:- nosuch axiomatization can exist. E very

arcin R* mustcorrespond toa pathin  of some finite length.

This discussion justifies a beliet th::. the result of corollary 3 is as close as one

can get to canonical queries with first or«der sentences.

4. Algebraic canonical queries.

In this section we consider those queries which are both canonical and
expréssible in the relational algebra. (Queries expressible in the relational algebra
will hereinafter be called algebraic.: We will rely on the well known equivalence of

the relational algebra and'relational calculus. We restrict the class of expressions

6 -




we will allow in two ways. We consider these restrictions to be matters of

convenience.

First, we do not allow constants. Dependencies are written in a constant-free
languagé, as in the prior section. Allowing constants in our expression language
merely confuses matters. Secondly, we do not allow equality. This is in conformity
with the work of Chandra and Merlin [CM]. We adbpt this restriction in this section
(we abandon it in the next) as we are considering here the canonical queries defined
by an egd-free set of dependencies. Every state is consistent with such a set of
dependencies and thus each canonical query is defined on every state. This
simplifies our discussion. When D is egd-free, the set of sentences £ of section 3.is
written in a language'without equality. Thusour prohibition of equality is similar

to our prohibition of constants.

Formulae of the relational calculus are customarily interpreted only in finite
states. Asthey are also formulae of first order logic it will be convenient to

interpret them over states of arbitrary size.

———

Lemma 3. Suppose E isa=® monotonica: -ty expressible in a

relational calculus without equality. Th.- E isexpressible as a union of
conjunctive yueries. —

v
ProofSuppose E may beexpressed as wyix,,...x,) using ‘domain’ calculus
N .

notation. Weshow is(equivalent to) a positive, existential formula;i.e., itis
constructed from at.omic,! forrnulgt’using 3, A, v as theonly connectives. But these

formulae are exactly unions of conjuntive queries.

We show first the existential part. Suppose p isastate and pF wa,. ... a4,

thatis. the tuple ‘a,.....a J€E/p). Suppose we have astate v relatedto p in







In lemma 3 we depend on the assumption that the query is everywhere
monotonic, not just monotonic on finite states. Of the theorems used in the proof,
that concerning preservation under extensions has been shown to be false in the
case that only finite states are considered. [Gurévich]. The status of the lemma

itself is this case is unknown [op.cit].
a Mv‘"‘"‘
We now produce now -dijunesion of those canonical queries which are

algebriac.

It is obvious that the appearance of a tuple in the result of a canonical query
depends upon the existence of certain tuples in the database state. We may wish to
know how many such tuples must appear in the state to support a tuple in the query.
If te?X{(p). isit péssible to bound the size of a substate ocp-with t€?X(0) which
bound is independent of the size of p? Note that in the case of transitive closure, it is

not possible to do this. This motivates the following definitipn.

Definition A schema R is X-bounded with respect to a set of dependencies D -
(for some X a setof attributes), if there exists an integer k such that for every state

p. te?X(p) implies there exists a substate oCp wi - Jofs k and t€?X/o).

Maier, Ullman and Vardi [MUV] proposed . notion of boundedness which we
will show equivalent to ours. Their idea is based /n the computation of canonical

queries via the chase.

Definition A schema R is X-chase-bounded with respect to a set of
dependencies D (for some X aset of attributes), if there exists an integer k such
that for every state p, t€ ?X(p) implies there exists a sequence of transformations on
the dependenciesin D which introducesa row «w into Tp with w/X/=t. which

sequence is of length not greater than k.
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We should point out that qualification that D be finite is crucial to the '
meaningfulness of this definition. For if D is replaced with its semantic closure (the

set of all dependencies it implies), then every schema is X-chase-bounded with k=1.

There is yet a third, equivalent notion of boundedness. Consider the set TrX.
of the prior section. We will say that TR, x is finitely covered when it is equivalent to
some finite subset of itself. By ‘equivalence’ here, we mean finite equivalence. TR x

is finitely equivalent to some set ¥ if the equality struc/Trx)=struc/S) holds.

Theorem |. Let R be aschemaand D a finite set »i' unirelational dependencies on a

u{liverse U. The following are equivalent.
1) R is X-bounded with respect to D.
2)R is X-chase-bounded with respect to D._
3) TR, x is finitely covered.
~4) ?X/R.D] is equivalent to a finite qnion of conjunctive queriés.
3) 2X(R,D] i.s equivalent to an expressi‘on of 1 - - relational algebra.
Proof. 1=2 Let k¢ be the integer required bv e definition of X-bounded.

There are, up to isomorphism, finitely many states of size k). Each hasonly
finitely many “X-consequences;” that is, ?X(p) is always finite. For each row of
?X(p) foreach p there is a sequence of some finite length which introduces this
consequence into Tp. The length, &y, of the longest sequence among these proofs is

the bound required for R to be X-chase-bounded.

2=] Immediate.




1=3 Asbefore, let k) be the bound required by the definition of X-bounded.
We claim that Tr_x need contain no dependency d = <T.x> with |T| >kg. But this

is immediate.

3=4 Each of the dependenciesin TR x isidentical in format to a conjunctive
query on R with target list X. Set E to be the union of the (finitely many)

conjunctive queriesin 'Tn,x. We claim E(p)=7X{(p) forevery state p.

By construction we have <p.E(p) >¢struc(TR,x). thatis E(p)2?X(p). For the
reverse inclusion, we can show that for every £27X(p). .2E(p). Thatis, Elp) =2X(p),

by corollary 3.

So let veElp). By definition of E, there isan element <T.x>¢Tg x and some
homomorphism n with n(T)CT, (n tag preserving) and n(x)=v. But <Tx> isan
elemerit of TR.x soany ¢ with <p.f>¢struc(TRr,x) must satisfy <T.x>; thatis,

n(x)€E, thatis vet.
4=5 Immediate.
5=4 From lemma 3 and proposition 3. ‘

4=1 The bound is the number of conjuncts in th: :argest clause of the

expression. -

5. Boundedness with respect to consistency

In the preceding section we were concerned with the finiteness of the set T x
of tgd's in the language LR _y implied by the dependencies, containing instance, and

projection axioms defining the canonical queries. A similar question can be asked

about the set ER of equality generating dependencies so implied.




Fact: [GV] The set ER is finite iff there is an integer k such that any

inconsistent state of R has an inconsistent substate of size not exceeding k. -
Thus we say R isbounded with respect to consistency if ER is finite.

Despite the similarity of this fact to the equivalencies in theorem 1, we now
show by example that boundedness with respect to consistency and algebraicness are

- mutually independent.

If D contains noegd’s, then ER isempty. Soin particular, the transitive
closure example (see section 4) is bounded with respect to vonsistency but not

algebraic.

Let F be a set of functional dependencies over some universe U . and let
SAT(UF) be the set of all instances of U which satisfy F. Let A be the set
{my(Dile SAT(U ,F)} for some VCU. As pointed out by Ginsberg and Zaddian [GZ),

A need not be SAT(V.G) for any set of functional dependencies G. Hull has
| receﬁtly shown that in that case £ (v isnot finite [H]. But nétice that
A=CONS({V}F) and that forany XSU, ?X[{V}]. F iseizher identically empty (if

X Z V) orisequivalent to the appropriate projection. Si. "y, x is certainly finite.

We will say aschema R is algebraicifforevery X. 'X/R,D/ is algebraic. If D
containsonly typed equality generating dependencies, ai1sebraicness is implied by

boundedness with respect to consistency.

Propositiori 6. Suppose D is a set of typed egd’s and R is bounded with respect to

consistency with D. Then R isalgebraic.

Proof. Suppose not. From the hypotheses and prior resuits. we know

A




1) there is an integer ko such that an inconsistent state of R containsan
inconsistent substate of size not exceeding ko;

2) For some XCU and every integer kj, there exists a state p with at
least k7 tuples and a tuple x€?X(p) and x¢€?X(o) for any proper substate

o of p.

Letting k be the integer of point 1 above, construct a consistent state as
described in point 2 of size at least k/X/. Let this state be o. Recalling that D

contains only egd’s, we note that the row of chasep(T) with x-valuex (x is the X-

value given in point 2 above) must correspond to a tuple vés R) for some R and

XER.

Let v be a 1-1 mapping of Sym(o/ which is the identity on symbols of the tuple
v and takes all'other symbols of o to symbols not in o. Let 4= oUv(s). Tosee that p
is not consistent with D, let u be any tuple of o such that ulAl=xlA] for some
AeX-R.Theegd <Tp.ulA]/=v(ulA])> isaconsequence of D but ulA/=v(ulA]) by
construction. Consequently there must be a substate poCp with k or fewer tup:es
such tha_t D implies <Tps,ulA/=v(ufA])>. This substate must contain some rows

of v(n) (although not necessarily u or v(u)).

Let n be the mapping on Tp, defined by: n(¢) =t ift- . a(t)=v if tev(n). Now
n is a homomorphism embedding T, into T, since for every v €v(o), v,€0, and
every attribute B, velB/=v,/B/ only if vW/B/=v{B]=v,[B]. So q is homomorphism
enabling in T, a transformation on dependency <T, .u/A/=v(ulA])>.
Application of this transformation to T, will set #/A/=x. But /o(T, )/<k. Repeat

this arguement for each A€X-R. This will uncover a substate ¢'Co with

jo'/<nfX/ and x?a’). thiscontradicts our choice of ¢.-




We now take up the task of tightening the results of Theorem 1. We wish to
characterize algebraic canonical queries defined with respect to a set of dependencies
which include egd’s. Equivalently, we wish to consider queries defined exactly on
the set CONS(R.D). We face an immediate syntactic difficulty: an expression of the
relational algebra is necessarily defined on all states of R, without regard to their
inclusion in CONS(R.D). Thus we must expand the domain of ?X/ R, D/ if we wish
to find any algebra expression to which it isequivalent. A method of doing this is
given by Corollaries 2 and 3 of section 3: replacing D with Def. This method is
exploited in Theorem 1. We seek in this section an expansion which distinguishes
consistent from inconsistent states more precisely. Many such expansions are

possible. We adopt the following.

For a set of attributes X of cardinalfty n, we define the X-product of a state p
as )

. 3 n
K _.\E‘\,(dom(A WNSymip)

That i's, an X-product is the set of all combinations of symbolsin p which respect the
domain definitions. We define ?2X/R. D//p) to be the X-product of p when
p¢CONS(R.D). This definition reflects the standard logical nc: ion that everything is
a consequence of an inconsistent set of sentences. It also preser . s the monotonicity

of canonical queriss, as any superset of an inconsistent state is inconsistent.

The expanded function will not 2lways distinguish consisient from inconsistent
states. Consider a four attribute universe with two schemes: /\8.CD/} and the
functional dependency. A »B. If the domains of these attributes are pairwise disjoint
(the "typed” case), then ?C isidentically the C-product in every state. Similarly,

?CD isthe CD-product in some consistent states. We can describe sets of attributes

for which this behaviour is impossible.




Let d = <T.a=b> be an egd. The repeating symbolsof d are those elements
of Sym(T) with more than one appearance in d (a and b are presumably repeating
symbols.) The agree set of d is the set of attributes labelling the columnsof T in
which the repeating symbols occur. (See Ginsburg and Hull ?? [GH].) If X contains
the agree set of some egd in or implied by a set of dependencies D, then ?X/ R.D J(p)
satisfies d exactly when p¢ CONS( R.D). [Not quite: we need 2~sjmbols of
dom(A) in p.] We will exploit this fact in Theorem 2. We must first expand the

class of relational algebra expressions we allow.

As we have allowed egd's in D, we must allow equality in our expressions. We

define a conjuctive query with inequalities to be a conjunctive query plus a set of

pairs of symbols called inequality assertions (and writtena=b). Suif q isa

conjunctive query with inequality

g=< <Tx >8>
and p is a state, q(p) ={Wx)MT)STp. v a homomorphism and wa’=v b) for each

a=b in 8}. (The expansion of conjunctive queries to include inequalities was first

made by Klug [K].)

We recall that DR x is the set of all multirelational egd’s ar full tgd’s which
_are consequences of the set = defined in section 3. Again, DR x is said to be finite if

itis finitely equivalent to a finite subset of itself.

Theorem 2. Let X contain the agree set of some egd implied by a set of dependencies

D. [Do I need this?| For any schema R, the following are equivalent:

1) R is bounded with respect to consistency and X-bounded.

2) DR x is finite.




3) ?X( R. D/ isequivalent to a union of conjunctive queries with
inequalities.

4) ?2X[ R, D] is equivalent to an expression of the relational algebra.

Proof. The equivalence 1«2 follows from Theorem 1 and the fact mentioned
earlier. We show 2=3 by construction. (A proof of 2=4 exists which omits this step.

We find this procedure more informative.)

Construct a conjunctive query for each elementof TR x asbefore. Let E, be

the union of these queries For each element of ER, proceed as follows:

Let <T.a=b> bean elementof E"u. Let W={wg/ReR. wg/Tag/=R} bea
collection of tagged rows shéring no symbols with each other or with Sym(T). Let
vy,....up be rows with tag X which rows result from permuting the symbols in ‘
UReR(UAcx{wrlAA€R)) in all ways consistent with the domain definitions.

Canstruct the set of conjunctive queries with inequalities
{<<TUW.;>.{fa=b}>[1sisp).

Let E, be the union of all these queries.

We claim the union of E,UE, calculates ?X/ R.D /. The pruof is a= nefore with the
observation that if any element of ER is violated by a state, the set .{ queries so

canstructed will force the result to be the appropriate X-product.

The equivalence 3¢4 is asbefore. Note that a conjunctive query with
inequality is monotonic, so Lemma 2, suitably modified, holds for the larger class of

expressions considered here.

We complete the chain by demonstrating 322, If <<T.x>.S> isanelement

of the union given by (3), construct the sentence




Vy(T’»x 'vé )
where T'=A{R(wIR])|w[Tag| =R, weT}
x'=X(x)
s'=v{a=b/a=b€S}

and y is the vector of all variables appearing in this sentence. We claim this
sentence is implied by £ (by (3)) and apply the result of McKinsey referenced earlier
to reduce the resulting finite set to a s.ubset of DR x, as before. We then ciaim this
set to be finitely equivalent to Dy _x. |Does this really work? [ think so but I’'m

passing on. The next paragraph can also be used to prove this (or 4=2)] 4

The weakening assumption in this theorem is a result of the particular
expansion of canonical queries which we've adopted. Suppose we were to choose an
expansi-on which distinguish consistent and inconsistént states via some first-order
property. In other words, suppose there e.xists, with respect to this putative
expansion, a sentence y on a single predicate (of arity the cardinality of X) such that
v istrue at ?X/ R, D [(p) exactly when p is consistent. If ?2X is algebraic, the first
order formula ¢ which expresses ?X can be tomposed with ¢ to produce a sentence
of Lr true of astate p exactly when p is consis;ent. (This compositicn is the
syntactic exercise of replacing the atomic formulae of tp with the formuia ¢, due )

care being taken to rename variables as appropriate.) But in that case. ER is finite.

by the results of [GV].

6. Discussion and Conclusions

We have considered the question: When is a canonical query algebraic, i.e.,

equivalent to an expression of the relational algebra? It is natural to ask the.

converse question. When is an expression of the relational algebra equivalent to




some canonical query? The ans;ver is the same. Such an expression must be
monotonic and therefore equivalent to a union of conjunctive queries. Each such
queryis essentia'l!y a multirelational.tgd, which may be considered a unirelational
tgd simply by ignoring the tags. Thus each monotonic expression E givesrisetoa
setof tgd's D such that E=?X/ R, D] (X the “target scheme” of E). Every

monotonic expression is canonical for some set of dependencies.

In the above discussion, we chose D after having seen the expression E. The
reader may object to this procedure, considering the dependencies to come “first” and
the queries only "later”. But is this order correct? The purfose of canonical queries,
window functions [MRW] [MUV] and universal relation interfaces [KU] is to make
some set of queries very easy to formulate. Which set of queries should this be? We
believe the database administrau;r., in cooperation with the end users, knows very
well which queries are important. The dependencies and perhaps even the schema
may be derived from the queries, rather than conversely. It is usual to declare the
dependencies to be derived from “nature”, that is, from knowlédge of the application.

We do not dispute this. We have shown that they describe an inference engine for

the calculation of certain pre-selected queries.
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Abstract

A database is consistent with respect to a set Z'of
dependencies if it has a weak instance. A weak instanc. is
a universal relation that satisfies =, and whose projections
on the relation schemes are supersets of the relations in the
databxse. In this paper we investigate the complexity of
testing consistency and the logics that can axiomatize con-
sistency, relative to a fixed set T of dependencies. If X is
allowed 10 include embeddex]l dependencies. then con-
sistency can be nonerecursive. If T consists only of total
dependencies. then consistency can be tested in polynomial
time. The degree of the polynomial can. however, be arbi-
trarily high. Consistancy can be axiomatized but not
finitely axiomatized by equulity generating dependencies.
If embedded dependencies are allowed then consistency

cannot be finitely axiomatized by any effective logic. If,

on the other hand, only total dependencies are allowed
then consistency can be finilely axiomatized by fixpcint

logic.
1. Introduction

Soon after the in'lroduclion of the relational model
[C1]), the imponant role of semantic specification was real-

ized [C2.AN]. The purpose of semantic specification is 1o
define which databases are semaniically meuningtul, called

t To be preseated in the 2rd ACM S:mp. on Piinciples of
Matabase Systems, Waicrion. Apiil 1984

&

+ The reseatcir reponed here was done whiic this author was
a1 Stantord Lnnerin and supporied by o Weiemapn
Post- Doctoral Fetlewship and A OSK grant $0-0212

consistent in database terminology. The languuges used for
semantic specificaion are logical languages. Thus, the
database is consistent if and only if it satisfies certain sen-
tences in the language. An éxamplc of such a language is
the language of functional dependencies [C2).

Traditionally, the logic used for
specification languages was first-order logic. The reason for
that is probably the fact that this s the logic that most
rescarchers and practitioners were familiar with. Recently,
however, rescarchers in the area of scmanti: specilication
realized that there docs not seem to be a straightforward
way of specifying semantics of databases with incomplete
informution by means of first-order logic [Ho).

semantic

The siuation is as follows. In principle, there is a
cEmceplual database with complete information, called
weak instance in databasc lerminology. that completely
describes reality. The semantics of Lhis idealized dalabase
is given in first-order logic. In practice, however, we very
often do not have all the information needed 0 describe
reality. . That is. the actwal datsbase coes not contain
enough infurmation o unigucly doiermine the conceplual
databasc. llow we do know whether our partial descrip-
tion of reality is seniamically meaningful? The intuitive
answer is that it is semantically mcaningful if it can be
completed o a full description of reality. This is the
justification for the definition in [Ho] that an acial data-
base. which may have incomplete information. is consistent
if it can be completed W a consistent ditabase with com-
picte infarmation.




While this definition was readily adopted by
researchers and triggered numerous investigations of its
implications (e.g.. [GMV. Sa, MUV)), its logicul aspects
were not yet investigated. ) .

A logic consists of three cssential components: a
language, a class of structures and a satisfaction relaiionship
between structures and sentences in the language. The
notion of structure in database theory is well understood:
databases are essentially finite relational structures. What
we are interested herc is in the language and satisfaction
relationship components. Specifically, we try 10 answer the
two following questions: )

(1)  What is the complexity of testing consistency?

(2) What is the language required 0 axfomatize con-

sistency?

More formally, we are given a set X of first-order sen-
tences that the conceptual dawbase (with complete infor-
mation) is supposed to satisfied. Let CONS(Z) be the
class of actual Jatabase (with incomplete imformation) that
can be completed to satisfy- Z. We try to find out what is
the complexity of recognizing databascs in CONS(Z) and
whether we can axiomatize it, that is. construct a set
(preferably finite) T’ of seniences in some language such
that CONS(ZY) is exaculy the class of actual databases that
" salisfy T'. We are interested here in the case where the
conceptual database is required to satisfy first-order sen-
tences of a special form, the so called daia dependencies
[BV1. Fa?). This class of sentences is considered to be
appropriate 1o semantic specification of databases with
complete information.

Our first finding is that there exists a set Z of ¢id's
such that CONS(Z) is not recursive! We are hence forced
to restrict ourselves Lo the subclass of towal (or fuil) depen-
dencies {BV1. Fa2]. In this case we show that CONS(Z)
is in PTIME. The degree of the polynumial can. however,
be arbitrarily high!

With this in mind we tumn to the issue of axiomi-
tizability. By using classic model-theoretic techniques. we

show that consistency is axiomatizable by first-order logic
and even by dependencies, but is not finitely axiomatizable
by first-order logic. The fiact that consistency can be tested
in polynomial time. and the strong connection between
polynomial time computution and fixpoint logic shown in
[Im.Var2], suggest that fixpoint logic might be the right
logic to axiomatize consistency. Indeed, the deepest result
in the paper is that consistency is finitely axiomatizable by
fixpoint logic.

We discuss some “philosophical” aspects of our
work in the concluding part of the paper.

2. Basic Definitions

2.1. Tuples, Relations, and Databases

Autributes are symbols waken from a given finite set
U called the universe. We use the letters A,8.C,- - 10
denote attributes and X.Y,--- 10 denote sets of attri-
butes. Sets of attributes are also called relation schernes for
reasons to become clear shordy. As a convention, we do
not distinguish between the auributc A and the sct {4},
and we denote the union of X and ¥ by XY,

With each autribute A4 is associated an infinite set
called its domain. denoted DOM(A). The domain of a set
X of auribuies is DOM(X )= L{.JIDOM(A ). An X-wilue is

‘ q

a mapping w:X—=DOM(X), such that w(A)EDOM(A)
for all A€X. A wple is an X-value for some X. A rela-
tion on a relation scheme X is a finite set of X-values. We
to denote elements of the domains,
to denote rela-

use a.b.e,---

5., o dencte tuples, and /,J,- -

tions. _
A database scheme is a sequence R=(R,. ....Ry)
&
of relation schemes such that U={_JR,. We will ccca-
. in\

sionally consider U as a database scheme, meaning (U). .

A sequence 1=(/...... ;) of relations on R, ...,R:,
correspondingly, s called a  dewbase on R, Let
I=(,..... L) and =/, .... Ji) be databases on R.

We say that [ is contained in J, denoted 1CJ, if 1, C/n




form=1,....k.

' For an X-value w and a set YCX we denote the
restriction of w to Y by w[Y]. We do not distinguish
between w[A} which is an A-value. and w(A), which is
an clement of DOM{A). Let [ be a relation on X, Then
its projection on Y, denoted /[Y] is a reiation on Y.
I[Y]={w[Y]:w€I}. Let R be a database scheme. We
associate with R a projection map wg, defined as follows.
Let / be a relation on U. Then mp(/) is the sequence
(IlR:} . . ., I[RD. which is a database on R. The set of
all auribute values in a relation / is V"L(’)=‘L€Jxl['ﬂ-

and the sct of wvalues in a daabase | is

k

VAL(I):UVAL(I,). The database 1 is nonempty if
V) S

VAL()= 3.

2.2. Dependencies

A waluation is a  partial mapping
a:DOM(U)=DOM(U) swch that for all A€V and
a€DOM (A) we have ala)EDOM (A). We say that a is a
valuation on a tuple w (resp., relation /, database I) if it is
defined on- VAL(w) (resp.. VAL(Z), VAL(])). Let a be a
valuation on a wple w, then a{w) is the wple aow (ic., a
composed with w). Valuations are defined on relations
and dalabases in the nawral way, i.e.. they are defined on
relations ' tuple-wise, and they are defined on databases
relation-wise.

