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1. Introduction 

The approach to formal data semantics which has come to be called "weak 

instance theory" began with the work of Honyeman all as a means of integrating the 

relationi of a multirelation database for the purpose of checking constraints. It was 

soon recognized, by Sagiv [S] and also by Yannakakis Drl, that the theory leads 

naturally to an extremely powerful and concise query language, called window 

functions by some authors [MRW] [MU V] and called canonical queries here. This 

paper analyzes the expressive power of these queries. We show that canonical 

queries are expressible in first order logic if we allow infinitely many axioms. These 

axioms are shown to be full multirelational implicational dependencies as defined by 

Fagin [F]. The bulk of the paper is concerned with characterizing the case when 

canonical queries may be finitely axiomatized in first order logic. This occurs 

precisely when the query is expressible in the relational algebra. 

Maier, Ullman and Vardi [MIN) have considered these questions as well. The 

present work was done independently and.differs from their work in the following 

'ways. 

Proposition 1 establishes the existence of representative instances even when 

the chase is not guaranteed to terminate. We consider the result of a non-

terminating chase to be undefined. In the same spirit, compactness is not used in the 

proof of Lemma 1. Proposition , . although a simple observation, does not appear in 

i:MCV1. ? 

A new definition of boundedness appears in Theorems 1 and 2. In these 

theorems we take up a problem ignored in [MUV]: the behaviour of canonical 

lueries on inconsistent states. We do this for a technical reason: a relational 

algebra expression is defined for every state, canonical queries only for consistent 



ones. Theorems 1 and 2 present two different attacks on this problem.. In Theorem 1, 

we remove all equality generating dependencies in the manner suggested by Beeri 

and Vardi (BV]. All states are then consistent and the results of canonical queries on 

the subset of originally consistent states are preserved. In Theorem 2, we consider 

queries which distinguish consistent and inconsistent states. 

The proof of the "hard part" of.these results (the implication 	in Theorem 

1) is made very easy by the presence of Lemma. This lemma establishes a well 

known piece of folklore as fact. 

2. Definition and Notation 

2.1 Basic Definitions 

We begin with a finite set of attributes  which we denote U and call the 

universe.  Following standard notation in the area, upper case letters near the front 

of the alphabet: A. B. Ai. .4j, ... indicate single attributes. Those toward the end of 

the alphabet: Y. Y. .... represent sets of attri butes.  The set (A) is often denoted A 

: 	Ku Y is written KY . To each A EC' is associated an infinite  domain  dom(A). 

,distinct Ai. Ai in U. dom(Ao. dorm A , ) are, either identical or disjoint. 

Let R` U. R is then a relation scheme.  A tuple  for R is a function assigning 

:?ach A (R a value in dont( A). The term row will be freely used for tuple in 

el rtain contexts. If _Ye:R. t/X/ denotes the restriction of the function t to the 

attributes in K. 

A relation instance  I for R is a set of tuples for R. The size of an instance I, 

d.noted /1/. is the number of tuples it contains. We often restrict our attention to 

ite relations. If 	the projection onto .V of an instance I of R. denoted 



rix(/)=NX/ I ta/. If K is a collection of relation schemes of U. then R is a 

database schema for  U. We do not in general insist that R cover U, i.e.. that 

uR=U. 

A state p of a schema K is an assignment to each RE R of an instance for R. 

The size of a state is the sum of the sizes of its instances: 

'p1= \* 10/01 
/Mt 

We define an inclusion relation among states in a natural way. If p. o are states of 

p• -0 if iiR)cdR) for every RE R. If f is an instance and K a schema for U, we 

define II K(1) to be the state p of K given by p, 	f) for each RER. 

A tableau  for a universe U is an instance for U over an extended set of 

domains. For each :ti U, we form the tableau domain tdom(A) from dom(A) by 

adding infinitely many variables. Elements of ti ‘f u 4om(.4) are called constants. If 

dotr..1;)=dom(AJ), then tdom(Ad=tglom(Aj). else the sets are disjoint. From now 

on the term instance will denote a tableau without variables. A tagged tableau  for U 

is a , :ibleau over the set of attributes UL.4Ta.0 where Tag is an attribute assumed 

not , be in U. Further, tdom(Tag) is disjoint from any attribute domain in U. The 

in tdomi Tag) will always be given a special interpretation, namely as 

rei;: .:n schemes. 

fableaux provide a uniform notation for the expression of data dependencies, 

con; ..letive queries and database states. 

A (unirelational).data dependency  for a universe U is a pair d= 

where T is a tableau over U and x is one of the following 

3 



if x is an equality assertion of the form a =b, then d is an equality 

generating dependency  or egd. (It is conventional to assume the symbols 

a, b appear in the tableau T.) 

if x is a tableau then d is a tuple generating dependency,  or tgd. If 

every symbol appearing in the tableau x also appears in the tableau T, 

then d is a total or full dependency. In this case x may be assumed to 

contain (or abusively, to be) a single tuple. Otherwise. if x contains 

symbols not in T, then d is partial  or embedded.  

This definition of dependency is based on the work of Beeri and Vardi [BVI. 

The parallel to the implicational dependencies of Fag-in [F] is immediate. The 

quantifier "unirelational" in the above indicateS that these dependencies can be 

written in a first order language with a single predicate letter of arity the cardinality 

of U. 'The class of multi-relational dependencies can be captured through the use of 

tagged tableaux. as follows.. 

nu [ti-relational  data dependency for a database schema R over a universe 

U. d 	T.x> is a data-dependency for U in which T, and x if d is a tgd, are 

taw:. ibleaux. Two extra conditions are imposed: (i) the tags of T and x are 

relati, schemes of R: um,/ TUx)C R: (ii) tuples may agree only as they are allowed 

to by t:: 	tags: OA/ = u/B/ implies AEtITagl and BEulTagl. (Of course, 

t/A / 	3/ is possible only if tdom(A)=tdom(B).) Finally, a multi-relational tgd 

d= <T.S >, is considered full if for each sES and each A EsITagl. siAl appears in 

T. 

1..•t .)•be a state of a schema R over universe U. The tableau of p T p . is a 

taggen bleau 9% U defined as follows (this definition gives Tp  only up to 

4 



isomorphic renaming of variables): For each RE R, each tEp(R), a row v of Tp  has 

WRIz---t. For each AE U-R, vIAI is a variable appearing nowhere else in Tp . 

Finally, v(Tag)=R and no other rows appear in Tp. 

A quern  on a schema R with target list X, is a function from states of R to 

instances of X. A con'unctive query  q on a schema R with target list X is a full 

multi-relational tgd on schema RUM. If q= <T.x>. then T is a tagged tableau 

on R, x is a single tuple and xlTagl= X. To define the function described by a 

conjunctive query, we introduce the idea of a homomorphism. 

Define Symt = U11( /MIA( T)) where T is a tableau on universe U. A 

homomorphism  on T is any function with domain Sym(T). If q is a homomorphism 

on T, the^ we allow n to also —^-'ant its extensir-- 	 tableaux. That 

is, q(t) 	t (the composition of n and t); .; 	al 1€77. A homomorphism 

preserves .1 set of symbols C if it is the identity on C. A constant preserving 

homomorn pism preserves the set of constants (recall this is the set UA( udom(A )). A 

tag preserving  homomorphism is a homomorphism extended by the identity on 

tdorrvTa.L. 

rh. 	iation between tableaux which is central to this paper is that of 

homomor  ale embeddabilitv.  If T. S are tableaux on a universe U, then T is 

homomor-aically embeddable into S if there exists a homomorphism n on T such 

that n(T S. T and S are homomorphically equivalent if each may be embedded 

into the other. For certain applications, we may require the homomorphism to 

preserve some set of symbols; If either of T or S or both are tagged and n is non-

tag preserving we may write n( T)cS to mean (m(Ifti( T))c(Hu(S)). In some 

circumsta [lees the set of all homomorphisms embedding T into S is of interest, as 

in the foil , ' wing definition. 

5 



A tableau To satisfies  a dependency  d= <T,x> if for every  homomorphism 

embedding T into To 

if x is the equality assertion a =b, then n(a)=10); 

if x is the tableau S, then n  can be extended to a homomorphism 1.1 on 

Sym(SUT) (i.e. ti restricted to Syrn(T) is ri) with 41(S)cTo. 

(For multirelational dependencies we may consider only tag preserving 

homomorphisms.) A tableau satisfies a set of dependencies D if it satisfies each 

dependency a D. 

We can now describe conjunctive queries as functions. Let q= <T .(t)> be a 

conjunctive query for a schema .Et and p a state of It. The relation q(p)=tri(t) I q a 

tag preserving homomorphism embedding T into T p/.. It is customary to further 

restrict the 11,,momorphisms to be constant preserving. When that is done, the class 

of conjunctiv , : queries includes all queries expressible by relational algebra 

expressions asing a restricted font of selection, projection and product [CM]. Union 

may he more ied by considering finite sets of.conjunctive queries [SY]. 

The ..;. e (ABU], (MMS] is a fundamental process in the study of databases. It 

is a means z. • transforming, if possible, an arbitrary tableau into one which satisfies 

a given set dependencies. Let d= <T x> be a dependency and ri a 

homomorphi.-rn on T. The pair c = <d,ri > is called a transformation.  If S is a 

tableau and q embeds T into S, then is said to he enabled.  The application of an 

enabled transformation c to a tableau S, denoted Li S) is a tableau whose definition 

depends on the nature of the dependency d. 

6 



If d is an egd, so that x is a = b, then one of the symbols q(a), 

replaces the other everywhere  it appears  in S. It is customary to give a 

disambiguating rule for the choice of the replacement. When q(a). n(b) 

are distinct constants, c is a contradiction and it is usual to assign 

E(S)= 0. 
0 

If d is a tgd, so that d= <T.V.>, then q is extended to a homomorphism 

on TU V and 1.(S) =SUVV). The extension of q toµ is restricted so 

that is one-to-one on Syrn(V) —Sym(T) and for each yESyrniV) —Sym(T), 

µ(yi. Symi S), that is, I(y) is a new variable. 

It is customary to denote chasedT) as the limit of the process of applying 

transformations whose dependencies are chosen from the set D, starting with the 

tableau -  T. If U contains only full dependencies and a disambiguating rule is given 

for the applicati. In of egds (see above), chasedn is unique and effectively 

computable. Otherwise, it is at best defined only upto isomorphism and whenever D 

contains partial dependencies, this limit is not clearly defined. 

2.2 Consisten . weak instances, canonical queries 

Let ,) be tate of a schetna It over a universe U. Let D be a set of 

dependencies i U. Following Honeyman [11], see also IGNIVI, we define a weak 

instance  for p th respect to D as an instance I of U such that pc/1R(I) and I 

satisfies D. W(. denote the set of all such finite weak instances as weak(D.p) and 

we say p is consistent  with D if weak(D.0=0. We denote the set of all states of it 

cc asistent with D as CONS(RD). 

Let Svnif .• 	U.A,Rf il.A(p(R))) be the set of all symbols appearing in the 

state p. A representative instance for p with respect to a set of dependencies D is a 



possibly infinite weak instance for p such that every element of weak(D,p) is the 

image, under someSym(p) preserving homomorphism, of the representative 

instance. We can show that every consistent state has a representative instance. 

Proposition 1. If pECONS(R.D), then p has a representative instance. Purther, -all 

.pepreseirtative-instances-for p are eguivaterftvia-Syrritrd pi 	eberving 

hemomorphismC 

Proof. 	. We take the direct product of the 
Le. &WO& 

elements of weak 9 pi. This is an instance over the universe U for which the 

attribute domain:. :.o be denoted xdorniA), are sequences of countable length. It is 
at> 

convenien\t and ...ostomary to consider these sequencel,functionSnn the set of 

natural numbers. N. SO for the instance we have for each A, 

xdorri(A)=(f /':N—;i0m(A)). However, we may identify in xclorn( A 1, that function 

such that tri).., for each iE N with the element a E dom(A ). This allows us to 

consider xdotrifA as an extension of dom(A). 

Let I be this direct product. Its definition requires that we number the 

elements of weak 1 ).o). Having doKe so, we have by definition 

' I = 	< f . 	> I <ft (i), 	 E weak( D ) for every iEN } 

It is well kn1 'in that dependencies are preserved under direct products, that 

is. I satisfies D. 

Further, for I,<   E weak D.p) the natural map 	/141(14-4  f‘. ( 43 = pt ..) "-- 

ni  : < f1 , 1, „S, > H <ft (i), . . .f.(i)> 	e  ,42,41 	 ,............------.----•"--N-_---- 

,_  
homomorphically embeds I onto 1, . ' q, is Oym(p) preserving since f=a iff 

• 

fit) =a for every 	therefore q, (f)= a: It remains to show 

-  



for any RE R, let uE p(R). Each It  E weak(D.p) contains a tuple with u,IRI= u. 

Therefore I contains a tuple u such that u(R I = u. 

This proposition is stronger than the results of Honeyman 	Sagiv (S1, 

Mendelzon [Me] and Maier, Ullman and Vardi [MUNT] in that it does not depend on 

the chase. As noted by those authors, chaseD(Tid 	
isar 

, if it exists, 	sefsesentettive 
kopte " piattAtill 

eitteig et clit 	vekb e4), „, 
instanee-fer-p. 	 diva emA--  di wectle (D 	. 

Let "CCU. The ranonical query  on X with respect to schema It and set of 

dependencies D. denoted ?X/ R,Di or just ?X when R and D are known from 

context. is a function Crom CONS( RD .to instances of X defined by 

ItD P 	weak MO X( 1)) 

The definition does r.: , t provide an effective computation of ?X/ R.D/ and indeed 

such a computation clay not exist. However, the representative instance can be used 

to compute ?MILD/ when it can itself be effectively found. Define C- projection FIG 

as projection with re-. pest to elements of C only: 

in and trAi( C !breach .1EX 

Proposition 2. 	CONS' RD) and I is a representative instance for p, then 

' Y(pi = fIxSY"IFF 

e?..... 	• 	_ 	4°4.1*(04' 
.7We have xE ?Of  ,» iff for each IE 	weak( D .p), 	exists tE I with 

td/..--..r iff there exi, . i tE 1 with a t,., where t ug,t,x.  preserving6.------‘4.44-.4.< 
..._-_,I.  

homorphisim and q li =I. It is easy to see that for A E(i.) x/A /E elm( p1. This 

comes from the fi4.1t for each . IE weak ap) there is a JE weak(D.p) with 

Cvnitl,CO/m(J)--Lle I indeed J. can be formed by isomorphically renaming each 

	

_element element o 	m(f) 	mi pr by an element not in Sym(1). ) therefore xE ?X( p) if 
xEC) . %" t) .,  I ). --1 
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Proposition 2 replaces an intersection of infinitely many projections with a 

single projection of an infinite relation. This brings us no closer to an effective 

computation. We now show, as stated earlier, that no such effective 

computation exists. 

Proposition 3. 

1)There exist X. R. D such that ?X/ R,D/ is not effectively computable. 

2) There exists no uniform, effective procedure for determining if ? XI R,DI is 

computable for arbitrary X. R, D. 

Proof. (1) The complete  less problem  is determining for all triples I <p.R,D.>), 

whether ?R( p) = p(R) for every RE R. The completeness problem is shown to be 

undecidable in [GMV1 where (2) the set t<RD / completeness of states of K with 

respect to D is decidablei is shown to he not recursive. -1 

In contrast to proposition 3, in the case that chase fg) pi I • effectively 
Ls• 

computable, so LW). 

-r 
Proposition 4. If cha..,.• , gip) exists, then 

- 114) = 	chasedtp) ) 	. 

Proof. 	In this ca.,.• .•hose));" is embeddable via Syrni p) preserving 

homomorphisim  	onto) every element of weak( D .p) rGmvi. Therefore 

P .(chased  J)C? X 	On the other hand it is my a small abuse of notation 

to state chased(cp)E turf -. D. p, . So #.11"'1"!chaseol 	p). --1 

'A query E is said to be monotonic  if p Do implies Up/2EN)). 

Proposition 5. Canonical queries are monotonic. 

Proof. The inclusion p 	imp lies weak( D .p)c weak( au). The proposition follows. -I 

- 10 - 



We allow only finite states. Suppose however we were to allow states of 

arbitrary size. It would still be possible to define weak instances for these states 

and therefore cannonical queries as well. Proposition 5 remains true in this case 

without modification to its proof. Proposition 5 therefore establishes that 

canonical queries are monotonic everywhere, not merely over states of finite size. 

Jet; Ohis is crucial to the development of section 4, below. 

On the other hand, not all expressions of the relational algebra define 

monotonic queries. We wi It say that a query E on schema R is canonical if there is 

some set of dependencies I; such that E.E?NR,D1. We know then that not all 

queries expressed in relational algebra are canonical. T he reverse inclusion is also 

not true. 

It is well known that no expression of the relational algebra is equivalent to the 

transitive closure of a binary relation. [AU], [Im], [Z1]. Let R be a binary relation 

symbol and let d be the dependency which expresses the transitivity of R: 

yxyxr RxyARyz = Rxz) 

Then ?R 6.41?).(d) .1 is the 	nsitive closure function, since, directly from the 
44/4404f--- 

definition. ?R[dnitill ,  / i the smallest relation containing / which is transitive. 

We state these facts as a pl position. 

Proposition 6. The set of c:: ilonical queries is incomparable to the set of queries 

which may be expressed in the relational algebra. --I 

3. The Logic of canonical queries. 

In this section we pre•mt canonical queries in a logical framework. We do this 

to make more apparent the closeness of our approach to the approach of artificial 

-1 1- 



intelligence which treats querying as logical inference. [GAO We also do it to . 

prepare ourselves for the results of the next section. 

Let U be a universe. It is necessary to fix an ordering on the elements of U. If 

R is a schema over U. the first order language (with equality) LR has neither 

function nor constant symbols. T he predicates of LR are the schemes of R. Thus if 

RE R is the set (Ai l , .. .A n). then LR has an m-ary predicate symbol R. Let S be a 

relation scheme. For notational ease we will denote the language associated with a 

schema RU(S) as Lics rather than faitu i si. However, we always assume a .  new 

predicate symbol, that is. a , nbol not in LK, appears for S in LK,s, even when 

SE R. 

Let XCU and D be a set of unirelational dependencies on U. Consider the 

following set of sentences !: in the language LR,X,u 

(containing instance) 

(dependencies) 

Projection axiom: :c , ...c,(Mci 

where X=. 1  

The finite models of z. :noted strucf!.:.), can be written as triples <g,I.F..> 

where pECONS(R.D), lEwei: .D.p) and E,..-..qX/R,D1(p). Let C be formed by 

reducing struc(2:) to LR.X: t. at is. C= { < p,&> I pECONS(R.D) and ?X/ R-DMP)}. 

Let DR,X be the collection of msequences of 2: in the language LR,x: that is. the 

elements of DR.X  are sentences in Liu( which.hold in every element of ,true( 2:). 

Clearly, the members of C satisfy the sentences of DR,x; that is, C41.-struc(DR .x.). 

We now demonstrate the reverse inclusion. 

Lemma 1. C=structDR.XI 

-12- 



Proof. We need only show strudDR,x)gC, by preceeding remarks. So let < p,k> C. 

Let dom be the set of all values appearing in p and expand the language Licx.0 by 

adding each element of dom as a constant. In the expanded language, let 

D1= 	 for each RE K where <ai,...,a n,>Ep(R)) 

D9 = 1-qaat, .... a nd 1 <ai.....a m  >€4 and aiEclom/ 

D3 = (a b for each pair of distinct elements of do m/. 

Now = n..)DIUD2UD3 is an inconsistent set of sentences. Suppose otherwise. If 

M is a structure for 	then M if). the interpretation of U in M. is a weak 

instance for p with respect to D 7o pECON8(R.D) [GMV]. I t must be therefore that 

E,V,Vp), as <p,E,> EC. So there is a tuple xE?X(p)-k. Now x(?X(p) implies 

xEflx(M(U)) so by the projection :axiom, xEM(.Y). But -, X(x)E2'' so M is.not a 

model of .:'. 

We note that Di 	 a finite set of sentences in the expanded language. 

Therefore, the conjunction of its .iements. denoted d, is a quantifier free sentence of 

the language LR,x augmenter: ith the set dom of constants. Furthermore. 

< p,F,> satisfies d. On the Intl ,  land, from the inconsistency of I" we may 

conclude. 	-td. Noting that 	s constant free, we may conclude 1:1-/ vx){ - d) 

where x is the vector of all clef: •nts of dom appearing in d, interpreted as 

variables. In short, taxi( -d) i.- 	element of Dwx, so <p,i.> istruct Ditx). We 

may therefore conclude strud LIRA icC. 

Corollary 1. DR,x is equivalent to a set of total, rnultirelational equality and tuple 

generating dependencies. 



Proof. Consider the formula -id in the proof of the lemma. This may be rewritten 
0. 

as (d,-•d2vd3) where di is thg conjunction of elements of Di; d2, d:1 thte- CX8e-- 

dis'unctions of the elements of D2. D3 respectively, these latter appearing in in 

positive ( i.e., unnegated) form. By a result due to McKinsey [McK], extended by 

Graham and Vardi [GVI, since L' contains only dependencies, for some atomic 

formula e of D2UD3, we must have .1:1-(vx)(dr- ,e). 

In light of this corollary, we will write Dicx as ERUTRa where ER is the set 

of egd's and T Ra is the set of tgd's mentioned above. It is known [GV] that the set 

struc(ER) of finite models of ER is -Ixactly CONS(R.D). It is natural to consider the 

set struc(TRX: that is, it is natural to consider canonical queries on states not 

required to be consistent. We can du this by removing all egd's from D and 

replacing them with "nearly equivalent" tgd's as follows. 

Let d = <T.a = b > be an egd. Let A 1,.... A n  be the attributes of u such that 

(a.b/cdom(Ad. Ilsor=m0.11.4%, For :ach such i let wi g,. wi 5  be a pair of tuples on the 

universe U, satisfying widAii=a. tvijAi/=b. wi,1/3/=wi 4/B/ thrall B LA,. and 

Syrnliw i,,wi,P1Sym(T)=Ia.bl. Th tgd translation  of d is the set 

U ,111< 'Nita 	> 
. 	. 	• b'  

The e_gd free version  of a set ofdepi Idencies D. denoted Del is formed by replacing 

each egd in D with its tgd transla LIon. Let ER' ►  and TRaef be the set of egd's and 

tgd's respectively which make up A. ,t..v 7  as in corollary 1. 

Lemma 2 

1)EV= 0 

2) TR.g" = TR.X 

Proof. 1) Immediate. 2) (BV???1-i 

- 14 



can be seen as net:relational dependencies by the s 

Combining this result with lemma 1 we have, 

Corollary 2. 1) struc(TRa)= <p.&> / EQ?Xlit,De ll(P)} 

p(CONS(R,D), then . ?X1R,D1(p)=?X(R,IYIkp) 

• 	This result states the canonical queries defined with respect to Def are 

identical to the queries defined with respect to D when the former are restricted to 

CONS(RD). It is useful to state the following result, whose proof is immediate from 

corollary 2. 

Corollary 3. ?X1R,D1( p) n(t/ <pA> ,  itruc( "T Ka)) 

These lemmas and their cortlariet can be viewed in the following way. They 

04  state that calculation of a canonical query is the essence 4derivation of a tuple 
As- 

-Tr%Ve Ar4c444.44 _ 
generating dependency. T e e ements of TR .., are multirelation dependencies. They 

le expedient of ignoring the 

tag attribute in their tableaux. This transforms an element ofd into an 

embedded dependency in the language 0 which is easily seen to be logical 

consequence of D. Recalling a resuil •f Beeri and Vardi's[BV?], we have that for 

each tuple .YE I.Y/ R.Dkp), there ex 	chase sequence of finite length ( possibly 0) 

which adds a row u to T o  with r1101 

The reader may wonder whethe. he set of finite structures 

{<p.>1E.='Xili,Dfit»} is first order xiomatizable. We have shown TR.x to he a 

first order axiomatization of structures containing "all the truth." Is it possible to 

axiomatize those structures containing "only the truth?" Interestingly, this question 

can be answered either way, depending on how it is phrased. 