For any given application only a subclass of all pos-
sible databases is of inlerest. This subcluss is defined by
semantic constraints that are 10 be satislied by the daiwa-
‘bases of interest. A family of constraints that was exten-
sively studied in the literature is the family of dependen-
cles. _

A iuple generating drpendency (abbr. tgd) says that if
some tuples. satsfying certain equalities exist in the data-
base. then some other tuples (possibly with some unknown
valucs). must also exist in the dutabase. Fomuly, a ted

on a diabase scheme R is a pair <1.J> of nonempty data-
bascs on R. T is saiisfied by a database K on R if for

every valuation a on l. such thait atl)CK, there exist a
valuation 8 on [ and J that agrees with a on ¥AL(1) such
that ANCK. If VALICVALU) then <103 is a total tgd
(abbr. ugd).

An equality generating dependency (abbr. egd) says
that if some tuples, satisfving certain equalities exist in the
database. then some valucs in these tuples must be equal.

Formally, an egd on a database scheme R is a pair

<l.ay=ay> where | is a database and {a,.a;}CVAL(1). It
is satisfied by a database K on R if for every valuation a
on 1 such thut a(I)CK we have a(a))=ala;). A func

" tional dependency (abbr. fd) is a statement Y=V, It is

satisfied by a relation 7 on U if for every two tuples u and
vin I, if u[X]=v[X] then u[Y]=v[Y] Itis equivalent-to
an egdon U. .

We will use the term dependencies or embedded
dependencies 1o refer 10 the class 1gd's and egd's, and we
will use the term fotal to refer 10 the class of ugd’s and-
egd’s. We note thal Jependencics are equivalent o first-
order sentences of a special syntax [Fa2].

23. Satisfaction and Consistency

If we are given a database scheme R and a set £ of
dependencies on R, then it is quite obvious how to define
the class of semantically meaningful databascs on R. 1t is
just the collection

SAT(R. Z)={1:1 is a databuse on R that sutisfies Z}.

However, a basic idea in database theory is that of
universal relatian interfuce [MUV]  According o this
approach. conceptually the database is a single rel:ation on
U. and consequently the scmantic specification has o be
given as a sct of dependencies on U. In pructice, how-
ever. information is ofien given to us not as tuples on U
but in smailer units. tuplcs on subsets of //, and some
infomustion may even be missing. The datrbase scheme
R={R..... R:} describes the actual database, and its
relations reflects pants of the higger corceptual database.




Such a dawbase on R is semantically meaningful if indced
iL reflects a‘meaningful conceptual reiation on U.

This lead Honeyman [Ho] to the following
definition’. Let = be a set of dependencies on U, and let
I=(I,....I,) be a dawbase on a dawabase scheme
R=(R, ....R:). We say that | is consisient with respect
10 X if there exists a relation / on U. such that
TE€SAT(U.Z) and ICw(/). [ is called a weuk instance
for 1. Note that I does not reflect exactly the breakdown
of the information in / to smaller units of information, but
rather it reflects a subset of that information, since /, can
be a proper subset of /[R,]. We denote the set of dag.m-
hasesonRtlmmoonsiste_nlwimmpecttoZby_
CONS(R.2). ’

We now define a condition on database schemes
that will play an impornant role when it comes (0 axioma-
tizability of consisiency. A sei I of dependencies over U
is said to be m-bounded with respect 10 a databasc scheme
R. for some natural number m, if for every database I on
R, we have that 1 is in CONS(R,Z) if and only if for all
JCI with |[VALJ)|<m, we have that J is jn
CONS(R,Z). We say that X is bounded with respect o R
if it is m-bounded with respect to R for some m.

3. Complexity

Several researchers investigated the complexity of
testing satisfaction and consistency [BV2,GMV MSY.Y].
What they tried to do is 1o find the complexity of the set
KU.L.D: 1€SAT(U, 2)} and the set
{<RI.Z>:IECONS(R.Z)}. In this context several lower
bounds were shown. We find these lower bounds some-
what misleading. In a specific application the databuse
administrator has a specific universe Uy, a specific database
scheme Ro. and a specific set £, of dependencies that
describe the semantics of the application. Thus, he has no
interest in the cominiexity of the above mentioned sets, but
rather he is intcrested in the compiexily of the sets

! We use the generalization in [GMV] of the original ideas
in [lHo}. ' .

SAT(Uy.Z,) and the sct CONS(R,. Zy). Thus, what scems
1o be of interest in general is the complexity of the sets
SAT(U.Z) and CONS(R.X) for fixed U, R, and Z. In
the terms of [Varl] we are intercsied here the the data
complexity rather then the expression complexity or the
combined complexity.

Let us consider first satisfaction.

Lemma 1. [Cha] Let R be a database scheme and let Z be
a finite set of dependencies on U. Then SAT(R,Z) & in
LOGSPACE. »

Unlike satisfaction, the complexity of consistency
depends on the kind of dependencies we have in 2.

Theorem 1.

(1) Let R be a dalabase scheme, and let Z -be a finite
set of embedded dependencies on /. Then
CONS(R.Z) is recursively enumerable.

(2) There exist-a universe U and a finite set I of
embedded dependencies on U such  that
CONS(U.2) is not recursive.

(3) The set of pairs (R.Z), where Z is a finite set of
embedded dcpendencies on U and CONS(R.Z) is
recursive, is not recyrsive.

[dea of Prool.

(1) Given a databasc on R, we just have to enumerate
all relations on U and check whether any of them is
a weak instance for the database.

(2)  First, by reduction from the word probiem for finite
semigroups [Gu], we construct a universe U and a
finite set T of dependencies on U such that the set
{o:.0isan egd and X logicully implics 0} is not
recursive. Then, we show that this sct is Turing-
reducible o CONS(U.Z). The reduction involves
exponentially (in the length of the given egd) many
lests for comsistency.

(3)  The claim follows from a general characterization of
undecidable propertics of sets of dependencics in
[Varl) =




Theorem | strengthens the results in [GM V] that the set

{<R.L.Z>: X is a set of embedded dependencies and

1ECONS(R.Z)}.

is not recursive. Both résulls indicate very strongly that
the weak instance approach is not practical when embed-
ded dependencies are necessary to specify the semantics of
the application. When all dependencies in X are 1otal, the
situation is radically different.

Theorem 2

(1) Let R be a database scheme, and let X be a finite

set of lowl dependencies on U. Then CONS(R,Z)
is in PTIME.

(2) There is a universe U and a finite set Z of total
dependencies on U such that CONS(U.Z) is
logspace complete in PTIME.

(3)  For every nawral number k, there exist a universe

' U and finite set I, of wtal dependencies on U,
such that CONS(U,:,Z,) can not be accepted in
DTIME(n*). ’

Idea of Prool.

(1) In [GMV Ho] there is an algorithm to test for con-
sistency. Given a database, the algorithm tries to
construct a weak instance. It either succeeds,
demonstrating coasistency, or it fails, proving that
there does not exists a weak instance. The complex-
ity of the algorithm is O(a'), where n is the size of
the dutabase and / is the size of R and Z.

(2) Hardness for PTIME is proven by reduction from
the path system problem of [JL].

-(3) By a generic reduction from deterministic polyno-
mial time Turing machines. &

Theorem 2 strengthens the result in [GMV] that the set

{<RL.X>: T is a sct of (otal depenclencies and

IECONS(R. D)},

is logspace complete in EXPTIME. It shows that testing
consistency of 1 with respect 1o Z is polynomial in the size
of I and cxponential in the size of Z.

It is interesting o note in connection with Theorem
2, that if £ consists of fd's. then CONS(R.Z) can be
accepted in lime O(nlogn) and linear space, by computing
the closure of some congruence retation as in [DST]

Let us now consider bounded sets of dependencies.
Intuitively, it seems that it should be easier to test con-
sistency with respect to bounded sets than for general ones.

Theorem 3. Lct R be a database scheme, and let = be a
seL of dependencies on U, such Uat £ is bounded with
respect 1o R. Then CONS(R, Z) is in LOGSPACE.

Idea of Prool. Assume that X is m-bounded with respect
o R. To check that IECONS(R.Z) it suffices 1o check
that JECONS(R.Z) for all JCI such that | VAL(J)] <m.
It is easy o verify that checking each J requires space log-
arithmic in the size of 1. &

4. Axiomutizability

A subject of great interest in mathematical logic is
tat of axiomatizability. Given a class & of structures, the
logician trics 10 axiomatize it by defining a logic A, which
consists of a language L and a satisfaction relationship
between structures and sentences in L. @ is axiomatizable
by A if there exists a set 2 of sentences of A, such that a
structure A is in £ if and only if M satisfics all sentences
in Z. Il Zis finite, then Q is finitely axiomatizable by A.
This notion of axiomatizability cnables us to classify the
expressive power of logics according (0 the classes of struc-
tures that they can axiomatize or finitely axiomatize,

We first ry 10 axiomatize consistency by first-order
logic.  We hive 10 beur in mind, however. that every class
ol databases is axionutizable by firsi-order logic. This fol-
lows rom the fuct that every ditabasc can be described,
up o iscmorphism, by a single finsti-order sentence. The




axioms for the dass are the ncgations of the descriptions of
all dawbases not in the class. In fact. one cun show that
every class of databases is even axiomatizable in a proper
subset of first-order logic. This subset, which we call
universal-existential logic, is the set of all first-order sen-
tences whose prefix consists of a string of universal
quantifiers followed by a string of existential quantifiers.
Thus, axiomatizability results for first-order logic are not
interesting, unless they wlk about finite axiomatizability or
about a proper subset of universal-existential logic.

The proof of next theorem uses disjunctive equality
generating dependencies. A disjunciive equality-generating
dependency (abbr. degd) on a database scheme R is a pair
<1,8>, where [ is a finite database and § is a sequence of
equalities a=by,....x =y with
{ay....5 JCVALQ). It is satisfied by a dawbase K on
R if for every valuation a on [ such that o{1)CK we have
that cither ala))=a(d)), or ... or alay)=aldh;). Observe
that an egd is a degd where the sequence of equalities is of
unit length. '

Theorem 4. Let R be a database scheme, and let £ be a
set of dependencies on U. Then CONS(R.Z) is axioma-
tizable by egd's. : '
Idea of Procl. The proof-goes in three sieps. First, using
the method of dJiagrams [CK] we show that CONS(R.Z) is
axiomatizable by degd's. That is, there exists a set & of
degd's on R such that CONS(R.Z)=SAT(R.Z"). Now,
using the fact that X is a set of dependencics. which are
Hom sentences, we show that CONS(R.2) is closed under
direct products. Finally, using the last fact, we prove by
McKinsey's technique [McKi] that we can assume without
loss of generality that all the degd's in ' ure actually
egd's. B

The above result is interesting thcoretically, but does
not really have practical significance because the set of
egd’s promised by the theorem can be non-recursive!
What we would like to have is finite axiomatizability by
first-order logic. because then we would be able o apply
Lemma 1, and get logarithmic space complexity. Now,

Theorem 3 gives us a cise where comsistency can be tested
in logarithmic space, nanely, when the given set of depen-
dencics is bounded with respect 0 the database wxheme.
Can it be that Theorem 3 is just a corollary of Lemma 1?7
The answer is posilive.

Theorem 5. Let R be a database schemc. and let Z be a
set of dependencics on U. Then CONS(R.Z) is finitely
axiomatizable by egd's if and only if Z is bounded with
respect o R

Idea of Proof. If CONS(R.Z) is finilely axiomatizable by
egd’s, then CONS(R.Z)=SAT(R.Z)) for some finite set
by of egd's. Lat
m=max{k:<la,=a,>€Z and | VAL(1)| =k}. Then =
is m-bounded with respect to R. Conversely, if Z is m-
bounded with respect to R, then COVS(R,X) is axiomatiz-
able by egd's <l.g,=ay> with | VAL(D)| =m. '

Theorem § leaves open the possibility that con-
sistency is finitcly axiomatizable by first-order logic though
not by egd’s. However, since first-order satisfaction can be
tested in logarithmic space. finite axiomatizability of con-
sistency by first-order logic will entail, by Theorem 2, that
PTIME=LOGSPACE! This suggests the following result.

Theorem 6 There is a universe U, a finite set Z of total
dependencies on U, and a database scheme R, such that
CONS(R.Y) is not finitely axiomatizable by first-order
logic.

Idea of Proof. Let U={A.B,C}. R={AB.AC}, and
Z={A—C.B—C}. We now show by an wltruproduct
argument® [CK] that CONS(R.X) is not finitely axiomatiz-
able by first-order logic. m

In view of the last two theorems, we would like o
be able to tell, given a databuase scheme R and a set of
dependencies 2. whether  is bounded with respect o R.
Unfortunately, there is no effective test for boundedness.

Theorem 7. Tic following set of pairs ({/.2), where Z is
a finite set of dependencies on U and T is bounded with

2 'hus we have 10 o 10 infinic structures in order to prove
a claim about inite SLNICIUTCS.




respect 1o U, is not recursive.

ldca of Proof. The claim follows from a general charcter-
ization of undeciduble propenties of sets of dependencies in
[Varl]. = o

We do not know whether boundedness is decidable when
we restrict ourselves (0 total dependencies. We believe
that if we restrict ourselves 1o functional dependencies,
then it is decidable.

Since we can not finitely axiomatize consistency by
first-order logic, we try 1o do it by higher-order logics.
Studying the definiion of consistency we observe (hat
essentially il consists of existentially quantifying over - -rik
instances, which are relations over a possibly extended
domain. The logic of such definition is called in
mathematical logic many-soried projective logic [Fe]. Itis a

very powerful logic, whose satisfaction relationship is not -

necessarily recursive (by Theorem 1; see also [Ha]). One
can ury 1o bound the size of the extended domain in order
to make the satisfuction relationship recursive [MZ], but
Theorem 1 implie; that when the given dependencies are
embedded this can not be done.

Let us now consider the case that the given depen-
dencies are total. As we shall see in this consistency can
be finitely axiomatized by the fixpoint logic of [AU,CH].

Iet P be a new n-ary relation name, and let
L(R.P) be the language obtained by adding P to L(R).
The fixpoint sentences of L(R) are of the form LFP(g).
where @ is a first-order formula of L(R,P) with free vari-
ables x). ....x,, where P occurs positively. Let M be a
structure of L(R) with domain D. Let @ be the minimal
n-ary relation on th¢ domain of M, such that the sen-
tences Vxy oo X {P(xy ... .x)=) is satisfied in the
structure (Af Q) of the language L(R.P). The relation Q
is the least fixpoint of @ in the siructure M. We now
define the satisfaction relationship: M satisfies LFP(ep) if
¢ =D". The fuliowing facts hold for fixpoint Ibgic.

(1)  Any class of datbases that is finitely axiomatizable
in fixpoint logic is in PTIME [CHI].

(2) There is a class of databases that is finitely axioma-
tizable in fixpoint logic and is logspace complete in
PTIME [Var2].

(3) Let © be a class of databuses that include a linear
order relation. such that Q is in PTIME. Then Q is
finitely axiomatizable by fixpoint logic [Im,Var2).
(The linear order seems o be essential in order o
simulate Turing machines.)

There are lwo reasons to suspect that consistency
with respect 10 total dependencies can be finitely axioma-
tized by fixpoint logic. The first reason is, in view of the
aforementioncd facts, that consistency with respect to lotal
dependencies can be lested in polynomial lime. The
second reason is that from the -algorithm for Lesling con-
sistency of [GMV.Ho] it follows that consistency with
respect to lotal dependencies can be axiomatized by
fixpoint logic over extended domains. Both observation
show that'wil;h some “extra” tool. either a linear order or
an extended domain, we can finitely axiomatized con-
sistency by fixpoint logic. The question is whether we can
do it without the “extra™ ool. The answer is positive.

Theorem 8 Lct R be a database scheme, and let £ be a
finite set of total dependencies on U, then CONS(R.Z) is
finitely axiomatizable by fixpoint logic.

Idea of Proof. It turns out that the extended domain is not
essential. The information conveyed by the new elements
can be captured by relations over the old elements. These
relations can be defined by fixpoint logic. The consinue-
tion. however. is very involved. The length of the fixpoint
sentence nceded 10 axiomatize CONS(R.Z) is exponential
in the length of X! =

5. Philosophical Remarks

Another use of logical languages in relational data-
base management sysiem is as query lunguages. The resuit
of applying a formula of the language to a dwabase is the.
set of all wples that satisty the formula. An example of
such a language is the relational calculus [C3). The logie
used for query languages was also uaditionally finst-order




logic. However, in the last few years, it was realized that
first-order logic does not have a sufficient expressive power
as a query language. This was realized first by Aho and
Ullman [AU], -who observed that transitive closure is not
first-order definable (this fact was originally proven in
[Fal]). Following that observation, several works investi-
gated higher-order logics for query languages, e.g., [CH,
MZ, Var2].

One can also object w0 the exclusive use of first-
order logic in database theory on an “idcological™ basis.
The reason for the prominence of first-order logic in
mathematical logic is that first-order logic is mathemati-
cally tractable and has very rich proof and model lheoria‘.

€.g.. we have completeness and compuctness theorems.
However, mathematical logic usudlly deals with general

structures. either finite or infinite. In database theory, one
usually wishes to consider only finite suuctures. Under
this restrictior many of the nice properties of first-order
logic evaporate. In particular, we do not have complete-
ness and compactness. Thus, there is no a priori reason to
prefer first-order logic to other logics. and one should base

"his preference on piactjcnl considerations, such as ease of
'~ use and computational complexity.

First-order logic has the advantuage of aimost being a
“lingua franca™. It is a logic with which many practition-
ers are familiar, unlike the more esoteric higher-order lcg-
ics. On the other hand. if one wakes polynomial lime as a
yardstick for computational tractability, then there is evi-
dence that fixpoint logic is the natural logic for finite struc-
tures [Im. Var]; Our resulls strengthen this evidence by
showing Uit fixpoint logic ruther tan fisst-order logic is
the adequate logic to specify semantics of databases with
incomplatc information. We believe that fixpoint logic
should be given far more attention than it has been given
in the pastL '
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ABSTRACT

Transactions are the atomic units of work in a database system. This implies, in
the most general case, that concurrent transactions must be run serializably and
that a transaction be run to completion before it affects long-term system state. In
this paper, we consider the latter property. Transaction schedulers are described
which guarantee that incomplete transactions do not affect long-term system state:
this pcr’opec;ty is proven for each scheduler. Also, the interaction with serializability is
considered.




1. Introduction.

A database management system is expected to provide “atomicity” for the
transactions which use it. The system provides the illusion that the transactions are
atomic operations without internal structure. If we assume that every transaction
submitted to the system successfully completes, serializability theory is sufficient for
understanding atomicity.

Of course, real world computing is subject to failure. Beyond that, all popular
concurrency control techniques are capable of aborting transactions, i.e., causin
them to fai{ Locking policies use aborts to prevent or resolve deadlock; nonlocking
policies use it as their basic tool for providing serializability. Atomicity requires that
aborted transactions appear to have never executed. The system mustbe able to
recover from aborted transactions; this capability is called recoverability. The idea
of recoverable schedules was defined in [H83]. In arecoverable schedule, a
transaction does not commit until there is no possibility that it will be rolled back. If
the underlying hardware or software is unreliable, this must not occur until all
transactions which have written values read by the transaction have themselves
committed. |

A common solution for guaranteeing that a schedule is recoverable is to "hold
write-locks to commit point,” or more generally, to prohibit any access to a data-
item which has been changed by a transaction until the transaction commits. Such a
policy guarantees that no other transaction can ever read or overwrite a data-item
value until the previous transaction writing it has committed. This prevents any
transaction from committing before the values it has read have been committed by
the writing transaction.

This policy fits well with two-phase locking, since write-locks are held to "lock
point” anyway, but does not fit so well with timestamping protocols or even with
locking protocols which allow earlier release of locks. Also, this policy may not fit at
all if serialization is not required. We call this policy " pessimistic® and describe
three other policies which appear to be worth considering: an " optimistic” policy,
which does not block but will abort a transaction trying to commit if it has read data
written by an aborted transaction, a “realistic policy,” which blocks reads but not
writes of uncommitted data, and a "paranoid policy™ which aborts a transaction
which attempts to access uncommitted data. These four policies can be compared
with respect to their effect on concurrency, on the number of aborts, and on
preservation of membership in serializabcirity classes.

The effect on concurrency can be summarized as follows: The pessimistic
policy allows the least concurrency of the four. In contrast, the optimistic policy
does not reduce concurrency at all, the realistic policy reduces concurrency
somewhat, and the paranoid policy seems, on the basis of simulations [GM84], to
fall between realism and pessimism. This contrasts with the number of aborts a
policy introduces. The optimistic policy will cascade aborts. The pessimistic policy
may introduce many aborts due to deadlocks but it will not cascade aborts. The
paranoid policy will introduce aborts but is deadlock free. The realistic policy will
notintroduce aborts if we can assume that all reads of a transactions precede all
writes.




Finally, with respect to preservation of serializability classes, the pessimistic
and realistic policies preserve membership in the class of DSR schedules (schedules
that can be serialized by swapping non-conflicting adjacent operations). The
optimistic and paranoid policies preserve membership in a somewhat larger class of
schedules, but it do not preserve membership in SR. The realistic policy preserves
membership in SR, the class of all serializable schedules, assuming only that all reads
in a transaction precede all writes. The primary practical implication of these facts is
that the realistic scheduler appears better in all cases than the pessimistic scheduler.
Simulation and analysis comparing the various policies are ongoing. The
simulations indicate that, as expected, the optimistic scheduler performs better
than the other schedulers if few transactions abort, and, surprisingly, the paranoid
?cheduller has better performance than the pessimistic scheduler in some cases
GM84).

The recovery schedulers described here can be used in a wide variety of
systems, with many different criteria for correctness of a schedule. In particular, the
properties of recoverability and serializability have been considered separately, so
that the recoverL policies can be used even for transaction systems which do not
require serializability, such as described by several authors [L82, G81, A83].

2. Definitions and Preliminaries.

We mostly follow Hadzilacos [H83)]. However, we alter the notion of the
meaning of a database operation to reflect the intention that aborted transactions
should not affect subsequent transactions.

LetD = {x,y.z.... } be asetofdataitems. Database operations are Ry[x],
Wix), Ct, At, teT, xeD. These symbols are intended to represent, respectively, a
read of data item x by transaction t, a write of x by transaction t, a commit o
transaction t, and an abort of transaction t. We use the notation Dy[x] to mean
either Wy[x] or Ry[x], and E; to mean either A; or C;. Two operations conflictif they
are read or write operations accessing the same data item and at least one of them
is a write, or if one of them is a commit or abort.

A transaction, t, is a partially ordered set( opt, <) where
optC { Relx], Wi[x]: x ¢ D}
and satisfying the following:
i) Ag € op,iff Cy € Opy;
ii) if Ag€ opy, then vacope - Ati, a <tAy;

iil)  if Cy € opy, then vae ope-{ Ce }, a <1 Cy;
iv) any two conflicting operations are ordered by <.

Our definition of a transaction is slightly more general than is usual: for instance,
we allow a transaction to write twice to the same data item, or to read a data itemit
has previously written. We do notrequire all reads to precede all writes. Observe
that <.isnotrestricted to the pairs required by i}-iv) above; additional pairs will
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generally be of the form ( R¢[x], Wi[y] ) and should be taken to imply that the value
written to y depends on the value read from x.

Let T be a set of transactions; let OP = Ugetopt. Alog Lisa pair (OP, <)
where < is a a partial order on OP which respects the transaction orders <y. We
further require that < order each pair of conflicting operations in OP (and possibly
other pairs as well). We will write OP(L) and < when necessary to avoid ambiguity.

A transaction, t, iscommittedinalog Lif Cy € OP; tis abortedin Lif Ay € OP; t
is active if it is neither committed nor aborted. We let COM(L) denote the set of
committed transactions in L, ABO(L) the set of aborted transactionsin L, and T-AB0(L)
the set of non-aborted transactions.The projection of a log, L, onto a subset t of its
transactions, denoted by lI¢(L), is the restriction of L to Ute ropt. We will be most
interested in the projection of a log onto its committed transactions: 1T com) (L).

For mathematical simplicity we extend all logs with (fictitious) initializing and
terminating transactions tg and t¢. The initializing transaction tg writes all database
items and then commits before any other transaction begins execution. The
terminating transaction t; reads all database items after all other transactions have
committed and then commits. Thus, any read of a data item is preceded by a write
to that data item, and any write of a data item is followed by a read of that data
item. o

We define an immediately preceding write relation on OP determined by <, as
follows. For Dy[x] €OP, we write W, [x] < Dy[x] if W, [x] < D¢[x] and for every W, [x]
with W, [x] < Wy [x] < D¢[x] we have W, [x] < Ay < Di[x]. We often write W, < D¢
when the data item involved isimmaterial; however, by definition W and D¢
operate on the same item. When W, [x] < R¢[x], we say t "reads x from" u. We now
define a meaning function My, in the standard way, for data accesses:

ML (Rt) = ML (Wu)Where Wu < Rt
ML(WiIx]) = g ((M_(Re1),.... ML (Rek))

where { Ryi]| 1 < = i< =k }is the set of all reads by t with Ry<{Wy[x] and g is an
uninterpreted function. Although our meaning function isdefined in the standard
way, the relation < isnon-standard as it takes aborts into account. This contrasts
with the treatment given by Hadzilacos in [H83].

Alog L is recoverable if for every prefix L’ of L the meaning of each committed
read and write in L’ is the same as its meaning in licom’ ) (L'). The major implication
of this definition is that if we want recoverability we must not allow a transaction to
commit unless all transactions whose values it has read have previously committed.

We can also define serializable logs or logs having any other properties not
involving the commit and abort operations. We say that alog L belongs to such a
classof logs if 1T com(L) (L ) belongs to the class. The classes which will be discussed in
this paper are SR, oé& and 2PL, 413 Papadimitriou [P79], and two other classes

introduced here. A log is serial if there is no pair D¢[x], Di[y] of data accesses of
transaction t such that for some data access Dy[z] with u = t, DiIx] < Dy[z] < Dy¢ly).
Logs L and L’ are equivalent if M (R¢[x]) = M (Re[x]) for all dataitems x in the
database. Alogis serializable if it is equivalent to a serializable log. LogsLand L’
are D-equivalent (L ~ L) if Land L’ are identical up to aninterchange in < of two
non-conflicting data accesses. Define = to be the transitive closure of ~. AlogLis
D-serializable (DSR) if L = L’ for some serial log L'. We use p to denote positionin
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L; thus p (Wi [x]) = n means that W; [x] is the nth element in <. Alog Lis two-
phase locked if there exist distinct real numbers |4, ..., In and a partition of each opt
¢ OP into g¢ (the growing phase) and st (the shrinking phase) such that the
following conditionshold:

i) forall D¢ € g, pL(Dt) < ltand for all Dy € sy, It < pL{D1);

ii) for conflicting operations D¢ € gy and Dy, if pr(Dt) < p{Dy) thenly <
pu{Dy) and le <y,

iii) “for cdnflicting operations D¢ € sy and Dy, if pi(Dt) < pL{Dy) then pi(Dy) <
R TE ‘

Finally, we introduce two new serializability classes. We say that a set S of
transactions is restricted inalog Lif t € S and Wy[x] <. R¢x] impliesthatu ¢S. Alog
is restricted project serializable (RPSR) if the projection of the log onto any
restricted setis serializable. A log is project serializable (IISR) if the projection of the
log onto an arbitrary subset of the set of transactions is serializable. Clearly, ISR ¢
RPSR ¢ SR. Itisa consequence of Lemma 3.1, proved below, that DSR ¢ IISR. All
containments are proper, as the following examples show:

Alog which is SR but not RPSR: R2[x]W2[x]W1[x]W3lx]
Alog which is RPSR but not NISR: Ry[z]W1[z]R2[z]R3[x]W2[x]W3[x]W;[x]
Alog which is TSR butnot DSR: R[z]W2[z]R3[z]W3[x]W[x]

3. Recovery Schedulers.

~ The transaction system consists of a collection of transaction processes and
two online schedulers (a serializer and a recovery scheduler) which communicate
with each other by passing a log back and forth. The transactions submit operations
(Ce, A, Relx], and Wylx]) asynchronously to the serializer. The serializer’sroleis to
guarantee that the operations interleave acceptably. (We call it a serializer since
serializability is frequently required, but the model used here does not actually
require that the so-called serializer produce serializable logs. In fact, the serializer
need not have any effect, simply adding operations to its output log as they arrive.)

The serializer output is a sequence of logs. Each |oF in this output isinput for
one step of the recovery scheduler. The recovery scheduler modifiesitsinput log |;,
returns the new log (its output log O;) to the serializer, and passes a log X; which
contains a subset of the operations in O; to the system for execution. The serializer
needs to check that O; is still an acceptaBIe interleaving of the operations. It uses O;
and any new operations submitted by the transactions to ﬁroduce anotherinput

lj + 1 for the recovery scheduler. Figure 1 illustrates this behavior.

A transaction submits operations one at a time to the serializer. The recovery
scheduler will often process operations in itsinputlog in the Iog order. Operations
which have been entered in the execution log are not processed a second time, but

all other operations may be processed. The scheduler can make one of the:
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following choices for each operation it processes:put the operation in the execution
log X and the output log O immediately; defer the operation, usually adding it to
the end of O; or abort the submitting transaction.

The behavior of the transaction system is constrained by the following rules:

(1) Transactions are well-formed, that is, each transaction is a partially ordered
set of operations terminated by either a commit or an abort;

(2) O%?I('f) -{Ct: t ¢ T} iscontained in OP(O;j) and OP(0Oj) - {A¢ : t € T} is contained
in OP(j;

(3) X; is the restriction of Oj to a subset of its operations;
(4) X; is the restriction of |; , 1to asubset of its operations;

(5))()(; is 3 prefix of X; + 1, that is, if D¢[x] € Xj and Dyly] < Dily]in X+ 1 then Dyly]
€ Xj; an

(6) The serializer does not change any prefix of the log if the prefix could have
been serializer output; similarly, the recovery scheduler does not change any
prefix of the log if the prefix could have been recovery scheduler output (see
Papadimitrioy, ...).

The first rule requires only that no transaction submits an operation afterit has
terminated. The second rule requires the recovery scheduler to honor the data
accesses and aborts submitted by the serializer. Itis not allowed to make alog
recoverable by throwing any operation other than a commit away. In other words,
it can discard whole transactions but not individual operations. The second part of
the rule prohibits adding any operations other than aborts. The third through fifth
rules prohibit the serializer and the recovery scheduler from submitting an
operation for execution in one step and taking it back in the next. (The nature of
time makes such behavior hard to realize.)

We desire to limit the amount of communication between the serializer and
the recovery scheduler. If the serializer does not allow all possible interleavings,
then it may need to recheck all of O; for serializability and it can happen that the
serializer and the recovery scheduler take several steps to agree on alog. Consider,
for example, the recovery scheduler which defers writes of a transaction until it sees
a commit for the transaction, at which time it outputs the write and the commit.
Suppose the serializer uses two-phase locking. Let

I = RilxIWi[x]Wi[ylR2{y]W2[ylC1C2

Then, assuming the transactions do not submit more operations, the sequence of
logs might be:




0; =Ry[xIR2lylwW [xIW;[y]lC1WalylC2

| = Ry[x]R2[y]W1[x]Wa2ly]lCaW1[y]lC
8, —nbRDIWIEICH W,

3 =02

In contrast, a recovery scheduler which fit well with a serializer might always
produce an O; thatis a possible output of the serializer. In this case, the serializer
will not change Oj, by rule (5). Thuswe will look for positive results of the form:

Iffjisin class X of logs and the recovery scheduler has property Y then Oj
isin class X.

and negative results of the form:

No recovery scheduler having property Y produces an outputlog Ojin
class X for every ljin class X.

We define four potential "property Y"s for recovery schedulers here, three of which
are semantic and one syntactic. In all definitions we assume thatl;includes the
fictitious initial and a terminal transaction. The first property defined here allows
operations to be moved in the log, but only if the move ﬁas no effect on meaning
(in particular, the scheduler must not move W¢[x] and Ry[x] relative to each otherif
W,[x] < L Rulx]). Itdoes not allow introduction of new aborts:

A recovery scheduler is strong meaning-preserving if for every log |;
(1) OP(1;) = OP(0;)and
(2) for every Dy in OP(O}), My(Dy) = Moy(Dy).

A second property allows a recovery scheduler to introduce aborts and rearrange
operations as long as the meaning of non-aborted operations is unchanged:

A recovery scheduler is meaning-preserving if for eve?y log lj, every t not
in ABO(O;), and every Dyin opt, M| (D) = Mo,(Dy). Itis fully meaning-
pgeseng’ng ifitis meaning-preser{/ing and tHe final transaction is never
aborted.

Using a fully meaning-preserving recovery scheduler guarantees that the final
database values will be the same in O;asin lj. Any meaning-preserving scheduler
must cascade aborts if any transaction reads data which was written by a
transaction that later aborts. To avoid excessive abortment, we define two less
restrictive properties for recovery schedulers, both of which aliow the scheduler to
pick a different writer for a reader to use when the writer used in the input log |
aborts. First, we consider a property which refers only to meaning-preservation: we
allow meaning to be changed aslong as the meaning in O; is what it would have
been in |; if none of the transactions aborted by the recovery scheduler had been
presentin|;.

A recoverg scheduler is weak meaning-preserving if the final transaction
is never aborted and for every log |;, every t in T-ABO(O;), and every Dy in

opt, My:(Dy) = Mo,(Dy), where |j* = Ti1.A80(0;)(1;).




Second, we define a syntactic property which requires the overall order of
operations to remain the same. :

A recovery scheduler is order-preserving if for everylog Ij, everytand uin
T-ABO(Oj), and every pair of operationsD1and D2intand u,
respectively, if Di <y D2 then Dy <o, Dj.

We will show that the first property is too strong for any situation, the third is too
weak, and that while the second property provides some interesting information
about recovery schedulers it does not guarantee that it preserves any class of
interest, i.e., any class contained in DSR. On the other hand, the property of order-
preservation does imply preservation of DSR.

Theorem 3.1. Every strong meaning-preserving scheduler is fully meaning-
preserving and every meaning-preserving scheduler is weak meaning-preserving.

Proof: The first part of the theorem follows immediately from the definitions. To
show that a meaning-preserving scheduler is weak meaning-preserving, take any u
€ T-ABO(Oj) and Dy € opy. If Dy = Ry[x], then Moj(Ru[x]) = Wtf’x] where Wq[x] <0,
Rulx]. Meaning-preservation implies that Mo (Ry[x]) = M|(Ry[x]) = W;[x]. Any
writes Wy, such that Wy[x] <| Wy[x] <|. Ry[x] ate aborted in' |; before R,[x] and
therefore they are also aborted in Q; {since O; must honor aborts). Thusin I’ which
is the restriction of |; to the transactionsin T-ABO(O-), Wilx] <y’ Rylx] and there are
NO writes Wy, such ti"at Wq[x] <y W, [x] < Ry[x]: Therefore Wy[x] <R {x] and

My (Rulx]) = Welx] = Mo (Ry[x]). It follows immediately that all writés of unaborted
transactions also have thé same meaning in Ojand |;’". 0

Meaning-preservation and order preservation do not have any simple
relationship in general. None of the meaning-preservation propertiesimply order-
preservation, as the following example shows:

lj = Ra[x]W2[x]W [x]W3[x]C1CaC3
O = RaIXIW1[xIWxIW3IX]C1CoC3

The above transformation from |; to Oj is perfectly legitimate for any of the
meaning-preserving schedulers but it does not preserve the order of W(x] and
Wa[x]. Similarly, order-preservation does notimply either strong meaning-
preservation or meaning-preservation as the following example shows:

i = RylxIWq[xIR2IXIW,IXIC2A
& = RylxIwilxiA RaAxIWIxIC,

Although the order of the data accesses is unchanged from input to output, the
meaning of Rz[x] is W1[x] in the input and Wy[x] in the output. We note that, in the
absence of any aborts in the input, order preservation implies strong meaning-
preservation, but this is a particularly uninteresting case when we are studying
recovery schedulers. Order-preservation also implies weak meaning-preservation,
bfut we will see below that weak meaning-preservation is too weak a property to be
of interest.

We claim that the property of strong meaning-preservation is so strong that
any "interesting” class of logs contains at least one log which cannot be made




the final transaction reads W3[x] in |; and W2[x] in O;. Even though the final
transaction is a fiction, it is a reasonable fiction, since we might not want to consider
meaning to be preserved unless the final results written in the database were the
same for both logs.

Theorem 3.4. Every order-preserving recovery scheduler preserves the serializability
classes ISR and DSR.

Proof: It follows immediately from the definition that 17.AB0(0,(lj) = .117.AB0(0,)(O;)
Preservation of ISR follows from this.

In order to show that our schedulers preserve the Froperty of being DSR we
establish the following variant of Papadimitriou’s Corollary 2 [P79]:

Let S(W;), resp S (R; ), denote the set of data items written by, resp. read by,
transaction t;. Recall that p denotes position in the temporal sequencing of L; thus
pL(Wi [x]) = n means that Wj [x] is the nth elementin <. We write p_ (W;) < p (W)
if thgrle isgn x€S (W;) N'S (W;) with o (Wi [x]) <pr (Wj[x]). Thisisnot,in general, a
partial order. .

Lemma 3.1: Aloq, L, on transactions ty ,t2,..., tnis DSR iff there exist real numbers
$1.52,...5nsuch that§; < §; if any of the following hold:

a) S(W;) N S(W;) = ¢ and p (W;) < p (W) (t; writes some x after which t; also
writes x); :

b) S (Ri) NS(Wj) = ¢ and pL (Ri) < pi (W) (t; reads some x after which t; writes

x);

c)) S(Wi) NS (R;) = ¢ and pL (W;) < pr (R ) (t; writes some x after which t; reads
x). :

Proof: Suppose Lis DSR; let L’ denote a serialization of L N { Ry [x], Wy[x] : teN,
x€D} obtained by interchanging non-conflicting operations. For each transactiont;
let S; be the position in L’ of the first operation on t;'s behalf. The S;’s have the
required property because if either a), b), or ¢) holds, thenin L’, and thereforein L,
all of ti's operations occur before tj’s operations.

For the converse we show that if numbers $4,52, ..., Sn as described exist, then
all operations of each transaction can be collected into adjacentlocations by
interchanging non-conflicting operations in L N { Re(x], W¢[x] }. Suppose that for
some pair Djly], Di[z] of operations, S; < S;. Take the last operation D;[y] between
Di[x]) and DJ:‘ satisfying:

pL (Djly]) < pL(Dilz]) and §; < §;. | *)

Then we claim that Djly] does not conflict with any operation Dy[w] with

pL (Djly]) < pr (Dklw]) < pr(Dil2])

or with Dj[z] itself. ButS; <Sj means that there is no x € D such that p (D;[x]) > p,
(Dj[x]) for conflicting operations D; and D;. Therefore, D;j[z] and Djly] do not conflict.
Similarly, since Sk <'Sj < §j, Dxlw] and D;[y] do not conflict. As a result, we can

bj[y] immediately.to the right of Dj[z]

construct a D-equivalent log by moving
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Repeating this procedure for every such pair will eventually produce a serial log.
The procedure terminates because we reduce the number of pairs satisfying (*) at
each step. 0

The following immediate consequence of Lemma 3.1 will prove most useful.

Corollary: Let Lbea log; let « be any subset of the transactions of L. If Lis DSR then
Me (L) is DSR.

In particular if L is DSR and recoverable then I coM() (L) is a DSR log in which
every Rilx] has the same meaning it had in L. Thus lcom(0)(O) is DSR, that is, an
order-preserving recovery scheduler preserves serializability.

0

We conclude this discussion of meaning-preservation by showing that weak
meaning-preservation does not preserve any serializability classes of interest and
meaning-preservation does not preserve any of the "syntactically” defined classes.

Theorem 3.5. Aweak meaning-preserving recovery scheduler need not preserve SR
or RPSR. No meaning-preserving scheduler need preserve any serializability class
- contained in NISR. -

Proof: We use counterexamples to establish the theorem. First, consider the input
log:

| =WalzIRi[zIW1[2IR2[2]R3Ix)W2IxIW3IxIW1[x]C1C2C3A4
We show first that this log is RPSR and then display an output log which is not SR but
which would be permitted by some weak meaning-preserving recovery scheduler.
To see that the log is RPSR, note that the restricted sets are {1}, {3}, {1,2}, {['1,3},
and {1,2,3} since 2 reads z from 1. The projection onto 1 and 2 is serializable in the

order 21 (2 is dead). The projection onto 1 and 3is DSR (the orderis 31). The entire
log is serializable in the order 321, with 2 dead. The outputlog

Oj = Wiqlz]Ri[z]W1[2]AsWilx]AtR2(zIR3[x]W2(x]W3[x]C2C3

satisfies the weak meaning-preservation property, since the projection of |; onto 2
and 3 is equal to the projection of Oj onto 2 and 3. But this projection is

R2[z]R3[x]W2[x]W3[x]C2C3
which is notserializable.
To establish the claim that no meaning-preserving scheduler (strong, weak or
ordinary) need preserve any serializability class which is contained in ISR, consider
the serial inputlog:

lj = Ralx]W1[x]W2lx]W3(x]C1C2C3

A strong meaning-preserving scheduler could output the log:

Oj = Ri[x]W2lx]W[x]W3[x]C1C2C3
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but this log is not ISR, since the projection onto transactions 1 and 2is the
nonserializable log:

R1lx]W2[x]W([x]
(]

Thus the property of meaning-preservation does not telt us when a recovery
scheduler will preserve the classes of logs most likely to represent output from an
online serializer, that is, those logs contained in DSR.

Most of the algorithms developed in the next few sections are order-
preserving. Two of them are also meaning-preserving. We assume that each
transaction starts with a ‘begin transaction t’ message to the scheduler, which has
the effect of causing the scheduler to allocate and initialize any required data
structures.

4. Pessimism.

A pessimistic scheduler blocks all data accesses to uncommitted data. It is the
?olicy used by a 2PL system in which locks are held to commitment. It proceeds as
ollows:

Data Structures--

lock data:
for each dataitem x €D
committed [x]: Boolean, initialized to true
if not committed [x] then
owner [x]: transaction id
waiting for [x]: queue of (transaction id, operation) pairs

transaction data for each active transaction:

t.locked: set of data items
t.waiting__on: data item
global data:

waits for graph: graphwhose nodesetisT, initiélly empty.
blocked: — ‘queue of operations, initially empty
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Proof is by induction on the number of writes of data item x. If there are only two
writes to x they must be Wy, [x] and Wy[x]. By assumption Cy, appearsin O before
any "real” operation and a‘gter all the "imaginary” initializing writes.

If there are j > 2 writes to x in O let the last two be W¢[x] and Wy[x]. If the
request write (u ,x) found committed[x] = true then release__locks(t) must have
previously been executed; release locks(t) is only executed Tollowing the entering
of Cyor Atin O. If the request writé{u ,x) found committed[x] = false then (u, write)
was added to the queue waiting for [x]. In this case Wy[x] is entered in O by
release__locks(t) after entering either Cy or Atand zero or more Rvx]into O. []

Observe that the Pessimistic Scheduler preserves the temporal order of
requests on behalf of a transaction, and preserves the order of conflicting reads and
writes. .

Theorem 4.1: The Pessimistic Schedulerisa recovery~ scheduler.

Proof: ThatO = 1if! could have been an output of the Pessimistic Scheduler follows
almost immediately from Lemma 4.1. The prefix of | thatis equal to X has this
property follows from Lemma 4.1. Consider the remaining operations. These
operations are accesses to uncommitted data and will therefore be entered in the
queue blocked when the Pessimistic Scheduler first encounters them. When it has
reached the end of the log, it will copy these operations from the queue to O,
without changing their order. ThusO = I.

To show that O is recoverable, we actually prove a stronger assertion, namely
that for all reads R[x] in O, if O’ is the initial segment up to and including R¢[x], and
if lew [x] = "last committed writer of x” in O’, then either

Mo (Rilx]) = Mo'( Wicw(x)[x])
or
Mo (Rilx]) = Mo (Wqlx]).

it follows that for every prefix O’ of the output O and teCOM(O), Mo (R¢[x]) =
MIcopnion(0’) { Rtlxl ). Since the scheduler respects the order of the requests on
behalf 61 t, it also follows that Mor( Wilx]) = Mlcoon(0) Welx] ).

So let Ry[x] be in O; write O as O1 Ry[x] O2. Ri[x] can have been entered in O by
read or by relbase locks. If Ry[x] was entered by read then at the time R[x] was
entered either owner [x] = t or committed [x] = true. In the first case the preceding
write to x was by t and Mo ( R¢[x]) = Mo/(Wy[x] ); in the second case the last
preceding write, W,[x], in O’ must be followed by a Cy or an A,. By lemma 1 any
W, [x] preceding Wyl[x] is either committed or aborted. Thus Mg (Rt[x] ) =

Mo (Wicw(x)[x] ). _

If Re[x] was entered in O by release locks then R¢[x] is one of group Ry, [x] ...
Ry, [x] immediately preceded by either aT, or an Ay, which is preceded by a W,[x].
Again we see from Lemma 1 that all writes Wy[x] which precede R¢[x] are either
committed or aborted and so Mo( Ri[x]) = Mo (Wiew(x)[x]).

!




Pessimism is not meaning preserving. To illustrate this claim, consider the
input

Wix]R2[x]A1C2

In the output, transaction 2 reads from the initial transaction. Pessimism is meaning
preserving in the absence of aborts. However, as we show in the following
theorem, pessimism is order-preserving.

Theorem4.2: The pessimistic scheduler is order-preserving.

Proof: Let Dy and D2 be conflicting data accesses with Dy < D2. The Pessimistic
Scheduler processes D1 and D2 in the order they appear in the input log. Thusif Dy
is not deferred we will have Dy <o D2. If Dy is blocked, then some conflicting write
precedes Di. If the latest write is committed or aborted before D2 is processed then
D is output before D2 is processed. Otherwise D2 is queued behind D1 0

The following example shows that the Pessimistic Scheduler does not preserve
2PL. Let

I = Wi [x]R2ly]R3[x]W2[x]Waly]
and
Xj.1 = Wilx]R2ly]
Iyis a 2PL log. (Locks can be inserted as follows:
WL [x]W1[x)Ur{x]RL2[yIR2[yIRL 3[xIR3[X]U3[xJWL[x]\W2Ix) U2[x,y IWL4lyWaly].)
Thé output of the Pessimistic Scheduler corresponding to this input is
Oj = WilxIR2lylWalylR3[x]W2(x]
and
X; = Wilx]R2ly]Waly]

Ojis not 2PL. Transaction 2 must release its lock on y before Waly], butit cannot lock
x until after R3[x]. Therefore transaction 2 cannot be two-phase in alegal log.