We have restricted ourselves to the consideration of finite structures only as 

models. Suppose that f is any function from database states to instances of the 

1 5 - 



scheme X and consider the pair <p,f(p)>. As both p and f(p) are finite, this pair 

may be described by a single sentence of the form "if the state is exactly p, then the 

instance of X is exactly f(p)." The set {<pjTp)>} is exactly the set of finite models 

of the (infinite) set of sentences so constructed. T his procedure is hardly effective nor 

very informative. Furthermore, these sentences are not dependencies. The fact that 

TR,X contains only tuple generating dependencies of a particular form is vital to the 

results of the next section. 

If we consider the collection of all models of a given set of first order sentences. 

we discover that it is impossible in generil to axiomatize the exact answers to 

canonical queries. Thetransitive closure of a binary relation may serve us again as 

a counterexample. Let R, R# be binary relation symbols. Consider both as giving 

two different edge relations on the same set of nodes. For each k, it is possible to 

write "for no pair for which an arc appears in B+, is there a path of length k 

between them in R." Each finite subset if the set of all such sentences is consistent 

with an axiomatization of the transitive closure of nonempty relations, should such 

an axiomatization exist. But by the prin••: ple of compactness, which applies here as 

the full collection of models is considerpt• no such axiomatization can exist. E very 

arc in R+ must correspond to a path ir. 	.)f some finite length. 

This discussion justifies a belief th:: the result of corollary 3 is as close as one 

can get to canonical queries with first orrier sentences. 

4. Algebraic canonical queries. 

In this section we consider those queries which are both canonical and 

expressible in the relational algebra. ( Queries expressible in the relational algebra 

will hereinafter be called algebraic., We 'mill rely on the well known equivalence of 

the relational algebra and relational calculus. We restrict the class of expressions 

'6 



we will allow in two ways. We consider these restrictions to be matters of 

convenience. 

First, we do not allow constants. Dependencies are written in a constant-free 

language, as in the prior section. Allowing constants in our expresiion language 

merely confuses matters. Secondly, we do not allow equality. This is in conformity 

with the work of Chandra and Merlin [CM). We adopt this restriction in this section 

(we abandon it in the next) as we are considering here the canonical queries defined 

by an egd-free set of dependencies. Every state is consistent with such a set of 

dependencies and thus each canonical query is defined on every state. This 

simplifies our discussion. When D is egd-free, the set of sentences .5.: of section 3 is 

written in a language without equality. Thus our prohibition of equality is similar 

to our prohibition of constants. 

Formulae of the relational calculus are customarily interpreted only in finite 

states. As they are also formulae of first order logic it will be convenient to 

interpret them over states of arbitrary size. 

oe". 
Lemma 3. Suppose E is 41-N monotonic q. •ry verywhe expressible in a 

relational calculus without equality. Th ,  • E is expressible as a union of 

conjunctive queries. - 
traub1ips4, 

Proof:Suppose E may be expressed as lin 	.;) using 'domain' calculus 

notation. We show is (equivalent to) a positive, existential formula; i.e., it is 

constructed from atomic formul9using 3, A, y as the only connectives. But these 

formulae are exactly unions of conjuntive queries. 

We show first the existential part. Suppose p is a state and p 41.0 a, 	a.. ;: 

that is, the tuple (a l , 	ayE p). Suppose we have a state 	related to p in 



the following way: for each scheme R, p(R) is the intersection of a(R) with the 

appropriate cross product of a fixed set of coastyreints ( fixed in the sense that the 

same set of constants is used to form each relation of ̀P.) In this case, p is called a 

submodel of a, a an extension of p. As a Dp, we have, ..., a k)KE(a). 

Generalizing this arguement,. we see that the sentenc 	a language expanded 

qr(a i , .... au) is preserved under extensions; that is, if true in my 

To show the positive part, we will show that everywhere monotonic queries are 

preserved under homomorphisim; that is, if (a l ...., au )EE(p) and p is 

homomorphically embeddable in a state a via a homomorphisim h, then 

,h(ak)>EEI But then the formula Iv expressing E is positive by 

theorem 3.2.4 of the above cited text. 

We define a strong homomorphisim as .,ne why)ch preseves negative as well 

as positive atomic formulae; that is, if <b.... b,,>irp(R) then <h( 
P 6*--- .h(bk)>Ea(R), where h takes to . We leave .,) the reader the to of showing that A ^ 

any existential sentece is pzeuaisied under st..; 	homomorphisims. 
Fite 

Now suppose h is a homomorphism of I) into a and (a t __ ak)E(p) . We 

must show show <Wcy,.. .hla k )>KE(,). If h is strong we are done. For any <b.... 

b,>fp(R) with <h(17 1 )....h(b id >if:7(R) add <b,... b,,,> to pi R ) . Let p .  be 

the result of all such additions. So p'Dp and therefore la t ..... ak/EE(p') by 

monotonicity. Now h is a strong homorphism, from p' to 	so <h(a 1 )... 

A' >EE(a)since the sentence va l . 	a,‘ ; has been shown to be existential. 

(Recall is the formula expressing E.) --I A 

with constant 

state it is true in all extensions of that state. Therefore tv is existential by the dual 

of theorem 3.2.2 ofVntrakileK19. 

(cf,Enderton p91 fl. 



In lemma 3 we depend on the assumption that the query is everywhere 

monotonic, not just monotonic on finite states. Of the theorems used in the proof, 

that concerning preservation under extensions has been shown to be false in the 

case that only finite states are considered. (Gurevich]. The status of the lemma 

itself is this case is unknown [op.cit]. 

ex 	 0. 0'4  
We now produce now Atmebien of those canonical queries which are 

algebriac. 

It is obvious that the appearance of a tuple in the result of a canonical query 

depends upon the existence of certain tuples in the database state. We may wish to 

know how many such tuples must appear in the state to support a tuple in the query. 

If tE nap). is it possible to bound the size of a substate oCp with tE ?NW which 

bound is independent of the size of p? Note that in the. case of transitive closure, it is 

not possible to do this. This motivates the following definition. 

Definition  . A schema R. is X - bounded with respect to a set of dependencies D 

(for some X a set of attributes), if there exists an i nteger k such that for every state 

p. tE?X(p) implies there exists a substate ocp k and tE? X(0). 

Maier, Ullman and Vardi [IvIUV] proposed notion of boundedness which we 

will show equivalent to ours. Their idea is based on the computation of canonical 

queries via the chase. 

Definition  A schema K is X -chase -bounded with respect to a set of 

dependencies D (for some X a set of attributes), if there exists an integer k such 

that for every state p, tE ?X(p) implies there exists a sequence of transformations on 

the dependencies in D which introduces a row ;4, into Tp  with wIXI=t. which 

sequence is of length not greater than k. 

- 19 



We should point out that qualification that D be finite is crucial to the 

meaningfulness of this definition. For if D is replaced with its semantic closure (the 

set of all dependencies it implies), then every schema is X-chase-bounded with k =1. 

There is yet a third, equivalent notion of boundedness. Consider the set TR,X 

of the prior section. We will say that TR,x is finitely covered when it is equivalent to 

some finite subset of itself. By 'equivalence' here, we mean finite equivalence. TR,X 

is finitely equivalent to some set if the equality strudTRa)=struc(f) holds. 

Theorem 1. Let K be a schema and D a finite set c unirelational dependencies on a 

universe U. The following are equivalent. 

1) K is K-bounded with respect to D. 

2) - R is X-chase-bounded with respect to D. 

3) TR,x is finitely covered. 

4) ?X/ R,D/ is equivalent to a finite union do -injunctive queries. 

5) ?X/R,D/ is equivalent to an expression of • relational algebra. 

Proof. 12 Let k0 be the integer required by le definition of .t -bounded. 

There are, up to isomorphism, finitely many suites of size ko. Each has only 

finitely many "X-consequences:" that is, ?X(p) is always finite. For each row of 

?X(p) for each p there is a sequence of some finite length which introduces this 

consequence into Tp . The length, kl, of the longest sequence among these proofs is 

the bound required for K to be X-chase-bounded. 

21 Immediate. 



1 =3 As before, let ko be the bound required by the definition of X-bounded. 

We claim that TRa need contain no dependency d= <T,x> with 111 >ko. But this 

is immediate. 

3=4 Each of the dependencies in TR,x is identical in format to a conjunctive 

query on R with target list X. Set E to be the union of the (finitely many) 

conjunctive queries in TR.x. We claim E(p)=?X(p) for every state p. 

By construction we have <p,E(p)>Estruc(TR,x). that is E(p)?X(p). For the 

reverse inclusion, we can show that for every E.2?X(p). )E(p). That is, E(p) =?X(p), 

by corollary 3. 

So let vEE(p). By definition of E , there is an element <T.x>ETK,X and some 

homomorphism q with n(T)g T, ( q  tag preserving) and n(x)=--u. But <T.x > is an 

element of TR,x so any E with <p.E, >EstrUC(TR,X) must satisfy <Ta >; that is, 

n(x)ft, that is v(E. 

445 Immediate. 

544 From lemma 3 and proposition 5. 

41 The bound is the number of conjuncts in tht. :argest clause of the 

expression. -i 

5. Roundedness with respect to consistency 

In the preceding section we were concerned with the finiteness of the set T Ric 

of tgcles in the language LR,X implied by the dependencies, containing instance, and 

projection axioms defining the canonical queries. A similar question can be asked 

about the set ER of equality generating dependencies so implied. 



Fact: [GV] The set ER is finite iff there is an integer k such that any 

inconsistent state of R has an inconsistent substate of size not exceeding k. -1 

Thus we say R is bounded with respect to consistency if ER is finite. 

Despite the similarity of this fact to the equivalencies in theorem 1, we now 

show by example that boundedness with respect to consistency and algebraicness are 

mutually independent. 

If D contains no egd's, then ER is empty. So in particular, the transitive 

closure example (see section 4) is bounded with respect to consistency but not 

algebraic. 

Let F be a set of functional dependencies over some universe U and let 

SAMI:F) be the set of all instances of U which satisfy F. Let A be the set 

(ilv(I)/IE SAT(U,F)] for some Vg U. As pointed out by Ginsberg and Zaddian [GZ], 

A need not be SAT(V.G) for any set of functional dependencies G. Hull has 

recently shown that in that case E{vi is not finite [H]. But notice that 

A =CONS( IVI,F) and that for any XgU, ?X[(Vn. F is eir.her identically empty (if 

	

X % V) or is equivalent to the appropriate projection. So 	v,t,x is certainly finite. 

	

We will say a schema K is algebraic if for every .V. 	ILD/ is algebraic. If D 

contains only typed equality generating dependencies, a tgebraicness is implied by 

boundedness with respect to consistency. 

Proposition 6. Suppose D is a set of typed egd's and R is bounded with respect to 

consistency with D. Then R is algebraic. 

Proof. Suppose not. From the hypotheses and prior result.. we know 



1) there is an integer ko such that an inconsistent state of R contains an 

inconsistent substate of size not exceeding Ito; 

2) For some XCU and every integer ki, there exists a state p with at 

least k-/ tuples and a tuple xE ?X(p) and xt?X(0) for any proper substate 

o of p. 

Letting k be the integer of point 1 above, construct a consistent state as 

described in point 2 of size at least k/X/. Let this state be 0. Recalling that D 

contains only egd's, we note that the row of chaseD(T) with x-valuex (x is the X-

value given in point 2 above) must correspond to a tuple vE R) for some R and 

Let v be a 1,1 mapping of Sym(0) which is the identity on symbols of the tuple 

v and takes all other symbols of 0 to symbols not in a. Let p= oUv(a). To see that p 

is not consistent with D, let u be any tuple of a such that u/A/=x1A1 for some 

A EX-R. The egd <Tp,u(AJ=v(u(A/)> is a consequence of D but tditIv(u1A1) by 

construction. Consequently there must be a substate pACp with k or fewer tupies 

such that D implies <TpA .u(A/= v(u(A/)>. This substate must contain some rows 

of v(a) (although not necessarily u or v(u)). • 

Let q be the mapping on Tp ‘  defined by: n(t) = t if t. . ,z(t)=v if tEv(0). Now 

n is a homomorphism embedding Tp.1  into T„ since for every v, i (v(o), vi En, and 

every attribute B, vofB1=v 1IBI only if v o/B1=14/3/= v i/Bi. So n is homomorphism 

enabling in T,, a transformation on dependency < Tprt  ,u/A / = v( u/A/)>. 

Application of this transformation to 	will set tIAI=x. But /n(Tp ,)/<k. Repeat 

this arguement for each A EX-R. This will uncover a substate o'Co with 

/07<n/X/ and x?(0). this contradicts our choice of a.-4 



We now take up the task of tightening the results of Theorem 1. We wish to 

characterize algebraic canonical queries defined with respect to a set of dependencies 

which include egd's. Equivalently, we wish to consider queries defined exactly on 

the set CONS(R.D). We face an immediate syntactic difficulty: an expression of the 

relational algebra is necessarily defined on all states of R, without regard to their 

inclusion in CONS(R.D). Thus we must expand the domain of ?X( R, DI if we wish 

to find any algebra expression to which it is equivalent. A method of doing this is 

given by Corollaries 2 and 3 of section 3: replacing D with Del. This method is 

exploited in Theorem 1. We seek in this section an expansion which distinguishes 

consistent from inconsistent states more,precisely. Many such expansions are 

possible. We adopt the following. 

For a set of attributes X of cardinality n, we define the X-product  of a state p 

as 

x (dom(A)lnSymipr 

That is, an X-product is the set of all combinations of symbols in p which respect the 

domain definitions. We define ?X/ K. D/(p) to be the X-product of p when 

p€CONS(R.D). This definition reflects the standard logical no' :on that everything is 

a consequence of an inconsistent set of sentences. It also preset' 	the monotonicity 

of canonical queries, as any superset of an inconsistent state is :oconsistent. 

The expanded function will not always distinguish consistent from inconsistent 

states. Consider a four attribute universe with two schemes: 1.1B . CD) and the 

functional dependency A -.B. If the domains of these attributes are pairwise disjoint 

(the "typed" case), then ?C is identically the C-product in every state. Similarly, 

?CD is the CD-product in some consistent states. We can describe sets of attributes 

for which this behaviour is impossible. 



Let d= <T,a = b> be an egd. The repeating symbols of d are those elements 

of Sym(T) with more than one appearance in d (a and b are presumably repeating 

symbols.) The agree set  of d is the set of attributes labelling the columns of T in 

which the repeating symbols occur. (See Ginsburg and Hull ?? [GH].) If X contains 

the agree set of some egd in or implied by a set of dependencies D, then ?X( R. D 1(p) 

satisfies d exactly when p(CONS(R,D). [Not quite: we need 2 symbols of 

dom(A) in p.1 We will exploit this fact in Theorem 2. We must first expand the 

class of relational algebra expressions we allow. 

As we have allowed egd's in D, we must allow equality in our expressions. We 

define a conjuctive query with inequalities  to be a conjunctive query plus  a set of 

pairs of symbols called inequality assertions (and written a a b). Su if q is a 

conjunctive query with inequality 

q= <<T,x>,S> 

and p is a state, q(p)=6,(x)/v(T)CTp. v a homomorphism and v(a).c14 b) for each 

b in S/. (The expansion of conjunctive queries to include inequalities was first 

made by Klug [K].) 

We recall that Diu is the set of all multirelational egd's ar—t full tgd's which 

are consequences of the set E defined in section 3. Again, Dicx said to be finite if 

it is finitely equivalent to a finite subset of itself. 

Theoreml. Let X contain the agree set of some egd implied by a set of dependencies 

D. [Do I need this?! For any schema R, the following are equivalent: 

. 1) R is bounded with respect to consistency and X-bounded. 

2) Diu is finite. 
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3) ?X/ R. DI is equivalent to a union of conjunctive queries with 
inequalities. 

4) ?X[ R, DI is equivalent to an expression of the relational algebra. 

Proof. The equivalence 144 follows from Theorem 1 and the fact mentioned 

earlier. We show 2*3 by construction. (A proof of 2*4 exists which omits this step. 

We find this procedure more informative.) 

Construct a conjunctive query for each element of TR sic as before. Let E, be 

the union of these queries For each element of ER, proceed as follows: 

Let <T.a = b> be an element of ER. Let W = fum/RE R. witaagl =RI be a 

collection of tagged rows sharing no symbols with each other or with Syrn(T). Let 

vi,....v p  be rows with tag X which rows result from permuting the symbols in 

U RE le UmxiwRIA //A ER]) in all ways consistent with the domain definitions. 

Construct the set of conjunctive queries with inequalities 

1<<TUW.vi>.(cibl>11sisp). 

Let E., be the union of all these queries. 

We claim the union of El UE., calculates ?X/ R, D I. The prGof is a, oefore with the 

observation that if any element of ER is violated by a state, the set , , :queries so 

constructed will force the result to be the appropriate K-product. 

The equivalence 344 is as before. Note that a conjunctive query with 

inequality is monotonic, so Lemma 2, suitably modified, holds for the larger class of 

expressions considered here. 

We complete the chain by demonstrating 3 	If < <T.x>.S > is an element 

of the union given by (3), construct the sentence 

-26- 



vy(71'...x'vs') 

where 

	

	T'=AIR(wIRD w(TagJ = R, WE TI 

x'= "(x) 

s'=v(a=b lazbES) 

and y is the vector of all variables appearing in this sentence. We claim this 

sentence is implied by .1.; (by (3)) and apply the result of McKinsey referenced earlier 

to reduce the resulting finite set to a subset of DR,x, as before. We then claim this 

set to be finitely equivalent to DR,X. I Does this really work? I think so but I'm 

passing on. The next paragraph can also be used to prove this (or 42)I 

The weakening assumption in this theorem is a result of the particular 

expansion of canonical queries which we've adopted. Suppose we were to choose an 

expansion which distinguish consistent and inconsistent states via some first-order 

property. In other words, suppoSe there exists, with'respect to this putative 

expansion, a sentence q' on a single predicate (of arity the cardinality of X) such that 

q. is true at ?X( R. D l(p) exactly when p is consistent. If ?X is algebraic, the first 

order formula q5 which expresses ?X can be tomposed with ip to prodwe a sentence 

of LR true of a state p exactly when p is consistent. (This composition is the 

syntactic exercise of replacing the atomic formulae of q' with the formula 0, due 

care being taken to rename variables as appropriate.) But in that case. ER is finite. 

by the results of [GV]. 

6. Discussion and Conclusions 

We have considered the question: When is a canonical query algebraic, i.e., 

equivalent to an expression of the relational algebra? It is natural to ask the 

converse question. When is an expression of the relational algebra equivalent to 



some canonical query? The answer is the same. Such an expression must be 

monotonic and therefore equivalent to a union of conjunctive queries. Each such 

query is essentially a multirelational tgd, which may be considered a unirelational 

tgd simply by ignoring the tags. Thus each monotonic expression E gives rise to a 

0 set of tgd's D such that E_ ?X! R, D I (X the "target scheme" of E). Every 

monotonic expression is canonical for some set of dependencies. 

In the above discussion, we chose D after having seen the expression E. The 

reader may object to this procedure, considering the dependencies to come "first" and 

the queries only "later". But is this order correct? The purpose of canonical queries, 

window functions [MRW] [MUV] and universal relation interfaces [KU] is to make 

some set of queries very easy to formulate. Which set of queries should this be? We 

believe the database administrator, in cooperation with the end users, knows very 

well which queries are important. The dependencies and perhaps even the schema 

may be derived from the queries, rather than conversely. It is usual to declare the 

dependencies to be derived from "nature", that is, from knowledge of the application. 

We do not dispute this. We have shown that they describe an inference engine for 

the calculation of certain pre-selected queries. 
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Abstract 

A database is consistent with respect to a set / of 

dependencies if it has a weak instance. A weak instant.: is 

a universal relation that satisfies /. and whose projections 

on the relation schemes are supersets of the relations in the 

database. In this paper we investigate the complexity of 

testing consistency and the logics that can axiomatize con-

sistency, relative to a fixed set E of dependencies. If is 

allowed to indude embedded dependencies, then con-

sistency can be non-recursive. If I consists only of total 

dependencies. then consistency can be tested in polynomial 

time. The degree of the polynomial can, however, be arbi-

trarily high. Consistency can be axiomatized but not 

finitely axiomatized by equality generating dependencies. 

If embedded dependencies are allowed then consistency 

cannot be finitely axiomatized by any effective logic. If. 

on the other hand, only total dependencies are allowed 

then consistency can be finitely axiomatized by fixpoint 

In& 

1. Introduction 

Soon after the introduction of the relational model 

the important role of semantic specification was real- 
ized [CAN]. The purpose of semantic specification is to 

define which databases are semantically meaningful. called 

t 	To be presented in the .3rd ACM S!.mp. tot riinciples of 
Database Syitems. %interior% April 1484 

J. 

The research reported here wa. done ..vhiie this author ...vas 
at Stanlbrd Lnner.ny and 41proned by a Weitniabn 
l'txst- Doctoral FolorNhip anti .NI ()SR grunt 80-0212. 

consistent in database terminology. The languages used for 

semantic specification are logical languages. Thus, the 

database is consistent if and only if it satisfies certain sen-

tences in the language. An example of such a language is 

the language of functional dependencies [C2]. 

Traditionally, the logic used for semantic 

spicification languages was first-order logic. The reason for 

that is probably the fact that this is the logic that most 

researchers and practitioners were familiar with. Recently, 

however, researchers in the area of semantic specification 

realiied that there does not seem to be a straightforward 

way of specifying semantics of databases with Incomplete 
information by means of first-order logic [Hot 

The situation is as follows. In principle. there is a 

conceptual database with complete information, called 

weak instance in database terminology, that completely 

describes reality. The semantics of this idealized database 

is given in first-order logic. In practice. however, we verf 

often do not have all the information needed to describe 

reality. That is. the actual database does not contain 

enough inlomiation to uniquely diaermitte the conceptual 

database. How we do know whether our partial descrip-

tion of reality is semantically meaningful? The intuitive 

answer is that it is semantically meaningful if it can be 

completed to a full description of reality. This is the 

justification for the definition in [Ho] that an a.-tual data-

base. which may have incomplete information, is consistent 

if it can be completed to a consistent database with com 

plete information. 



While this definition was readily adopted by 

researchers and triggered numerous investigations of its 

implications (e.g.. [GMV, Sa. MUVJ). its logical aspects 

were not yet investigated. 

A logic consists of three essential components: a 

language a dass of structures and a satisfaction relationship 

between structures and sentences in the language. The 

notion of structure in database theory is well understood: 

databases are essentially finite relational structures. What 

we are interested here is in the language and satisfaction 

relationship components. Specifically, we try to answer the 

two following questions: 

(1) What is the complexity of testing consistency? 

(2) What is the language required to axiomatize con-

sistency? 

More formally, we are given a set I of first-order sen-

tences that the conceptual database (with complete infor-

mation) is supposed to satisfied. Let CONS(E) be the 

class of actual database (with incomplete information) that 

can be completed to satisfy E. We try to find out what is 

the complexity of recognizing ditabascs in CONS(i) and 

whether we can axiomatize it, that is. construct a set 

(preferably finite) r of sentences in some language such 

that CONS() is exactly the class of actual databases that 

satisfy I'. We are interested here in the case where the 

conceptual database is required to satisfy first-order sen-

tences of a special form, the so called data dependencies 

[BV1. Fa2]. This dass of sentences is considered to be 

appropriate to semantic specification of databases with 

complete information. 

Our Gist finding is that there exists a set I of end's 

such that CONS(i) is not recursive! We are hence forced 

to restrict ourselves to the subclass of total (or full) depen-

dencies [BV1. Fan In this MSC we show that CONS(i) 

is in P rimE. The degree of the polynomial can, however. 

be arbitrarily high! 

With this in mind we turn to the issue of axioma-

tigabiliiy. By using clatzic model-theoretic techniques. we  

show that consistency is axiomatizable by first-order logic 

and even by dependencies. but is not finitely axiomatizable 

by first-order logic. The tact that consistency can be tested 

in polynomial time, and the strong connection between 

polynomial time computation and fixpoint logic shown in 

[lm,Var2], suggest that fixpoint logic might be the right 

login to axiomatize consistency.. Indeed, the deepest result 

in the paper is that consistency is finitely axiomatizable by 

fixpoint logic. 

We discuss some "philosophical" aspects of our 

work in the concluding part of the paper. 

2. Basic Definitions 

2.1. Tunics. Relations, and Databases 

Attributes are symbols taken from a given finite set 

U called the universe. We use the letters A.8 ,C, • • • to 

denote attributes and X ,Y , • • • to denote sets of attri-

butes. Sets of attributes are also called relation schemes for 

reasons to become clear shortly. As a convention, we do 

not distinguish between the attribute A and the set (A }, 

and we denote the union of X and Y by XY . 

With each attribute A is associated an infinite set 

called its domain. denoted DOM(A ). The domain of a set 

X of attributes is DOM (X )= U DOM (A). An X- value is 
A ex 

a mapping w:X —*DOM(X). such that w(A)EDO4f(A) 

for all A EX . A lupin is an I-value for some X. A rela-

tion on a relation scheme X is a finite set of X-values. We 

use a,b,c,• • • to denote elements of the domains. 

sa. • • • to denote tuples. and 11.• • • to denote rela-

tions. 

	

A database x!wine is a sequence R=(/21, 	, Rk) 
k 

of relation schemes such that U = U R,. We will occa- 

sionally consider U as a database scheme, meaning (U). 

A sequence 1=(/, 	ft) of relations on R 1 	

 cocrespondingly, is called a dawbase on R. Let 

1=(ti 	 ft) and .1=(J1 	.4) be databases on R. 

We say that I is contained in J 	 denoted ICJ. if l„,CI„, 
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for m=1.....k. 

For an X-value w and a set YCX we denote the 

restriction of w to Y by w[Y]. We do not distinguish • 
between w[d4}, which is an A -value. and w(A), which is 

an element of DOM(A). Let I be a relation on X. Then 

its projection on Y. denoted 1[1], is a relation on I. 

/Ulu-414M wEI}. Let R be a database scheme. We 

associate with R a projection map Ira. defined as follows. 

Let / be a relation on U. Then 1W) is the sequence 

(/[1211, Ma, which is a database on R. The set of 

all attribute values in a relation / is V A L(I)= U1(41. 
A El 

and the set of values in a database • I is 

VAL(1)=OvAL(0. The database I Is nonempty if 

V AL(1)2•1 0. 

2.2. Dependencies 

A 	valuation 	is 	a 	partial 	mapping 

a: DOM (U) -0DOM (U) such that for all A EU and 

aEDOM(A) we have a(a)EDOM(A). We say that a is a 

valuation on a tuple w (resp.. relation I. database I) if it is 

defined on VAL(w) (resp.. YAL(I), VAL (I)). Let a be a 

valuation on a tuple w, then a(w) is the tuple aew (i.e.. a 
composed with w). Valuations are defined on relations 

and databases in the natural way. i.e., they are defined on 

relations topic-wise, and they are defined on databases 

relation-wise. 

For any given application only a subclass of all pos-

sible databases is of interest. This subclass is defined by 

semantic constraints that are to be satisfied by the data-

bases of interest. A family of constraints that was exten-

sively studied in the literature is the family of dependen-

cies 

A tuple generating dependency (abbr. tgd) says that if 

some tuples. satisfying certain equalities exist in the data-

base. then some other tuples (possibly with some unknown 

values). must also exist in the database. Formally, a tad 

on a database scheme R is a pair <1.J> of nonempty data-

buses on R. It is satisfied by a database K on R if for  

every valuation a on I. such that all)CK, there exist a 

valuation /3 on I and J that agrees with a on VAL(1) such 

that fit.1)CK. If YAL(J)CVAL (I) then <1.J> is a total tgd 

(abbr. ttgd). 

An equality generating dependency (abbr. egd) says 

that if some tunics, satisfying certain equalities exist in the 

database, then some values in these tuples must be equal. 

Formally, an egd on a database scheme R is a pair 

<1.al=a2> where I is a database and fai.a2}CVAL(1). It 
is satisfied by a database K on R if for every valuation a 

on I such that a(1)0;1( we have a(ai)=a(a2). A func-

tional dependency (abbr. fd) is a statement X- 101'. It is 

satisfied by a relation / on U if for every two wples u and 

v in /. if u(X]=4X1 then u(Y]ssv(n. It is equivalent•to 

an egd on U. 

We will use the term dependencies or embedded 

dependencies to refer to thc lass qufs and %IX& and we 

will use the semi total to refer to the dasi of ugd's and 

egtfs. We note that dependencies are equivalent to first-

order sentences of a special syntax [Fab 

2.3. Satisfaction and Consistency 

If we are given a database scheme R and a set X of 

dependencies on R. then it is quite obvious how to define 

the class of semantically meaningful databases on R. It is 

just the collection 

SAT(R,Z)={1:1 is a database on R that satisfies 

However, a basic idea in database theory is that of • 

universal relation intettke MINI. According to this 

approach. contxptually the database is a single relation on 

U. and consequently the semantic specification has to be 

given as a set of dependencies on U. In practice, how-

ever. information is often given to us not as tunics on U 

but in smaller units. wples on subsets of U. and some 

information may even be missing. The database scheme 

Ii = {R. Rk  } describes the actual database, and its 

relations reflects parts of the bigger corceptual database. 



4 

Such a database on R is semantically meaningful if indeed 

it reflects a meaningful conceptual relation on U. 

This lead Honeyman [Ho] to the following 

definitions. Let I be a set of dependencies on U, and let 

1=(/1, 	, 14) be a database on a database scheme 

R=(/21, 	, Rk). We say that 1 is consistent with respect 

to E. if there exists a relation I on U. such that 

IESAT(U.I) and ICat(/). I is called a weak instance 

for I. Note that 1 does not reflect exactly the breakdown 

of the information in I to smaller units of information. but 

rather it reflects a subset of that information, since Ij  can 

be a proper subset of MA. We denote the set of de a-

bases on R that are consistent with respect to I by 

CONS(R.D. 

We now define a condition on database schemes 

that will play en important role when it comes to axioma-

tizability of consistency. A set I of deperidencies over U 

is said to be m-bounded with respect to a database scheme 

R. for some natural number m. if for every database 1 on 

R, we have that I is in CONS(12.1) if and only if for all 
Jcl with I YAL(J)I<m, we have that J is in 

CONS(R.1). We say that I is bounded with respect to R 

if it is ni-bounded with respect to R for some at. 

3. Complexity 

Several researchers investigated the complexity of 

testing satisfaction and consistency 113V2,GMV.MSY,11. 

What they tried to do is to find the complexity of the set 

(<1 I .1 .1> : I ESAT(11 .1)} and the set 

{<RIM>: IECONS(R.I)}. In this context several lower 

bounds were shown. We find these lower bounds some-

what misleading. In a specific application the database 

administrator has a specific universe Un. a specific database 

scheme Ra and a specific set 10 of dependencies that 

describe the semantics of the application. Thus. he has no 

interest in the complexity of the above mentioned sets, but 

rather he is interested in the complexity of the sets 

I We use the generalization in [GNIVI of the original ideas 
in Plot 

SelT(Utall) and the set CONS(flo. 14. )). Thus. what seems 

to be of interest in general is the complexity of the sets 

sAr(u.n and CONS(R. I) for fixed U, R, and I. In 

the terms of [Vail] we are interested here the the dam 

complexity rather then the expression complexity or the 

combined complexity. 

Let us consider first satisfaction. 

Lemma 1. [Chaj Let R be a database scheme and let / be 

a finite set of dependencies on U. Then SAT(R.I) is in 

LOGSPACE. ■ 

Unlike satisfaction, the complexity of consistency 

depends on the kind of dependencies we have in E. 

Theorem 1. 

(1) Let R be a database scheme, and let E be a finite 

set of . embedded dependencies on U. Then 

CONS(R.I) is recursively enumerable. 

(2) There 'exist- a universe U and a finite set / of 

' embedded dependencies on U such that 

CONS(U.I) is not recursive. 

(3) The set of pairs (R.I.). where I is a finite set of 

embedded dependencies on U and CONS(12.2) is 

recursive, is not recursive. 

Idea of Proof. 

(l) Given a database on R. we just have to enumerate 

all relations on U and check whether any of them is 

a weak instance for the database. 

(2) First, by reduction from the word problem for finite 

semigroups [Ga], we construct a universe U and a 

finite set I of dependencies on U such that the set 

{a: a is an egd and Y. logically implies a} is not 

recursive. Then, we show that this set is Turing-

reducible to CONS(U.1.). The reduction involves 

exponentially (in the length of the given egd) many 

tests for consistency. 

(3) The claim follows from a gcner.d characterization of 

undecidable properties of sets of dependencies in 

[Vaal. ■ 



Theorem I strengthens the results in (GM VI that the set 

VR.I. X> : E is a set of embedded dependencies and 

IECONS(R.!)}. 

is not recursive. Both results indicate very strongly that 

the weak instance approach is not practical when embed-

ded dependencies are necessary to specify the semantics of 

the application. When all dependencies in X are total. the 

situation is radically different. 

Theorem 2. 

(1) Let R be a database scheme, and let X be a finite 

set of total dependencies on U. Then CONS(R.I)' 

is in PTIME 

(2) There is a universe U and a finite set X of total 

dependencies on U such that CONS(U.I) is 

logspacesomplete in PTIME 

(3) • For every natural number k. there exist a universe 

tik and finite set Ik of total dependencies on Uft. 

such that CONS(Uk,X0 can not be accepted in 

DTIME.(0). 

Idea of Proof. 

(1) In IGMV.Hol there is an algorithm to test for con-

sistency. Given a database, the algorithm tries to 

construct a weak instance. It either succeeds. 

demonstrating consistency, or it fails, proving that 

there does not exists a weak instance. The complex-

ity of the algorithm is 0(s 1 ). where n is the size of 

the database and / is the size of R and M. 

(2) Hardness for PTIME is proven by reduction from 

the path system problem of 1.11.1. 

(3) By a generic reduction from deterministic polyno-

mial time Turing maddnes. ■ 

Theorem 2 strengthens the result in [GM VI that the act 

f<R.I. 	: E is a set of total dependencies and  

S 

IECONS(R.I)}. 

is logspace complete in EXPTIME It shows that testing 

consistency of I with respect to X is polynomial in the size 

of I and exponential in the size of X. 

It is interesting to note in connection with Theorem 

2, that if X consists of firs. then CONS(R.I) can be 

accepted in time 0(n logn) and linear space, by computing 

the closure of some congruence relation as in PS7j. 

Let us now consider bounded sets of dependencies. 

Intuitively, it seems that it should be easier to test con-

sistency with respect to bounded sets than for general ones. 

Theorem 3. Let R be a database scheme, and let X be a 

set of dependencies on U, such that X is bounded' with 

respect to R. Then CONS(R.Z) is in LOGSPACE. 

Idea of Proof. Assume that X is m-bounded with respect 

to R. To check that IECONS(R,I) it suffices to check 

that JECON.5(R.D for all JO such that I VAL(J)I <nr. 

It is easy to verify that checking each J requires space log-

arithmic in the size of I. ■ 

4. A x ioma tiza bility 

A subject of great interest in mathematical logic is 

that of aziomatizability. Given a class SI of structures, the 

logician tries to axiomatize it by defining a logic A, which 

consists of a language L and a satisfaction relationship 

between structures and sentences in L. 13 is axiornatizable 

by A if there exists a set X of sentences of A. such that a 

strucuire M is in CI if and only if M satisfies all sentences 

in X. If X is finite, then 111 is finitely axiomatizabk by A. 

This notion of axiomatizability enables us to classify the 

expressive power of logics according to the classes of struc-

tures that they can axiomatize or finitely axiomatize. 

We first try to axiomatize consistency by first-order 

logic. We have to bear in mind, however. that every class 

of databases is axiontatizable by first-order logic. This fol-

lows from the filet that every database can be described, 

up to isomorphism, by a single first-order sentence. The 
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axioms for the class are the negations of the descriptions of 

all databases not in the class. In fact. one can show that 

every class of databases is even axiomatizable in a proper 

subset of first-order logic. This subset. which we call 

universal-existential logic. is the set of all first-order sen-

tences whose prefix consists of a string of universal 

quantifiers followed by a suing of existential quantifiers. 

Thus. axiomatizability results for first-order logic are not 

interesting, unless they talk about finite axiomatizability or 

about a proper subset of universal-existential logic. 

The proof of next theorem uses disjunctive equality-

gesterating dependencies. A disjunctive equality-generating 

dependency (abbr. degd) on a database scheme R is a pair 

0,8>, when I is a finite database and 8 is a sequence of 

equalities at=b i.....ak =bk with 

{au ....bacVAL(1). It is satisfied by a database K on 

R if for every valuation a on I such that a(1)CK we have 

that either a(at)=42(61). or ... or a(ak)=a(bk). Observe 

that an egd is a degd where the sequence of equalities is of 

unit length. 

Theorem 4. Let R be a database scheme, and let X be a 

set of dependencies on U. Then CONS(R.I) is axioma-

tizable by egd's. 

Idea of Proof. The proof goes in three steps. First. using 

the method of diagrams [CM we show that CONS(R,X) is 

axiomatizable by degd's. That is. there exists a set r of 

degd's on R such that CONS(R.1")=SAT(R.r). Now, 

using the fact that X is a set of dependencies. which are 

Horn sentences, we show that CONS(R.Z is closed under 

direct products. Finally, using the last fact. we prove by 

McKinsey's technique (McKi] that we can assume without 

loss of generality that all the degd's in X' are actually 

Mrs- ■ 

The above result is interesting theoretically, but does 

not really have practical significance because the set of 

egd's promised by the theorem cars be non-recursive! 

What we would like to have is finite axiomatizability by 

first-order logic. because then we would be able to apply 

Lemma 1, and get logaridunic space complexity. Now, 

Theorem 3 gives us a case where consistency can be tested 

in logarithmic space. namely. when the given set of depen-

dencies is bounded with respect to the database scheme. 

Can it be that Theorem 3 is just a corollary of Lemma 1? 

The answer is positive. 

Theorem 5. Let R be a database scheme. and let X be a 

set of dependencies on U. Then CONS(R.D is finitely 

axiomatizable by egd's if and only if E is bounded with 

respect to R. 

Idea of Proof. If CONS(R.I) is finitely axiomatizable by 

egd's. then CONS(R.I.)=SAT(R.I) for some finite set 

of egd's. Let 

m IR max (k <1.al=a2>Er and I YAL(1)1=k). Then X 

is m-bounded with respect to R. Conversely, if X is m-
bounded with respect to R. then CONS(11,1) is axiomatiz-

able by egd's <Lai =a2> with I VAL(I)I=m. M 

Theorem 5 leaves open the possibility that con-

sistency is finitely axiomatizable by first-order logic though 

not by egd's. However, since first-order satisfaction can be 

tested in logarithmic space. finite axiomatizability of con-

sistency by first-order logic will entail. by Theorem 2. that . 

 PT1ME= LOGSPACE! This suggests the following result. 

Theorem 6. There is a universe U, a finite set X of total 

dependencies On U, and a database scheme R, such that 

CONS(R.1) is not finitely axiomatizable by first-order 

Idea of Proof. Let U={4.11,C}. R={48,AC}, and 

X=(.1--0C.B —IC). We now show by an uliraproduct 

argument 2  ICKJ that CONS(R.I) is not finitely axiomatiz-

able by first-order logic. ■ 

in view of the last two theorems. we would like to 

be able to tell, given a database scheme It and a set of 

dependencies E. whether I is bounded with respect to R. 

Unfortunawly-, there is no effective test for boundedness. 

Theorem 7. The following set of pairs (U.!), where I is 

a finite set of dependencies on U and I is bounded with 

2  Thus we haw to gm to irsiinne htructures in order to prove 
a claim about finite stnictures. 



respect to U, is not recursive. 

Idea of Proof. The claim follows from a general character-
ization of undecidable properties of sets of dependencies in 
Nadi. ■ 

We do not know whether boundedness is decidable when 
we restrict ourselves to total dependencies. We believe 
that if we restrict ourselves to functional dependencies. 
then it is decidable. 

Since we can not finitely axiomatize consistency by 
first-order logic. we try to do it by higher-order logics. 
Studying the definition of consistency we observe that 
essentially it consists of existentially quantifying over 
instances, which are relations over a possibly extended 
domain. The logic of such definition is called in 
mathematical logic many-sorrel projective logic [Fe]. It is a 
very powerful logic, whose satisfaction relationship is not 
necessarily recursive (by Theorem 1; see also Wart. One 
can try to bound the size of the extended domain in order 
to make the satisfaction relationship recursive [AZ], but 
Theorem 1 implies that when the given dependencies are 
embedded this can not be done. 

Let us now consider the case that the given depen-
dencies are total. As we shall see in this consistency can 
be finitely axiomatized by the fixpoutt logic of [AU,0-1]. 

Let P be a new n-ary relation name, and let 
L(R.P) be the language obtained by adding P to L(R). 

The fixpoint sentences of L(R) are of the form LFP(9). 

where g) is a first-order formula of L(R.P) with free vari-
ables x1 x„, where P occurs positively. Let M be a 
structure of L(R) with domain D. Let Q be the minimal 

-ary relation on the domain of M , such that the sen-
tences V.ri • • • x,,(P(xt.....4)=-4) is satisfied in the 
structure (AI .Q) of the language L(R.P). The relation Q 
is the !east fixpoint of p  in the structure M. We now 
define the satisfaction relationship: M satisfies LFP(T) if 
Q =D". The following facts hold lbr fixpoint logic. 

(1) 	Any class of databases that is finitely axiomatizable 
in fixpoint logic is in ['TIME [(711).  

(2) There is a class of databases that is finitely axioma-
tizable in fixpoint logic and is logspace complete in 
MIME [Var2]. 

(3) Let 0 be a dass of databases that include a linear 
order relation. such that Si is in PTIME. Then Q is 
finitely axiomatizable by fixpoint logic [Im.Var2]. 
(The linear order seems to be essential in order to 
simulate Turing machines.) 

There are two reasons to suspect that consistency 
with respect to total dependencies can be finitely axiom-
tized by fixpoint logic. The first reason is, in view of the 
aforementioned facts. that consistency with respect to total 
dependencies can be tested in polynomial time. The 
second reason is that from the algorithm for testing con-
sistency of [GMV.Ho] it follows that consistency with 
respect to total dependencies can be axiomatized by 
fixpoint logic over extended domains. Both observation 
show that with some "extra" tool. either a linear order or 
an extended domain, we can finitely axiomatized con-
sistency by fixpoint logic. The question is whether we can 
do it without the "extra" tool. The answer is positive. 

Theorem & Let R be a database scheme, and let E be a 
finite set of total dependencies on U, then CONS(R.E) is 
finitely axiomatizable by fixpoint logic. 
Idea of Proof. it turns out that the extended domain is not 
essential. The information conveyed by the new elements 
can be captured by relations over the old elements. These 
relations can be defined by fixpoint logic. The construc-
tion. howiver. is very involved. The length of the fixpoint 
sentence needed to axiomatize CONS(R.E) is exponential 
in the length of I! ■ 

5. Philosophical Remarks 

Another use of logical languages in relational data-
base management system is as query languages. The result 
of applying a tbrmula of the language to a database is the 
set of all tuples that satisfy the formula. An example of 
such a language is the relational calculus 1C31. The logic 
used for query languages was also traditionally first-order 



8 

logic. However, in the last few years, it was realized that 

first-order logic does not have a sufficient expressive power 

as a query language. This was realized first by Aho and 

Ullman [AU], •  who observed that transitive dosure is not 

first-order definable (this fact was originally proven in 

[Fall). Following that observation, several works investi-

gated higher-order logics for query languages. e.g.. [CH, 

MZ. Var2]. 

One can also object to the exclusive use of first-

order logic in database theory on an "ideological" basis. 

The reason for the prominence of first-order logic in 

mathematical logic is that first-order logic is mathemati-

cally tractable and has very rich proof and model theories, 

e.g.. we have completeness and compactness theorems. 

However, mathematical logic usually deals with general 

structures. either finite or infinite. In database theory. one 

usually wishes to consider only finite sultctures. Under 

this restriction many of the nice properties of first-order 

logic evaporate. In particular, we do not have complete-

ness and compactness. Thus. there is no a priori reason to 

prefer first-order logic to other logics. and one should base 

his preference on practical considerations, such as ease -of 

use and computational complexity. 

First-order logic has the advantage of almost being a 

lingua franca". It is •a logic with which many practition-

ers are familiar, unlike the more esoteric higher-order log-

ics. On the other hand, if one takes polynomial time as a 

yardstick for computational tractability, then there is evi-

dence that fixpoint logic is the natural logic for finite struc-

tures [Im. Van]. Our results strengthen this evidence by 

showing that fixpoint logic rather than first-order logic is 

the adequate logic to specify semantics of databases with 

incomplete information. We believe that fixpoint logic 

should be given far more attention than it has been given 

in the past. 
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1. Notation and concept 

Attributes are symbols taken from a given finite set U called universe. Sets of attributes are 

called relation scheme. 

With each attribute A is associated a infinite set called its domain,denoted as dom(A). We 

assume that different attribute A has disjoint dom(A).An Y-value is a mapping r. u Dom(A) 
A Ey 

such that m (A )Edom (A) for all A E Y. A tuple is an Y-value for some Y.A relation on a relation 

scheme U is a finite set of U-value. 

A equality generating dependency on a relation scheme R is a pair cr-=---< T,a =b >,where 

tableau T is a set of variable tuples ( or simply tuple), and a and b are two variables from the 

tuples in T . The EGD is typed if no variable appears in more than one column of T and a and 

b come from the same column of T . Notice that FD is a EGD with T containing two tuples.A 

homomorphism h from tableau T1 to tableau T2 is a mapping from symbols in T 1  to symbols in 

T2 such that if v is a symbol of A column in T ' ,then h(v) is also a symbol of A column in T2. 

Chase of a set of dependencies D on tableau T is a repeating process of finding a homomor-

phism from tableau T of some d ED to T , make the transformation specified by d on T(either 



add a tuple or equate two symbols) until no change can be made.For a set of dependencies D and 

a EGD cr,==< T,a =b >,testing if D I=a can be done by chasing D on T and seeing if a and b 

are ever equated during the chase, D I=e iff a and b are equated (see [1]). 

Let a--=<T ={t 2...th },X 1=-Z 2> be typed EGD on universe U, where x 1  and x 2  are sym-

bols of X column and X E U. We define 

a (4,0= U {A I A EU and lc [A ]=t; [A ]), 

we define <S1,52> to be a partition of T such that S I CT ,S2C T ,S I L) 52—T and 

ilx(si)rllly(so=o 
Let 

Fp<5, ,,s2>(0—{Y---x I Y= U a(tc,ti)}, 
ti es 1,ei es2  

define 

FD (a)—{FD <s 02>.(cr) I all <5 1 ,5 2 >for a}. 