Examination of the log with the locks will show that the Pessimistic Scheduler
should have blocked W4ly], because transaction 2 still held a read lock ony. If the
Pessimistic Scheduler operates on locks and unlocks instead of reads and writes,
however, we find that it then enforces the policy of holding write-locks to commit
point. The required changes to the Pessimistic Scheduler are summarized here:

i) Any operation requested by a blocked transaction is deferred and appended
to the end of the blocked queue;

ii) Anoperation requested by a transaction which is notblocked is dealt with
as follows:




a) Reads, writes, and unlocks of read locks are output immediately ;

b) Unlocks of write locks are deferred and the requesting transaction is
blocked;

¢) Read and write locks of locked data items are deferred and the
requesting transaction is blocked; read and write locks of unlocked data
are outputimmediately;

d) Aborts and commits are output immediately after all the unlocks of
write locks held by the transaction being terminated. After the commit
or abort has been output, subsequentlocks on the newlgunlocked data
items are output, the corresponding transactions are unblocked, and
execution of the other operations in the blocked queue is reconsidered.

This example illustrates that the serializer and the recovery scheduler may not “fit”
together well unless they use they are scheduling the same operations. Thusa
recovery scheduler which fits well with all serialization policies is unlikely.
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5. Optimism

The Pessimistic Scheduler enforces recoverability by severely limitin
concurrency. If there is little likelihood of spontaneous aborts by transactions, the
reads and writes can be allowed as they come in as long as commits are reordered by
the scheduler to enforce recoverability.

Optimism. Allow arbitrary reads and writes; hold commits until all values read are
committed. Abort transactions which read data which is later aborted.

Data Structures --

local wait data:
foreach x ¢D
committed [x]: Boolean, initialized to true
pending__writers [x]: queue of transactions, initially nil

transaction data:
for each active transaction a record

t.commit requested: Boolean, initialized to false

t.read from: list of transactions, initially nil

t.wrote to: list of transactions, initially nil

titems “written: list of database items, initially nil
global data:

waits for graph: graph with node setT, initially empty edge set
abort_queue: queue of transactions, initially empty




Procedures -- in response to database requests the Optimistic Scheduler takes the
following actions; grocessing of abortsis deferred until all other operations have
been processed. After all operationsin the log have been processed,
process__aborts is called:

read(t,x) =
(enter R¢[x] in X,0
if not committed [x]
then add last(pending writers [x]) to t.read from
add t to last(pending__writers [x]).wroté__to)

write (t,x) =
. (enter W¢[x] in X,0
add x to t.items written
committed [x] <Talse
. . ..add tto pending_. writers [x])

commit(t) =
(if t.read  from = nil
then putton commit list
-commit (commiflist) (* see below *). . ...... .
else (* someone tread from is not yet committed *)
t.commit requested « true
foreach U ¢t.read from
add < t,u >To waits__for graph)

commit (commit list) =
(whilecommit list = nil
t «first element of commit list
remove t from commit list—
enter Cion X,0 -
foreach u ¢ t.wrote to
remove t fromu.read from
if u.commit requested
then [fmov'e_< u,t > fromwaits for graph
ifu.read from = nil - -
then add u to commit list
for each x €t.items written —
ift = last(pending writers [x])
then committed [x]«true
delete t from pending writers [x]
remove t from waits__for__graph)

abort (t) =
(putton abort__queue)

process aborts(abort queue) =
— (while abort™queue = nil _
t «firstitem on abort queue
remove t from abort "queue
enter Aton$S -
for each u € t.wrote__to
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if u ¢abort queue
then add uto abort queue
remove < u, t > from waits_ for_ graph
for each u et.read from -
remove t from u.wrote to
remove < u,t > fromwaits for graph
for each x ¢t.items written - =
remove t froM pending writers [x]
if pending writers [x] =nil
then committed [x] = true
remove t from waits__for__graph)

If a cycle occurs in the waits for graph the transactions may be all committed
provided a means exists for atomically committing multiple transactions. We
assume such a means exists.

Observe that the Optimistic Scheduler outputs reads and writes in the same
order in which they are received. Also, if transactions may continue to submit
requests after they have been aborted by the scheduler some means must be
provided to ignore later requests.

Theorem 5.1: The Optimistic Scheduler is a recovery scheduler.

Proof: A transaction, t, is onlnallowed to commitift.read from = nil, that s, all
data read by t has previously been committed. Thus O isrécoverable.

Let | be a log which could have been output from the optimistic scheduler.
Then all aborts appear at the end of the Io? and no commitis requested by a
transaction until all of the data it has read from has been committed. Thus each
commit will be output immediately. The aborts will be enqueued in the order they
are encountered and then processed in exactly that order. No new aborts will need
to be added to the queue since | could have been output; therefore exactly that set
of aborts is processed. 0

Theorem 5.2: The Optimistic Scheduler is order preserving and meaning-
preserving but not fully meaning-preserving.

Proof. Reads and writes are outputimmediately by the Optimistic Scheduler.
Therefore it is order-preserving. To see thatitis meaning-preserving, letR¢[x] be
any read operation of a transaction tin T - ABO(O). Suppose that W[x] < Rq[x].
Then transaction uis also in T - ABO(O). This is true because, at the time t tries to
read x, either u has committed or data item x is still uncommitted, putting tin
v.read from for some transaction v. If v 2 u then there mustbe an abortof vin|
and therefore also in O, so that t would be aborted by process aborts. Thereforev
= u. If u aborted during process__aborts, then t wouﬁ) also have been aborted.

hel To see that the Optimistic Scheduler is not fully meaning-preserving, consider
thelog:

i =RixIWilx]A1R¢x]Cs

The abort of transaction 1is postponed to the end of the log, forcing an abort of
the final transaction. S .
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f 1]

The importance of postponing processing of aborts until the end of the log is
illustrated by the following log:

i = Rilx]WiIxIR2[x]W2lx]C2A1R3(x]W3(x]

If aborts were processed immediately, the Optimistic Scheduler would abort
transactions 1 and 2 but not 3. The meaning of R3[x] would then be changed from
W3 [x] to Wolx].

Let RW = {Re[x], WiIx]|x ¢ Dand t e T}
Theorem 5.3: Optimism has the property that
ficom(o)(O) N RW = 1icom(o)(l) N RW

and therefore p;esewes 2PL.

Proof: Reads and writes are output immediately and unchanged.




-21-

6. Realism

Although the Optimistic Scheduler is "correct” it has the potentially
troublesome property that aborts can cascade. The problem s caused by
undisciplined reading of uncommitted data. In our Realistic Scheduler we hold up
reads until committed values are available. Since we wish not to postpone
overwrites we must either tolerate the possibility of starvation or keep a list of
values for overwritten data items. We choose to do the latter, so that the realistic
scheduler requires multiple versions of the data items.

Whenever a read is output (in Oj or X;), the data item is subscripted with the
transaction whose write it should read. Thus Ri[x,] means that transaction t reads
data item x from transaction u. We require that W [x] precede R¢[x,] in the log. To
make this work correctly, we alter the meaning function so that M (Re[x.]) = Wlx].
As a result, even though reads are blocked, it will not be necessary to change their
position in O}, although of course they will appear as *late reads” in X;. Consider,
for example, the input log:

i = Rilx]WilxIWalylR2[x]R3ly]W2ly]W3lx]

Pessimism would block W2[y] and W3[x] until transaction 1 has been committed, but
the realistic scheduler allows it to proceed. The output log corresponding to this is:

O = RilxolW1lx]WilylR2[x1]R3ly1]W2lylW3lx]

and the execution log is:
X; = RilxolWilx]W1ly]W2lylWslx]

Rz2[x1] and R3[y1] cannot be output yet because the most recent write could be
either committed or aborted. |f transaction 1 commits, then the recovery scheduler
outputs C1R2[x1]R3[y1] in the execution log. If it aborts, either because the serializer
output an abort or because the recovery scheduler found a deadlock and chose to
abort transaction 1, the recovery scheduler outputs A1R2[xg]R3(yo] in the execution
log. In no case do we change the order of data operations from|; to O;.
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Realism -- Allow arbitrary writes; hold reads until committed data is available.

Data Structures --

local wait data:
for all xeD
ops[x}:doubly linked list of triples (op,t, status)
whereop ¢ {RW} .
status ¢ {pending, committed}

initialized to ((W, to, committed))

transaction data:
for each active transaction
t.writes: set of data items, initially nil
t.waiting__on:dataitem, initially nil

global data:
waits__for._graph: graph with node set T, initially empty edge set




Procedures - in response to database requests the Realistic Scheduler takes the
following actions: :

read (t,x) = ]

(if last(ops [x]) = (W,u, committed) _

then enter R¢x, ] on X,0

else if last(ops [x]) = (W, u, pending) (* last unaborted write is pending *)

then enter R¢[x,] on O

add (R,t, pending) to ops [x]
twaiting on «x
add < t,u> towaits for graph where (W,u, pending) is
the last write triple on_ops‘l')i?)

write (t,x) =
(enter Wy[x] on X,0
add (W,t, pending) to ops [x]
add x to t.writes)

commit (t) =
(enterCyon X,0
for each xet.writes
in ops [x] change (W,t, pending) to (W,t, committed)
cleanup (x, (W,t, committed)) (* see below *)
remove t from waits_for__graph)

cleanup (x, (W,t, committed)) =

(while (R,u, pending) is next item after (W,t, committed) on ops [x]
enter Ry[x¢] on X
delete (R,u, pendin?) from ops[x]
u.waiting oneni
remove <u,t > fromwaits for graph

if next item on ops [x] is (W, v, committed) then
delete (W,t, committed) from ops [x]

if previous item on ops [x] is (W,v, committed) then
delete (W, v, committed) from ops [x])

abort (t) =
(enter Aion X,0
for each xet.writes
delete (W, t, pending) from ops [x]
if preceding item in ops [x] = (W,u, committed)
then cleanup (x, (W,u, committed))
remove t from waits__for__graph)

deadlock recovery =
“{while there isa cycle inwaits for graph
choose t on a cycle - =
forx = t.waiting on
(e’nlter R&xu on)é e ' ] )
elete (R,t, pending) from ops [x
abort (1) pending P
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The pairs R¢[x,] place in the execution log by the Realistic Scheduler are
intended to instruct the database manager to return to t the value of x written by u;
this instruction is issued only after u has committed and x may have been
overwritten many times in the interval between the requests read(t,x) and
commit(u).

To examine the meaning-preserving and order-preserving properties of the
Realistic Scheduler, we construct an orderon a singr:e-version log which gives the
same meaning to each non-aborted operation as the logs O and X. If one tries to
construct an order on all the operations, the simultaneous restrictions of respecting
the internal order of the transactions and reordering reads so that only eventually
committed data is read leads to cycles. Fortunately, such cycles must involve
transactions which are aborted. Since we wish to eliminate the effects of aborted
transactions anyway, we will only construct our order on IicoM(o) O.

Definition: Let C(O) = Nicom(o) (O); let O = C(O) - { Relxy] }. Define <’ on C(O) by
~a)forallt <’ Jt= <4

b) <’| 6x 0 = < rr| 6x 6, where < rris the restriction of the orderon O to
conflicting operations :

¢) for each Ry[x,] € C(O)
i) Wylx] <’ Relxy]

i) foreach Wy[x] €C(O) with Wy[x] < W,[x], Rilxy] <’ Wyx]. That s,
Ri[xy] falls ‘logically’ between Wy[x] and any subsequent committed
writes to x

|||) for each CV € C(O) let CV <’ Rt[Xu] if CV <} Rt[X] and let Rthu] <’ CV if
Relx] <1 Cy |

Let <o be the reflexive and transitive closure of <’.
Lemma 6.1: If a; <’ az then aj <; a3.

Proof: If neither of ay and a2 is a read then we let a; <’ a using condition b. above,
thatis a; <,az. If both a1 and a; are reads then they must both ge from the same
transaction and thus ay <’ aziffay <taziffa; < a;. Condition c. iii) correctly orders
reads and commits so it only remains to verify that reads and writes are ordered
correctly. But this follows from the way read(t,x) and cleanup(x, (W,t, committed))
interact with ops[x]. If cleanup emits Re[xy], W [x] must precede R¢[x] in ops[x] and
must therefore have preceded itin the input. Further any W, [x] which falls between
W,[x] and R¢[x] must have aborted before R[x,] was emitted.

' 1]

Corollary: <qis a partial order on C(O) and < C(0), <o > isalog.
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Theorem 6.1: The Realisitic Scheduler is a recovery scheduler.

Proof: By reasoning similar to that of Lemma 4.1 shows thatbetween any write
operation in X and a subsequent read, there must be either a commit or an abort of
the writing transaction. Therefore the log X is recoverable.

If the inputlog | could have been output from the Realisitic Scheduler, then
1#@$%¢¢

Theorem 6.2: Realism is order-preserving.

Proof: This follows immediately from Lemma 6.1.

7. Paranoia

The Paranoid Scheduler uses abort as its only tool for maintainin
recoverability. It operates much like Pessimism except instead of blocking it aborts
the transaction. (A variant similar to Realism in which only read operations may
cause aborts is possible.) Paranoia is the simplest of all the schedulers; to our
surprise, ongoing simulations show it occasionally to have better throughput than
Pessimism [GM84].

garanoia -- Abort a transaction which attempts to read or overwrite uncommitted
ata.

Data Structures --
local lock data:

for each xeD
committed [x]: Boolean, initialized to true

transaction data:
for each active transaction
t.locked: set of data items, initialized to empty
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Procedures -- in response to database requests the Paranoid Scheduler takes the
following actions:

read (t,x) = :
(enter R¢Ix] in X,0

if not committed [x] and x ¢ t.locked
then abort (t)) (* see below *)

write (t,x) =
(enter W¢lx] in X,0
if committed [x] or xet.locked
then committed [x]«false
t.locked «t.locked U {x}
else abort (t))

abort(t) = »
(foreachD,¢O
enter D¢in X,0
enter AyonO
for each xet.locked
committed [x]«true)

commit (t) =
(enterCionO
for each xe¢t.locked
committed [x]«true)

Theorem 7.1: The Paranoid Scheduler is a recovery scheduler.

Proof: For all Ry[x] ¢OP(O) if Wy, [x] <o R¢[x] then Cy <o Rix]. Therefore O and X are
recoverable. If the inputlog | could have been proé’uced by the Paranoid Scheduler,
then there is no attempt to read or write uncommitted data and therefore no extra
aborts will be inserted. Since this is the orly change that the scheduler can make,
there will be no changes.

0

Theorem 7.2: The Paranoid Scheduleris meaning-preserving but not fully
meaning-preserving.

Proof: Ann read which is output read from data in | which was already committed in
| and which was also committed in O. Therefore the meaning of reads is unchanged
and the Paranoid Scheduler is meaning-preserving. However, the final transaction
may be aborted, for example in the following inputlog:

i = Rilx]Wi{x]Re[x]C¢

In fact, any time there are uncommitted transactionsin the inputlog the final
transaction is aborted.

Since the Paranoid Scheduler is non-blocking and non-deferring Nicgmio) (O) =
com(o) (1) and hence ,




Theorem 7.3: The paranoid scheduler is order-preserving and preserves 2PL.
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Introduction

Nested transactions as described by Moss in [3] were motivated in part by the hope of
improving system reliability by insulating an action from failure of a nested subaction. However,
maintaining atomicity of nested transactions may require blocking access to some objects for long
periods of time. In this paper, we consider the possibility of committing a nested subaction of a
transaction immediately on its completion. It is a surprising and very useful result that this
technique can be considered correct if there is an inverse action to the action being committed. This is
a weak sense of correctness. That is, the stote at the level of abstraction of the top-level actions can be
guaranteed, under certain conditions, to be the same as would be reached by running only the top-
level committed actions. However, the final state actually reached may differ, at the lowest level,
from the final state that would result from running only the top-level committed actions. We also
develop the conditions on the interleaving of actions and on the inverse actions which guarantee this
type of correctness. This work extends the wok of Beeri et al. in [2] on serializing nested transactions
in that the additional concurrency gained using their methods is preserved rather than reduced by

the recovery technique.

Some frequently-cited nested actions which cause undesirable and apparently unnecessary
blocking include actions which allocate pages and actions which manipulate indexes, such as B-trees.
(Many other examples can be found in[1].) A pessimistic recovery scheme would require blocking
allocation of new pages until a transaction which has been allocated a page has been committed. Of
course, entirely different pages could be legitimately allocated, but because both transactions
manipulate the same object--the page table--one of them is blocked. (We recognize that it is always
possible to bypass a recovery scheme and use clever coding of the page allocation algorithms instead,

but we are concerned here with automatic recovery schemes.)

A similar problem, which we will use an an example throughout the paper, arises when actions
manipulate indexes. In Figure 1 transaction Ty is adding keys X and Y to the index. Transaction
T9, meanwhile, is interleaved in time with T, and trying to add key Z to the same index. Suppose
that the index is a B-tree and that adding key X has required that several nodes be split. Some time
after key X hasbeen added, let us suppose that Ty will be aborted--due to software failure,
concurrency control deadlock, or act of God. When Ty aborts, we would invalidate T2 if we restored
before-images of pages. It appears that we must either block T2 when it tries to Add(Z,B) or risk a
cascaded abort. But instead, as Figure 1 shows, we can simply delete the keys added by Tj.

In this paper, we generalize this solution to arbitrary actions and address some of the issues
raised, such as state-dependence of the above undo operations. (For example, if X was already in the

database when add(X,B) was performed, then the undo is a no-op rather than a delete(X,B)). The

major contributions of the work are the technique of committing individual actions immediately,




instead of waiting for the top-level commit, the characterization of allowable interleavings of nested
transactions to allow each incomplete action to be either committed or aborted, and characterization
of conditions allowing the undos to be safely applied. For an action to be committed immediately,
there must be an undo which will restore the prior state for any result state. (We assume that the
“undos” are coded along with the "dos”. Obviously, it may not be practical or even possible to supply
such undos for all actions. The issue of how to determine which actions should be undo-able is left for

future work:)

Basic Definitions

We assume a system partitioned into a finite number of levels of abstraction, 0,1,2, ..., n,

where 0 isthe lowest level, corresponding to the intuitive notion of primitive objects and actions.
The approach to levels of abstraction is based loosely on the work of Schaffert [4]. Unlike Schaffert,
we do not allow creation of new objects; instead we assume an infinite supply of objects from which we

pick "new” ones as necessary.

Ateach level i there is a set of abstract states S;, a collection A; of actions and a collection O;

of objects. Each object has a state, given by the mapping

wi S X 0~ Obj(Si)
where Obj(S;) is the union over all 0€ O; of the possible states of o:

Obj(S)) = Uoco; States(o)
Conversely, we assume that the state at a level of abstraction is uniquely determined by the states of
the objects at that level. System states are identical if they differ only in the identification of objects.
For example, a consistent renumbering of disk blocks and references to disk blocks would not change

the state.

Anaction a€A; defines a partial function f; from S; to S; Anaction a touches an object o if

it either changes it or looks at it, that is,either oi(s,0) = 0i(f,(s),0) or for some s, t, if p=o then
os,p) = oi(t,p), but f,(s)=f,(t).The value of the function f; is determined by the states of the objects
touched by a.

We may compose two actions a and b in A; by applying first one and then the other. Thus
£, - fy (s)=fi, (£, (s)). Actions a and b conflict if there is some state s suchthat f; . f, (s) = £}, - f, (s).
Otherwise they commute. If a and b conflict, they must both touch some object 0. The converse does
not necessarily hold, as illustrated by the operations of increment and decrement on the set of positive

and negative integers.

Abstract states at adjacent levels (i-1) and i are related by a representation mapping

pi Si_1 = S; which is a partial function from S;; onto S; Thus somestatesin S;.; may not




_ correspond to valid abstract states, but every state in S; is represented by some state of S; ;. Also,

several lower level states may correspond to a single higher level state. By composing representation

mappings pj+1ePj+2°... op; We get a representation mapping from §; to S;

An action trace is a set of actions together with a partial order which orders all pairs of
conflicting actions. Each action atlevel i>0 is implemented in terms of nested subactions at level i
and below. For eachaction a at level i (i=1) we may imagine an associated program text, which

determines the action trace to be used when the action is executed in state s. For a correct

_implementation, executing the actions in the action trace on any state t€Sg which represents state

s€8; should result in a state u€S; which represents fy(s).

The program text also specifies terminating actions to be used when execution of the action is
terminated, either because it is complete or because it cannot be completed. Ifit is complete, the

action is called a commit action. If it cannot be completed, the action is called an abort action.

Commit actions conflict with all other actions. Abort actions do not conflict with any other actions.
The trace of an abort includes an “inverse” action, called an "undo”, to reverse the effect of each
committed nested subaction of the action being aborted. The partial order relating the undos will be
the reverse of the order of the actions being undone. Thus undos a-! and b-1 of conflicting actions a
and b, with a<b, will be ordered b1 < a-l. The set of action traces implementing a given action will
be called Imp(a,s). This set includes the complete trace terminated by a commit action and a set of

aborted traces each of which is a prefix of the complete trace terminated by an abort action.

Todescribe the effect of running an action trace, we introduce a special kind of action trace,
called an action tree, in which a set of actions is structured as a tree and conflicting actions are
ordered by a partial order. The tree structure reflects the nesting of actions and the partial order

reflects the order of execution. An action tree is thus an action trace with additional structure.

We say that an action in an action tree has been committed if it has a child which is a commit
action. We say that an action in an action tree has been aborted if it has a committed child which is
an abort action. Otherwise, the action is incomplete. Since we waﬁt actions to be insulated from
Tailures of their children, an action may have aborted children without being aborted itself. An abort
action may even be aborted. Similarly, aborted actions may have committed children (all of which
must be undone by the abort action, which is the last child of the aborted action). In Figure 2, T; has
nested subactions A and B. A is committed, B isaborted, and Ty is incomplete. At this point, T

could be either committed by adding a commit subaction, or aborted by adding an abort subaction.

Given an action and an initial state, we can describe execution of the action using an action

tree. The root of the tree is the original action. Its children are the actions belonging to some action

trace in Imp(a,s), ordered as in the trace. This process continues recursively down to the primitive



(level 0) actions to define the entire tree. The partial order in each action trace is retained in the tree
and if actions are ordered then their descendants inherit the order, i.e., if parent(a) < parent (b) then
a < b. There may be additional conflicting actions which are not ordered; the partial order is

extended arbitrarily to include these. The set of action trees obtained in this manner is called Ex(a,s).

The effect of executing an action tree T is determined by the leaves. If the initial state is s€Sp
then the result state is determined by applying the composition of the functions défined by the leaves
in an order consistent with the partial order. Denote the funclion so defined by ‘0. We say that

actions trees T and U are equivalent if f1/0Xs) =fy'0Xs) for all states s.