Lemma 1: For any typed EGD a on U,cr I=FD (a). 

Proof: since FD (a)=4FD <s 2>.(cr) I all <S 1 ,5 2>for abwe only need to prove 

a I=FD < :g 2,40 for all < 1,S 2> . by the construction of FD <41,s 2>(t7),FD 1,32>((7) looks 

like that in figure 1. Obviously,there exists a homomorphism h such that 

h(4)=a 1 ' for all ti  ESz  

h (0=8 2' for alt t; ES 2, 

and 

so a OFD <s1,32>K-1 

We have proved that FD (a) is implied by cr.next lemma shows that FD (a) is the only FD 

implied by a. 

Lemma 2: For any typed EGD cr, if a I=W -1.A then FD (cr)1 V -4.A ,where W C U,A EU . 

Proof: 



Case 1,A 

tableau form for W-4 is shown in figure 2. since a W-kit,there exists a homomor-

phism h such that h (T)=7 and h (x1)=11,k (x212,that is ,T can be partitioned into S i  and 

S2 such that 

ES1 if h (4)=5 , 

ti ES 2-if h(1j)=Si, 

obviously,  ,nx (S 	(S2)=0, 

where W 2 U a (ti  ,ti  ), 
t, ES 1, ez2  

but 	U a (4 ,t, )-- ►X EFD (a), 
'' 68 1,5 0'2 

so FD (a) W -0X . 

Case 2, A 74.X, 

Since h and a is typed, there exists no homomorphism h such that 

h (xt)—YI, 

h (x2)=y2, 

because 1 1  and z 2  are value of X, y 1  and y 2 are values of A, so a 17‘ W -•A ,contradiction.so A 

X can not be the case.-I 

Corollary 3; for any typed EGD c, if a is equivalent to a set of FD F, then F H FD (s). 

Proof: by lemma 2, we have FD (o) I=F . Since F -4", and by lemma 1, a OFD (0), so 

F OFD (c),therefore, F H FD 

2. Equivalence of a EGD and a set of FD 

From corollary 3, we only need to consider the equivalence between a and FD (c). 

Lemma 4: For any typed EGD a on U, FD (a) =a if there exists a chain 4 1,4 2  • • 41 , where h i 

 is any tuple in T containing symbol x1, tit  is any tuple in T containing symbol x 2  ,42 ET, such 

that either XEa (4fr  ,4k+1) or a 	i)D W for some W, where W--P.XEFD (a), for 1<k <1. 

Proof: let Wit  -■X E FD (a) correspond to pair t k  and 42+1  such that a ( tik 	Wie(if  

Xsta (4„„i  k ,tik+1)), we apply FD sequence 	, W;2-.X • • • 	to T , we always1 



change the symbol of second tuple to that of first one. Finally, we will change x 2  to x 1 ,therefore 

FD (a) 1=7.-1 

In the next of the paper,we will say that the chain t ie  ti e  • • • tit  having the property in 

lemma 4 is covered by FD (a). Now we give the main theorem for equivalence condition. 

Theorem 5 : For any typed EGD a- = < T ,r 1=2 2> on U,o is equivalent to a set of FD iff there 

exists a chain of T t11, 4 2  • • • tit  covered by FD (a). 

Proof: if 

by lemma 4, FD (a) I.cr, by lemma 1, a OFD (a), so FD (a) H a. 

only if 	• 

if there is no such chain covered by FD (a), then x 1  and x 2  can never be equated during 

the chase of T by FD (a), so FD (a) Ver, by corollary 3 , a is not equated to set of FD.--I 

3. Algorithm for testing the equivalence. 

The algorithm will test whether there exists a chain ti 	tit  in T covered by 

FD(a).Given a EGD a, the algorithm constructs a agree set graph 0,=( V ,E), where 

V={t 1 ,t 2  • • • 	} ,E .{e ci  I ci  is tabled by a (4 ,ti  ),i 	}. Let n i  be the set of all t ET 

such that ti 	, let T32  be the set of all ki  ET such that ti  [X].---x 2,the algorithm will test 

whether deleting attributes in a (4 ,ti) from G make T3 1  and T, 2  disconnect. If so, (ti  ,t;  ) will 

be a candidate edge for the chain covered by FD (cr), because a (4 )DFD <s vs 2> (a), where S 1  

contains T„,,and S 2  contains 7', 2,and S i  is disconnected from 52 after deleting attributes in 

a (ti  ) form G o.Having found all the candidate edges, a path of candidate edges and edges con-

taining X from 4 E T., to ti E Ta 2  will be a chain covered by FD (cr) (if it exists). 

Algorithm : Test whether FD (a) H a. 

Input: A typed EGD a=< T ={t bt 	tk},x1.-----x 2> on universe U. 

Output: 'yes" and a chain covered by FD (a) if FD (a) H a; "no", otherwise. 

Method: 

1. 	Construct 	a 	undirected 	graph 	G 	,E),where 	V ={ t 1, t 2 • • tk }1 



E=.{efi  land with a (4 ,t ;  ) I iyij}. 

2. for each eq  EE ,do following : copy G , into G; ,deleting attributes in a (4 ,t1 ) from G; . for 

each 4 En v  run DFS algorithm on the resulting graph to decide whether 4 is connected to some 

ti ET,2. If no such ti  ETsi  exists, mark cu  as candidate in 

3. Delete eii  in G o  if a (ti ,ti  ) is neither marked candidate, nor X Ea (4 ,t i ), call the resulting 

graph G; .Notice that when deleting eu  from G„, the attributes•in a (4 ,ti  ) is not deleted from 

other edge in G g. 

4. For each 4 ET, i, run DFS on G ; . If some 4 is connected to some ri ET, 2  by path ri e ti....1/4 

return "yes" and the path , stop. otherwise, return "no and stop. -1 

Theorem 5 s The algorithm is correct. 

Proof: If FD 	H a, from theorem 4, there exists a chain 4 1,k...4i: covered by FD (a). That is  , 

for each (tik ith  +I), either a (rik  ,tik+)D W for some W —■XEFD (a) , or X E a (tik  ,tik+,), where 

, 	W 	<si,s.>(0) for some partition <S 1,52 > and T, 105 1 , T..CS 2. Obvi- 

ously, (if X 0(104,14j) , deleting a (4h  ,tik+1) will disconnect g, from S g, so eikik +1  will be 

marked as candidate, so Ar etr o.-ti, is a path consisting of either candidate edges or edges contain- 

ing X, so the algorithm will return "yes" and a chain that can be covered by FD (a). 

If FD (a) a, from theorem 5, there is no chain covered by FD (cr).Suppose that the algo-

rithm returns 'yes", then the path returned by the algorithm will be a chain covered by FD (a) , 

contradiction, so the algorithm must return "no". -1 

In general, there are 2 1 T 1  partitions <S1,52> ,so a obvious algorithm for finding FD (a.) 

will be exponential time of ITS . If a is not reduced in the sense that the number of tuples in a is 

not minimal, the algorithm will be very time-consuming. 

4. /3-aerelicity and equivalence property for simple, reduced EGD 

A EGD a-=< T,z i=z 2> is simple if there is at most one kind of repeating symbol in each 

column of T . formally, that is 

a (4,4)na(th,t( )ga (4,4) for a/1 4,ti,tk,4 ET 



A EGD a=< T ,a1=a2> is reduced if T contains minimal number of tuples, that is 

,removing any tuple from T will result in an unequivalent EGD. 

For reduced EGD a , we can assume that G, consists of one connected component including 

both tuples containing x i  and tuples containing x 2. Now we define hypergraph for reduced EGD 

a. Hypergraph H,..(N,E) for EGD a=(T ,x i=x2) is defined as 

{a( U a (ti,ti) I tiET},N=all attribute* in E, 
ti er 

that is, each hyperedge e i  in E is a repeating attributes (the attributes having repeating value in 

T) for tuple ti ET. Since a is reduced , we assume that H, is one connected component.There is 

one to one correspondence between H. and 0,: each node t, and its outgoing edges in G, 

corresponds to hyperedge ei , the union of outgoing labels for ti  is equal to ei ; each edge eu in 

G. corresponds to ei  n e,. On the other hand, each node A in H, corresponds to attribute A in 

the labels of G,, and each edge a;  in H, corresponds to a node ti and its outgoing edges. We 

adopt standard notations of subhypergraph, induced hypergraph, articulation set ,and acyclicity 

for hypergraph H, from [2]. 

Corresponding notations should be easily defined for G a;there whenever a, attribute is 

removed from one edge, it is also removed from whole .  G,. In following theorem, the proof is 

based on G,, since it is easily related to covered chain in G,. 

One important property of simple EGD is that each node A in H , .(or label A in G, ) 

corresponds to exactly one repeating value in A column of T. Therefore no distinction needs to 

be made between attribute and its repeating value in H, (or Cu).  From this we have another 

important property of simple EGD, edge transitivity, that is, in H,, 

AEe; n e3  and AEe3 ney implies A Es; n ch • 

or in G., 

A Esii and A Eei2 implies A Eery  

We will see that this transitivity property play a crucial rule in the proof of following theorem. 

Let (N,E) be a hypergraph, and let F be a subset of E, let s be the set of nodes that is the 



union of the members of F. We say that F is guarded if there is an edge f (called guard ) in F 

such that for each edge c of the hypergraph that is not in F, we have e n . c f  . We say that F 

is closed if for each edge c of the hypergraph there is an edge f in F such that e ns cf . It fol-

lows easily that every guarded set of edges is closed. 

We will use a-acyclicity, /3-acyclicity defined in [3]. Especially, we will use the definition 

that a reduced hypergraph is a-acyclicity if every nontrivial, connected closed set of (full) edges 

has an articulation set (see [3]), and we make use of definition that a hypergraph is 0-acyclic iff 

every subhypergraph of it is a-acyclic. 

Lemma 7 Suppose cr is typed, simple ,reduced EGD on U, and FD (a) 1=a and t i t 	is a 

chain covered by FD (a), then 

a (ti ,ti )Ca (M,M+1) i<M‘j, 

for any 1</ <j<1. 

Proof: Since FD (o) l=a,there is a shortest chain ti,t2...ti that is covered by FD (a) and since a is 

reduced ,t 1 ,12...4 are the only tuples in cr. We first note that X can appear in G at most once, 

otherwise,by simplicity of a , we can get a shorter chain that is covered by FD (a) (dashed chain 

in figure 3). 

For any l<M < IT I ,and for any 1<i <M,M+1<j < ITI : 

1. if ==1,j =1, 

if Xcts (M,M+1) ,then a (1,1)C a (M ,M+1),otherwise, 

if X Ea (M ,M +1),then 

if M —1,M +1—/ then a (1,1)C a (M,M+1),otherwise, 

if l<M or M+1<1 then for all 1<k <M or for m+i<k. <l,from the case we 

have proved, we have 

either a (1,1 )C a (k ,k +1) (since X 0.,4 (k ,k +1)), 

or a (1,1)C a (k' 	+1) (since X (EA (k' 	+1)). 

But a is simple, by the edge transitivity, we have a (1,1)C a (M,M+1). 

2. if 1.<1 or j</, 



if X fa (M ,M +1), suppose a (i ,j a (M ,M+1),then a (i , j )-a (M ,M +1)740, so remov-

ing attributes in a (M,M+1) will not disconnect ti  and ti  , but since t1,t2...t1 is covered by 

FD (a), there must be some k <i (or k > 1) such that a (k ,k +1)C a (M,M+1). Since a is simple, 

that is, 

a (iLiOna (is,i4)2 a (i1,i4) 

so • a (k ,k +1)=4 (k ,k 	(M,m+i)C a (k ,M +1) , that is, a (k ,k +1)C a (k ,M +1). 

Since M > k +1 (if k <i), we have a shorter chain t 1,t2...4 ,644-1-4.-4 that is covered by 

FD (a) (see figure 4), contradiction to that the original one is shortest, so a (i ,j)C for 

i<M<j. 

if XEa (M ,M+1),then 

if M...1,M+1=j then a (i,j)Ca(M,M+1), 

• if i <M or M+1< j, then from the case we have proved, for all i<k <M or all 

M+1<k"<j, 

either a (i , j )C a (k ,k +1) (since )(Oa (k ,k +1)), 

or a (i ,j )C a (k ,k' +1) (since X 	(k',k' +1)). 

Since a is simple ,by edge transitivity, we have a (i,j)C a (M,M+1).--1 

Another way to state this theorem is that if t 1 ,t 2...t1 is a chain covered by FD (a), deleting 

attributes in a (i 4+1) (1<i <1 ),including those containing X, will disconnect T, 1  and T.,. 

Lemma 8 s let C be a guarded set of edges of a hypergraph, an articulation set for C is an arti-

culation set for the entire hypergraph. 

Proof : see lemma 6.1 in [41.-I 

Lemma 9: Suppose EGD a is 0-acyclic and a is simple, if S i  n5; is an articulation set of a such 

that deleting attributes in .9, ns, produces connected components C 1 ,C2...Ck , let Cc, Ci...C1; 

be C I,C 2...Ch with the deleted attributes added back, then the subhypergraph Ci' containing Si  

and subhypergraph containing Si  both are guarded set of a. 

Proof: let node(H) be all the attributes in hypergraph H.Obviously,a= 	Cr . since CI and 
1ST<Is 



C• are symmetric, we only prove for 	. 

For any edge S, EH „-Cl ,let S, EC( , I v4i, for any attributes A ES, 

case 1: if A Enode (CO, since node occuring in only one edge does not appear in the graph, 

so by simplicity of a , A will connect Ci' and CI' ,so A ES{  nSi  ,otherwise Ci  and C1 will keep 

connected after deleting Si  nSi , so A ES;  . 

case 2: if A Enode (CO, then A 445, n node (CO. 

In all case,S, nnode (COC.% 

Lemma 10: Suppose a is typed EGD and 	and H2 are subhypergraph of H,. let if1rH2  

denote that H2 is guarded set of 11 1,then for subhypergraphs 0 1 ,C2  and C3 of H, with 

C 1D C22 Cs (hyperedge containment), if Cy C2 and 021' C3, then Cx Cs. 

Proof : Let esEC3  be the guarded edge of C3 with respect to C 2,let e 2EC2  be the guard of C2 

with respect to C 1, for any eIECI, we have 

einnede (0 3)ce i nnode (C2)n node (C 3)_ce 2nnode (C 3)C e3 

so 

In the following, we will use G instead of H,, and all the notations of hypergraph and 

lemmas about hypergraph are applicable to G 

Theorem 11 : Suppose a is reduced, simple EGD,then FD (a) 1==a iff a is /3-acyclic. 

Proof : 

only if 

if FD (a) 	there exists a chain ti,t2...ti covered by FD (a). Since a is reduced,t i ,t 2... ti 

are the only tuples in a. Suppose there exists a /3-cycle C in hypergraph of a, C has at least one 

edge (th  ,th+1)..on chain ti,t2 • • • ti (see figure 5). From lemma 7, a (i,j)CA (k ,k +1), for any 

t1 andti that lay at opposite aide of (th ,t k+i), all such pairs will be disconnected after removing 

attributes in a (k ,k +1),so C is not /3-cycle, contradiction.So•no /3-cycle in hypergraph of a, a is 

8-acyclic. 

if 

Since a is simple and reduced, the hypergraph of a is exactly one component containing 



both 4 1  and 4 2. 

If FD (o) 1=a, and since a is simple and reduced, from the proof of lemma 7, a has exactly 

one tuple t, 1  containing a 1  and one tuple 4 2  containing x 2. So if a contains more than one 4 1  or 

more than one 4 2, we can immediately conclude that FD (a) ha, therefore, we only prove for the 

case that a contains exactly one t, 1  and 4 2. For any articulation set e u  : 

If removing co does not disconnect 4 1  from 4 2,then work on the subhypergraph obtained 

by adding back the deleted attributes to the component containing 4 1  and 42. 

If removing eu disconnects t, 1  and ts2  work on the 2 subhypergraphs containing ti and 

,respectively, mark eq 

From lemma 9 and lemma 10, each proper subhypergraph we work on is guarded set of a. 

Furthermore, since a is fl-acyclic and each guarded set is closed set ,and guarded set we are work-

ing on is connected, so it is also a-acyclic.From lemma 8, any its articulation set is also that of 

whole hypergraph of .o ,we search for articulation set in the subhypergraph, but treat this articu-

lation set as that of a, and classify it as above with respect to whole hypergraph. Therefore, by 

working on some subhypergraph,we should really means working on 'most recent subhypergraph" 

contained in 'global subhypeigraph" suggested as above. 

This is a recursive decomposition, each time ,we work on proper subhypergraph of provious 

one.(also a subhypergraph of a) . Since a has only finite number of edges, finally we will end up 

with the situation that the subhypergraph to be decomposited is single node for G a  (or single 

hyperedge for Ho ) edge, in this case, our decomposition ends. 

Since all the marked edges form connection between subhypergraphs in the decomposition 

hierarchy,all these edges are connected and since at any level of decomposition, 4 1  and 4 2  are in 

same or different "local subhypergraple,so 4 1  and 4 2  will be connected by these marked edges, 

then any path from 4 1  to 42  in these connected articulation sets is covered by FD (a). so 

FD (cr) 
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1. Introduction. 

Independence has been studied by many researchers in database theory. As 
. 

mentioned by Beeri et. al. [BBG], independence meets the aesthetic principle of 

`separation' or 'one thing in one place.' The research presented here constitutes 

an attack on the desirability of independence within the context of weak instance 

theory. 

In all the contexts in which independence has been studied, it has the follow-

ing essential description: Some set of 'local' properties is sufficient to guarantee 

some set of 'global' properties. Within weak instance theory, it takes the follow-

ing form: A database state within which each relation satisfies the dependencies 

local to it has a weak instance, i.e., is consistent. This problem does not arise in 

practice. In practice one does not encounter states about which only this local 

satisfaction property is known. One encounters instead the following problem: 

Given a state which is known to be consistent and a suggested modification to 

that state, should the modification be allowed; that is, will the modified state be 

consistent? We call this the maintenance problem. 
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As mentioned in [GY], very fast solutions to the maintenance problem are 

needed in practice. We assume that states are large and modifications are fre-

quent. In such an environment, reading the entire state is not a viable solution to 

the maintenance problem. Thus 'very fast' must mean sublinear. One of our key 

results is that all sublinear solutions to the maintenance problem are constant 

time solutions. In other words, a very fast maintenance algorithm runs in time 

independent of the size of the database state. (This depends on our model of 

computation.) 

Within weak instance theory, independence has been studied by Sagiv [Si] 

[S2], Graham and Yannakakis [GY] and Honeyman and Sciore [HS]. These 

authors restricted themselves to the case that the universal dependencies are a set 

of functional dependencies plus the join dependency for the scheme. In this case, 

independent schemes have a constant time maintenance algorithm. 1  It is not hard 

to see that there are schemes having a constant time maintenance algorithm 

which are not independent. The classic 'City, Address, Zip' problem is a case in 

point. The design algorithm of Biskup -  et. al. [BDB] produces the scheme { CAZ, 

ZC} (recall the fd's are CA — ■ Z , Z — ■ C). This scheme is not independent, but it 

is constant time maintainable. (For example, to insert a tuple (z ,c ) into ZC, 

retrieve any tuple of the form (e' ,a ,z) in CAZ and verify c' =c .) 

We give below a characterization' of constant time maintainable schemes in 

the general case, i.e., without restricting the set of universal dependencies. (We 

consider only typed dependencies here, primarily for notational convenience.) A 

key result is that the set of consistent states of such a scheme is axiomatized by a 

set of embedded functional dependencies only. (Were we to relax the restriction 

to typed dependencies, these would become binary egd's.) We then turn to the 

1  This does not hold in general. It does not hold if the local egd's are not binary. 
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case of fd's plus a single jd. We discuss a recognition algorithm and the mainte-

nance algorithm. 

Brosda and Vossen [BV] address concerns quite similar to ours. They use 

the modified foreign key constraint first introduced by Sagiv [S1]. They present a 

technique for verifying inserts in constant time. Their method of handling deletes, 

however, takes linear time in our model. For us, deletes are free and we do not 

take their constraint. 

As shown by Sagiv [S3] and Atzeni and Chan [AC], schemes independent 

with respect to a set of fd's and a single jd are algebraic, that is, the canonical 

queries [GM] or projections of representative instances can be expressed in the 

relational algebra. Although we have yet to complete this phase of the research, 

it would seem that the same property holds for schemes constant time maintain-

able with respect to such a set of dependencies and indeed, by the same tech-

niques. (This will not hold in the general case, by results of Sagiv.) 

It seems then that the two concrete advantages of independent schemes are 

also advantages of constant time maintainable ones. Independent schemes are left 

with only the aesthetic advantage of separation. This is intuitively unsatisfying. 

Aesthetics should translate into practice. 

(However, we must be honest. The recognition algorithm given below is 

exponential time. A lower bound is not known. Independence may reassert itself 

here, but at least one of the authors thinks it will not. Should the recognition 

problem prove intractable, that would be a concrete, but rather odd, justification 

of independence viz a viz constant time maintainability.) 
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2. Definitions and notation 

In the interest of time and space, we will assume the reader to be familiar 

with the concepts of relational theory. In particular, we assume familiarity with 

the notions tagged and untagged tableaux, functional and join dependencies, tuple 

and equality generating, single and multirelational dependencies, homomorphisms, 

satisfaction, closure of a set of attributes, embedded fd's, local satisfaction. We 

denote by SAT(D) the set of all states, of the scheme in which the (possibly mul-

tirelational) dependencies of D are written, which satisfy D . We also assume the 

reader to be familiar with the basic concepts of weak instance theory. We denote 

by CONS(R,D) the set of states of the scheme R which are consistent with (have 

a weak instance satisfying) D . Here D is universal for R., that is, is a set of sin-

gle relation dependencies over the underlying universe UR. 

Note that consistency is in its essence an existential, second order notion. 

We ask "Does there exist a weak instance for the state?" On the other hand, 

satisfaction is a first order notion. We ask "Is the state a model of D ?" The two 

ideas are connected by the following result, due to Graham and Vardi: 

Fact. [GV] For every R,D there exists a set of equality generating dependen-

cies E such that 

CONS (R,D )=SAT (E) 

Of course the dependencies in E are multirelational and their tableaux all use the 

scheme R; whereas, the dependencies in D are all universal for R. One should 

note that E is not necessarily recursive. By the same token, neither is 

CONS (R,D) [GMV]. 

Now let T be a tableau or state. 2  For {x ,y IC T we define 

2  The terms "tableau" and "state" are synonymous in this paper. 



	

v ,y 	I z LA 1=c =y [A 1 for some A} 

v(x)--,--Uv(x,y) 

r# 

In short, v (z) is the. set of symbols or values of z which repeat. The function v 

can be extended further in a natural way so that we have 

v(T)= U v(z) 
sET 

So, v (T) is the set of repeating symbols of T . We also define a function a 

which returns attributes of values. For any set of values V, 

a (V )={A I V n doin (A )740}. We consider only disjoint attribute domains 

(the typed case) so a is well defined. The notation a (z ,y) abbreviates 

a (v (z ,y )). Similarly for a (x), a (T). We often need to consider values, rather 

than attributes, as we will consider tableaux which are not simple, that is, in 

which more than one repeating symbol may appear in a given column. So v gives 

us more information than a does. 

3. Extensions and extensibility. 

	

Let T.--{t 0, . . . , 	} be a tableau. An extension of 1 0  in 	T is a sequence 

(u 0, . . . , up  ) where u 0,---t 0  and ui  ET. Duplicates are allowed in an extension. 

We associate with an extension as defined above, a sequence of sets of attri-

butes (Y 0, . . . , Yp  ) whose definition depends on a set of universal dependencies 

D . We set Y 0--=a (t 0) and for 0<i <p 

Yi =(U{a (ui 	Yi I j <i}rnR(ui) 
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where we define 

1) for any tuple t, R(t) is the relation or tag of 4 

2) X+ denotes the closure of X under the fd's implied by D . 

The notion of an extension is a generalization of the notion of extension join 

defined by Honeyman [H]. 

Given an extension E 	0, . . . , up  ), we define the set 

v(E)=U {ui[A] I AEY;} 
1 =0 

Fix, for the remainder of this paper, a scheme R and a set of unirelational 

dependencies D , which is universal for R. Let T be a tableau over R and let 

t ET . We say t is extendible in T if there exists an extension of t in T , E such 

that v (E )D v (T ). The inclusion may be improper as v (E ) may contain non-

repeating symbols of T . We say T is everywhere extendible if each t ET is 

extendible. 

4. Model of Computation 

We assume the database to be stored on an associative memory which 

responds to requests of the form 

(1? ,III) 

where R is a relation scheme (in R) and if is a boolean combination of equality 

formula A =a where A ER and a Edom (A ). The memory responds by return-

ing, if it exists, some tuple of R making 4 true, where this is defined in the 

natural way. The request is said to succeed in this case. Otherwise it is said to 

fail. We charge unit time for each request. We do this to discard from considera-

tion the problems of data structuring. As we are interested primarily in lower 

bounds, these will carry over to the more realistic case. 
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5. The maintenance problem 

Let E be the set of egd's such that SAT (E)=CONS (R,D) (where R, D 

were fixed earlier). Let (T ,x =y }EE, t E T . The maintenance problem 

(t ,(T =y ),R,D ) is the decision problem which has as its set of instances 

{(u ,p) I u an R (t) tuple , pECONS (R,D )} 

A "yes" instance of (t ,(T ,x =y ),R,D ) is defined by: for every homomorphism 

h :T pu{u} , if h (t )=u then h (x)=h (y 

Suppose an algorithm A solves the (t,(T,x =y ),R,D ) problem. For any 

instance (u ,p) of this problem define # A((u ,p)) to be the number of requests 

made by A on the instance (u ,p). We say A solves (t ,(T ,x =y ),R,D) in con-

stant time if there exists an integer k such thit 

k ># A((u ,p)) for all (u ,e) 

Theorem 1. There exists a constant time algorithm solving 

(t ,(T ,x =y ),R,D ) if and only if t is extendible in T . 

For the proof of theorem 1 to work, it is necessary to make, without loss of 

generality, an assumption on the elements of E having the effect that v (T) is not 

unnecessarily large. The assumption will also ensure that E is nonredundant. 

The ((T 	),R,D ) and (R,D) maintenance problems can be defined in 

the obvious way. We have as an immediate corollary of theorem 1: 

Corollary. The ((T =y ),R,D ) maintenance problem can be solved in con-

stant time if and only if T is everywhere extendible. 

Less immediately, we also have 
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Theorem 2. The (R,D) maintenance problem can be solved in constant 

time if and only if every element of E is everywhere extendible. 

For theorem 2 we need to show that the condition of the theorem implies 

that E is finite. We show that the tableaux in E are simple. 

The everywhere extendibility of a tableau T depends only on the set of 

embedded functional dependencies. We can sh8w that, if T is everywhere exten-

dible, the egd (T ,z =y )EE is implied by the embedded fd's. Therefore we have 

the following result, which gives us the subtitle of this paper. 

Theorem 3. The (R,D) problem has a constant time solution only if 

CONS (R,D )=CONS (R,F) for a set of embedded, functional dependencies, F . 

From inspection of the proof of theorem 1 we also have 

Theorem 4. If the (R,D) problem has no constant time solution, it has no 

sublinear solution. 

6. The case of fd's and a single jd„ 

We now consider the case that D is of the form F U ?KR where F is a set of 

functional dependencies. We say that F UNER is constant time maintainable, or 

ctm, if the maintenance problem (R,F U CIE It) has a constant time solution. 

Theorem 5. Let G be the set of functional dependencies implied by 

F UXR. If F UNER is ctm, then R embeds a cover of G and 

CONS (R,F U )IE R)= CONS (R, G ). 

Note that theorem 2 of [GY] is a corollary of this result. We now give a brief 

discussion of an algorithm for determining if F UNER is ctm and another for 

solving the (R,F U Nat) maintenance problem, if it is. 

We borrow from the work of [GY]. The algorithm given there determines 

that F UNER is not independent by finding a non-trivial, multirelational egd in 
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E. We check this egd to see if its tableau is everywhere extendible. If it is, the 

algorithm must look for other violations of independence. We must be able to 

decide when the algorithm has seen enough. 

Borrowing and modifying the notation of IGY1, we construct a set of 

tableaux T={71(A ) R ER,A EUR, i an integer} with the following pro-

perty. For any state p of R, for any t Ep(R ), if E is a non-trivial extension of t 

in p with A Ea (E), there is an element TA )ET and a homomorphism 

h : TA (A )—+E . Further, if we assume E is not unnecessarily long, then h is onto. 

(The tableau E is the set of tuples in the sequence E .) We can show I T I to be 

bounded by an exponential in IIF UXRII as each TPA ) corresponds to a 

derivation of R —+A . (In fact, T need not be explicitly formed, so that the algo-

rithm does not require exponential space. It remains to be seen whether it can be 

made to run in polynomial time.) Pairs of elements of T of the form. TPA ), 

TAA ), form, in the manner of the proof of theorem 4 of [GY], the egd's 

we check for everywhere extendibility. (This is assuming A OR . If A ER , each 

TPA ) is an egd.) We call this set of egd's E' . (Include the embedded fd's in 

If the elements of E' are everywhere extendible, then we can show 

SAT (E' )=--SAT (E)=CONS (R,F U R). 

First though, we show how to solve the (R,F U)KR) problem when 

F UNER is ctm. Given an instance (u ,p) of (R,F OM), check that pU{u} is 

locally satisfying and then extend u maximally in p. At this writing, this process 

requires having an embedded cover H of G where H, -.=..G+ 114, a cover which 

is hard to obtain. There is some hope that this problem can be made to disap-

pear. This algorithm requires no more than I H I requests and the algorithm 

accepts ,p) if the extension reveals no contradiction. If that occurs, we can 

show pU{u}ESAT (E' ); that is, the extension of no tuple of p produces a con-

tradiction in pU{u}. 
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To show SAT (Et 	CONS (R,F U)KR), we follow the proof of theorem 5 

of [GY]. We expand any element of SAT (Et ) to a join consistent state. The key 

is to show that each step of the expansion preserves membership in SAT (E' ). 

The join of the final state is a weak instance for the original state, as in [GY]. 
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1. Introduction 

The database literature contains many examples of actions on abstract data types which 

can be correctly implemented with nonserialisable schedules of reads and writes. We mention 

one such example here. 

Example 1. Consider transactions T 1  and T2, each of which adds a new tuple to a rela-

tion in a relational database. Assume the tuples added have different keys. A tuple add is pro-

cessed by first allocating and filling in a slot in the relation's tuple file, and then adding the key 

and slot number to a separate index. Assume that Ti's slot updating (SO and index insertion 

(I,) steps can each be implemented by a single page read followed by a single page write (writ-

ten RT,, WT I  for the tuple file, and RIi , WIC  for the index). 

Here is an interleaved execution of T1  and T2: 

RT 1  WT 1 R T2 WT2M2 
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This is a serial execution of SI 52 12 I. Now /1  and 12 clearly commute, since they are inser-

dons of different keys to the index. Furthermore, I l  cannot possibly conflict with 52, since 

they deal with entirely different data structures. So the intermediate level sequence of steps is 

equivalent to the sequence 5 1  1l  52 12, which is a serial execution of T 1  T2. We have demon-

strated serializability of the original execution in layers, appealing to the meaning (semantics) 

of the intermediate level steps (S i  and li). But note that the sequence we gave may be a non-

serializable execution of Ti  T2 in terms of reads and writes, since the order of accesses to the 

tuple file and the index are opposite. If the same pages are used by both transactions, it will be 

a non-serializable execution. It is instructive also to observe that the sequence RT I  RT2  WTI 

 WT2  ... is not serializable even by layers. It does not correctly implement the intermediate 

operations S i  and S2. 

A similar observation, which has received less attention, applies to recovery from action 

failure. The following example is an illustration of this interesting phenomenon. 

Example 2. Consider T1  and T2 as defined above, but suppose that the index insertion 

steps Il  and 12 each require reading and possibly writing several pages (as they might, for 

example, in a B-tree). We now write Rli(p), W/i(p) for reading and writing index page p. 

Consider the following interleaved execution of T 1  and 7'2 : 

RT1 WT1RT2 WT2R 12(P)R 12(4)W12(4) WI2(r) WI2(P) RIi(P)WIt(P ) 

The pair of index page writes W12(q)W1 2(r) may be interpreted as a page split. This is serializ-

able by layers, since at the level of the slot and index operations we are executing the sequence 

Si  52 12 Il, as in Example 1. But we encounter the following difficulty if we subsequently 

decide to abort T2: The index insertion / 1  has seen and used page p, which wee written by T2 

 in its index insertion step. If we attempt to reproduce the page structure which preceded the 

page operations of T2, we will lose the index insertion for T1 . Worse yet, if T1  continues trying 

to operate on the index based on what it has seen of p, the structural integrity of the index 

could be violated. Thus it appears that we cannot reverse the page operations of T2 without 

first aborting T1 . But there is still a way to reverse the index insertion of T2, just by deleting 
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the key inserted by T2. Consider the following sequence: 

Si S2 12 II D2 

The illustrated schedule is clearly correct, as long as the keys inserted by T 1  and 712  are distinct, 

because we do not care whether the original page structure has been restored. We only need to 

restore the absence of the key in the index. 

In this work, we present generalizations of serializability and atomicity which account for 

many such examples. The generalization arises from the observation that a transaction (or 

atomic action) is frequently a transformation on abstract states which is implemented by a 

sequence of actions on concrete states. The usual definition of serializability requires equality of 

concrete states. We call this concrete serializability, to distinguish it from equality of abstract 

states, which we call abstract serializability. Since many different concrete states in an imple-

mentation may represent the same abstract state, abstract serializability is a less restrictive 

correctness condition than concrete serializability. An immediate application of abstract serial-

izability is to explain the correctness of apparently nonserializable schedules such as those 

described by Schwarz and Spector in [8] and by Weihl in [10]. If results returned by actions are 

considered part of the state, correctness conditions for read-only transactions, such as those 

described by Garcia-Molina in [2], can also be expressed. 

The generalization of atomicity is analogous. The usual definition of an atomic action 

requires that it execute to completion or appear not to have happened at all. We introduce the 

idea of abstract atomicity, which is analogous to abstract serializability: A schedule of actions is 

abstractly atomic if it results in the same abstract state as some schedule in which only the 

non-aborted actions have run. Concrete atomicity corresponds to the more usual definition: the 

final state is the same as one that would have resulted from running only the concrete actions 

which were called by non-aborted abstract actions. 

A widely accepted folk theorem states that it is necessary to use knowledge of the seman-

tics of actions to achieve more concurrency than serialization allows. While we could address 

the semantics of specific atomic actions case by case, this is a tedious process. Instead, we 
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describe a systematic method of using easily obtained knowledge about their semantics. A basic 

theorem of this paper, in a result related to the results of Beeri et. al. in [1], says that we can 

serialize at the individual levels of abstraction. Between levels, we need only to insure that the 

serialization order is preserved. Thus, in the above example, once the slot manipulation has 

been completed, locks on the page may be released. It is not necessary to wait until T 1  is com-

plete. This has the effect of shortening transactions and thereby increasing concurrency and 

throughput. The analogous result holds for atomicity: we show that, for schedules which are 

serializable by layers, atomicity need only be enforced within each level of abstraction. 

Another contribution is a much more realistic (but slightly more complicated) model than 

the usual straight-line model of transactions (as presented, for example, by Papadimitriou in 

[7]). The model presented here accounts for the flow of control in programs, such as "if-

then-else" and "while" statements, _without introducing nearly as much complexity as is 

present in [1]. The most interesting result involving the model is that, while it affects the 

classes of abstractly serializable and concretely serializable schedules in potentially profound 

ways, the class of CPSR schedules is essentially the same. This is because interchanges of 

non-conflicting actions preserves the flow of control within an action as well as the resulting 

state. It does not appear that any authors have previously addressed this issue. 

The definitious of abstract and concrete serializability and atomicity do not suggest practi-

cal implementations. It is widely accepted, however, that the largest class of serializable 

schedules which is recognizable in any practical sense is the class of conflict-preserving serializ-

able schedules. A similar situation may hold for atomicity. We define here a class of conflict-

based atomic schedules which can be executed efficiently. This is the class of restorable 

schedules, in which no action is aborted before any action which depends on it. This class may 

be viewed as dual to the class of recoverable schedules defined by Hadzilacos in [4]: A schedule 

is recoverable if no action commits before any action which it depends on. In a restorable 

schedule, aborts can be efficiently implemented by executing state-based undo actions for each 

child action of an aborted action. 
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Finally, this work addresses a problem mentioned but not specifically addressed by Been 

et. al. in [1], which is the use of knowledge about abstract data types and state equivalence in 

serialization. The "fronts" of [1], which must be computed from an actual history of the sys-

tem, can be determined in this context from information easily provided by a programmer: 

namely, from the call structure of the system and a "may conflict predicate" which describes 

which actions_may conflict (i.e., not commute) with each other. The use of knowledge about 

abstractions and state equivalence permit description of legal interleavings in a simpler and 

more direct manner than in [1] or in Lynch's multi-level model in [6], where the set of legal 

interleavings must be given directly. 

Similarly, the semantic information used for recovery can be provided easily by the pro-

grammer. The undos must themselves be actions (which will have to be coded if they are not 

"natural" actions for the abstraction).- In each action, there must be a case statement which 

specifies the undo action for each set of states. For example, if the forward action is "Add key 

x to index I" then for the set of index states in which the index does not already contain x, the 

undo is "Delete key x from index I". For the set of index states in which the index already 

contains x, the undo action is the identity action. 

2. 'The Model 

We first describe the model for a single level of abstraction. The essential difference 

between this model and the straight-line model used by Papadimitriou in [7] is that the flow of 

control is reflected in the model. The essential difference between this model and those in [1] 

and [6] is that the construction of the set of legal interleavings is simple and visible in the 

model. Some notation will be needed to describe the levels of abstraction. 

Notation: Let S i  be an abstract state space and let S o  be a concrete state space. Let A l 

 be a set of abstract actions and Ao  be a set of concrete actions. Let p:S 0--.S i  be a partial 

function from concrete to abstract states. If p(t) = a for concrete state t and abstract 

state a, then t represents 8. 

The intuition is that concrete states are used to represent abstract states and concrete actions 
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are used to implement abstract actions. Not every concrete state represents a valid abstract 

state. Furthermore, the same abstract state may be represented by several different concrete 

states. However, we do expect that every abstract state is represented by some concrete state, 

that is, p(So) = St. 

Actions map states to states according to a meaning function. The meaning function for a 

concrete [abstract] action is a function m : .4 0-4.24xs°  [m : A l--■251xs1]. It is interpreted as fol-

lows: if (8,t) e m(a) for an action a then when executed on state s, the action a can terminate 

in state t. Actions are nondeterministic, that is, there may be more than one terminal state t 

for a given initial state a. 

Abstract actions are implemented by programs over concrete actions. These programs 

generate sequences of concrete actions. For the sake of concreteness, we present one way of 

generating these sequences here. However, we do not assume that any particular method of 

generating the sequences is used. In proofs, we assume only that each program is associated 

with a set of sequences of concrete actions, which is the set of sequences the program would 

generate when running alone, and that new programs can be constructed from existing pro-

grams by concatenation. This operation amounts to running the first program to completion 

and then initiating the second program. The reader should note that when two programs run 

concurrently, one or both of them may generate a sequence of actions that would not be gen-

erated if they ran alone. Such sequences may be unacceptable. 

A single concrete action is a program, and we will also regard any regular expression over 

actions as a program. We borrow notation from dynamic logic (see Harel, [5]) for a concise 

way to describe a program. If a and /3 are programs, new programs may be formed by concate-

nation (a ; $ is a program); union (a u $ is a program); or closure (a' is a program). 

The meanings of these constructs are defined recursively as follows: 

The meaning of a ; /3 is to execute first a and then /3: 

m(a ; ig) = {( 8 ,t)KE 0 )((a,a) e m(a) and 06 M e m(13))). 
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Since concatenation of actions is clearly associative, we write al , 	 

programs, ignoring the order of concatenation. 

The meaning of a U $ is to execute either a or /3: 

m(aU $) = m(a)U m($). 

The meaning of a' is to execute a zero or more times. 

 

for concatenation of n 

 

m(a') = {(80,8) K3 81,82, • • • ,81,..1)(Yln)(( 8i-1, 8i) e m(a)))•• 

Conditional execution of statements is modelled by actions which are identity on all states 

on which they are defined. These actions are called predicate actions and can be described by 

giving a predicate which is true for all states on which the predicate action is to be defined. For 

example the action (z = 0)9 is identity on all states in which the variable x is 0 and undefined 

elsewhere. The statement "if x > 100 then z :=x — 100 else x := 0" is then modelled by 

(p ; a) U ( ; 6), where p is the predicate action (z > 100)F, a is the action x :=x — 100, 

and b is the action z 0. 

Notation: For any subset C of So  X So  let 

p(C) =PM I (3 (z,y)c C )(p(x) = s  and p(y) =t)} 

We say that an abstract action is implemented by a program of concrete actions if p maps 

the meaning of the concrete program to the meaning of the abstract action. We will also 

require that if the program is initiated in a valid state then it must terminate in a valid state. 

Definition: A concrete program a implements an abstract action a if and only if 

(1) m(a) =p(m(a)) and 

(2) for every pair ( a ,b) c m(a), if p(a ) is defined then p(b) is also defined. 

We now prove a technical lemma about implementations which will be useful in a subsequent 

section. 

Lemma 1. Let a and b be abstract actions implemented by concrete programs a and $, 

respectively. Then m( a ; b) =p(m(a;$)). 

Proof: First we show that p(m(a;13))Cm(a ;6). Let (8,t) e p(m(a;13)). Then there are 
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states c and d with p(c) =a and p(d) =1 and (c,d) e m(a;13). Thus there is a state b 

with (c,b) e m(a) and (b,d) e m(I3). Since a implements a and p(c) is defined, p(b) is 

also defined. Therefore, (p(c),p(b)) e p(m(a)) =m(a) and 

(p(b),p(d)) e p(m(fl)) =m(b). It follows from the definition of concatenation that 

(s,t) =(p(c),p(d)) e m(a;b). 

Now we show that m(a;b) C p(m(a;/3)). Let (8,1) e m(a;b). There is a state 

u e S 1  such that (8,u) e m(a) and (u,t) e m(b). Since m(a) =p(m(a)) and 

m(b) =p(m(I3)) there are states b, e, d e So  such that p(c) =s, p(d) =t, and 

p(b) =u; (c,b) c m(a); and (b ,d) e m(#). Therefore (c,d) c m(a;fl) and 

( 8 ,0 =- (P(c),P(d)) e P(n(a;19))• 

Corollary 1 to Lemma 1. Let a and b be abstract actions implemented by concrete pro-

grams a and fl. Then the abstract action c having m(c) =m(a;b) can be implemented 

by the concrete program -7 =a;11. 

Proof: From Lemma 1, we have that m(e) =m(a;b) =p(m(a;13)) =p(m(1)). We 

need only show that if (s,t) e m(i) and p(a) is defined, then p(t) is defined. But if 

(8,1) e m(i) then (s,t) s m(a;48) and therefore there is a u e So  such that (a,u) e m(a) 

and (u,t) e m($). Assume that p(s) is defined. Since a implements a, p(u) is defined. 

Since $ implements b , p(t) is defined. 

Corollary 2 to Lemma 1. Let a l , • • ,a„ be abstract actions implemented by concrete 

actions a l , • • • ,a,. Then the abstract action c defined by a l , 	,a„ can be implemented 

by the program a l , 	,as• 

Proof: The proof is by a simple induction on the number of actions n. 

Induction Base: If there is only one action a t, the result is immmediate from the 

definitions. 

Induction Hypothesis: For all sets of abstract actions of size less than or equal to n-1, the 

as- 1 is implemented by the concrete program a l , 	,a,_ 1. abstract action a l , 	 
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Induction Step: By the induction hypothesis, a l , 	a,1_ 1  is implemented by 

a 1; 	,a„_ 1 . Using Corollary 1 to Lemma 1, we conclude that 

at, 	,as-has 	,a.-1);as 

is implemented by 

(at, 	,as-1),as —at, 	,as-t;as. 

In keeping with the use of an initializing action in [7], we assume that the database has 

been initialized to concrete state I in the domain of p (p(I) is the initial abstract state). It will 

often be useful to restrict the meaning function to those pairs whose initial state is I. 

Notation: 	The restricted meaning function for program a is defined 

mi(a)=((I,j)KI,j) e m(a)}. The restricted meaning function for abstract action a is 

defined m,( 1)(a)p(1),p(j))1(p(1),p(j)) e m( a)}. 

If a implements a then m o( J)(a) =p(m i (a)). Associated with each program is a set of possi-

ble computations of the program, one for each sequence of concrete actions which can be exe-

cuted to completion. 

Definition: A computation of an abstract action a having program a is a sequence 

C = c 1, ,c, of concrete actions in the regular set defined by the program, such that 

mi ( C) is nonempty. 

A computation of a set a 1 , • • • , a, of concurrent abstract actions is an interleaving of the con-

crete actions in computations for a l , • • • ,a„ which can be run to completion. 

Definition: A concurrent computation of the set a i , • • , a„ of abstract actions is an inter-

leaving C of computations of the individual actions such that m / (C) is nonempty. 

3. Serializable Computations 

3.1. Seriallzability of Abstract Actions 

The set of concurrent computations for a collection of actions will in general be hard to 

characterize. It may be even harder to characterize the ones which are correct. We discuss a 

relatively simple subset of these computations, those that behave, in some sense, like serial 
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(non-interleaved) computations. 

Definition: A (complete) log L is a set Ay  of abstract actions, a sequence CL of concrete 

actions, and a mapping XL:C--■A such that XL( c) is the abstract action a e Ay on whose 

behalf c is run. Cy is a prefix of some concurrent computation of Ay. A partial log L is 

a log in which Cy  is a prefix of a concurrent computation of Ay . 

Definitions are stated and results proved for complete logs unless otherwise stated. Usually, 

the extension to partial logs is trivial. 

Notation: We will write m( CL) for m(c 1 , 	 ,c8 ) where Cy = {c 1 , • • • ,c1 } and we 

assume that ci precedes c1  for i < I. 

We will write c <L d when c precedes d in the sequence Cy. 

We consider serial computations to be correct. 

Definition: Consider a log L containing abstract actions AL = {a 1, • • • ,a.} imple-

mented by programs {a 1 , • • • ,a, }. The log L is aerial if Cy  is a computation of the pro-

gram af ( 1)„cef oo for some permutation r of {1, • • • ,ts}. 

We also consider a computation to be correct if it results in an abstract state that would result 

from some serial log. The following definition allows the use of knowledge about abstractions 

in determining the correctness of an interleaving. Depending on the abstraction, this can be a 

very different class of interleavings from those that would ordinarily be viewed as serializable. 

Definition: A log L is abstractly serializable if and only if there is a permutation r of 

(1, • • • ,n}such that p(tri(CaCm,(/)(af(i), 

 

	ar(s))• 

 

The next definition defines a class of serializable logs more closely related to the usual 

class of serializable schedules. 

Definition: A log L is concretely serializable if and only if there is a permutation r of 

{1, • • • ,n}such that nit(CL)Cm/(a = ( 1), 	,ar(s))• 

Definition: For both abstract and concrete serializability, the sequence r(1), • • • ,r(a) is 

called the serialization order of L. 