We now consider when an action tree defines a mapping at level i. Define an equivalence
relation =; on statesof Sg where s =;t if pjo...-pi(s)=pj.... . pi(t). Wesay that fT‘o’ isalevel i
homomorphism if ff'® (s) =; ft? (t) for s =;t. In this case, there is a well-defined function
fr'?:S; > S; where ' (p1o... .pi(s)=pye... o pilf1? (s)). If a isan action at level i (a€A;) and T is

an action tree which implements a instate s, then T is a correct implementation if and only if the

(0)

function f7'%’ is a level i homohorphism and fr' (s)=a (s).

Inverse Actions

Let ' — £ be a function mapping aset T onto itself. Define range(f)={f(x)| x€Z}. f is
surjective if range(f)=Z. f is injective if whenever x, y€Z and f(x)=f(y) then x=y. f is bijective if

it is both surjective and injective.

LemmaA. If :X—% and g:Z—Z arebijective then they have inverses (! and g™) and if f

and g commute with each other then f and g1, g and f!, and f1 and g-! also commute.

We will call actions which are one-to-one (injective) invertible actions. The inverse of action a is a™l.

An action trace consisting entirely of invertible surjective actions can be run backwards almost
as easily as forward. The following lemma characterizes the degree of freedom we are allowed in
rolling back. First, we need a few definitions. A prefix P of an action trace T is an action trace
containing some set of actions of T and having the property thatif b € Pand a < b for some a € T
which conflicts with b, then a € P. The partial order on the prefix is the restriction of the partial

order on the original trace to the actions in the prefix.

A set X ofactionsof a trace T is final in the partial order of T if T-X is a prefix of T. If X is
ordered by the restriction to X of the partial order on T, then X is also an action trace. The inverse
trace X1 istheset {a'l|a€X}, together with the partial order <, in which  a'l1<; bl if and
only if b<a. Thesubtrace X of T is said to be reversible if the action trace TUX™? ordered by

< U <; U{(t,x1)|t€T and x€X} is equivalent to the action trace T-X.




Lemma B. If T is an action trace consisting entirely of invertible surjective actions then a

subtrace X of T isreversible if and only if it is final in the partial order of T.

Thus to roll an action back we need only run its inverse and the inverses of all subsequent conflicting

actions. Alternatively, we can avoid "cascading” rollback by blocking conflicting actions.

If actions do not define bijective functions, however, apparently non-conflicting actions on the
same object may not be so easily reversible. Consider two successive adds of the same key to an index
which does not contain the key initially. The first add action adds the key; its inverse deletes it. The
second add action is identity on any state in which the tree already contains the key; its inverse is also
the identity. The add actions commute, so the singleton set consisting of either add by itself is final in
an action trace. However, the singleton set consisting of the first add, by itself, is not reversible, since

running the inverse trace would remove the key.

In general, consider two non-conflicting invertible actions a and b. Take any state

sfrange(a) such that b(s)€range(a). Then

a’l.b(s)=b(a"l(s)) is undefined
but _
b.a™1(s)=a"1 (b(s)) is defined.

Evenif we extend a1 to be the identity where it is undefined, it is still true that
a7l (b(s)) =z b(a™1 (s)) = b(s),
So that a1 and b still conflict.

The conditions we require to guarantee that the inverses commute with the actions and each
other are: (1) s€range(a) ¢ b(s)€range(a) for all s, and (2) s€dom(a) ¢ b(s)€dom(a) for all s.
Actually, we are only interested in these conditions when a and b commute, and in this case we
already have halfof them, because if s€range(b) then a(s) =a(b(t)) =b(a(t))€range(b) and if
b(s)¢dom(a) then a(b(s))=Dbfa(s)) is defined, so that s€dom(a). However, the converses do not
neécssarily hold. Consider b(i)=i+1 for integers i intheset {0,...,n}. b(0)€érange(b) but
0¢range(b), so that b does not respect itself. Infact, no action respects itself if it is defined on a value
outside its range (this applies to allocate, free, and adding a key to an index). We say that action a
respects action b if a(s)€range(b)=>s€range(b) and s€dom(b) = a(s)€dom(b). We say that actions

a and b r-commute if a respects b, b respects a, and a.b=b.a. Otherwise, a and b r-conflict.
Lemma C. [factions a and b r-conflict, then they touch some common object.

This lemma follows from the observation that if they don’t touch any common object, then clearly

they commute, and whenever a(s) = b(t), a state u can be constructed in which all objects touched by

the action a




have the same state as they do in s and objects touched by the action b have the same state as they

doin t. But then s =b(u), so that aand b commute and respect each other, i.e., they r-commute.

We assume that actions which touch the same object will be ordered when an action tree is
actually executed (by the order in which they touch the object), whether or not they are ordered in the
partial order of the action tree. We call the execution order the r-order and say that a set X is r-final
in an action trace T if T-X is a prefix of T in the r-order of T. Because abort actions are the last
actions in tﬁe implementation of an action and do not conflict with any other action, a set consisting

only of abort actions is always r-final.

Lemma D. If T is an action trace consisting entirely of invertible actions then a subtrace X of

T is reversible if and only if it is r-final in the r-orderof T.

We now consider non-invertible actions. The standard way of dealing with such actionsina
DBMS is to log enough information (e.g., the prior state or some part of it) to make the action one-to-
one. Thus the modified action on the augmented state is invertible. Suppose that we have non-
invertible non-conflicting actions a and b. Augmenting the state by recording the prior state will

not affect their mutual respect. We will henceforth assume that all actions are invertible.

An undo may be cither state-based, such as restoring the before image of the pages involved, or
general, such as a delete of a key which has been added to a B-tree. In the latter case, the undo applies
to any state in the range of the add. Thus any action which r-commutes with the add may proceed

without causing a dependency of its parent action on the parent of the add.

Aborting Actions

A completed invertible action a can be undone by running the inverse action, as long as every
action which has run subsequently r-commutes witha. If, however, an r-conflicting action has run,

ity effects mus* be reversed before the original action can be undone.

Ifan action has begun but not completed, then it is possible that some but not all of the nested
subactions in the action trace have been run. In this case the nested "abort” action consists of an undo
for each nested subaction in the trace of the original action, with the order the reverse of the forward

actions. That is, if a<b in the trace, then b7l<a™ inthe trace of the abort.

If no subsequent actions r-conflicted with the nested subactions in the trace of an action, then
as a consequence of Lemma D the effect of the trace with the abort will be as if neither the action nor
the abort had run. We now consider conditions on a trace that allow us to either commit or abort any
incomplete action, knowing that the state achieved by the trace is the same as would have been

achieved if only the committed actions had run. First, we define wo partial orders on actions, one

reflecting the order in which they are executed and the other reflceting dependencies.




An action a immediately precedes an action b inatrace if a and b r-conflict; a<b inthe

r-order of the trace; and there is no action ¢ which r-conflicts with both a and b such that a<c<b
inthe r-order. An action a precedes b ifthere is a sequence ay, ... a, of actions such that a=a;,

b=a,, and a; immediately precedes a;+;. The relation “precedes” is a partial order on actions.

An action b depends on an action a in an action tree if there is a child action ¢ of a and
anolher child: ction d of b such that ¢ immediately precedes d. This definition generalizes the
notion of a dependency between transactions T} and Ty where Tz dependson T if Ty reads a data-
item written by Ty. We will say that an action tree is r-serializable if the relation which is the
closure of "depends on” is a partial order. If this is the case, we thendenote this partial order <p.
This a much weaker condition than serializability, saying only that <p separates (in the sense of
[2]) any two-level forest consisting of a set of actions from the action tree and their children. If this is
the case, we then denote this partial order <p. Note that if a and b are aborted actions and b<pa

then <p alsoorders abort(a) and abort(b). We assume henceforth that all action trees are r-

serializable.

An action tree is revokable if every abort of an action follows (in <p) the abort of any action
which depends on the action. Suppose that a trace is revokable. Then the following proposition
states that the set of aborted actions is r-final in the action trace, and therefore reversible. (That the

undos have been performed in such a way as to reverse the actions will also have to be verified.)
Proposition 1. The set of aborted actions is r-final in‘a revokable action trace.

A trace is recoverable if every commit of an action precedes (in <p) the commit of any action
which depends on it. Suppose that a trace is recoverable. Then the following proposition states that

any uncommitted actions can be aborted without requiring the abort of any committed actions.
Proposition 2. The set of uncommitted actions is r-final in a recoverable action trace.

In an action trace which is recoverable, uncommitted actions can be either committed or aborted. In

an action trace which is revokable, the set of aborted actions is a set whose effects can be reversed.

Proposition 3. The action trace containing just the committed actions of an action tree T is an
action forest F. Define an action a whose normal implementation is the set of roots of F.

Then there is an action trace U€Ex(a,s) whose projection onto U={a} is equal to F.

Proof: This follows because all leaves of F are committed actions, so that all actions are

initiated in the same state in F asin T and therefore the implementation is the same.[]

There are a number of things that we would like to say but cannot say about the state after

aborting all incomplete actions. For example, we would like to say that the result state is the same as




it would be if we ran only the committed top-level actions. We would also like to say that the state at
initiation of a committed action depends only on the previously committed actions. Neither of these is

quite true.

Consider the example in Figure 1. The statein Sy depends not only on the committed top-level
action Ty but also on the committed actions Add(X,B), Add(Y,B), Delete(Y,B), and Delete(X,B).

The effect on the index and the actual pages allocated may be different for the sequence:
Add(W,B) Add(Z,B)

than for the sequence:
Add(W,B) Add(X,B) Add(Z,B) Add(Y,B) Delete(Y,B) Delete(X,B)

The following theorem says, however, that at the highest level of abstraction the state resulting is the
same as the state resulting from running only the top-level actions. We interpret a in the theorem as
an action which initiates the actual top-level actions. In fact, we can take any set of actions at a
single level of abstraction in the tree, and considering the these as the top-level actions, we find that

the theorem still applies.

Recovery Theorem. Ifan action tree T=Ex(a,s) for some action a is recoverable and

revokable and if the children of a are all at a single level of abstraction i then the action trace
S expanding all of the committed actions in T has fs'™(s)=fy“(s) for some action trace U

which expands only the committed children of a.

Proof. Consider the action forest F which is the set of trees whose roots are the committed
actions. This includes committed top-level actions as well as some actions which are committed
children of aborted actions. We need to verify that these children of aborted actions have no

effect on the final state.

By the definition of revokable, an aborted action is aborted only after all actions which depend
on it.Consider some last aborted action a in <p (<p isacyclic). Any action b which occurs
between a and abort(a) inthe execution order will see the effect of a on the state and
therefore its action trace may be different from the action trace generated if it had occurred
before a or after abort(a). However, since all of its children r-commute with all children of a,
we see that we can move the children either before a or after abort(a) and the result state

should be the same, although the expansion of the children may be different.

Repeating this procedure recursively, we bring together a and abort(a) in the trace. The

result is equivalent to a trace in which these have been deleted. After repeating this for all

aborted actions, we have only the top-level actions left (possibly with entirely different

traces).[]




Conclusions

The standard criterion for correctness of transactions is atomicity, that is, only the effects of
complete transactions are visible to other transactions. The recovery theorem states that
transactions are atomic at the highest level of abstraction if the actions trees are r-serializable,
recoverable, and revokable. However, this is not true at lower levels of abstraction. Lower-level
actions may be run to completion and even committed even though the top-level action requesting
them has been aborted. But the properties mentioned above do ensure that any effects which could be

visible at the highest level are eventually reversed.

We argue that, from the application point of view, the only atomicity that is appropriate as a
criterion of correctness is atomieity at the highest level of abstraction. The lower-level states are
only used to implement the top-level state, thus we should be satisfied as long as the state reached by
excecuting an action tree is equal to the state that would have been reached had only the top-level
committed actions been executed. Furthermore, to require atomicity at lower levels of abstraction
seems far too strong, since a nested transaction may be sufficiently time-consuming that its lack of

atomicity may become apparent in any case.

Other issues to be investigated in future work include investigation of the impact of immediate
commitment on the number of log operations and the size of the log required to recover from
transaction aborts; techniques for recovering from system crashes as well as from transaction aborts;
and special-case techniques for undoing actions which conflict with later actions, without having to

undo the later actions.
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Introduction.

A database transaction is usually required to have an "all-or-none” property, that is, either all
of its changes to the database are installed in the database or none of them are. This property can be
violated by a hardware or software failure occurring in the middle of the execution of a transaction or
even by a decision to abort a transaction to avoid an inconsistent (non-serializable) schedule. In such
a situation, we must recover from the failure by restoring the database to a state in which the failed
transaction never executed. The idea of recoverable schedules was defined in [H83]. In a recoverable
schedule, a transaction does not commit until there is no possibility that it will be rolled back. If the
underlying hardware or software is unreliable, this must not occur until all transactions which have

written values read by the transaction have themselves committed .

The standard solution for guaranteeing that a schedule is recoverable is to “hold write-locks to
commit point,” or more generally, to prohibit any access to a data-item which has been changed by a
transaction until the transaction commits. Such a policy guarantees that no other transaction can
ever read or write a data-item value until the last transaction writing it has committed. This
prevents any transaction from committing before values it has read have been committed by the

writing transaction(s).

This policy fits well with two-phase locking, since write-locks are held to “lock point” anyway,
but does not fit so well with timestamping protocols or even with locking protocols which allow earlier
release of locks. Also, this policy may not fit at all if serialization is not required. We call this policy
the “pessimistic” policy and describe two other'policies--the."optimistic” policy, which does not block
but will abort a transaction trying to commit if it has read data written by an aborted transaction--
and the "realistic policy,” which blocks reads but not writes of uncommitted data. These three
policies can be compared, using the results of this paper, with respect to their effect on concurrency,

on the number of aborts, and on preservation of membership in serializability classes.

The pessimistic policy allows the least concurrency of the three. In contrast, the optimistic
policy does not reduce concurrency at all and the realistic policy reduces concurrency somewhat. The
optimistic policy will, however, cascade aborts. The pessimistic policy will introduce aborts due to
deadlocks by it but it will not cascade aborts. The realistic policy will not even introduce aborts if we

can assume that all reads of a transaction precede all writes and that the schedules are serializable.

Finally, the pessimistic policy preserves membership in the class DSR of schedules (schedules
that can be serialized by swapping adjacent operations). The optimistic policy preserves membership
in a somewhat larger class of schedules, PSR (schedules all of whose prefixes are also serializable).

The realistic policy preserves membeship in SR, the class of all serializable schedules, assuming only

that all reads of a transaction precede all writes. The primary practical implication of these facts is




that the realistic scheduler appears better in all cases than the pessimistic scheduler. Simulation and

analysis comparing the various policies are ongoing.

There are several contributions in this abstract in addition to the new policies for producing
recoverable schedules. In order to discuss schedulers for recoverable sequences of operations as well
as the sequences themselves, we have had to distinguish between the “temporal order,” in which the
scheduler sees the operations, and the “log order,” which determines the interpretation of the
operations. This dis*inction is of interest independently of the results; for example, it applies nicely to
describing the behavior of multi-version timestamping described in [R78]). The properties of
recoverability and serializability have been considered separately, so that the recovery policies can be
used even for transaction systems which do not réqu_ire serializability, such as described by several
authors [L82, G81, A83].

Definitions.

We mostly follow Hadzilacos [H83]; however, we alter the notion of the meaning of database
transaction to reflect the intention that aborted transactions should not affect subsequent database

transactions. We use the term log as in [H83] to mean schedule, or history of transaction operations.

Let D = {x,y,z,...} be asetofdata items. Transaction operations are Ri[xI|, Wi[x], B, C;, A¢,
t€N, x€D. These symbols are intended to represent, respectively, a read of x by transaction t, a write
of x by transaction t, the ‘begin’ of transaction t, commit of transaction t, and an abort of transaction t.
We also use Di[x] (access to data-item x by transaction t) to mean an operation which may be either

aread or a write. Two operations conflict if they are read or write operations accessing the same data

item and at least one of them is a write, or if one of them is a begin, commit, or abort.
A transaction, t; is a partially ordered set (op;, <) where
opy C {Rilx], We[x] : x € D} U {By, Cy, Ag}
satisfying the following:
i) B € opy;
ii) Ay € opy iff Cy € opy;
iii) Vo € opy — {By}, By <t o;
iv) if A € op, then Vo € opy — {A¢}, 0 <¢ Ay

v) if Cy € opy, then Yo € opy — {Cy}, 0 < Cy;

vi) any two conflicting operationsare ordered by <.




QOur definition is more general than some, since transactions may contain concurrent subtransactions

and we do not require all reads to precede all writes.
A complete log, L, isatriple (OP, <p,<t) where
1) OP=U,opy;
2) for each t, <.E <, any two conflicting data accesses are orderedby <[, and <p, is
the smallest partial order satisfying these two conditions;
3) <t isatotal order on OP such that for all transactions t, u and data items x,
a) <{£<r7 and .
b) if Wlx] <p Ry[x] then W[x] <pRy[x]

<1, isthe log order of L and reflects the intended meaning, <t is the temporal order of L. and
reflects the order in which operations are submitted to a scheduler. We say that any order on OP
which satisfies 2)is a log order f;r OP andanyorder on OP which satisfies 3) is a temporal order on
OP. A logis atemporal order prefix of a complete log. A transaction, t, iscommittedinalog L if C;
€ OP:; t isabortedin L if A¢ € OP; t is active if it is neither committed nor aborted. We let

COM(L) denote the set of committed transactions in L.

The temporal order of a log reflects the order in which it is submitted to the scheduler, i.e., the
actual interleaving of transaction requests on the system. The log order reflects the order in which it
is interpreted (defined formally below). Ordinarily, the temporal order is a topological sort of the log
order, but in concurrency control methods such as multiveréion timestamping we may wish to allow
some independence between the two orders. We need to make this distinction between log order and
temporal order not only to allow input to the recovery scheduler from a multiversion timestamping
method, but also to describe the output in the case of the realistic policy. It is not necessary for the

other policies.

The projection of a log, L, onto a subset v of its transactions, denoted by [I\(L), is the
restriction of L to Ut ope. We will be most interested in the projection of a log onto its committed
transactions: Hcomi) (L). For mathematical simplicity we extend all logs with a fictitious
initializing transaction tg, which begins, writes all database items, and then commits. Any access to
adata item is preceded by a write to that data item by tg, where “preceded” refers to both log order

and temporal order.

The semantics of read and write operations in a log L is defined by a function My, (the

meaning in L), satisfying




1) M, (Ryfx)) = M (W, [x]) where W [x] <[, Rx] and for any v such that
Walx] < Wilx] < Rix] we have Ay <1 Rix]. That is, the meaning of a read is the meaning
of the most recent unaborted write to the same data item. This is different from Hadzilacos’

definition, where a read operation may use the value from an aborted write.

2) Mg (Wix]) = gix (M (Rily1]), ..., ML (Rdyn])) where Rily;l, ... ,Rdyn] are all the reads by
t which < precede W[x] and g, isa function which computes the new value of x to be

wrtten by transaction t from the values previously read by transaction t.

Alog L is recoverable if for every prefix L’ of L the meaning of each committed read and
write in L’ is the same as its meaning in H¢opm)(L’). The major implication of this definition is
that if we want recoverability we must not allow a transaction to commit unless all transactions

whose values it has read have previously committed.

A scheduler takes a log as input, one operation at a time in temporal order, and outputs a new

log. It may do one of three things with the operation:
1) output it;
2) abort the requesting transaction;

3) take either action after reading more operations from the input and choosing one of

these three actions for each.

An operation which has appeared in the scheduler’s input log but not in its output log is said to be
blocked. If an operation oy of a transaction t is blocked then t may not request any operation og

such that oy <09.

Since the operations are input to a scheduler and output from a scheduler in temporal rather
than log order, the “position” of each operation in the log order must also be part of the input and
output. To do this, we define a function POS;, mapping reads and writes of L in (OP-0Pyy) to OP

as follows:
POSy(Dy[x])=D¢[x]
where
1) D,[x] and Di[x] are conflicting operations;
2) Dix]<yDyfx];

3) DIxl<TD.lx]; and

4) if Dy[x]<Dylx] for v=t theneither Dy[x] <, Di{x] or Dy[x]<r,Dilx]




We can reconstruct a log order containing <, fom OPy, <, and POSy, by taking the transitive

closure <, of <, definedas follows:
1) DyIx) <Dy} if Dyx)<pDly); and
2) Dyx]<Dylx] if Dfx]=POSL(D,[x])
or recursively if POSL(Dyx]) <D, [x] and Dy{x]<tDyx]

Each read or write will be preceded, in the reconstructed log order, by any operation which preceded it
in the original log order. In fact, the immediately preceding conflicting operation must be the same,
so that the interpretation of each read will depend on the same write. Writes, however, may be
preceded by additional reads of the same transaction. If we make the reasonable assumption that
these additional reads have no effect on the outcome of the writes, then we may assume that the
interpretations are equivalent, in the sense of returning the same values to a terminal transaction of

all reads, under the two log orders.

Formally, a scheduler is a 4-tuple €A,O,o,m> where A is a set of logs without commits or

aborts; O is a set of pairs <o, POS(0)>, where o is an operation; ¢ is a state transition mapping
acAX0->a
and « is an output function
W:AX0 » O*
Extend o to ¢’ on AXO+ bydefining
a'(A,01)=0(A,0))
0'(A,0}...05) = 0(0'(A,01...04-1),04)
and extend w to w' on AX O+ by defining
w'(A,0)=w(A0y)
w'(A,01...05) = w(0'(A,04...0n-1),0n)

We will say that S=(0Ps, <g, <1(s)) is the output of a scheduler if OPg is the set of operations
output, oy <1(s)0y if oy isoutput before oy, where oy and o, are arbitrary operations of transactions
t and u, and <g isconstructed from POSg asdescribed above.

A scheduling policy restricts the choices a scheduler can make. We will describe policies
somewhat informally by stating (1) the types of operations which may be blocked while other

operations are processed, under what conditions they will be blocked, and under what conditions they

will be output; and (2) the conditions which require a transaction to be aborted. For a given




scheduling policy, we can define a mapping P from input logs to sets of output logs, such that each
output log could have been produced from the corresponding input log. A scheduler implements a
scheduling policy if for each input log L=(0P, <y,, <), if 01 ... o, is the set of operationsin OP
ordered by <, then @'(@,04,...,0n) is in P({oy, ... op} <pos, <T).

Scheduling Policies and Schedulers.

If S=(0Ps, <s, <T(s)} is the output produced from an input log L =(0P, <r,<T)), then for

all schedulers we will require the following:
(L1) for each 0.€ OPg either oy=A¢ or 0 €OPL;
(L2) if A, €OPg then Ci¢OPg and for all o€ OPg, o, <7(s)A¢;
(L3) if (¢<p0’¢ and o',€OPg then 0,€OPg and o¢<T(s)0’y;

(L4) POSg (Dyfx]) <1(5)Di[x] and there is no conflicting read R [x] with
POSg(Dyx]) <¢s) Rulx] <7¢s) Delx].

Condition L1 states that each operation o;tput by the scheduler was either an operation input by the
scheduler or an abort. Condition L2 states that no operations of a transaction are output after an
abort of the transaction has been output. Condition L3 states that the order of operations in a
transaction is preserved and that no operation is output until and unless all previous operations of the
transaction have been output. Condition L4 states that knowledge of the future is not required. It

follows from these conditions that S isa log.

We also require that if the input log is a complete log, (that is, all transactions have either
committed or aborted), then

(C1) if C,€OPy, theneither C,€0Pg or A;€0Ps; and
(C2) if ALGOPL then A;GOPS.
(C1) and (C2) clearly imply that if the input log is complete then so is the output log.