A partial log L is serial (concretely serializable, abstractly serializable) if there is a complete 
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serial (concretely serializable, abstractly serializable) log M such that CL is a prefix of Cu. 

Concrete serializability, which requires that concrete states be the same, is more restric-

tive than abstract serializability, which requires only that abstract states be the same. 

Theorem 1: If the log L is concretely serializable then it is abstractly serializable. 

Proof: Let AL  ={a 1 , • • ,a„} and let a, implement a i . Since L is concretely serializ-

able, there is a permutation 71.  of {1, • • • ,n} such that 

Int(q) C mr(ar(i), 	,air(•))• 

We define an abstract action b =--a„( 1)„5.00. By Corollary 2 to Lemma 1, 6 can be 

implemented by the concrete program # 	,a,(„). In other words, 

m( Cr (1), 

 

=m(b) —P(m(fi)) —P(m(aff(0„air(5))). 

 

It follows from this that 

AMA CL)) C P(M/(air(1), 

= tnp(n( ar(1), 

 

 

 

This theorem can easily be extended to partial logs. For a partial log L which is concretely seri-

alizable, there is a concretely serializable complete log M such that Cr, is a prefix of C. By 

the above theorem, M is also abstractly serializable; hence L is abstractly serialisable. 

Concrete serializability is not identical to SR as defined in [7] because of the non-

determinism and because it is necessary to check that the reordered collection of actions is a 

computation. If abstract actions are implemented only by straight-line programa, as in [7], then 

any serial schedule of the concrete actions in a concurrent computation is still a computation. 

But this is not the case in our model. Consider abstract actions A l  and A2, where 

A l  = (( z •5 0) ? ; (y :=1))u ((x > 0)? ; (st :=-2)) and A2 =- (Z :=1). Suppose that in 

the initial state x is 0. The sequence 

(z :=1) ; (z 	0)9 ; ( y :=1) 

is not a computation, although any other interleaving of these concrete actions is. Thus we 
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cannot interchange actions of a computation arbitrarily and expect the result to remain a com-

putation. A subsequent lemma gives one mechanism by which we can verify that a transforma-

tion of a computation is still a computation. 

It should be noted that this model reduces to the model in [7] if the concrete actions are 

deterministic reads and writes with the obvious meanings assigned to them and if all programs 

are constructed by concatenation only. It was shown in [7] for these concrete actions that con-

crete serializability is NP-complete. Without more information about the semantics of the 

actions, however, and about the abstraction function, we cannot say anything about the com-

plexity class of either concrete or abstract serializability. 

For this reason, neither abstract nor concrete serializability has significance as a definition 

of a class of schedules which we can recognize. However, abstract serializability is a valuable 

correctness condition for explaining the correctness of schedules such as the one in the opening 

example. In a subsequent section, we generalize this use of abstract serializability to explain 

the correctness of a large class of schedules, many of which are not concretely serializable. But 

first, we translate another standard serializability result to the new model of program execution. 

Definition: Actions a and 6 commute if m( a ; 6) = m(6 ; a). Otherwise, a and b 

conflict. 

Definition: Let C and D be sequences of concrete actions. We say that Crs'1D if they 

are identical except for interchanging the order of two nonconflicting concrete actions, 

that is, actions c and d such that m(c;d) = m(d;c). The transitive, reflexive closure of 

--=-1 is denoted by ^*. 

The following lemma provides the basic mechanism for establishing that a permuted computa-

tion is still a computation. We use it to verify that a serial (non-interleaved) sequence of con-

crete actions could actually have been requested by the given atomic actions, that is, it is a 

semantically as well as syntactically valid sequence of actions. 

Lemma 2: If L is a log and if D r-r-1* CL and D is constructed from CL by interchanging 

nonconflicting operations e and d such that X( c)74X( d), then there is a log M with 
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Am =Ay , Cu =D and X m  =X L . Furthermore, m(CL) =m(Cu). 

Proof: There are sequences of concrete actions Pi and 6 such that CL =ry;c;d;6 and 

D =7;d;c;6. Therefore 

m(Cy) =ge,l) I(u,v)((s,u) a m(ry) and (u,v) e m(c;d) and (v,t) e m(8)}. 

Since m(c;d) =m(d;c) and XL(c) XL(d), we have that 

m(D) ={(a,t) (3u,v)((a,u) e m(i) and (u,v) e m(d;c) and (v,t) e m(6)} 

=m(CL). 

Therefore D is a computation of Ay (or prefix of a computation of Ay ) exactly when Cy  

is, and M is a log exactly when L is. Since we did not use the completeness of L, the 

results hold for either complete or partial logs. 

Definition: Logs L and M are equivalent if AL =A u , XL =XAlt, and CI, r-t--, * Cu. If L is 

equivalent to M for a serial log M, then L is conflict-preserving serializable. 

Theorem 2: If a log L is conflict-preserving serialist:hie, then it is concretely serializable. 

Proof: Let Ay  ={a il , • • • ,a„}. If L is conflict-preserving serializable then there is a 

serial log M such that Au =Ay, Cu  %—.1* Cy, and Xu  =XL . By a simple induction using 

Lemma 2 to prove the induction step, m/(CL ) =n4( Cm ). 

Suppose that a;  is implemented by oti. By the definition of a serial log, there is a 

	

permutation r of {1, • • • ,n} such that Cu -=cr,,( 1), 	 

tion 

m1(CL) =ini(Cm) =m/( 04(1), 	,as(s))• 

Therefore L is concretely serializable. 

 

,a,(.). 'Hence for this permuta- 

 

3.2. Layered Serializability 

In this section, the definitions of serialisability are extended to multiple levels of abstrac-

tion and the basic result on serialisability is stated. We make two simplifying assumptions; how 
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to weaken them will be discussed subsequently. The assumptions are: 

(1) the levels of abstraction are totally ordered; and 

(2) an action calls subactions belonging to the next lower level of abstraction only. 

We assume a system with n levels of abstraction. 

Notation: The concrete state at level i is Si_ 1 . The abstract state is Si . The abstraction 

mapping at level i is 	 The set of concrete actions is 	The set of abstract 

actions is A, ={a;, l , • • • aid,). The number of abstract actions at level i is k,. Concrete 

actions at level i are abstract actions at level I-1. Thus C, 

Given a collection A, of top-level actions, concurrent execution of the actions is described by a 

collection of logs. 

Definition: A complete system log L is a set of complete logs L 1 , • • • ,L,, such that Li  is a 

complete log for level i and the concrete actions in the log L i  are the same as the abstract 

actions in the log L;_ 1 . A partial system log L is a set of partial logs L 1 , • • • ,L„ such that 

L i  is a partial log for level i and the concrete actions in the log L i  are a subset of the 

abstract actions in the log 4. 1 . The top-level log for a system log L consists of the top-

level abstract actions (A„), the bottom-level concrete actions (C 1 ), and the mapping from 

concrete to abstract actions constructed by composing X i , • • • ,X.. 

Definition: The system log L is abstractly (concretely) serializable by layers if each Li  is 

abstractly (concretely) serializable and there is a serialization order on 	which is the 

same as the total order on 	We will denote this serialization order ir 

The following theorem justifies the practice of "serializing by layers", that is, providing seriali-

zation for the individual levels of abstraction and forgetting subaction conflicts (e.g., releasing 

locks) as soon as the action at the next higher level is complete. 

Theorem 3: If a system log L is abstractly serializable by layers then its top-level log is 

abstractly serializable. 

Proof: Assume first that L is complete. Then by the definition of abstract serializability 

by layers, the following holds for each i: 
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Pi( m1 ( CO ) C nis i(1)( aior i(1) , 	I ilior 

where it gives the serialization order, and AL,  =--- CL ,+1 = ai,, r,( 1), 	 

by induction on the number of levels that 

p i o • • • op,i (m/(q .)) C mi, 10  ••• op.(7)(a• or.(1), 	,a•or i(k,o) 

air,f ko • It follows 

If L is partial, then we can extend the sequence of concrete actions to a computation 

having the above properties. Thus the result also holds for partial logs. 

Corollary 1 to Theorem 3: If a system log L is concretely serializable by layers, then its 

top-level log is abstractly serializable. 

Proof: By Theorem 1, the log is abstractly serializable by layers. It follows immediately 

from Theorem 3 that the log described is abstractly serializable. 

Definition: If a system log is serializable by layers and if each log L i  is conflict-preserving 

serializable, then the set of logs is called conflict-preserving serializable by layers (LCPSR). 

Since all practical serialization methods recognize only subsets of the set of CPSR logs, the fol-

lowing two results are the interesting ones, from tl•e practical point of view. 

Corollary 2 to Theorem 3: If a system log L is conflict-preserving serializable by layers 

then its top-level log is abstractly serializable. 

Proof: By Theorem 2, the system log is concretely serializable by layers. Hence it is 

abstractly serializable by layers and the result follows from Theorem 3. 

Theorem 4: Membership in LCPSR can be tested in time 0( c+a 2) where c is the 

number of concrete actions in the system log and a is the number of abstract actions in 

the system log. 

Proof: For each i, construct the conflict graph for level i as described in [9]. The nodes 

of this graph are the abstract actions in AL, . There is an edge from node a to node b if 

there are concrete actions c ,d e CL,  such that X( c) =a, X(d) =b, c and d conflict, and 

c< L, d. This graph can be constructed in time proportional to the number of actions in 
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CL i . If the graph is acyclic, then level i is CPSR. Acyclicity can be tested in time propor-

tional to the square of the number of actions iin AL.. 

It only remains to test whether there is a serialization order 	on level i which is 

consistent with the order <1, i+1 . This can be tested at the time the edges are added to the 

graph for level i: if there is an edge from a to b then there is a serialization order con-

sistent with < L,+1  if and only if a < L144 6. 

In practice, the only order that would be known for a system log would be the order on C 1 . 

The order <L is any topological sort of the order given by the conflict graph for level 1. 

Any topological sort is acceptable, because if there is no sequence of edges between a and b 

then there is no conflict between any children of abstract actions a and b in a computation of 

{a ,b}, so that Xil(a);Xiqb) Pe, * Xj 1 (b);XE 1( a). Also, there can be no other conflicting 

actions between any children of a and b. Therefore, a and b can be viewed as having exe-

cuted in either order. 

3.3. Ordering the Layers 

We are not usually given a linearly ordered collection of levels of abstraction in a system. 

Instead we may have package• of actions. We expect that there will be pairs of actions within a 

single package may conflict. Usually, actions in different packages will not conflict, but there 

are exceptions. Consider a relational database which may be accessed by two packages: one of 

the packages consists of relational operators, the other of matrix operators. We can imagine 

relations which are entirely numerical which may be accessed by both packages. Thus opera-

tions may conflict between packages. 

We describe, intuitively, how to determine a linear collection of levels. We require that 

all actions in a single package are at the same level. Also, any two packages containing actions 

which may potentially conflict must be at the same level. Finally, two packages must be at the 

same level if they have members which recursively call each other. 
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To compute a linear order which satisfies these conditions, draw a directed graph 

representing the call structure of the system: if an action in package A calls an action in pack-

age B, then there is an edge from A to B. Add edges in both directions between packages 

containing potentially conflicting actions. Collapse all cycles in this graph to a single node 

(these cycles represent either conflict or mutual recursion or a combination), and label the new 

node by the set of packages on the cycle. The resulting acyclic graph defines a partial order on 

sets of packages. This partial order can be converted to a total order by picking an equivalence 

relation on the node labels which is a congruence with respect to the partial order: that is, if 

P I  <P2  in the partial order, then for every Q 1=P1  and Q2="-Ps, Ql< Qs- 

Our second simplifying assumption was that an action only calls subactions which are at 

the next lower level of abstraction. But in practice, actions may call subactions at the same 

level or may skip several levels. In the former case, we may treat the calls to the same level as 

"invisible", and use only calls to the next lower level of abstraction in serialising. (In fact, this 

is the current practice: there are two levels, the top level and the read/write level. Only calls to 

reads and writes are noticed by the serialization mechanism.) In the latter case, we may insert 

subactions at each intervening level which do nothing but call the next lower level. 

4. Recovery from Action Failure 

One method of enforcing serializability is to abort actions which violate serializability con-

straints, and every practical serialization technique sometimes uses aborts for this purpose. 

Thus serialization contains the possibility of action failure and it is necessary to guarantee 

correct recovery from failure to guarantee serializability. The converse is not true, and so we 

initially consider failure atomicity without assuming serializability. 

The rest of this paper discusses recovery from the failure of a single action by eliminating 

its partial effects. Two methods of eliminating partial effects are in common use. One is to roll 

the action back by undoing each change it has made. The other is to restore the system from a 

checkpoint taken prior to initialization of the action, redoing each subsequent concrete action 

other than those called by the aborted action. We develop the conditions which permit use of 
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redos in section 4.1 and the conditions which permit use of undoa in section 4.2. In both sec-

tions, we assume a single level of abstraction. 

In section 4.3, the results are extended to a multi-level system and a result analogous to 

the result for layered serializability is stated. In a multi-level system, serializability is required 

to establish that the required sequence of concrete actions in a level of abstraction was imple-

mented by the next lower level. 

4.1. Aborting Actions 

An abstract action is not inherently atomic, since it is implemented by a sequence of con-

crete actions. If it fails after execution of some of the concrete actions, then the effects of 

those actions which have been completed must be eliminated. The process of eliminating any 

partial effects of a failed abstract action will be referred to below as an abort of the action. 

To abort an action correctly, it is necessary to change the current state to a state that 

could have occurred if the action had not executed at all. Let LOGS be the set of all logs. 

(Remember that a log L consists of a set AL  of abstract actions, a sequence Cy  of concrete 

actions, and a mapping X L  :C—•.A.) We define an operator which chooses a concrete abort action 

when it is given a log and abstract action to be aborted: 

ABORT : LOGS XA—o(S 0-40). 

The abort must restore some state which could have occurred in executing the abstract actions 

in AL  — {a). 

Definition: An action generated by the ABORT operator is called an abort. An action is 

said to be aborted if its last action is an abort. 

A log which contains aborts should appear to be a log which contains all of the non-aborted 

actions and none of the aborted actions. We call such a log abstractly atomic. 

Definition: A complete log L is abstractly atomic if there is a complete log M having the 

following properties: 

(1) Am  = Ay — {a I a is aborted in L and 

(2) P(InI(Ct)) C P(Ini(Cm))• 
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Note that we have not required that the logs be serializable. Any computation will do accord-

ing to the above definition. Later, to achieve "layered atomicity", we will assume serializabil-

ity. 

Definition: A complete log L containing aborted actions is concretely atomic if it there is a 

complete log M having the following properties: 

(1) Am = AL— (a la is aborted in L); 

(2) tni (CL )Cmi(Cm). 

We extend the definition of atomicity to partial logs in the obvious way. 

Definition: A partial log L is abstractly (concretely) atomic if there is a complete 

abstractly (concretely) atomic log M such that AM =AL, CL  is a prefix of CM , and X L  is 

X M  restricted to CL . 

It follows immediately from the definitions that concrete atomicity implies abstract atomicity. 

One way to implement abstract atomicity is to restore state I and rerun the actions in AM . 

The state I then serves as a checkpoint. However, an arbitrary choice of M in the above 

definition may require re-running the abstract actions, not just the concrete actions. In an on-

line, high-volume transaction system, this is not a practical method. The programs for the 

abstract actions may not even be available after they terminate. In such a system, we want 

aborts to be simpler. For this reason we will require that the log M have a very simple rela-

tionship to the log L, in fact, that C M  is simply CL minus the children of aborted actions. In 

this case, we can restore a final state for Ind CL — X L-1 (a)) to implement atomicity. 

Notation: As long as it is clear what log is involved, we will write ABORT( a) for 

ABORT( L , a). 

Definition: Let L be a log in which action a has not been aborted. ABORT(s) is a sin- 

plc 	abort 	of 	a 	for 	L 	if 	mi (Ci, ; ABORT( all 	and 

Ind 	; ABORT( a ) ) C rig! ( — Xi, 1 ( a )) 

Clearly, a simple abort of action a in log L exists if and only if m1 ( CL  — Xi 1(a)) is a prefix of 

some computation of AL . The following definitions lead to a characterization of logs and 
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actions for which simple aborts exist. 

Notation: Given a log L and action c e CL, let BEFORE(c) be the partial log having 

concrete actions CBET0RE(,) (b lb e GI, and b <Lc}, abstract actions AL, and mapping 

X BEFORE(e) which is the restriction of XL to the set CREFoRE( 4). Let 

CAFTER(e) =(1) I 6 e CL  and c<y b}. (Note that in general we cannot define a log 

AFTER( c).) 

The following definition says that an abstract action b depends on an abstract action a if it 

has a concrete subaction which follows and conflicts with a concrete subaction of a. If an 

action b depends on an action a, and if we restrict ourselves to simple aborts, then it may be 

necessary to abort b when a is aborted. 

Definition: An action b depends on an action a in a log L if there is some d e Xii(b) 

and some c e XF, 1( a) such that d follows c in the order of CL, a is not aborted in the log 

BEFORE(d), and d and c conflict. 

Definition: An action a of a log L is removable if no action depends on it. A log L is 

restorable if every aborted action is removable. 

Restorability may be viewed as a dual condition to recoverability, which requires that no action 

be committed before any action which it depends on. Restorability says that no action is 

aborted before any action which depends on it. 

Definition: Let C be a sequence of actions ordered by < and let FCC. F is final in Cif 

for every e F and c e C—F either c < or and c commute. 

Note that the set XE 1 ( a) is final in CL  for any removable action a . It follows from this 

that it is the terminal subsequence of some sequence D r-tf, * CL . 

Lemma 3: If action a of log L is removable, then Cy— Xj, l(s) is a prefix of a computa-

tion of Ay . 

Prod': We will show by induction on the number of actions in any final set F of opera. 

lions of CL, that CL— F is a prefix of a computation. The lemma then follows from the 

fact that X L: 1(a) is final in CL for all removable actions a. 
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Induction Base (F contains only 1 action): Let F ={c}. Then CL  =7;c;6 for some 

sequences ry and 6, such that for every d e 6, m(c;d) =m(d;e). Hence CL  ry;6;c 

and therefore CL — {c} =7;6 is a prefix of a computation. 

Induction Hypothesis: For every final set F in CL , if IF I < n, then CL—F is a prefix 

of a computation of AL  . 

Induction Step: Suppose IF =n. Let F' =F— {c}, where c is the first (or minimal) 

element of F with respect to <L. Then F' is final in CL and by the induction hypothesis, 

CL —F' is a prefix of a computation. Since e does not conflict with any later action in 

CL —F', we can use reasoning similar to the case n =1 to show that CL —F' CL — F;e 

and therefore CL — F is a prefix of a computation. 

Since CL — Xj 1( a) is a prefix of a computation of AL — {a }, we can restore checkpoint I 

and rerun all actions in CL  — Xj 1( a) in - the order given by < L . In fact, the checkpoint can be 

taken at any point before the initialization of a. Let e be the first action of a. Let 

d e {c}U CREFORE(c)• Then there is a state t such that (I,t) e m(CBEFORE(0) and 

m,( CAFTER(1) — Xl, 1( a)) ,4 4b. Any such state t can be used as a checkpoint state. 

Lemma 3 can be applied inductively to show that if no dependencies were formed on 

abstract actions before they were aborted by a simple abort, then atomicity is guaranteed. 

Theorem 5: If L is restorable and if every abort in L is simple, then L is atomic. 

Proof: Let (a l , • • ,a„) be the set of aborted actions. Construct the log M such that 

Am  =AL — {a l , • • • ,a„}, Cm  =CL —XE 1 ({0 1 , • • • ,a„}), and Xm =XL restricted to Cm. 

Since L is restorable, every aborted action in L is removable. Using Lemma 3 induc-

tively, we see that CL — XP({a t , • • • ,a„}) is a prefix of a computation of Am. This 

verifies that M is a log. 

Now we must verify that mi(CL) =Ini( Cm ). To do this, we observe that there 

exist ry i , • • • ,ry„.1. 1  such that 

CL  =7 1 ;ABORT( a 1 ) ;ry 2;ABORT(0 2), 	,-1„,ABOR 7( a„) ;'y„+1• 
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The meaning of CI is given by 

mi(CL) ={(/,t) I (Bu)((I,u) e m,(it;ABORT(ai)) 

and ( u ,t) e mi(12;ABORT(a2)„ABORT(a s ) rrs+i) ) } 

But by the hypothesis of the theorem, every abort is simple, so that 

In/(11;ABORT(al,L)) C nil(71- Xi i(a1))• 

and therefore 

mi(CL ) C mi(CL-Xl i(a 1 ))• 

Proceeding inductively, we see that mi(CL) C /14( CL - Xj 1 ( {a l , • • • ,a.}) =mi(Cm). 

Theorem 5 suggests a general procedure for aborting actions. When an action a is to be 

aborted, abort the set of actions 

D(a) -={b I 6 depends on a}u (a). 

The abort is done by restoring any concrete state which existed prior to the first concrete action 

in Xj-  l(D( a)) and then re-running the actions in CL -XL I(D(a)) from that point on. 

4.2. Rolling Back Actions 

A potentially much faster implementation than checkpoint/restore would simply roll back 

the concrete actions in the computation of an aborted action a. For this purpose, we define an 

UNDO operator on concrete actions which chooses an inverse concrete action to perform the 

roll back. The plan is to implement the ABORT operator on abstract actions as a sequence of 

UNDO actions, one for each concrete action called by the abstract action, applied in reverse 

order of execution of the concrete actions. 

UNDO:CXS0-44 -40) 

This UNDO operator chooses a state-dependent inverse action which will transform the current 

state to the state in which the forward action was initiated. Thus we must define the UNDO so 

that m( c ; UNDO(c,t) ={(t,t)}. It follows from this definition that if c is the last concrete 

action in Ci, iad (.1,1) e m(C L -{c}) then m( CL ; UNDO(c,t)) --={(/,t)}. Furthermore, if 
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(I,t) m(01,— {c}) then m(CL  ; UNDO(c,t)) --(5. In other words, if the final action e was 

initiated in state t, then UNDO( c,t) restores the state to t and to nothing else. 

Actually, to undo an action e, it is not actually necessary that a be the last action of CL , 

only that c is rot followed by any action which conflicts with UNDO( ,t) for the state t in 

which c was initiated. This is stated in the following lemma. 

Lemma 4: If the following conditions hold: 

(1) c e CL ; 

(2) (I,t) e m(C BET0RE (0); 

(3) no action of CATTER(,) conflicts with UNDO(c,t); and 

(4) UNDO(c,t)OCArrEs(c) 

then 

mt(CL  ; UIVD0(e,e)) ={(I,v) I(t,u) e m(CAnNR(e))}- 

Proof: By the definitions of CBEFORE(e) and GAFFER ( 0), CL = CBEFORE(c);C ;CArrillt (e)• By 

the hypothesis of the Lemma, for every d e CA (,), 

m(d;UNDO(c,t)) -=m(UIVD0(c,t);d) 

and 

CL ;UNDO(c,t) 	CBEFOREM;C;UNDO(e,t);CAFTER(c). 

It follows that 

m(CL;UNDO(c,t)) =m(Clisroumc);e;UNDO(c,t);CAPTER(c)) 

=={( 8 ,w) I (u,v)((a,v) e "I( CBEFORE(e)) 

and (t ,v) e m(c;UNDO(c,t)) and (v,w) 

={( 8 ,w) I (8,t) em(CBEFORE(0)  and (t,w) e 
e m(CArrge(c))} 

"I( CAFTER(c))). 

Therefore, mi(OL ; UNDO(c,t)) =111_,u) I(t,u) e M( °Ammo)). 

The sequence of concrete actions called by an aborted abstract action a in a complete log 

L should be a prefix e t , 	,Ch of a computation e t , 	,c„ of a followed by 

	,UNDO(cpt i). We extend the definition of concurrent computations to UNDO( ck  4), 
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allow such sequences. 

Definition: The concurrent computations of a set A of abstract actions include all inter- 

leavings C of sequences e l , 	,ek ,UNDO(4,4,), 	 

 

, UNDO( e i , t i ) such that 

 

( 1 ) c 1 , 	
 

 

,c.„ is a computation of a e A for some n>k; 

 

(2) mr(C) 	4; 

(3) there is at most one UNDO action in C for each c e C; 

(4) if there is an action UNDO( c,t) for c e C then c precedes UNDO(c,t) in C 

and (/,t) e m/(CBEFoRE(c))• 

(5) each concrete action is called by exactly one abstract action. 

Definition: If an action a has called an UNDO then we say that a is aborted and is rolling 

back. If it has called an UNDO for every forward action it called, then we say that a is 

rolled back. 

The definition of a log is unchanged except for the expanded set of computations. 

Definition: The rollback of action a depends on action b in a log L if there is a child c of 

a and a child d of b such that e <L d; UNDO(c,t) CBEFoRE(d) and 

UNDO(d,w) aBEFORE(UNDO(e,e)); and d conflicts with UNDO(c,t). 

Definition: A log L is revokable if for each action a e AL , the rollback of a does not 

depend on any b e Ay. 

Theorem 6: If a complete log L is revokable then it is atomic. 

Proof: We show that if L is revokable then m,( CL) C 	CM ) for the log M with 

AM  =Ay — {a I a is rolled back in nand 

CM  =CL — (e I UNDO(e,t) e CL }— (UNDO(e,t) I t e So). 

Since for a complete log L, AM =AL— {a I a. is aborted in L }, it follows that L is atomic. 

The proof is by induction on the number k of UNDO. in CL• 

Induction Base (k =1): Let e be the action with UNDO(c,t) e CL  and let X L ( e) =a. 

Because L is revokable, there is no action b such that the rollback of a depends on b. In 

other words, for every concrete action d in Cy, if c <L d <y UNDO( ,t) then d com- 
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mutes with UNDO(c,t). This implies that 

CBEFoRE(e);e;UNDO(c,t);CAFTER(e) 

and therefore 

MI(CL) =MI(CBEFORE(e);C;UNDO(CM;CAFTER(e)) 

C MACBEFORE(c);CAFTER(e)) 

Om)• 

Induction Hypothesis: If there are fewer than k UNDO. in Cy , then mi ( Cy ) C mi ( Om ) 

for some log M with 

Am  =Ay  — (a I a is aborted in L). 

Cm  =CL — {e I UNDO(c,t) e CO— {UND0(e,t) it e Sol 

Induction Step: Suppose there are k UNDO. in Cy. Consider the first UNDO in the 

order < L . Suppose that it is UNDO(c,t). Since it is the first, there is no UNDO(d,w) 

such that c <y UNDO(d,w) <y UNDO(c,t). Since L is revokable, UNDO(c,t) com-

mutes with every action d such that c <1, d <L UNDO(e,t). Therefore, using the same 

reasoning as for the induction base, and applying the induction hypothesis, 

MI(CL) C MI(CBEFORE(c);CAITER(e)) 

C MI(Cm). 

If the log L is partial, we can extend L to a complete log by adding UNDOs for every incom-

plete action to the end of the log. The order of the UNDOs should be the reverse of the order 

of the forward actions. The new log is complete and revokable, therefore by Theorem 6 it is 

atomic. 

Theorem 6 suggests the following algorithm for aborting actions. If the rollback of an 

action will not depend on any action in Ay, then executed a sequence of UNDO. in reverse 

order of the forward actions. If the rollback will depend on some action, recursively abort the 

action on which the rollback will depend. Of course, the cascaded aborts can be avoided. To 

avoid them, it is necessary to block an abstract action if a rollback-dependency would develop. 
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4.3. Layered Atomicity 

In this section, we describe the correct abortment of actions in a multi-level system. As 

in section 3.3, suppose that we have a system log L = {L 1 , • • • ,L.}. To guarantee that the 

sequence of concrete actions at level 1+1 is implemented by the abstract actions at level i, we 

must be able to say that there is an ordering on the non-aborted abstract actions in ALi  which is 

the same as the ordering on these actions when they are viewed as concrete actions at level 

1+1. But this requires that each level be both serializable and atomic. 

Definition: Let L be a complete log containing aborted actions. Let AL— {a I a is 

aborted m L} =--{a i , • • • a„}. L is abstractly serializable and atomic if there is a permuta-

tion it of {1, • • • ,n} such that 

P(mA GI)) C m,(1)(as(:), 

L is concretely serializable and atomic if there is a permutation r of {1, • • • ,n} such that 

MI( 	C M1( ar ( 	,ar (s)) • 

This is similar, in combining the aspects of computational atomicity with failure atomicity, to 

Weihl's definition of atomicity [10]. As usual, concrete serializability and atomicity implies 

abstract serializability and atomicity. 

Definition: A system log L is abstractly serializable and atomic by layers if each log L1 is 

abstractly serializable and atomic; CL1+1 =--AL, — {a I a is aborted in L1 } ---{a1 , 1„a0 }; 

and there is a serialization order Ir i  on level Li  such that CL0.1 	 ,a;,* ,(k,)• 

Theorem 7: If a system log L is abstractly serializable and atomic by layers then its top-

level log is abstractly serializable and atomic. 

Proof: The proof is by induction on the number n of levels. 

Induction dm: If there is only one level, then the top-level log is identical to the log for 

that level and is therefore abstractly serializable and atomic by the definition of layered 

serializability and atomicity. 

Induction Hypothesis: The top-level log is abstractly serializable and atomic if the system 
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log is abstractly serializable and atomic by layers and there are fewer than n levels. 

Induction Step: Suppose that the system log has n levels. By the definition of layered seri-

alizability and atomicity the level 1 log is abstractly serializable and atomic. Therefore 

there is a log M such that Au  =ALI-- {a I a is aborted in La and 

P1(m1(04) C Pi(n 17(Cm)) 

=--tn 
	

4,1 ,(1), 	01 1,7 	1)) • 

By the definition of layered serializability and atomicity 61 2  =a 1 , 21( 1), 	,ator ip•o• 

Therefore 

m/ 0)( a lori( 1)" Li 00) =m, i(/)( CLa) .  

Applying the induction hypothesis to the system log M consisting of the logs L 2, • • • ,L„, 

the top level log for M is abstractly serializable and atomic, that is, 

p2o • • 0 p s (mp 1(I)(CL 2)) C mplo /20 • • • 0 •„(1)(CN) 

for some log N with AN -=AL.— {a I a is aborted in L.). It follows that 

P20 • ' • 0 Ps(m.0)( 04 C / 10 /20 • • • 0 p,(/)( aN) 

for this same log N. 

Corollary 1 to Theorem 7: If each level of a system log L is serializable and restorable, 

then its top-level log is abstractly atomic. 

Corollary 2 to Theorem 7: If each level of a system log L is serializable and revokable, 

then its top-level log is abstractly atomic. 

5. Conclusion and Further Work 

In summary, we have shown that, with respect to both serializability and failure 

atomicity, the correctness of atomic actions can be assured by guaranteeing their correct-

ness at each level of abstraction. The result for serializability alone follows from the 

results presented by Been et. al. in [1]; but the relative simplicity of the proofs presented 
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1. Introduction 

The approach to formal data semantics which has come to be called "weak 

instance theory" began with the work of Honyeman [H] as a means of integrating the 

relations of a multirelation database for the purpose of checking constraints. It was 

soon recognized, by Sagiv [S] and also by Yannakakis [Y], that the theory leads 

naturally to an extremely powerful and concise query language, called window 

functions by some authors [IVIRW] [MU V] and called canonical queries here. This 

paper analyzes the expressive power of these queries. We show that canonical 

itieries are expressible in first order logic if we allow infinitely many axioms. These 

axioms are shown to be full multirelational implicational dependencies as defined by 

Fagin [F]. The bulk of the paper is concerned with characterizing the case when 

canonical queries may be finitely axiomatized in first order logic. This occurs 

precisely when the query is expressible in the relational algebra. 

Maier, Ullman and Vardi (NIUV] have considered these questions as well. The 

present work was done independently and differs from their work in the following 

ways. 

Proposition 1 establishes the existence of representative instances even when 

:he chase is not guaranteed to terminate. We consider the result of a non-

.erminating chase to be undefined. In the same spirit, compactness is not used in the 

proof of Lemma 1. Proposition 1 . although a simple observation, does not appear in 

1fILINT]. ? 

A new definition of boundedness appears in Theorems 1 and 2. In these 

theorems we take up a problem ignored in [MUV]: the behaviour of canonical 

ueries on inconsistent states. We do this For a technical reason: a relational 

Algebra expression is defined for every state, canonical queries only for consistent 



ones. Theorems 1 and 2 present two different attacks on this problem. In Theorem 1, 

we remove all equality generating dependencies in the manner suggested by Beeri 

and Vardi [By]. All states are then consistent and the results of canonical queries on 

the subset of originally consistent states are preserved. In Theorem 2, we consider 

queries which distinguish consistent and inconsistent states. 

The proof of the "hard part" of.these results (the implication 5*4 in Theorem 
a 

1) is made very easy by the presence of Lemma. This lemma establishes a well 

known piece of folklore as fact. 

2. Definition and Notation 

2.1 Basic Definitions 

We begin with a finite set of attributes which we denote U and call the 

universe. Following standard notation in the area, upper case letters near the front 

of the alphabet: A B. Ai. .4f, ... indicate single attributes. Those toward the end of 

the alphabet: X. Y..... represent sets of attributes. The set (A) is often denoted A 

XU Y is written XY . To each A EU is associated an infinite  domain  dom(A). 

• riistinct Ai .  A; in U. do:Tv ...Ai). dom(i1:" are either identical or disjoint. 

Let Rc U. R is then a relation scheme. A tuple for R is a function assigning 

is : e ach A ER a value in dont( A). The term row will be freely used for tuple in 

rtain contexts. If XcR. t/X/ denotes the restriction of the function t to the 

attributes in X. 

A relation instance  I for R is a set of tuples for R. The size of an instance I, 

el. noted /1/. is the number of tuples it contains. We often restrict our attention to 

relations. If 	the projection onto .V of an instance I of R. denoted 



• fix(/)=Ita/ I tEff. If R is a collection of relation schemes of U. then R is a 

database schema for  U. We do not in general insist that it cover U, i.e.. that 

UR=U. 

A state p of a schema R is an assignment to each RE R of an instance for R. 

The size of a state is the sum of the sizes of its instances: 
0 

.p(MI 
KF K 

We define an inclusion relation among states in a natural way. If p. u are states of 

m if p(R)cdR) for every RE R. If t is an instance and R a schema for U, we 

define //KW to be the state p of it- given by IP R) Men for each RE R. 

A tableau  for a universe U is an instance for U over an extended set of 

domains. For each :1E U, we form the tableau domain tdom(A) from dom(A) by 

adding infinitely many variables. Elements of 	ctorr(A) are called constants. If 

dom. 	=ciont(Aj). then tdom(Ad=tdomi Ai). else the sets are disjoint. From now 

on the term instance will denote a tableau without variables. A tagged tableau for U 

is a ,.:ibleau over the set of attributes U t. (Tag/ where Tag is an attribute assumed 

not be in U. Further, tdorniTag) is disjoint from any attribute domain in U. The 

in tdont(Tag) will always be given a special interpretation, namely as 

reiz. in schemes. 

Tableaux provide a uniform notation for the expression of data dependencies, 

cc* .active queries and database states. 

A I unirelationan.data dependency  for a universe U is a pair d= <T,x> 

where T is a tableau over U and x is one of the following 

3 



if x is an equality assertion of the form a = b, then d is an equality  

generating dependency  or egd. (It is conventional to assume the symbols 

a. b appear in the tableau T.) 

if x is a tableau then d is a tuple generating dependency,  or tgd. If 

every symbol appearing in the tableau x also appears in the tableau T, 

then d is a total or full dependency. In this case x may be assumed to 

contain (or abusively, to be) a single tuple. Otherwise, if x contains 

symbols not in T, then d is partial  (Jr embedded.  

This definition of dependency is based on the work of Beeri and Vardi [BV]. 

The parallel to the implicational dependencies of Fagin [Fl is immediate. The 

quantifier "unire14ional" in the above indicates that these dependencies can be 

written in a first order language with a single predicate letter of arity the cardinality 

of U. iie class of mUlti-relational dependencies can be captured through the use of 

tagged :ableaux. as follows. 

A nulti-relational  data dependency fora database schema R over a universe 

U. ri 	T.x> is a data dependency for U in which T, and x if d is a tgd, are 

tag 	ibleaux. Two extra conditions are imposed: (i) the tags of T and x are 

relati. schemes of K: 11T u  TUx)c R: (ii) tuples may agree only as they are allowed 

to by :ir tags: t/A/ = /LIB/ implies AEt1Tagl and BE ulTagl. (Of course. 

t/A / 	,3/ is possible only if tdom(A)=tdomt B).) Finally, a multi-relational tgd 

d= <T.S >, is considered full if for each sES and each AEsITagl. sIAI appears in 

T. 

:)•be a state of a schema K over universe U. The tableau of p Tp, is a 

tagged • :Coteau 	U defined as follows (this definition gives Tp only up to 

4 



isomorphic renaming of variables): For each RE R, each tEf(R), a row I) of Tp  has 

WRI= t. For each A E U-R, Will is a variable appearing nowhere else in Tp . 

Finally, viTagJ=R and no other rows appear in Tp. 

A query  on a schema R with target list X. is a function from states of K to 

instances of X. A con'unctive query  q on a schema K with target list X is a full 

multi-relational tgd on schema RUM. If q= <T..r>. then T is a tagged tableau 

on R, x is a single tuple and .r/Tag/=X. To define the function described by a 

conjunctive query, we introduce the idea of a homomorphism. 

Define Symin= U,A E u(/IA( T)) where T is a tableau on universe U. A 

homomorphism  on T is any function with domain Sym( Ti'. If ri •  is a homomorphism 

on T, the^ we allow n to also -- -----.nt its extensfr, 
	

tableaux. That 

is, q(t)= q tithe composition of q and t), 	 tE T/. A homomorphism 

preserves a set of symbols C if it is the identity on C. A constant preserving 

homomornpism preserves the set of constants (recall this is the set UAE udont(A)). A 

tag preserving homomorphism is a homomorphism extended by the identity on 

tdorry Ta_ 

l'h. 	iation between tableaux which is central to this paper is that of 

homomor  tic embeddabilitv.  If T. S are tableaux on a universe U, then T is 

homomor-nically embeddable into S if there exists a homomorphism q on T such 

that n(T. S. T and S are homomorphically equivalent if each may be embedded 

into the other. For certain applications, we may require the homomorphism to 

preserve some set of symbols. If either of T or S or both are tagged and q is non-

tag preserving we may write q( T)cS to mean (rOu(T)/cfn(j(S)). In some 

circumsta nces the set of all homomorphisms embedding T into S is of interest, as 

in the fuli , ,wing definition. 

5 



A tableau To satisfies a dependency  d= <T,x> if for every homomorphism q 

embedding T into Ti) 

if x is the equality assertion a = b, then n(a)= 0); 

if x is the tableau S, then q can be extended to a homomorphism µ on 

Sym(SUT) (i.e. µ restricted to SymiT) is 	with p(S)gTo. 

(For multirelational dependencies we may consider only tag preserving 

homomorphisms.) A tableau satisfies a set of dependencies D if it satisfies each 

dependency n D. 

We can now deicribe conjunctive queries as functions. Let q= <Titf> be a 

conjunctive query for a schema It and p a state of R. The relation q(P)=- (q(t) I q a 

tag preserving -  homomorphism embedding T into T ai, It is customary to further 

restrict the 11 , )momorphisms to be constant preserving. When that is done, the class 

of conjuncti v.: queries includes all queries expressible by relational algebra 

expression :ising a restricted form of selection, projection and product (CM]. Union 

may he moth led by considering finite sets of.conjunctive queries [SY]. 

The 	e [ABU], [MMS] is a fundamental process in the study of databases. It 

is a means r transforming, if possible, an arbitrary tableau into one which satisfies 

a given set dependencies. Let d= <Tx > be a dependency and n a 

homomorphi.-Ln on T. The pair t = <d.fl > is called a transformation. If S is a 

tableau and q embeds T into S, then L is said to be enabled. The application of an 

enabled transformation g to a tableau S, denoted ti S) is a tableau whose definition 

depends on the nature of the dependency d. . 

6 



If d is an egd, so that x is a = b, then one of the symbols n(a). n(b) 

replaces the other everywhere it appears in S. It is customary to give a 

disambiguating rule for the choice of the replacement. When n(a). n(b) 

are distinct constants, is a contradiction and it is usual to assign 

1.(S)= O. 

If d is a tgd, so that d= <T.V>, then ri is extended to a homomorphism 

II on TuV and CIS) =SU1i(V). The extension of ri to II is restricted so 

that a is one-to-one on Sym(V)—Sym(T) and for each yESym(V)—Sym(Ti, 

Symf Si, that is, "try) is a new variable. 

It is customary to denote chasetin as the limit of the process of applying 

transformations whose dependencies are chosen from the set D, starting with the 

tableau -  T. If D contains only full dependencies and a disambiguating rule is given 

for the applicatii in of egds (see above), chasean is unique and effectively 

computable. Otherwise, it is at kst defined only upto isomorphism and whenever D 

contains partia i dependencies, this limit is not clearly defined. 

2.2 Consisten . weak instances, canonical queries 

Let 0 be tate of a schema it over a universe U. Let D be a set of 

dependencies i U. Following Honeyman [H], see also IGMIV we define a weak 

instance for p ith respect to D as an instance I of U such that pciiR(/) and I 

satisfies D. Wii denote the set of all such finite weak instances as weak(D.p) and 

we say p is consistent with D if weakapi=0. We denote the set of all states of It 

et, asistent with D as CONS( R.D). 

Let Syn./. = UR -  fif Uilt/i' //Alp( Thi) be the set of all symbols appearing in the 

state p. A representative instance for p with respect to a set of dependencies D is a 

7 



possibly infinite weak instance for p such that every element of weak(D,p) is the 

image, under some$ym(p) preserving homomorphism, of the representative 

instance. We can show that every consistent state has a representative instance. 

Proposition 1. If pECONS(R.D), then p has a representative instance. -Purther,.all 

.representativeinstances -for p are evivatent-via-Symtvi preserving 

hemomorphismS7 

Proof. tertl -bruternents -ativra. We take the direct product of the 

6i 
, ......... 

elements of weakf-  p). This is an instance over the universe U for which the 

attribute domain ...0 be denoted xdom(A), are sequences of countable length. It is 
) 	 Ca ID 

convenient and customary to consider these sequencefunctionF on the set of 

natural numbers. N. So for the instance we have for each A, 

xdom(A)=Itlf-N—riongAY. However, we may identify in xdonit AI, that function' 

f such that fri) = , I for each iE N with the element a E (bw et ). This allows us to 

consider xdorn(.-1 • as an extension of dom(A). 

Let I be this direct product. Its definition requires that we number the 

elements of weak. ').p). Having doKe so, We have by definition 

I = < f. 	
• • 

> < 	 E I ;  E weak(D.pi for every iE N 

It is well kni vn that dependencies are preserved under direct products, that 

is. I satisfies D. 

Further, for /
c

. E weakap) . the natural map 	
"LP 	

,f.  (4-) = P e)  
: < ft , t..) . . lin  > I- <ft (i), ...fm(i)> 

c-c.  ,..., r•OAA" 	41  homomorphically embeds I onto 1 . q, is Uynt(P) preserving since f=a iff 

tri) =a for every : therefore n, (f) = a: It remains to show 	; I). 

Ly.0-0,1 	 ty1A4-4,-Au2-- 



for any RE R, let uEp(R). Each 1, E weak(D.p) contains a tuple with u IRI= u. 

Therefore I contains a tuple u such that WRI=u. 

This proposition is stronger than the results of Honeyman 	Sagiv [S], 

Mendelzon [Mel and Maier, Ullman and Vardi [MUV] in that it does not depend on 
Ite, w,40 .4 " 

the chase. As noted by those authors, chaseD(T0), if it exists, ism-seforeseetertive eir=tegtXrittA:til, pup  	0(44- 	locale CD)  p) 

Let XS U. The •anonical query  on X with respect to schema It and set of 

dependencies D. den.ited ?X/R,/3/ or just ?X when It and D are known from 

context, is a function (mm CONS; R.D ; to instances of X defined by 

!X/ R.,D I( p) - 111E wmild a lp( /IV 1) ) 

The definition does r , •1, provide an effective computation.of ?X/ R.D/ and indeed 

such a computation r:iay not exist. However, the representative instance can be used 

to compute ?X/ R.Di •.vhen it can itself be effectively found. Define C- projection /X 

as projection with re-. pect to elements of C only: 

iP.:(71. 111E11 xin and g-A IE C fin-each .1E .r! 

Proposition 2. 	CONS( R.D) and I is a representative instance for p, then 

?X(p) = ffxsYntril 

°-Petac. • 
We have xE ?rj 	iff for each /E weak(D.p), 	xists tEl with 

td..r iff there exi 	tE I with Of t)=t 'where i 	.1yzit of preservingoo-- 

homorphisim and ti• I) =1. It is easy to see that for A q9 x/A /Eal ,m( p). This 

comes from the Viva for each /E weak( D.p) there is a JE weak( D.p) with 
. 

&m(t) fm(J)  i&m(J) = . indeed J, can be formed by isomorphically renaming each 
----- 	-- 

element o 	m(I) 0 rni p; by an element not in Syri(I). ) therefore xE ?X(p) iff 

xE6" , ' , I ). - I 	 Uppkeekt. 

of ft  
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Proposition 2 replaces an intersection of infinitely many projections with a 

single projection of an infinite relation. This brings us no closer to an effective 

computation. We now show, as stated earlier, that no such effective 

computation exists. 

Proposition 3. 

1) There exist X. It, D such that ?XI R,D I is not effectively computable. 

2) There exists no uniform, effective procedure for determining if ?XI KJ) I is 

computable for arbitrary X. ft, D. 

Proof. (1) The complete:ieSs problem is determining for all triples I </), R,D >I, 

whether ?Flf 1)1= p( it) for every RE K. The completeness problem is shown to be 

undecidable in [GNIV] iiere (2) the set <RD .> / completeness of states of R with 

respect to D is decidable/ is shown to be not recursive. H 
,,i4- C10.04. 

In contrast to proposition 3, in the case that chase ohp) i • effectively 
Zs 

computable; so ?X(p,. 
.- 

Proposition 4: If chas.. epi exists, then 

. ' Y(  pi = 	'" chase n(rp 

Proof. 	In this t.o.-.• .hale,,fftr is embeddable via Synv p) preserving 

homomorphisim ints)-.-'it onto) every element of weak( D.p) IGMV1. Therefore 

nvi-tchased ))C ?X .». On the other hand it is 9nly a small abuse of notation 

to state chase tigip E wef D.p) . So tr.?""1" 1 chase9( 

A. query E is said to be monotonic if p Do implies El( p )2E( 

Proposition 5. Canonical queries are monotonic. 

Proof: The inclusion p • imiLies weak( D .p IC weak( D.o). The proposition follows. -1 

- 10 



We allow only finite states. Suppose however we were to allow states of 

arbitrary size. It would still be possible to define weak instances for these states 

and therefore cannonical queries as well. Proposition 5 remains true in this case 

without modification to its proof. Proposition 5 therefore establishes that 

canonical queries are monotonic everywhere, not merely over states of finite size. 