We first describe optimistic policies. A scheduler implementing an optimistic policy blocks
commits of transactions which have read uncommitted data. All other operations are output
immediately. If a transaction abort A, is output, then so must be aborts A, of all transactions which
have read data (Ry[x]) last written by the aborting transaction (Wx]=POSL(R,[x])). POSg is
equal to POS;,.

Proposition @. If S is the output log from an optimistic scheduler and if W[x] <gR[x] and if for

each W [x] such that W[x] <gW,[x]<gRulx] there'is an operation A, such that A, <rgRylx]
then C €0Ps = C;€0Pg5 and Cy<1(5Cu-




Proposition @ states that commits are blocked until all transactions which have written data read by

the committing transaction have committed.

Theorem 1. Any output of an optimistic scheduler is a recoverable log if the input is a log. If the input
log is complete then so is the output log. If S is the output log produced from inpdt log L bya

scheduler which implements an optimistic scheduling policy then

[ eom(s)(S) =M coms) (L)

One scheduler which implements an optimistic policy behaves as follows: Every operation
which is input is output immediately unless it is a commit. If it is a commit, then the commit can also
be output immediately unless the transaction being committed has read data written by an
uncommitted transaction. Inthat case, the commit must be blocked until all transactions from which
it has read data have committed. If a transaction aborts, then all transactions which have read data
from it must also abort. It is possible that a cycle of transaction dependencies may form. In this case,
the scheduler is free to either abort all involved transactions or to commit all involved trasnacﬁons,
in a single atomic operation. The latter course can be chosen only if provision has been made.

Next, we describe pessimistic policies. A scheduler implementing a pessimistic policy must
block all data accesses to uncommitted data. Otherwise, operations are output immediately.

POSs(Dx]) is equal to the most recent non-aborted write, as ordered by <fys;).

Proposition P1. If L isan input log to a pessimistic scheduler and if W[x] <[, Dy[x] then for every
operation oy such that D¢(x] <p, o, either Cy <) 0t or Ay <T(L) Ot

Proposition P1 states that operation D¢[x] is blocked until transaction u has committed.

Proposition P2. If S is the output log from a pessimistic scheduler and if W[x] €OPs and D,[x]€ OPg

and Wix] <g Dy[x] theneither C¢; <g) Dulx] or Ay<T(g) Dulx].

Proposition P2 states that no operations are output until any preceding conflicting operations are

either committed or ak arted.

Theorem 2. Any output of a pessimistic policy is a recoverable log if the input is a log. If the input log
is a complete log then so is the output log. If for every A;€ OPg we also have A; € OP[, and
<sC < theri

Mcoms/S) = McomesyL)-

One way to implement a pessimistic scheduler would be to set a lock when a data-item is

written. The lock is not released until the writing transaction is either committed or aborted. If




cycles develop among transactions awaiting completion (by commit or abort) of other transactions,
then a victim should be selected to be aborted. Waiting operations may be dispatched in any order,
but to guarantee that IIcoms)(S) = IIcoms)(L) it is necessary either to dispatch them in temporal

order consistent with log order or to specify the immediately preceding write operation with POSg-

Finally, we describe what we call a "realistic” scheduling policy. A scheduler implementing a
realistic policy must block all reads of uncommitted data. A read Ry[x] may be output as soon as

some write Wi[x] which <j, preceded it in the input log has committed and all other writes W,[x]
with W [x] <1, W [x] < Ryl[x] have been aborted. POSg(Ry[x]) is defined as W, [x]. If a data access
Di[x] was never blocked, then POSg(D[x])=POSg(D[x]).

Proposition R1. If L isaninput log'to arealistic scheduler then for every Ry[x], if Wy, lx] <t, Wy,lx]
<Lp...<p Wy [x] is the sequence of all writes preceding R¢[x] then there is some i<k such that for
all o, with Ri[x] <oy, CULi <T1(L)0t, andfor all j>i, Allj <T(L) Ot.

Proposition R1 states that a transaction issuing a read operation is blocked until some preceding

write has been committed and all subsequent writes preceding R,[x] have been aborted.

Proposition R2. If S is an output log from a realistic scheduler and if W[x]¢OPg and Ry[x] € OPg
and Wi[x]<gRy[x] then either C; <t(g) Rulx] or Ay <7(s)Rulx] or thereis a W,[x] with Wi[x] <g
W.[x] <sRy[x] and C, <T(5) Rylx].

Proposition R2 states that a read may not be output until the most recent non-aborted write has been

committed.

Theorem 3. Any output of a realistic scheduler is a recoverable log if the input is a log. If the input

log is complete then so is the output log. If A; € OPg implies A, €OPy, and if <gC <, then

McomsiS) = Mcomes) (L).

To implement a realistic scheduling policy, the scheduler could behave similarly to the
pessimistic scheduler, except that writes are output immediately in all cases. A read is output as soon
as the most recent non-aborted write is committed. As with the pessimistic scheduler, ifa cycle of
waits develops, then a victim must be selected to be aborted. In a realistic scheduler, <gmay be

distinct from <t(s). Suppose, for example, that we have a sequence of operations

Wt,[S]Ru[S]Wv[S]Ct.

Then W,[s] is output without blocking whereas R,[x] is not output until after W,[s]. Thus
Ruls] <s WyIx]1bi t Wylx] <) Rulx].




Serializability and scheduling policies.

We state three general results about scheduling policies and classes of logs. A class A oflogs
has the prefix property if every log-order prefix of a login A also belongs to A . The class DSR of logs
which can be serialized by swapping non-conflicting operations has the prefix property; the class SR
does not. The largest class of serializable logs having the prefix property is strictly larger than DSR.
We will call this class PSR.

Theorem 4. If aninput log L belongs to a class A of logs having the prefix property, then an output log
S produced by a scheduler which implements the optimistic scheduling policy also belongs to A.

A class A of logs has the projection property if every projection of a log onto a subset of the
transactions in the log also belongs to the class A. The class DSR of serializable logs has the

projection property. The classes PSR and SR do not.

Theorem 5. If an input log L belongs to a class A of logs having the projection property, then an
output log S produced by any scheduler satisfying L1-L4 and C1-C2 belongs to A.

It follows immediately from theorem 5 that the class DSR of logs is preserved by any scheduler
satisfying L1-L4 and C1-C2. We get a stronger result for the realistic scheduling policy if we require
all reads of a transaction to precede all writes of the transaction. In this case, it is not possible for
cycles of waiting transactions to form (since only reads are blocked) and therefore it is possible to

avoid having any aborts in the output log that do not also appear in the input log.

Theorem 6. There is a realistic scheduler which preserves membership of the class SR, if all reads of

each transaction precede all writes.
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ABSTRACT

We discuss the objectives of including functional dependencies
in the definition of a relational database. We find two distinct
objectives. The appearance of a dependency in the definition of a
database indicates that the states of the database are to encode a
function. A method based on the chase of calculating the function
encoded by a particular state is given and compared to methods

utilizing derivations of the dependency. A test for deeciding whether
the states of a schema may encode a non-empty function is
presented as is a characterization of the class of schemas which
are capable of encoding non-ermnply funclions for ali the dependen-
cies in the definition. This class is the class of dependency preserv-
ing schemas as defined by Beeri et ul. and is slriclly larger Lhan
Lhe class presented by Bernstein.

The second objective of including a functional dependency in
the definitien of a database is that the dependency be capable of
constraining the states of the database; that is, capable of uncov-
ering input errors made by the users. We show that this capability
is weaker than the first objective: thus, even dependencies whose
functions are everywhere empty may still act as constraints.
Bounds on the requirements for a dependency to act as a con-
straint are derived.

These resulls are founded on the notion of a weak instance for
a database stale which replaces the Universal Relation Instance
Assumption and is both intuitively and computationally more
nearly acceptanle.
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1. Introduction

It is common when designing a relational database schema to inelude in its
description elements of a class of statements called functional dependencies.
These statements serve two purposes. They act as constraints on the database
states for the schema, declaring some of these states to be illegal. They also
. indicate that the' database states for the schema represent, inier alia, functions
whose descriptions, i.c., domain and codomain sets, are given by the dependen-
cics. These two purposes are not identical, although they cannot be divorced. We
will he taking the copvenient view that the illegal states do not represent any
functions.

The subject of represeniaiion of functions in dalabase states of a schema
has been addressed before. In the 1978 Very Large Database Conference, Bern-
stcin et. al. [BBG] presented an excellent summation of the state of dependency
theory as it existed at that time. They declared that a schema represents a set,
I, of functional dependencies exactly when it embeds a cover of F. (The condi-

tion is called Rep2 in [BBG].) They were lcad to this idca as a consequence of the

Universal Relation Insiance Assumption (URIA). The URIA states that for any
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database state there exists an instance of the "universal” relation, the relation
on all the attributes of the schema, such that the relation instances of the state
are its projections. There are many objections to this assumption which com-
bine to make it untenable. Indeed the authors of [BBG] objected to the assump-
tion themselves. The first of these objections, and by no means the least, was
established by Honeyman et. al. in [HLY]. That paper showed that the decision
problem: Does an arbitrarily chosen database state satisfy the URIA?; is NP-
complete. Thus maintaining the URIA as a database constraint is an impossibly
difficult task in general. A second objection was put forward by Bernstein and
Goodman [BG] to the effect that maintaining the URIA reintroduces globally the
"update anomalies” first mentioned by Codd [C] for single relations. A third
objection, perhaps the most crucial even though unprovable, is the reasonable

beiief that almost no database state arising in practice will satisfy the URIA.

We will present an alternative to the URIA, called the weak instance, origi-
naily due to Honeyman [H] and independently to Vassiliou [V]. We will present
new definitions of functional representation by states and by schemas which rest
‘on it. We will show that a dependency may be represented even when it is not

embedded and may act as a constraint even when it is not represented.

A secondary result of this research touches on the derivation of a depen-
deney from a set of dependencies. In [B), Bernstein describes an applicétion of
the inference rule ‘pseudo-transitivity' (defined in section 2, below) as functional
composition. He also gives a graphical formulation of a derivation, called a
derivation tree. A functional dependency can be interpreted as a table-lookup,
i.e., a5 an expression in Lhe relational algebra. We will give a method which uses
a derivation tree as a guide to the composition of such expressions. We point

cul that two distinect derivation trees may result in inequivalent expressions,

even when applied Lo a single satisfying instance. We also show that the function
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represented by a multi-relation database state is not necessarily calculated by

any of its derivations.

In the next subsection, we present the basic definitions of relational theory
which we will need. Definitions of particular concern to our investigation are
given in the body of the paper when needed. In section 2 we describe the fune-
tions corresponding to functional dependencies in the context of single rela-
tions. In section 3 we do the same for multi-relation databases. In section 4 we
present a new definition of representation by a schema of the function associ-
ated with a functional dependency and give a characterization of those schemas
which represent all given dependencies. In section 5 we return to dependencies
as database constraints and give bounds (i.e., sufficient and necessary condi-
tions} on the requirements Ior-a dependency Lo conslrain a database. Section 8
reviews related work of other authors and makes some comments on the practi-

cai significance of this work. Section 7 recapitulates the results established.

1.1. Basic Defintions

The scheme of a relation is a set R of elements called aflributes. Associated
with each attribute 4 there is a set. of values called the domain of A and denoted
dom (4). Following standard notational convention, we use an attribute name A
to represent either itself or the set {A]. Also, we elide the operator when taking

unions of sets of attributes; i.e., XY=X Y.

An instance of the relation R is a set of tuples. A tuple is a function ¢ from R

to U dom{A4) such that t{A)sdom {4). It is customary to use square brackets
AcR

instead of parentheses when evaluating a tuple for an attribute; thus
t[4 Jedom (4). By extension, for all XCR, ¢[X]=¢]|X: that is, the restriction of ¢ to

the attributes in X. #¢[X] is also called an X-value. We will often ignore, both in

English and in symbols, the distinctions among the constant value a€dom(4),
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the A-value which is the function taking attribute 4 to value u, and the relation
instance on tne scheme: A whose sole element is the 4-value a. We may do the
same for sets X of attributes, X-values and singleton X relation instances.

We will need four of the operators of relational algebra: projection, selec-
tion, natural join and union.

If / is an instance of the relation R and XCR, the projection of I onto X is
given by

ne(f)=1t[X] | tci}
Let C be a conjunction of atomic formulae of the form X=z where XCR and z is

an X-vatue. Then o¢c(7) is the subset of / each of whose elements makes C true.

For example,

ox=z Ay=y({I)=lt | teIAt[X]=zAL[Y]=y}
If r is an instance of R and s is an instance of S, then the natural join of r and s

is a relation on scheme RS given by

r*s={t | t[R)er At[S]es]

If ry,72 . ...7y are all instances of the scheme R, then we may take their union

as

Gre=lt | (@ 1S75n)t€rg}

i=t
For more details on these operations, see the text by Ullman [U].
2. Functional Dependencies Within One Relation
We begin our investigation by considering the behaviour of functional
dependencies within a relation. We first recall the definition of functional depen-
dencies in their role as constraints.

(Satisfaction-1) Let R be a relation scheme and F a set of functional depen-

dencies. If / is an instance for R, then we say [ satisfies F (or [ is a legal

instance for R) if the following holds: For cach dcpendeney X-VY in F, for
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every pair of tuples ¢, ¥ in/, ¢[X]=u[X] implies ¢{Y ]=u[Y].»

Now let us consider the functions described by the dependencies in F. The
primary means whereby a relation instance relates attribute values is by inelud-
ing a tuple in which the values appear. With this in mind, assign each depen-
dency in F a unique label. Let f be the label of X+Y. Now define!

psr=A. Az, wy(oy=. (1))
where / is an instance and z is an X-value. Thus ¢, a table lookup as decribed by
Arora and Carlson [AC], is a function from instances for R Lo mappings from X-
values tn Y-values. Clearly if 7 is a satisfying instance then ¢,(/) is a function. A
key observation of this work is that the instance / may have more information
about the function f than is given by ¢;(/). In particular, X-values not in my(7)
may nonetheless have Y-values aSsigned to them by /. We demonstrate this by

way of an example.

Ezample 1. Let F={g: XY, h:YW-2, f:XW-Z]. Consider the instance

X Y v yA
1= Iy Y wy 24
Iz Yy Wz 22

We claim that [ assigns the Z-value z; to the XW-value zjwy. To justify the
claim, note that any tuple added to / containing XW-value z;wz must have
Y-value y (by {¢,(/)){z1)=y1) and Z-value zz (by (pa{/))Ny w2)=z2) if it is
to be satisfying. Of course, (¢,(/))(z wp) is undefined. |

Wec proposc a dcfinition of the function f; represented in a satisfying

instance, /, for the dependency f:X Y.

The A-operator is the abstraction operator of the lambda calculus. Say we have some ex-
pression z 2 Now if it is deﬁned at all, £° is some number which we know exactly when we
know . The expression AZ.I“ is the squaring function, which may be thought of as a set of
orderced pairs. .
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The completion, or chase, of f,, denoted I, is the result, x(},). of the application
of any sequence of transformations x=7y, Ta, . . . . Tp such that
» Ty is enabled in /,
e T4 is enabled in Tg(Tyy (- - - (To{f2)) - D)
. no traﬁsformation applied to x(/,) results in a change to it.
That /7 is well-defined for /, is proven in [G].

Ezample 2. Reconsider example 1. The augmented instance, [, \wg I8

X Y w Z
zy Y1 wy zp |1
Tz Y1 wz =z |2
Ty Wa 3

where the blanks represent the non-distinguished symbols and the tuples

have been numbered for convenience. The transformation <X-Y, {1, 31> is

enabled and when applied produces:

X Y W YA
T Y1 wy zy |1
g Y1 wz zz2 |2
Yy Y1 we 3

This causes the transformation <YW +Z, {2 3{> to become enabled, which

when applied produces:

X Y w Z
Ty Yy wy zy |1
Ty Y1 Wz 2 2
zy yy wz =zz2 |3

No further changes can be made so this is /; swg We note, reecalling example
1, that 22=f1(z1w2)=(¢,(1._,'1w2))(z;w2). We will now show that, whenever a
function is defined, it may be calculated in this way. =

It has been shown [H] [G], that for any satisfying instance containing / and a

Luple with X-value iz, Lthere exists a valuation function [ASU], a funection from
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constants and non-distinguished symbols o constants, which function is the

identity on constants and which takes tuples of /; to tuples of the instance.

Lemma 7. Let ]/ be an instance of R; let f:X-+Y be a dependency and z an

X-value. Then f;{z) is defined iff //#¢$ and no non-distinguished symbol appears
in {¢7{/2))(z ). Further

J1(z)=(p,(2))(=)

when Ji(z) is defined.

Proof. Let t be any tuple with t[X]=z. If I:=¢, it is apparent that /{t} is
not a satisfying instance. Thus no Y-value may be found to satisfy the definition,
and fi{z) is undefined. Otherwise, assume (g, (7z))(z) contains no non-

distinguished symbol, but ¢[Y]#(g,(/z))(z). But then there is no valuation func-

tion from I; to If{t}; therefore, I\ Jft} is not satisfying. Finally assume
{¢y(I2)}{(z) contains a non-distinguished symbol in some column; say
(#r(72))(z)[Y;]=b. Assume I (J{t} is satisfying and let g be a valuation function
from /; to [ U{t}. Let g' be defined such that g'(a)=g(a) for a=b and g'(db)=c
where ¢ is a Y;value not appearing in /(Jf{t{". Then g'(I;) is a satisfying
instance, implying f;(z) is undefined. »

The crux of examples 1 and 2 is that f may be derived from g and k. Sound
and complete inference rules for deriving functional dependencies from a set of
such dependencies have been known since the work of Armstrong [A]. The clo-
sure of a set, F, of dependencies, denoted %, is the smallest set containing F
which is closed under the inference rules. Two sels ol dependencies, F, ¢ are
equivalent, wri.ttr.en F=C, if F*=C"*. G is said to be a cover of  when F'=(. Gisa
non-redundant cover of £ when no proper subset of G is a cover of F.

A particular sound and complete set of rules is given by Bernstein [B]. The

"n the presence of domain constreints [F2], such an Y;-value may not be available.
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rules are reflexivity, augmentation and psevdo-transitivity.

(reflerivity) ¢l—X >X
{qugmentation) {X->Y{l—XW-Y
(pseudo —transitivity) {X-Y, YW-Z{|—XW-2

Bernstein has shown that any derivation of any dependency having a single
attribute on the right from a set of such dependencies can be done using
pseudo-transitivity as the sole inference rule followed by at most one application
of augmentation. In [B], he presented a labelled graph construction which
models derivations using pseudo-transitivity as the sole inference rule. The
raphs are called derivation trees and they are defined récursively.

i) 1 A is an attribute, a single vertex labelled A is a derivation tree.
ii) If T is a derivation tree, 183 - - B,—~C is a dependency and C labels a leaf
of 7, then the tree formed from T by adding p leaves labelled By,B,, .. ., By

as descendants of C is a derivation tree.
iii) Nothing else is a derivation tree.
A derivation tree built with respect to a set of dependencies, F, the leaves of

which tree are labelled by the set X and the root of which is labelled, 4, is called

an F-based derivation tree of X»A. Such an object need not be unique.

Bernstein gives the following justification of psuedo-transitivity. "[Let f be
X-Y, gbe YW-2.If h is XW-2,] we can say h{(zw) is defined to be g{(f(z)w).”
Ve intend to explore the consequences of this idea. We will interpret each depen-
dency in the given set as the appropriate table lpokup expression, . We will
compose these expressions using a given derivation tree as a guide. The result is
called a derivation expression. Having done this, we will compare the derivation
expressions for a given dependency to each other and to the corresponding

function as defined above.

We proceed in stages. The first stage prodﬁces an expression over
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projection and a modified form of selection in which the selection formula may

involve expressions. The second stage transforms the cxpression into onc over

selzction, projection and join, demonstrating that the modified selection opera-

tor adds no new power to the relational algebra.

Stage 7. Let Dt be a derivation tree. The expression constructed by stage 1,

denoted y(Dt ). is defined by recursion on the height of D¢ as follows:

7(Dt)=

i)

i)

if height (Dt)=0, then I, where [ is a formal variable associated with the label
of the single node in D¢;
if height (Dt)>0 and letting the degree of the root of Dt be m, then

780X, =ADt DA - - - AX,,=rD,){1))
where B is the label of the root of Dt; X; is the label of the root of D¢, the it

subtree of Dt. As we are concerned with expressions computing functions,
each evaluation of 7(D#,) returns at most one value (formally, at most a sin-
gleton, unary relation instance).

The modified selection expression generated by part ii of the definition is

meant to return the subset of the relation comprised of tuples whose Xj-value is

the value returned by the expression ¥(Dt;).

Stage 2. Let e=y(Dt). Define a function & recursively on the depth of

expression nesting of e (equivalently, the height of Dt) as follows:

if the depth of e is 0, then é(e)=e, which is some formal variable !; other-
wise, e is ng(oe{/)) where C may be written

CiA - ACGADA - - AD;
for k,120, where Cy is a simple condition of the form "attribute = formal

variable” and D; is of the form "attribute = stage 1 expression”. In this case

&(e) is given by
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mp(gc,A --- Ag (6(ey)® - - - *6(e)*T))
where e¢; is the stege 1 expression for [ ;. The join portion of this expression
is the subset of the relation comprised of tuples whose values: are given by
the values of the converted stage 1 expressions. Thus, informally, §(¥(DT))

is as desired.

The expression formed from a derivation tree, D¢, for anfd f:Ly' ' Ly~4 is
denoted ¥, and is given by
V=ML ALy - - L.(8(y(Dt)))
where {l; | 1SiSk] is the set of formal variables for the leaves of Df. For
g:Ly " Lglpyy * Lysm—A derived by augmentation from f, the corresponding

expression is

Ye=AL AL -« Lelgar” * * beam (8(7(DE)))
This effectively ignores the values of the attributes added by augmentation.
Therefore we will feel free to denote by ¥, the expression for the derivation of
any fd from f by augmentation.
A derivation expression will be called {rivicl if the tree which generatesit is
trivial; i.e., is of height 0. If the label on the only vertex of a trivial derivation

tree is 4, the dependency derived is 4 »A {by reflexivity). The expression for this

tree is

M Aa.a

which for every instance J is the identity on dom (4 ). For consistency, we define,
wliere v is an A-value,

(M. Aa.e }(V))(v)=t{v}
This convention allows us to replace the selection operator with a join. This form
facilitates any procf by induction over the complexity of the expression. Note

that some trivial dependencies may have non-trivial expressions.
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Ezample 3. Rcconsider example 1. The derivation tree for f from g and k is

XY
) L
The first stage expression for this tree is

YDt )=nz{ow=w A r=nylag unil))

The output of stage two is

S(7(Dt))=nz(ow=w((my{ox=:(I)))*))
Rewritten without selection, this becomes

ma(fws ((my(tz3 2 1)) * 1)) »
The following property of derivation expressions is basic.
Lemma 2. 1lf I is an instance satisfying a set of functional dependencies F
and ¥ is a derivation expression for X -4 wrt F, then for all X ~values z, either
(Wl Nz)=¢ or |(¥(/))(z)|=1.

Froof. A simple induction on the depth of nesting in ¥, which is omitted. =

If (v{J))(z)=¢, we say ¥ is undefined at z in I. If (%(/)}(z )={a ], we will write
(¥{I))(z)=a. Lemma 2 states that, if ¥ is a derivation expression for X +4 built
with respect to a sel of dependencies F, then ¥ is a mapping from instances
satisfying F to functions from X-values to A-values.

Since a dependency may be derived from a set of dependencies in more
than one way, ¥, as defined is uniquely determined only with respect to a given
derivation tree. Say that there are n distinct derivation trees for a given depen-

dency." Assign the integers 1 - n to these trees in any way. Denote by ¢} the

"There may be inflnitely many distinct derivation trees.
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expreésion generated by the i'* derivation tree for f. We will show, by way of an
example, that instances may exist for which not only ¥}{/)=¥§(/), but indeed
domain values exist for which these functions return distinct results.

Erxample 4. Let F={X-4, X-B, YA-Z, YB-Z}. Then FI-XY~+Z in two

different ways. Consider the instance, which satisfies

X _A B Y 2]
J= Ty ay by ysz =z
Tz a; by Yy =z
Ty @z b, Yy, =3

The two stage 1 expressions associated with the two derivations of XY +2

are

"Z("Yw/\l=n‘(¢x_.(1))u )
which uses X -+4, and

Tz(Oy=y AB=nglag (1N{/))

which uses X »B. The derivation expressions are:

VSN Azy. nz{oy=y((ma(ox=:(1)))*1))
szM- Azy. "Z(U'Y=y«"8(°7(-z([)))‘[))

Partlally evaluating each of these expressions in J at z;y we have that

(WI(J ))(z 1Y l)="Z(°'Y=v,(J §);

and

WAz 1y 1)=mg(0ymy (T)

wlhere

X A B Y Z
J'= Ty ay by ya =z
g @y by yy =zg

and
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X A_B Y Z
J"= Z, a b, Y2 Z 9

+

zg az by y; =3

Which is to say, (%'(/){z1¥1)=2; and ($*(J )z 1y,)=2,.

Consider calculating XY »Z at z,y;. Jz,y, 18 given by

X A B Y Z | Nbr
szyl= 1 ay b1 y2 =z
zz a; bz y; za
Tg az by Yy, =g
T Y1

LN

(the blanks representing non-distinguished symbols) and we apply the
transformation sequence

<X -4, {1, 4>

<X-B, {1, 4]>

<YA-Z, {2, 4}]>

<YB-Z{3 4}>

the last transformation being contradicted. So /;=¢ and the function is

undefined at that point. =

In light of example 4, we define for any functional dependency f, a mapping
¥, from instances to functions. For f:X -4, ¥, is defined for an instance / and

X-value z as

(‘1';(1))(3?)=(L{J(¢} (NHX=))
where the union is taken over all derivation expressions for f. This definition is
sensitive to the particular set of dependencies with respect to which the deriva-
tions are carried out. A consequence of this sensitivity is pointed out in a subse-
quent section. We say that ¥, () is undefined? at a value z where
H¥p(I))(z)i=1. As above, if (¥,(7))(z)={a}. we will write (¥,(/))(z)=a.

Finally, we add dependencies with multi-attribute right hand sides. For

YOur use of the term 'undefined' to describe certain behaviour of the evaluation of expres-
sions does not alter the fact that (¥ (7 ))(z) is well defined for ali /, z. (¥,(7/)}(z)isin
every case an instance of a relation whose scheme ig given by the right hand side of I
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J:X-Y where Y=Y, '-Y, let ¥, be the expression for fg:X-Y;. Then

('I'f(I))(z)=i§1('lln(!))(z:). ¥,(7) is defined exactly at those points. where all of
the ¥ (7) arc dcfined, as the reader may verify. For the most part, we will res-
trict ourselves to single attribute right hand sides for convenience.

Now we present some facts relating derivation expressions to functions in
the setting of a single relation. ¥, may, for a given instance, be defined at more
values than p, is defined. However, the two functions agree wherever both are
defined. |

Proposition 1. For any satisfying instance 7, fd f:X-Y

(o (INS(¥, (1))

Furthermore if f;{z) is defined then -
11(2)=(%,(1))(z)

Proof. sce[G]. =

This proposition, with lemma 1, states that the value of a function at a point
is computed by some derivation of that function. It suggests that the derivations
may provide more information than is actually present in the relation, returning
values where the function is undefined. This can in fact occur.

Ezamnple 5. Add to the set F in example 4, the dependency Z »C. Let g be

XY -C and let X be the instance

X A B Y Z C
K= zy ay by yz2 =2y cy
z2 ay bz yi1 =zZ2 cCi
zg @z by Yy 23 ¢y

Then {(¥,{K)}{z,¥1)=c. but gx(zy,) is undefined, as in example 4. »

In the many relation case considered in the next section, we will see that the

derivations may be less defined than the function.
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We end this section by stating a fact about derivation trees. Whenever F
allows derivation trees to be built within which an attribute may label more than
one node on some root to leaf path, then F allows the construction of infinitely
many derivation trees. (This occurs, for example, when F={4~+B, B -+A}.) Those
trees in which no altribute appears more than once on a root te leaf path are

called bounded trees; there are clearly only finitely many of them.

Proposition 2. For any satisfying instance / and dependency f:X -V, if fi(z)
is defined then f;{(z)=(¥(/)){z) where ¥ is the expression for some bounded
derivation tree for f.

Procf. see [G]. «

Cbserve that at values of X for which f; is not defined, it may be that a non-
bounded expression may return a result not returned by any bounded expres-
sion. Sets of dependencies exist such that for any k>0, an instance satisfying

the given set may be constructed in which k distinct results are returned by k

diflerent expressions for the same dependency.

Ezxample 6. Let

R=XoX1XaX3X X5
F=iXo=Xy, X=X,
XaXz>Xa X1 XoX 4}
For ease of construction, for each i let dom(X;}=N, the natural numbers.

Let f be XXX 5s»X 3 one of whose non-height-bounded trees is

W2

] xr‘x!\ X
-
Xy X Xi—x
Xs™ ’ Xz>x:7x3

\ J

Vi ¥

Consider the instance of R given by




!

Xo X4 X, Xa X, Xs
0 0

0 0 0

1 1 0 0

1 0 1

2 2 1 0

k-1 0 k-1

k k__k-1_0

in which the blanks represent unique values. Therefore I has 2k +1 tuples,

the first of which contains 0 in XX ;. The i+ 1% contains

in X4X,, 0in Xg;

e  foriodd ,—‘—
Iz
- forieven i inXiX, %-1 in X, 0 in X

The reader may wish to verify that
(¥'(1))(000)=1: (y?(1))(000)=2
and that, if ¥t is the tree formed by adding {~1 copies of ¥ to !, then for

1<k
(¥7))(000)=t =
3. Functional Dependencies in Multi-relation Databases

We now take up the behaviour of functional dependencies in databases con-
taining more than one relation. The schema of such a database.is of the form
R={R,. ....R;}. A state of such a database is of the form p=ir;. ..., 7}, where
for each 1, r; is an instance of R;. We associate with such a database a universal

relation scheme R where R= |J R;. An instance of R is called a universal
15isk

instance for R. Let F be the set of functional dependencies which we wish all

states to satisfy and represent. The set F; is the subset of #** which mentions

only attributes in R;. We say that p is locally satisfying if for each 1, r; satisfies
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F;. We say that K is cover-embedding if ( |J F¢)*=F*.
T isk

Consider a schema R and a state p for R which satisfies the Universal' Rela-
tion Instance Assumption. That is, there exists an instance f of R such that for
every instance r; of g

‘"R‘U )=ry
Such a state is said to be join consistent, since the join of such a state is such an
instance. Now if R is cover-embedding and each instance r; of p satisfies Fy, then
I satisfies F. Thus for join consistent states of cover-embedding schemas, local

satisfaction may be taken as a definition of satisfaction for the state. If p is not

join consistent, then this definition is vacuous and another must be sought.

If p is a state and C is an instance of K, then € is said to be a containing

instance for p if 'n'Ri(C)Qr,- for each instance r; of p. If C satisfies F, then C is said
to be a weak instance. Our definition of satisfaction is straight-forward.
(Satisfaction-2) A database state is satisfying if there exists a weak
instance for it.
Say that ¥ is a weak instance for a satisfying state, p. '.T.'hen n may be expanded
Lo a join consistent state through insertion of certain tuples, namely those
tuples in ﬁni(W)—r,- for each 7;, such that the resulting universal instance
satisfies all the dependencies of interest. A non-salislying sltale can nol be
modified so as to have a satisfying universal instance without. some data being

dropped. The intuition behind this definition is that a satisfying state is one for

which it can nol be proven that some dependency has been violated.

Even within cover-embedding schemas, local satisfaction is not sufficient for

satisfaction. We demonstrate this through an example.
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Example 7. Let F={4-C, B-C). Lct R={AB, AC, BC}. Ris the output of the
schema synthesis algorithm of Biskup et. al. [BDB] when given input F. Let p

be the state

A B A C | B C
0O © 0O © 0 1

No weak instance exists for p. Any such instance musl have a tuple with AB-

value 00. The C-value of that tuple must be simultaneously 0 and 1 .

In [H], Honeyman gives an algorithm based on the algorilhin of Downey et
al. [DST] for deciding if a database state has a weak instance. The algorithm has
time complexity O (nlogn) where n is roughly the number of tuples in the state.
Our interest is in the functions represented in a database state, to which we now
turn.

(Representation-2) Let R be a schema and F a set of fd’s. Let f:X-+Y be a

dependency in F or derivable from it. Let p be a state for R. Then for z any

X-value and y a Y-value, f,{z )=y if and only if

i) there rxists some weak instance, w, for p in which fo,{(z)=y and

ii} for any weak instance w'’ for p, either f,,-(z)=y or f.is undefined at z.

Otherwise f, is undefined at z. =

3

he fupctions represented in a database state map values in their domains
to results which are required by the information in the state. By this definition,
non-satisfying states represent only empty functions.

This definition does not suggest an effective means of calculating the func-
tions. The method used in the single relation case may be adapted for use.in the

muiti-relation case through the use of the tableau for the state, which is a con-

taining instance for the state in which certain places are occupied by variables.
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(Tableau) For each tuple, ¢, of each relation instance, 7y, in a state p, there

is a row, u, of the tableau T, with {|A J=u[4] for every altribute, 4, in R;.

For every attribute, B, not in R;, u[FA] is a non-distinguished symbol

appearing nowhere else in 7).

The chase procedure as described in section 1 may be applied to a tabieau.
The result of chasing a tableau T, denoted T° and called a completed or chased
tableau, does not depend on the order in which the transformations are applied
[G] nor on the cover with respect to which the transformations are formed
[MMS]. If T,=¢, where p is not the empty state, then p has no weak instance {H]
[G]. As for augmented instances in section 1, there is a valuation function from
the completed tableau into every weak instance for the database state. Lemma
1 can now be restated for multi-relati;)n database states.

Lemma 3. Let R be a scheme; F be a set of fd's. Let p be a satisfying state
for R and let f:X-4 be a dependency in F or derivable from it. Let z4 be an X-
value. Let T be T, to which a row is added containing X-value 24 and new, distinct
non-distinguished syrnbols everywhere else. Then

| I o(zo)={p s (T*))(z0)

where T* is the completion of T' with respect to £ and f,(z,) is undefined if 7"*=¢

or (¢,(7"))(z¢) contains a non-distinguished symbol. =
Ezample 8. Consider the system defined by:

F=iX1-'Y1. Xz-DYg, YIYg-DXI, Yll’g*Xa X1Xg—’Z;
R= inYlv Xng. Y].Ygz;
Let p be the state given by

Xy, Yy Xe Y Yy Y Z

Iy Yy Iy Y2 Yy Yz =

Let f be the dependency A,Xé—»Z. We may use lemma 3 to compuf,e

Folzyz2). Tis




Xl Xz Y, Yg Z

ty | zy by y; bg b3
tz| by 2 bs Yz b
ta | b7 bes Y1 Y2 z
tg | Ty zz bg byg by

where the subscripted b's are non-distinguished symbols. A transformation

sequence for T with respect to F is

<X »Yy fEnted>

<Xp-Yga jtatdd>
<Y YaX, sta.t4;>
<Y1Y2—’Xg, ita,t4;>
<X1Xg-;z, ita,t.;})

which sets bp;=z. Therefore (¢,;(T"))(z1z2)=2=fp(z1z2). This example
justifies our interest in calculating functions on values not present in a
database state. It does not seem reasonable to believe that an)lr state of R

"contains” any X ;X2 value. Nonetheless, R has states in which f is defined. s

In proposition 1 we saw that for the single relation case, a function is no
more defined than its derivation cxpressions. We now demonstrate that this is
not true in the multi-relation case. The derivation expressions can only be
applied to a satisfying single relation. The tableau T; is the natural candidate.
The prior example demonstrates the falseness of proposition 1 for the multi-
relation case, as the only derivation expression for X1 X,—+Z with respect to F is
just the simple select, project expression, ¢. However, this result depends upon
our choice for F. The proposition gives an example insensitive to the choice of

cover.

For the fd, f:X Y, an expression ¥, will be considered undefined in T at =
unless (¥,(7T;))(z )=y for some constant Y-value. Similarly, (¥,(T2)Xz) is said
to be undefined unless it contains exactly one constant Y-value and when defined
will be said to be equal to that value. We say that a function f is more defined

than a function g, if for all = at which g(z) is defined, f(z)=g(z). and some

value z' exists at which f(z') is defined and g (z') is not.
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Proposition 8. There exists a schema R having a state p such that a func-

tion g, for g €F* is more defined than ¥ (T,). This is insensitive to the choice of
cover for F with respect to which ¥, is defined.

Proof. We give an  example of such a  system. Let

F={X12X4 XaoXy Xa-Xy XXs+X7 X XgXv). Let R={XsX XX XaXeXg X1 X2}

Let the state p be given by

Xa X¢ Xg Xy Xe X5 Xg Xy Xe
0 0 0 0 0 0 0 0 0

T, is given by

X| Xg .Ya X.| X5 Xo X?

0 0 O 0
0 by 0O 0 g
0o o by

where the blanks stand for non-distinguished symbols which are not repeated.
Let g be X1XgXg=+X». There are two derivations of g from F; one uses X ;~+X,,. the
other X3-+X4 Using lemma 3, we can calculate gp{00)=0. But (¥,(75))(00) is
undefined. The derivation through X;»X, returns b, The derivation through

Xa~X, returns ¢. Proofs of these contentions a_e left to the reader.

We can prove the result to be insensitive to the choice of cover for F, by
showing that F is unique; that is, for any set of fd's ¢ such that the right hand
side of each dep=ndency in & is a single attribute, &=F and ¢ non-redundant
implies C=F.

So let ¢ be non-redundant and equivalent to F. We know Gl—X;+X,. So
there is some fd in & with left hand side X;, since, by inspection, none of the
inference rules decreﬁse the left hand side of any fd. X, is the only attribute in
the closure of Xy wrt F (other than X, itself). So X,»X,eC. Similar arguments

hold for Xg—»X4, X3—»X, Now note that each of X, X determines only itself in

F*. Therefore the derivation of X XX, from G does not proceed by pseudo-
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transitivity from X~ W, XgW Xy for any ¥ (and symmetrically). So there is an fd
X4Xs»Y in G. If Y is other than X, then GC#F. The same argument shows
XX Xyisin G.

Since FCC, C=F and € is non-redundant, & =F as claimed. s

4. Representation by a Schema

In the previous section we gave a definition of function representation in the
state of a mul’iple relation schema. We now discuss what it means for the
schema to represent, or fail to represent, a function.

(Representation-3) Let R be a schema and F a set of fd’s. Let f be a depen-

dency in or derivable from F. We say that R represents f if there exists a

state p for R such that f, is not the empty function. =

Coneider the contrapositive of this definition. If in every state p for R f, is
dcfincd nowhcere, then surely it is reasonable to state that R does not represent
f. Therefore any reasonable definition must be at least as strong as this one and

the results of this section are implied by any such definition.

The main result of this section is that a schema represents all the functions
of interest exactly when it is dependency preserving with respect to them.

Before we can present the result, we need to make some preliminary definitions.

Associated with any schema there is an expression called the projection-
join mapping of the schema. If R={R, ..., R;} is a schema, the associated map-
ping, denoted .y, is given by

mp=AL (np,(f)* - - - *np, (1))

where [ is an instance of the universal relation for R. Thus mpgis a mapping from

universal instances to universal instances. R is a dependency preserving schema

if for any satisfying instance, /, mg(/) is a satisfying instance.
/
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A tableau, T,,,, may be constructed for the projection-join mapping associ-
ated with a schema. Let J be a universal instance for R consisting of a single
tuple. For uniqueness and conformity with [ASU] and others, a special constant
called a distinguished symbol is used in each column of this tuplc. Let o be the
state formed by projecting this instance onto the schemes of R. Ty is just 74,
the tableau for this state.

A set of attributes # is said to be embedded in a tableau if there is some row
¢ of the tableau such that for each A €W, t[A] is the distinguished symbol. A
functional dependcney X »Y is embedded in a tableau if the set XY is embedded
in it. The following theorem is proven in [BMSU]. |

Theoremn 1. The following are equivalent:

1) A schema R preserves a set of dependencies

1) T':‘n embeds some non-redundant cover of F
i) T’:‘n embeds every non-redundant cover of #. s

From this theorem we can immediately see that any schema which is either
cover-embedding or a lossless decomposition is dependency preserving. (A

schema is a lossless decomposition if T,:,. contains a row of only distinguished
symbols. In this case for all satisfying universal instances I, mg(/)=I.)

The following states a basic relationship between an arbitrary state and the
tableau Tm'.

Lemma 4. Let t, u be rows of x(T,,) for a state p of a schema R and some
transformation sequence . Let £ correspond to a tuple {rom relation 7, u one

from relation U. Let 4 be an attribute.

1) If¢[A]=uf4] .henin Ty, T[A]=U[A] where the relation names are used to

denole the rows of Tm, represcnting them.
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2) 1ft[A]is constant then T'[4] is distinguished.

Proof. We show that any transformation sequence on a database state
tableau can be carried out in the tableau T, . Let <A, {7.s}> be a transformation
of the sequence where 7 is from relation R, s from relation S. Convert this to
<h,{R,S}>. Note that if R=S, this is a null transformation and if it makes the
premise of 1 or 2 true the consequence will also hold.

We prove the lemma by induction on the length of the transformation
sequence preceding the transformation making the premise of 1 or 2 true.

Basis The first transformation in the sequence involves an fd whose left
hand side is a subset of one ol Lhe relalion schemes of R.

Induction Assume the lemma holds for prefixes of length no greater than m.
Assume a prefix of length m+1. We need toc show that the m+2'nd transforma-
tion becomes enabled and if it makes the premise of property 1 or 2 true in 7,
then the consequence will hold in T,;,‘.

Let 7=<W 5B, {r,s}]> be the m+2'nd transformation where W=W¥,--- W,.
Consider the transformation, if one exists, which set »[W;]=s[#;] 1sisl. If no
such transformation exists then this equality holds in the 7', and therefore in
Tmn since W;eR, W;€S. Assuming such a transformation does exist, it preceded
7. has been executed and R[W;]=S[W;] by induction after its execution (and
possibly before). So 7 becomes enabled in Tmg Now assume T has the effect of
sotting t[Bl=w[B]. Then, possibly after renaming, r[B]=t[£] and s[B]=u[B]
before cxecution of 71 that is, these equalities were established by a transforma-
tion which preceded 7. Thercfore, by induction, R[B]=T[B] and S[B]=U[H]

and after 7 is executed in T, T[8]=U[8 ] (and possibly before).

Now assume 7 sets the B-value of some row to a constant. This constant

appeared in one of 7[B ] or s[B]. Thus R[B] (or S[B]) is distinguished by induc-




-286 -
tion. Thus property 2 holds after 7 is executed in Ty, (and possibly before). =

For a schema R, the tableau Ty is the tableau T,,,l to which a row is added

containing only distinguished symbols in the X-columns and new, non-

distinguished symbols everywhere else. This added row will be called the X-row.

Lemma 5. A schema R represents a dependency f:X-Y in or derivable
from a set of fd's F if and only if in Ty the Y-value in the X-row is all dis-
tinguished symbols.

Proof. (Only if) This is an easy consequence of lemma 4. Ty is the tableau
of the projection-join mapping of the schema R{J{X}. The procedure of lemma 3,
which calculates the value of a function at a point, is the chase of a state of this
schema.

(7f) Consider a state p for R which is the set of projections of an instance of
the universal relation containing a single tuple, £. We claim f,(¢[X])=¢[Y].

Let T be T,_:{t,} where t,[X]=t[X] as in lemma 3. T is (up to isomorphism)
the tableau Ty. By hypothesis, T° contains a row containing only constant values

in the XY-columns. Since the only Y-value in T is t[Y ], the claim is established. »

It is not difficult to show that dependency preserving schemas satisfy the
conditions of lemma 5 for all dependencies in or derivable from F. Such sche-
mas represent any dependency appearing in any non-redundant cover, as a
consequence of theorem 1. For a dependency X Y, not in any cover, representa-
tion is an immediate consequence of the following proposition and the fact that
any superset of a dependency preserving schema is dependency preserving.

Proposition 4. {[BMSU], proposition 1} Let R be a dependency preserving
schema. Let X be the set of attributes of a row » of Tmn containing distinguished

symbols. Then the row of T,',,n corresponding to r has distinguished symbols in

the attributes X*={4 | X+4<F*] and no symbol of » outside of X* repeats in
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Tmg (X* is called the closure of X and is called a closed set of attributes.)

We will now show that dependency preserving schemas are in fact the only
schemas which satisfy the conditions of lemma 5 for all dependencies.

Let XA be a dependency in F not embedded in Ty, , but embedded in Ty.
We may assume without loss of generality, that no row of T':'n has only dis-

tinguished symbols in the X-columns. Assume otherwise. Note that Ty may be
formed by chasing Tm, Ufty] where ty is the X-row. If some row of Ty has all
distinguished symbols in the X-columns, then T:-..Uftx‘ contains T,:,' in the

tableau containment sense!. Since the chase preserves the containment rela-

tionship and X -4 is embedded in Ty it must be embedded in T,;,,x. a contradic-
tion. Assume however that X +4 is embedded in 7.

We may begin the chase of Ty by first chasing the rows of 7y, transforming
them to T';ln' Let x be any sequence of transformations with respect to # which
completes the calculation of Ty from this point. We wish to distinguish two types
of transformations.

1) A transformation is of type i if it equatcs a non-distinguished symbol in the

X-row to some other non-distinguished symbol.

i) A transformation is of type ii if it equates a non-distinguished symbol in a
row of Ty, to a distinguished symbol.

Lemma 6. If x makes any two symbols in rows of T,;. equal which were not
equal in T':*n' then y contains a transformation of type 1 or .

Proof. Assume otherwise. Let 7=<Z -4, {£1,£2]> be the first transformation

of x which makes two such symbols equal. Since there are no transformations of

TA tableau Ty contains a tableau 7'y, if a function exists from the symbols of T'y to the sym-
bols of T’y which i) maps rows of 7'y to rows of T'g and ii) preserves distinguished symbois.
Such a function is called a containment mapping.
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type ii in x, ¢1[A]. 2[4 ] must both be non-distinguished. Neither ¢, nor ¢{; may
be the X-row by the exclusion of type i transformations. T must not have
b.ecome enabled during the calculation of T, else £3[4]=t2[A]. Therefore it
became enabled during x. But thcn two of the symbols in ¢4, £ became equated

during x, violating the choice of T as the first transformation with this effect. s

Lemma 7. The dependency of the first transformation of type i or ii which

appears in y is not embedded in T';'n but its left hand side is embedded.

Proof. Let T=<Z A4, {t,t3> be this dependency, if it exists. By lemma 6,
one of ¢, tp must be the X-row. Let ¢, be the other row, corresponding to a row of
Tmy Since there are no prior transformations of type 1, it must be that £;[Z] is

all distinguished. Since there are no prior transformations of type ii, all these

symbols must have been distinguished in T’."n' But 5[4 ] is not distinguished,
otherwise T would not be of typeiorii. s
As we have seen before, if Z is embedded in some row of T, but Z~C is not,

then Tz will not embed Z-+C and R will not represent it. Therefore ﬁe may
assume that no transformation of type i or ii appears in y. Further we may
assume that every transformation of x involves the X-row. Let F' be the subset of
F appearing in transformations of x. It can be shown that F'|—X-Y (see [G]).

Dut X -7 can not be in ', since no row of T':‘n will have X become embedded in
it. Therefore X +Y is not in F or F is redundant.

We have shown that a non-dependency preserving schema fails to represent
at least one functional dependency in every cover. The reader should note that
it may represent some of the non-embedded dependencies in a non-redundant
cover. In example 8, the dependency X X,»Z was shown to be represented, even

though it is not embedded in Ty . Note Lhal the dependencies YYp~X; (i=1, 2)

are not represented in that example. We express this result as a theorem.
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Theorem 2. A schema R represents all the functional dependencies in or
derivable from £ if and only if il preserves the dependencies in F. »

We can now prove a property of dependency preserving schemes which rein-
forces the belief that they are "good,” namely that when an instance of the
universal scheme is stored as the state of a dependency preserving schema, the
functional asséciations of the decomposed state are exactly those of the

instance.

Proposition 5. Suppose R pre'serves a set of dependencies F’ and p is the set

of projections of a satisfying universal instance I. Then for every f€F*, f,=fI.

Proof. (Sketch) It can be shown that since p is join consistent, T, contains a
set of isomorphic images of T,:,.. one image for each tuple of /. Since R is depen-
dency preserving, every row of T; has constants in a closed set of attributes and
no non-distinguished symbol appears more than once. Suppose we wish to calcu-
late f, at a value z. The chase of 7‘;, (Ult:} will, unless and until it finds a con-
tradiction, make no change to the rows of Tp. So every transformation will make
a non-distinguished symbol of I, constant. Exactly the same is true of any
transformation sequence for I,;. From these facts it can be shown that for every
transformation sequence on T, |J{t;} there is one on [, with the same effect on

the row ¢, and conversely. The proposition follows from that. A complete proof

may be found in [G]).

5. Functional Dependencies as Constraints

We have shown that a schema may represent functional dependencies which
are not embedded in any relation of the schema. This has salutory effects on
schema design. it has long been known that there exists sets of dependencies
for which no cover-embedding schema may be found each of whose relations is

in Boyce-Codd Normal Form (BCNF)'. It has also been known that lossless

A scheme R is in BCNF if for every functional dependency X +4 embedded in R, X is a key of
R ie., X/ :
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decompositions in arbitrarily stringent normal forms can always be found for
any set of dependencies. (BCNF is the strongest normal form when only func-
tional dependencies are considered.) Theorem 2 suggests that a lossless decom-

position is "good enough”. We present further evidence for this belief.

Ezample 9. Consider R=A4BC, F={4B-~C, C-+B}. No BCNF, cover-
embedding decomposition of R cxists. However the schema B={AC, BC] is
lossless and therefore dependency preserving. Therefore R represents the
dependency AB +C which it does not embed. States for R may be con-

slructed which are not satisfying precisely because they violate AR -+C.

A C B C
a; €y by oy
a; Cp by cop

This state is locally satisfying. However the reader may convince himself
using the techiniques of Lhe prior sections, that no weak instance exists for
it. The state is the projection of a universal instance conteining the two

tuples a1bcy and a1b,cz. This instance does not satisfy F. «

Expanding on example 9, we would like to know under what circumstances a
dependency has the power to act as a constraint on database states. If a schema
represents the dependency XY, then it is capable of assigning a Y-value to any
X-value. It seems reasonable to believe that such a schema is capable of assign-
ing more than one distinet Y-value to a given X-value. A state of the database in
which this occurs would be illegal, were this X-value to appear in the database.
Moreover, we can show that dependencies which are not represented may still

art to constrain the set of satisfying database states.

Ezample 10. Let F be {A-C, B-+C, CD-E}. Let R be {AB, BDE, C}.let a

state p be
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A B B D E
0 O 0 0 o
0o 1 1 0 1

with the instance for C empty. p is locally satisfying but not satisfying as
the reader may verify. The reader may also verify that no dependency in F
is represented by R. However, if any deﬁend,ency is removed from F, p has a

weak instance satisfying the remaining dependencies. =

If R is a relation scheme, it is customary to define

SAT(R.F)={r | r is an instance of R satisfying '}

By analogy, if R is a database scheme we define
SATW(RF)={p| p is a state of R having a weak instance wrt F'}
We may now define what is meant by a dependency acting as a constraint.
{Constraint.) Let R be a database scheme; F a set of fd's. Let f be a func-

tional dependency. We say that f acts as a constraint on R wrt F if

SATW(RF Uilf)=SATW (RF={r})

Note that SATW(RF Uif})CSATW(RF-{f}) holds for all R F, f. The
definilion implies that, when f constrains R, chasing states of R using all the
dependencies in FJ{f}] gives a different yes/no result for some states than is
given by not using f. Thus if f does not act as a constraint on R it does not affect
thec determination of sgtisfaction for any state of R.

From the definition, we see immediately that if #={f}|— f, f does not act as
a constraint. This is an application of the easily proven fact that for sets of
dependencies F and G, F=C implies SATW (R F)=SATW(R.CG) for any R. The con-
verse of this statement is false, as we show by way of example.

Example 11. Let F be {4 +C}. Let R be {AB, BC}. From lemma 5 we deduce

that R does not represent A +C. Therefore the chase of the tableau for any

state of R never produces a tuple with a constant AC-value. Thus no such

state contradicts 4 »C. In short
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SATW(R, {A-+C})=SATW{R ¢)
and every state of R is satisfying. =

We now present a sufficient condition for a dependency to act as a con-
straint. We will then present a necessary condition. The two conditions are simi- .
lar but not identical. We end the section by demonstrating that acting as a con-

straint is a "cover-sensitive” property of dependencies.

Assume that F is non-redundant and f €F. Define the contribution of f wrt #
by

contrs(f)=F*-(F-{f})*
An element of conlrg(f) is a dependency all of whose derivations use f. Since ¥

is non-redundant, we always have fe€contrp(f). Let @ be a vector of dis-

tinguished symbols; the length of the vector may be deduced from the context
in which it appears.

Theorem 3. Let R be a schema and F a non-redundant set of fd's. A depen-
dency f €F acts as a constraint on R if there exists a dependency g in contrp(f)

such that (¥, (7, ))ad)=a.
Proof. Let g€contrp(f) be L+B and let (¥,(7Ty, ))(d)=a. Construct w a two

tuple universal instance. Let these tuples be ¢4, £z and let ¢5[A4 ]=t2[4 ] precisely
when L-4€(F~-{f{)*. Let p be the set of projections of w onto the schemes of R.

We show that p witnesses the fact that f acts as a constraint on R. That is, we
show p€SATW (RF -{f})-SATW(RF).
Part 1. peSATW{(RF -{f1).

We show w is in SAT{R,F-{f}). Let h:M-C be any fd in F-{f]. If
t,{M]=to[M] then L-Me(F-{f])* so L+Ce(F-{f})* and ¢,{C]=t,[C| by con-

struction.

Part 2. pZSATW (R F)
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Assume to the contrary, that p satisfies F. We note that 7', contains two iso-
morphic images of T’“n' namely, the projections of each of ¢, and £5.% Let these
two images be Ty and T, Since T:,#qs, T,', contains, in the set theoretic sense,

the two images T3, Tz of Tp, . Since (¥,(Tp,,))(2)=a then for some derivation we
know (Y;(Tmp))(@)=a. So (¥(T{)(t([L])=t,[B] and (¥;(T2))ta[L])=tlB].
That. is to say, |(¥£(T2))(¢4[L])]>1 contradicting lemma 2. It must be that p is
not satisfying. »

Theorem 4. For database schema R, F a non-redundant set of fd's, if a
dependency f€F acts as a constraint, then there is a dependency g€F* and

some derivation tree D{; constructed using f, such that (‘w;(T,f,,n))(d):a.

Proof. If f acts as a constraint, then there exists a witness to that fact, i.e.,
an element p of SATW (R F—{f})-SATW (RF). Let x(T,)=¢. We analyze x with the
goal of finding a derivation tree in which f is used and then show, using lemma 4,
that the expression for this tree returns the distinguished symbol on the vector
of distinguished symbols,

Let. ¢ be some proper prefix of x. Consider two rows 7, s of {(T,) such that
for some attribute A, 7[4]=s[A]. The set of transformations I'"r[A]=s[4]") is
the subset of x directly responsible for this equality. If the equality holds in T,
then T("r[A]=s[A]")=¢. Otherwise, there is a unique transformation
v=<X -4, {t,2}> in ¢ such that before its execution 7[A4 J#s[4] and after its exe-
cution r{d]=s[4]. This requires, possibly after renaming, that 7[4 ]=t[A] and
s[A ]=u[4 ] hold before execution of v in ¢. Then

TCrlal=s[A]")=03Ur(r[A]=t[A]YUT("s[4 ]=u[4 ]")
Let 7=<Z-C, {v,w}> be the last transformation of y; i.e., T is & contradic-

tion. Let v[C]=cy w[C]=cg just before execution of 7. The sets I'("v[C ]=c1”).

fc ompare propogition 5.
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I'("w[C]=cp"”) can be defined. We can now superimpose a directed graph on .

The directed, arc-labelled acyclic graph C.{(x) has a node for each transfor-
mation of y and the nodes 1 and T. The arcs of C.(x) are given by

e an arc labelled C is directed from T to T and to each transformation in

T("w[Cl=ey" JUT("wlC]=ez").

« from a transformation <Yy - Y28, {z,y]> in x, for eachi€{l, ..., k{, an

arc labelled Y; is directed to each element of I'("z[Y;]=y[Y;]”). If this set is

empty, then an arc labelled Y; leadsto 1.

The acyclicity of G.(x) is apparent: no arc leads to T nor from 1 and if
<y, £€> is an arc then ¢ precedes v in y.

One can establish by an easy induction that the set of all paths from T to 1
contains that subset of x which is necessary to reduce T, to ¢. Since p is a wit-
ness for f, one of these transformations must use f.

Now consider any set A of paths from T to l in ¢,(x) which satisfies the fol-
lowing criteria:

i) every path in A begins with the same arc

i) for every n=<Y,- ‘- Y;»8, {z,¥{> on some path in H, exactly k of the

arcs leaving 7, no two labelled the same, are on paths of .

H corresponds in a natural way to a derivation tree: Let A be the graph formed
from H by letting the nodes of H be the arcs of H, labelled accordingly, and an
arc lead from nodc 7y to node n; in H if the node .which arc ny of H enters is the
node from which arc ng of H leaves. H is the line digraph of H [Ha). (For A to be
a tree, node splitting may be necessary in H for those transformations with two

incoming arcs.t Assume therefore H is a tree as well.) The depéndencies used to

™To find all the derivation trees in G.(X), node splitting should be done before selecting the
paths of ff. However, here we are searching for only one tree. .




-35-

form the derivation tree H are the dependencies used in the transformations of
H. The left hand side of the dependency represented by H is the set of attributes
labelling arcs incoming to 1 ; the right hand side is the label on the arec leaving
T. C in this case.

As noted above, we may assume H contains a transformation on f; therefore
H is a derivation tree utilizing f. Let ¥ be the expression for H. It remains to

show that (y( T,:,.))(d)=a.

Each subexpression ms(oc(/)) of ¥ corresponds to a transformation of H.
Call the set of tuples returned by ogz(/) during some evaluation of ¥ the selected
set for the transformation. Let the height of a transformation in A be the length

of the longest path from it to 1 . By induction on the height of a transformation,

we show that its selected set when ¥ is evaluated in T'."n at 4 includes the rows of

T':'n representing the schemas of the rows of T, in the transformation.

The basis references those transformations of A enabled in 7, For
<X -4, {r,s}> such a transformation, clearly XCR NS (R the scheme of r; S the
scheme of s) so the hypothesis holds.

For the induction, let n=<Y;- ' - Y-8, {r.s]> be at height m. If the Y;-arc
leads from 7 to <Z-Y, fv,w]>, then by construction »[¥;]=v[Y;]=w([Y;]=s[Y;]
at the point during the execution of x atl which 7 appears. Therefore,
R[Y:)=V[Y]=W[Y;]=S[Yi] in Tm, by lemma 4. If it leads to L, then
R[Y{]=S[Y{]=a in Ty, . By the induction hypothesis and the expression for 7,
{R, S} is a subset of the selected set for 77. So the induection is established.

Now consider the selected set for the root of ¢, the expression for the sole
descendant of T in . The rows of this transformation are constant in

(x—§73)(T,) on the iabel of the arc leaving T (C in vur example). Therefore they

are distinguished on that attribute in the selected set, by lemma 4, This com-
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pletes the proof. «

We may use the techniques of the proofs of theorems 3 and 4 to narrow the
gap between them somewhat. If the collection § is a subset of a schema R, the
mapping mg is a mapping from universal instances for R to universal instances

for S. The rows of the tableau T,,.' form a subset of the rows of Ty, ,. The reader
will note th#t the reasoning of lemma 4 applies to T

Thaeoremn 5. Let R be a schema, F a non-redundant set of fd’s, f €F. Suppose
there exists SCR, geF*, such that

1) (¥5(Tmg))(2)=a and

2) for every derivation tree D¢ such that (¥3(Tm,))(d)=a. f is used in Dt;,
then f constrains R with respect‘to F.

Proof. Let X be a set of attributes. For each BeX*-X, say that f is
unnecessary for <B,X, S>, if there is some derivation tree D¢{; for X +8 in which f
is not used and (Y4.p(Tmg))(@)=a. Define the set X by

X={A |A€X* and f is unnecessary for <4,X, $>}
We have X<XcX* " 7 Form a two tuple relation over the universe
which tuples agree exactly on the set X. Let p be the projection onto S of these
two tuples. We will show that p is a witness for f.

We can show that pSATW(RF) in the manner used in the second part of
the proof of theorem 3. To show that peSATW(RF—~{f}), we will prove that any
sequence x such that x(7,)=¢ contains a transformation using f.

Again we exploit the two images Ty, T3 of T, g in T,. Let us separate these

images and chase each individually. (This may cause some duplication of rows, if

some scheme of S is a subset of X. If this occurs, ensure by renaming that

71, T2 share only values in X.) Let ¢ be any transformation sequence such that
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theorem 4, we can extract from this graph, derivation trees whose expressions
are defined in T':‘s at d to be a. An attribute labelling the leaf of any such tree is
-t.he label on an arc of G(¢) leading to L. The rows of the transformation from
which this arc emanates agree on this attribute in T3 () 73. We claim that every
such attribute is an element of X. We establish this claim by proving that every
transformation in ¢ involves a row of T and a row of T3 Such a pair of rows
agree only on attributes in X, by construction.

During the execution of ¢, no two rows r, s of 7{ (i=1 or 2) become equal on
any attribute on which they were not already equal. They may not become equal
on any attribute unless the corresponding rows of T,:,s are equal on that attri-
bute, by lemma 4. As T is an isomorph of T, they are equal on that attribute.
Therefore no transformation on any two rows of 7y becomes enabled during the
execution of ¢.

We have established our claim that every derivation tree which we may
extract from G (¢) has its leaf attributes within X. We therefore have expressions
for dependencies-of the form Y-8 for YCX which expressions return a at & in

T,',,s. Clearly B €X*-X. Therefore, each of these expressions must use f. There-
fore, f must be used in some transformation of {. »

¥We end this section by showing that the property of acting as a constraint is
‘cover sensitive'.

Proposition 6. There exist non-redundant sets of dependencies C=F with
fE€F NG and a schema R such that f constrains R with respect to F but not with
respect to C.

Proof. Let R and F be as given in ekample 8. Let G be F without X X2—+Z and

with Y, Y,»Z. Let f be VY Y,»X,. Now YIYZ-'ZECOﬂ.tTp(Ygl’g-’Xg) and

(\Pyxyz_.z(T,;n))(aa)=a. Thus },Y,~X, acts as a constraint on R with respect to F
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by theorem 3.

We claim that no transformation on YiYg»X; can be contradicted in any
state of R (This fact is insensitive to the choice of cover.) By lemma 4, only two
tuples from an instance of Y;YZ may agree on Y ;Y as only that scheme has
Y 1Y in the closure of its set of attributes. No tuple from Y;Y,Z may have a con-

stant in X, again by lemma 4, so the claim is established.

If <Y Yz+Xy {tt2]> appears in the graph described in the proof of
theorem 4, it must appear in I'("r[X;]=s[X]”) for some r, s and by the above
reasoning allof 7, s, ¢4, tp come from Y,YpZ and agree on Y Y,. Thus application
of <X;~Yy, §r.,s}> has no eflect and may be omitted. But X »Y, is the only
dependency in & with X; on the left. Thus, we have shown directly that
SATW(RGC)=SATW(RC~{YYa-X,]).»

8. Other Approaches

Other researchers have concerned themselves with the functions
represented in a database state for the functional dependencies of the schema.
Both Ling and Tompa [LT] and Arora and Carlson [AC] define the function f; for
the singie relation case to be p,(/). They are both concerned with determining if
the function represented by a mulli-relation slale is equ'ivalenl. lo Lhe same
function in a single relation. Arora and Carlson consider only join consistent
states; that is, their work makes the universal relation instance assumption.
Ling and Tompa offer no model of the database as a whole. Both sets of authors
give methods of caleulating a function from its derivations. Neither method is
presented in the relational algebra and it is not apparent that their methods can
be converted to such a presentation. Ling and Tompa are particularly con-
cerned that all such calculations produce the same function, something we have

shown nol Lo be [easible even when the database consists of a single relation.

Arora and Carlson specifically reject the method of calculation presented here
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after noticing that it results in functions more defined than the table lookup
functions we denoted gp.. Significantly, they do not apply their method of calcu-
lating derived functions to their counter-example {figure 1 in [AC]). It produces
the same result as the equivalent y—function. This is not surprising, as all sound
techniques must produce the same result, if any. Neither set of authors consid-

ers the technique of lemmas 1 and 3.

We have argued that restricting the function f; to be p,(/) is unnatural. We
have demonstrated that a function is not necessarily calculated by its deriva-
tions. It is not clear, however, how the result of a function should be interpreted
on a value not "present” in the state. If the functions in the state model func-

tions in the world represented by the state, then these functions say something

about that world, even at values not recorded in the database. In the single rela-
tion case, the user may wish to interpret the absence of a value as denoting the
non-existence of some entity, relationship or whatever. Thus if a function is
defined at such an absent value, it might be interpreted as stating that should
such an entity, etc., come into existence, certain of its atiributes are fixed by
what is already known. On the other hand, if the database is thought to capture
only partial information about the world, statements about existence in that
world are less certain. As shown by example 8, in the multi-relation case it is
much less certain which values are present or absent. In any case, these aspects
cf the user's interpretalion are not captured by the theoretical model underly-
ing this paper. That model attempts to derive statcments which are true for any
interpretation in which the dependencies are true.

The fact that distinct derivations of a given' dependency may be none-
quivalent when interpreted as relational expressions has long been known. The

"uniqueness assumption” [B] requires that all such derivations caiculate the

same function. In the single relation case, proposition 1 verifies the uniqueness
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assumption at those values present in the instance. Some auﬁhors. in particutar
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Sciore [Sc], ctaim that the presence of nonequivalent dcri?ation cXprcssions
indicates the "semantic overloading” of some attributes. It is questionable
whether such an easy transition between user semantics %nd the syntax of
dependencies is justifiable. Perhaps the user should be given the freedom to
require nonequivalent derivations to be constrained to be equal while allowing
provably equivalent derivations to disagree. This latter freedqm requires "attri-
bute renaming". }

As a consequence of theorems 2 and 3, & schema designe‘d by either a syn-
thetic [BDB] or decompositional [F1] algorithm represents and is constrained by
all the functional dependencies given. One may wonder whether any practicel
benefit is to be gained by cloéing the gap between theorems ‘4 and 5. Although
these algorithms guarantee nice theoretical properties, it is not certain that
they guarantee '"good" designs in practice. Dependencies do not capture all the
semantics inherent in the user’s interpretation and they comqletely ignore per-
formance considerations. There is much more to schema design than these algo-
rithms capture. 1t is perhaps more useful to consider theoretiéal results such as
these as providing schema analysis rather than design. Tsichritzis and Lochov-
sky [TL] present a fuller account of theoretical issues in this light. It seems that

|

it is important to considcr arbitrary designs, even though the class of practi-

cally useful designs is likely to be small, since that class has yet to be identified.
i
7. Summary |
We have investigated the interrelationship of a schema, considered as a col-
\
lection of subsets of the universe, and a set of functional depeqdencies. We have
studied two propcrtics of this interrclationship. A functional deﬁendency may be

interpreted as the description of a function. We have given the Fonditions under

which a given schema represents a given dependency as a function and when it
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represents all of a given set of dependencies as functions. Interestingly, this last
property is enjoyed by exactly the class of dependency presq}rving schemas as
defined by [BMSU]. This class is strictly larger than the class of cover embedding
schemas, which class has heretofore been considered the largesl class

representing all of a given set of dependencies. |

We have studied the calculations of the functions descriged by the depen-
dencies. We considered the derivation of a dependency as a blueprint for the
construction of a relational algebra expression. This is in keeping with the
deseriplion ef Armstrong's rules given by Bernstein [B]. Thr: expression pro-
duccd in this way does not, we discovered, always calculate t}}e function. In the
single relation case, if the function is defined at a given value, ‘then at that value
it agrees with the collection of'its derivation expressions. HO\Tvever. if the func-
tion is undefined due to the non-existence of the requisite wPak instance, this
may not be noticed by the derivation expressions. In the multi—relation case, we
have shown by example that the derivation expressions may fail to return a
result at a value at which the function is defined. In general, tjherefore. we have
shown that the method of derivation expressions is incomparaLle to the method

of the chase. |

We noted that under certain circumstances a set of dependencies may allow

for infinitely many derivations. This can be ignored when the existence of any

derivation of a given dependency is being tested, as in [B]. F—Iowever, we have
shown that it is possible for each of an infinite set of derivations of a given

dependency to correspond to a different mapping {rom databqse stales Lo func-

tions.

Functional dependencies are also meant to act as coneraLian on the stales

of a schema. Although we have not fully characterized this phenomenon, we have

shown necessary and sufficient conditions for a given depenriency to act as a




i
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constraint with respeet to a schermna and set of functional depéndencies. In par-

ticular, a dependency may act as a conslrainl even t.huug‘h Lthe function it

describes is empty in every state. Before these investigations, the distinet pro-
perties of being represented as a function and acting as a contraint on states

which a dependency may enjoy with respect to a schema had|/been confused by
\
cther rescarchers, as we have shown.
|
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