Jtjoi-4-  Ijhis is crucial to the development of section 4, below. 

On the other hand, not all expressions of the relational algebra define 

monotonic queries. We wi i t say that a query E on schema R is canonical if there is 

some set of dependencies I) such that EmaiR,D1. We know then that not all 

queries expressed in relational algebra are canonical. T he reverse inclusion is also 

not true. 

It is well known that no expression of the relational algebra is equivalent to the 

transitive closure of a binary relation. [AU], Elm], [Z1]. Let R be a binary relation 

symbol and let d be the de pendency which expresses the transitivity of R: 

vxyx( RxyARyzRxzi 

Then ?R 44/Rj.(d) I is thy .nsitive closure function, since. directly from the 
`"'"AsocaNf... 

definition, ?R[dRj./(/// ,  1 	the smallest relation containing / which is transitive. 

We state these facts as a p! position. 

Proposition 6. The set of c Ionical queries is incomparable to the set of queries 

which may be expressed in the relational algebra. -1 

3. The Logic of canonical queries. 

In this section INP pre-;,ant canonical queries in a logical framework. We do this 

to make more apparent the closeness of our approach to the approach of artificial 



014.4  
• C. 

Cl10-.4  

intelligence which treats querying as logical inference. (G 

prepare ourselves for the results of the next section. 

We also do it to . 

Let U be a universe. It is necessary to fix an ordering on the elements of U. If 

K is a schema over U, the first order language (with equality) LR has neither 

function nor constant symbols. T he predicates of L R are the schemes of R. Thus if 

RE R is the set (Ai l _ —Ai m). then LR has an m-ary predicate symbol R. Let S be a 

relation scheme. For notational ease we will denote the language associated with a 

schema RU(S) as LR.S rather than Litu,s1. However, we always assume a new 

predicate symbol, that is, a s'..nbol not in Lit, appears for S in Lics, even when 

SE R 

Let .\7; U and D be a set of unirelational dependencies on U. Consider the 

following set of sentences !: in the language Lit...V.0 

(containing insta ti ,:e ) 

(dependencies) 

Projection axiom: :c7...c n( Lr(ci 

where X . ...A 

The finite models of 	:noted struc(f), can be written as triples <?,/,,c..> 

where pECONS(R.D). FE wrc • D.p) and &.-)?XtR,D1(p). Let C be formed by 

reducing strud 2:1 to L R.x; t. :it is, (7= { <p,& > I pECONS(R.D) and .c.z, ?X/ R.Dkp)}. 

Let DRa be the collection of insequences of 2: in the language LR..y: that is. the 

elements of DR.x are sentences in L R.X  which hold in every element of struct2:). 

Clearly, the members of C satisfy the sentences of DR.x; that is, Cr;strudDR.x.). 

We now demonstrate the reverse inclusion. 

Lemma I. C=strucf.DRx) 



Proof. We need only show strud DILOCC, by preceeding remarks. So let <p,k > qC. 

Let dom be the set of all values appearing in p and expand the language LR.X.0  by 

adding each element of dom as a constant. In the expanded language, let 

= 	 I for each RE R where <ai ..... >Ep(R 

a m  >€4 and aiEdom/ 

D3= (a =b I for each pair of distinct elements of do mj. 

Now = 	UD2UD3 is an in consistent set of sentences. Suppose otherwise. If 

M is a structure for 	then M 1!). the interpretation of U in M. is a weak 

instance fur i) with respect to D 	pECONS(R.D)EGMV1. I t must be therefore that 

E.2?X (pi, as <p,£,> EC. So there is a tuple x(?X(p)-&. Now xE ?X(p) implies 

xErleNECI)) so by the projection axiom, xEM(X). But -'X(x)E2'' so M is not a 

model of 

. We note that Di UThi.iL)-; a finite set of sentences in the expanded language. 

Therefore, the conjunction of its •ements, denoted d, is a quantifier free sentence of 

the language Licx augmenter: ith the set dom of constants. Furthermore. 

< p,E.> satisfies d. On tht.i mil• land, from the inconsistency of Is we may 

conclude. 1:i- -id. Noting that 	:s constant free, we may conclude :1--itrx)( -d) 

where x is the vector of all chin .nts of dom appearing in d, interpreted as 

variables. In short. (vx)( -(1) i.- in element of DR K, so <p,E,> istruct Ditx). We 

may therefore conclude strue Dit .pcC. 

Corollary 1. .Dicx is equivalent to a set of total, multirelational equality and tuple 

generating dependencies. 



Proof. Consider the formula -' d in the proof of the lemma. This may be rewritten 

as (d1-♦d2Vd3) where d1 is thk conjunction of elements of D1; d2, d3 the- Ckge-

dieunctions of the elements of D2. D3 respectively, these latter appearing in in 

positive ( i.e., unnegated) form. By a result due to McKinsey [McKI, extended by 

Graham and Vardi [GV], since contains only dependencies, for some atomic 

formula e of D2UD3, we must have D-(vx)(dp- ► e). 

In light of this corollary, we will write DR x as ERuTRa where ER is the set 

of egd's and TRa is the set of tgd's mentioned above. It is known [GVI that the set 

strudER) of finite models of ER is -exactly CONS(R.D). It is natural to consider the 

set strucrtRa); that is, it is natural to consider canonical queries on states not 

required to be consistent. We can do this by removing all egd's from D and 

replacing them with "nearly equiva lent" tgd's as follows. 

Let d = <T.a=b> be an egd. Let A 	A n  be the attributes of u such that 

	

(a.bjgdorn( A;). "*.r=1•00.0.0, For each such i let 	be a pair of tuples on the 

universe U satisfying wijil e / = . u.); 61Ail=b, wi,,IBI=wi 6181 for all B =A,. and 

Symqw,,,wi 4M1Sym(T)=ta,b1. Th tsci, translation  of d is the set 

	

i „tv >, < Tula; 	> 

The end free version of a set oldep• Idencies D. denoted Del is formed by replacing 

each egd in D with its tgd transit, uon. Let E fr .  and TR,:(`f be the set of egd's and 

tgd's respectively which make up Itx as in corollary 1. 

Lemma 2 

1)E ier = 0 

2)T Fur' =TR.X 

Proof. 1) Immediate. 2)(13V???1-i 
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Combining this result with lemma 1 we have, 

Corollary 2. 1) struc(TR,x)=(<1).&>AD?int,De'll(p)1 

pECONS(R,D), then . ?X/R,D1(p)=?X1R,D 4-1(p)--i 

This result states the canonical queries defined with respect to Def are 

/• 	to the queries defined with respect to D when the farmer are restricted to 

CONS(R.D). It is useful to state the following result, whose proof is immediate from 

corollary 2. 

Corollary 3. ?X/R,D/(p) = n A / <0,>. itrucerit,0)-1 

These lemmas and their corkllariet can be viewed in the following way. They 
44.4_ 

state that calculation of a canonical query is the essenceklerivation of a tuple 
#144444.4A 

 

generating dependency. 	e e ements of T •x  are multirelation dependencies. They 

can be seen as re!rkrelational dependencies by the s 	le expedient of ignoring the 

tag attribute in their tableaux. This i.ransforms an element of into an 

embedded dependency in the languave (P which is easily seen to be logical 

consequence of D. Recalling a resuit Beeri and Vardi's[BV?l, we have that for 

each tuple YE 'Xi R.Dkp), there ex -; chase sequence of finite length ( possibly 0) 
„ 

which adds a row u to T with WO/ 

The reader may wonder whethe '.he set of finite structures 

( </IA > it = ')X/R,Ditt»/ is first order I xiomatizable. We have shown TRY  to he a 

first order axiomatization of structures containing "all the truth." Is it possible to 

axiomatize those structures containing "only the truth?" Interestingly, this question 

can be answered either way, depending on how it is phrased. 

We have restricted ourselves to the consideration of finite structures only as 

models. Suppose that f is any function from database states to instances of the 
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scheme X. and consider the pair <p,/(p)>. As both p and IT p) are finite, this pair 

may be described by a single sentence of the form "if the state is exactly p, then the 

instance of X is exactly /(p)." The set (< p)>) is exactly the set of finite models 

of the (infinite) set of sentences so constructed. T his procedure is hardly effective nor 

very informative. Furthermore, these sentences are not dependencies. The fact that 

TR,x contains only tuple generating dependencies of a particular form is vital to. the 

results of the next section. 

If we consider the collection of all models of a given set of first order sentences. 

we discover that it is impossible in gener.11 to axiomatize the exact answers to 

canonical queries. The transitive closure of a binary relation may serve us again as 

a counterexample. Let R, R+ be binary relation symbols. Consider both as giving 

two different edge relations on the same set of nodes. For each k, it is possible to 

write lior no pair for which an arc appears in R÷, is there a path of length k 

between them in R." Each finite subset ,if the set of all such sentences is consistent 

with an axiomatization of the transitive closure of nonempty relations, should such 

an axiomatization exist. But by the prine.i pie of compactness, which applies here as 

the full collection of models is considercit• no such axiomatization can exist. E very 

arc in R+ must correspond to a path in 	.)f some finite length. 

This discussion justifies a belief 	the result of corollary 3 is as close as one 

can get to canonical queries with first ()Pi er sentences. 

4. Algebraic canonical queries. 

In this section we consider those queries which are both canonical and 

expressible in the relational algebra. ( Queries expressible in the relational algebra 

will hereinafter be called algebraic.) W. 'sill rely on the well known equivalence of 

the relational algebra and•relational ca lculus. We restrict the class of expressions 

6 



we will allow in two ways. We consider these restrictions to be matters of 

convenience. 

First, we do not allow constants. Dependencies are written in a constant-free 

language, as in the prior section. Allowing constants in our expression language 

merely confuses matters. Secondly, we do not allow equality. This is in conformity 

with the work of Chandra and Merlin [CM]. We adopt this restriction in this section 

(we abandon it in the next) as we are considering here the canonical queries defined 

by an egd-free set ofdependencies. Every state is consistent with such a set of 

dependencies and thus each canonical query is defined on every.  state. This 

simplifies our discussion. When D is egd-free, the set of sentences I' of section 

written in a language without equality. Thus our prohibition of equality is similar 

to our prohibition of constants. 

Formulae of the relational calculus are customarily interpreted only in fi nite 

states. As they are also formulae of first order logic it will be convenient to 

interpret them over states of arbitrary size. 

Lemma 3. Suppose E 	_monotonic a. y (v erywhe0 expressible in a 

relational calculus without equality. Th.• E is expressible as a union of 

conjunctive queries. 

'sf 
Proo£Suppose E may beexpressed as 	_xi( ) usinedomain' calculus 

notation. We show is (equivalent to) a positive, existential formula; i.e., it is 

constructed from atomic/ formul,thsing 3, A, as the only connectives. But these 

formulae are exactly unions of conjuntive queries. 

We show first the existential part. Suppose p is a state and p va t 	a.. ); 

that is, the tuple 	E Et pJ. Suppose we have a state a related to p in 



the following way: for each scheme R, p(R) is the intersection of a(R) with the 
^,usi-wwuhS 

appropriate cross product of a fixed set of 	( fixed in the sense that the 

same set of constants is used to form each relation o() In this case, p is called a 

submodel of a, a an extension of p. As alp, we have, ..., a k)EE(o). 

Generalizing this arguement,. we see that the sentenc 	'a language expanded 
a- 

with constant om, 1V(a 1 , ..., ak) is preserved under extensions; that is, if true in ny 

state it is true in all extensions of that state. Therefore qr is existential by the dual 

of theorem 3.2.2 ofang &i.eisler[ 

To show the positive part, we will show that everywhere monotonic queries are 

preserved under homomorphisim; that is, if 1 a....., ak )EE(p) and p is 

homomorphically embeddable in a state a via a homomorphisim h, then 

<h(al)... ,h(ak)>EEI. But then the formula qr expressing E is positive by 

theorem 3.2.4 of the above cited text. 

We define a strong homomorphisim as ne whch preseves negative as well 

as positive atomic formulae; that is, if <b.... b >€p(RJ then <h(b r )... 

.h(b k)>fa(R), where h take ;Pto . We leave the reader the ta(of showing that 

any existential sentece is preveivd 	st: rig homomorphisims. 
tAkrkQ 

[cf,Enderton p91 f]. 

Now suppose h is a hor-iomorphism of 	into a and /a....., a.)EE(p ^ . We 

must show <h(a t l, ...h!aj >EE(f). If h is strong we are done. For any <b : . . 

b.n >€p(R) with <h(hl i... .h(b k^>^a(R) add <b 1 ... b,= > to prR) . Let p' be 

the result of all such additions. So p' ^p and therefore 'a 1 ...., ay E E( p') by 

monotonicity. Now h is a strong homorphism, from p' to 'J  so <h(a l ), . . 

.h'a..)>EE(a)since the sentence ltr(a...... a. ; nas been shown to be existential. 

Recall is the formula expressing E.) 



In lemma 3 we depend on the assumption that the query is everywhere 

monotonic, not just monotonic on finite states. Of the theorems used in the proof, 

that concerning preservation under extensions has been shown to be false in the 

case that only finite states are considered. [Gurevich]. The status of the lemma 

itself is this case is unknown [op.cit]. 

ex- cA4644.c.k.4-1•6$4:' 
We now produce now-441;14:011;9n of those canonical queries which are 

algebriac. 

It is obvious that the appearance of a tuple in the result of a canonical query 

depends upon the existence of certain tuples in the database state. We may wish to 

know how many such tuples must appear in the state to support a tuple in the query. 

If tE ?X(p), is it possible to bound the size of a substate ocp- with tE MO which 

bound is independent of the size of p? Note that in the case of transitive closure, it is 

not possible to do this. This motivates the following definitipn. 

Definition  A schema R is X -bouniied with respect to a set of dependencies D 

(for some X a set of attributes), if there exists an integer k such that for every state 

p, tElr pi implies there exists a substate ocp w; k and tE?X(o). 

Maier. Ullman and Vardi [MUV] proposed notion of boundedness which we 

will show equivalent to ours. Their idea is based on the computation of canonical 

queries via the chase. 

Definition A schema it is X -chase -bounded with respect to a set of 

dependencies D (for some X a set of attributes), if there exists an integer k such 

that for every state p, tE ?X(p) implies there exists a sequence of transformations on 

the dependencies in D which introduces a rnw :4, into T p  with wal = t. which 

sequence is of length not greater than k. 
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We should point out that qualification that D be finite is crucial to the 

meaningfulness of this definition. For if D is replaced with its semantic closure (the 

set of all dependencies it implies), then every schema is X-chase-bounded with k =1. 

There is yet a third, equivalent notion of boundedness. Consider the set TR,X 

of the prior section. We will say that T R,x is finitely covered when it is equivalent to 

some finite subset of itself. By 'equivalence' here, we mean finite equivalence. TRa 

is finitely equivalent to some set x if the equality strudTita)= strut(.) holds. 

Theorem 1. Let R be a schema and D a finite set of unirelational dependencies on a 

universe U. The following are equivalent. 

1) K is X-bounded with respect to D. 

2) -R is X-chase-bounded with respect to D. 

3) TR.x .  is finitely covered. 

4) ?XlIt.131 is equivalent to a finite union of conjunctive queries. 

5) ?X/11,D/ is equivalent to an expression of : relational algebra. 

Proof. 1.:2 Let kn be the integer required by le definition of X-bounded. 

There are, up to isomorphism, finitely many sLites of size ko. Each has only 

finitely many "X-consequences;" that is, ?X(p) is always finite. For each row of 

?X(p) for each p there is a sequence of some finite length which introduces this 

consequence into Tp. The length, kl, of the longest sequence among these proofs is 

the bound required for R to be .Y-chase-bounded. 

21 Immediate. 
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1 =3 As before, let ko be the bound required by the definition of X-bounded. 

We claim that TR,X need contain no dependency d= <T ,x > with ITS >k0. But this 

is immediate. 

3=4 Each of the dependencies in TR,X is identical in format to a conjunctive 

query on R with target list X. Set E to be the union of the (finitely many) 

conjunctive queries in TR,X. We claim E( p)=?X( p ) for every state p. 

By construction we have < p.E( p) >Estruc(TR,x), that is E( p)2?X(p). For the 

reverse inclusion, we can show that for every &D.?X(/». .?E(p). That is, E( p) =?X( p), 

by corollary 3. 

So let v(E( p). By definition of E , there is an element <7'..r >ETR,X and some 

homomorphism q with Ong; (ri tag preserving) and q(x) =v. But <T x > is an 

element of TR,X so any E with <0,>EStrtierit,X) must satisfy <T >; that is, 

q(x)EE, that is vEE.. 

Immediate. 

From lemma 3 and proposition. 5. 

4 	The bound is the number of conjuncts in thy .argest clause of the 

expression. -i 

5. Roundedness with respect to consistency 

In the preceding section we were concerned with the finiteness of the set Ticx 

of tgd's in the language Liu implied by the dependencies, containing instance, and 

projection axioms defining the canonical queries. A similar question can be asked 

about the set ER of equality generating dependencies so implied. 
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Fact: [GV] The set ER is finite iff there is an integer k such that any 

inconsistent state of R has an inconsistent substate of size not exceeding k. 

Thus we say R is-bounded with respect to consistency if ER is finite. 

Despite the similarity of this fact to the equivalencies in theorem 1, we now 

show by example that boundedness with respect to consistency and algebraicness are 

mutually independent. 

If D contains no egd's, then ER is empty. So in particular, the transitive 

closure example (see section 4) is bounded with respect to consistency but not 

algebraic. 

Let F be a set of functional dependencies over some universe U and let 

SAT(UF) be the set of all instances of U which satisfy F. Let A be the set 

(WISE SAM ,FY for some Vg U. As pointed out by Ginsberg and Zaddian [GZ], 

A need not be SAT(V.G) for any set of functional dependencies G. Hull has 

recently shown that in that case Eivi is not finite [H]. But notice that 

A=CONS((V),F) and that for any XgU, ?X[IVILF is eir.her identically empty (if 

X V) or is equivalent to the appropriate projection. S4, 	vi,x is certainly finite. 

We will say a schema R is algebraic if for every X. 'YfR,D1 is algebraic. If D 

contains only typed equality generating dependencies, a iebraicness is implied by 

boundedness with respect to consistency. 

Proposition 6. Suppose D is a set of typed egd's and R is bounded with respect to 

consistency with D. Then R is algebraic. 

Proof. Suppose not. From the hypotheses and prior result:, we know 



1) there is an integer leo such that an inconsistent state of R contains an 

inconsistent substate of size not exceeding ko; 

2) For some ICC. U and every integer kb there exists a state p with at 

least it-1 tuples and a tuple xE ?X(p) and xe?X(0) for any proper substate 

a of p. 

Letting k be the integer of point 1 above, construct a consistent state as 

described in point 2 of size at least k/X/. Let this state be a. Recalling that D 

contains only egd's, we note that the row of chasedT) with x-valuex (x is the 

value given in point 2 above) must correspond to a tuple v( R) for some R and 

XV?. 

Let v be a 1-1 mapping of Syrn(0) which is the identity on symbols of the tuple 

v and takes all'other symbols of a to symbols not in a. Let p= oUv(a). To see that p 

is not consistent with D, let u be any tuple of a such that u/A/=x/A/ for some 

A EX-R. The egd <Tp.u/A/=v(u/A/)> is a consequence of D but u/A/iv(u/A/) by 

construction..Consequently there must be a substate mg!) with k or fewer tuples 

such that D implies <TPA  ,u/A v(u(A/)>. This substate must contain some rows 

of v(a) (although not necessarily u or v(u)). 

Let q  be the mapping on Tp l  defined by: rift) = t if t. . q(t).=v if tEv(o). Now 

q is a homomorphism embedding 	into T„ since for every v,,E v(0), v / Ea, and 

every attribute B, vo[B1=v 1IBI only if vo/B/=v/B/=/) //B/. So ri is homomorphism 

enabling in T„ a transformation on dependency <7 11,A ,u/A /= vr WAD>. 

Application of this transformation to T„ will set t/A/=x. But IrdT p d1<k. Repeat 

this arguement for each A EX-R. This will uncover a substate a'Ca with 

r 7<nIXI and x?(cr .). this contradicts our choice of a.-1 



We now take up the task of tightening the results of Theorem 1. We wish to 

characterize algebraic canonical queries defined with respect to a set of dependencies 

which include egd's. Equivalently, we wish to consider queries defined exactly on 

the set CONS(10). We face an immediate syntactic difficulty: an expression of the 

relational algebra is necessarily defined on all states of R, without regard to their 

inclusion in CONS(R.D). Thus we must expand the domain of ?Xt R. DI if we wish 

to find any algebra expression to which it is equivalent. A method of doing this is 

given by Corollaries 2 and 3 of section 3: replacing D with Del: This method is 

exploited in Theorem 1. We seek in this section an expansion which distinguishes 

consistent from inconsistent states more,precisely. Many such expansions are 

possible. We adopt the following. 

For a set of attributes X of cardinality n, we define the X-product of a state p 

as 

EX
(dom(A)Y1Symipin  

That is, an X-product is the set of all combinations of symbols in p which respect the 

domain definitions. We define ?X/ R. DPI)) to be the X-product of p when 

piCONS( R.D). This definition reflects the standard logical n ■ -:' on that everything is 

a consequence of an inconsistent set of sentences. It also preset s the monotonicity 

of canonical queries. as any superset of an inconsistent state is : aconsistent. 

The expanded function will not always distinguish consisLent from inconsistent 

states. Consider a four attribute universe with two schemes: 1.-1B B . CD/ and the 

functional dependency. A -4B. If the domains of these attributes are pairwise disjoint 

the "typed" case), then ?C is identically the C-product in every state. Similarly, 

?CD is the CD-product in some consistent states. We can describe sets of attributes 

for which this behaviour is impossible. 



Let d= <T,a=b> be an egd. The repeating symbols of d are those elements 

of Sym(T) with more than one appearance in d (a and b are presumably repeating 

symbols.) The agree set  of d is the set of attributes labelling the columns of T in 

which the repeating symbols occur. (See Ginsburg and Hull 7? [GM.) If X contains 

the agree set of some egd in or implied by a set of dependencies D, then ?X[ R D 1(p) 

satisfies d exactly when pECONS(R.D). [Not quite: we need 2 symbols of 

dom(A) in p.] We will exploit this fact in Theorem 2. We must first expand the 

class of relational algebra expressions we allow. 

As we have allowed egd's in D, we must allow equality in our expressions. We 

define a coniuctive query with inequalities  to be a conjunctive query plus  a set of 

pairs of symbols called inequality assertions (and written a= b). Su if q is a 

conjunctive query with inequality 

q= <<T,x>,S> 

and p is a state, q(p)=(v(x)Iv(T)CTp, v a homomorphism and via =14 b) for each 

b in Si. (The expansion of conjunctive queries to include inequalities was first 

made by Klug [K].) 

We recall that DR,x is the set of all multirelational egd's a t• ri full tgd's which 

are consequences of the set E defined in section 3. Again, ORA i., said to be finite if 

it is finitely equivalent to a finite sublet of itself. 

Theorem 2. Let X contain the agree set of some egd implied by a set of dependencies 

D. [Do I need this?I For any schema R, the following are equisialent: 

1) R is bounded with respect to consistency and X-bounded. 

2) DR.X is finite. 

- 



3) ?X/ R. DI is equivalent to a union of conjunctive queries with 
inequalities. 

4) ?Xf R, DI is equivalent to an expression of the relational algebra. 

Proof. The equivilence 144.2 follows from Theorem 1 and the fact mentioned 

earlier. We show 2*3 by construction. (A proof of 2*4 exists which omits this step. 

We find this procedure more informative.) 

Construct a conjunctive query for each element of TR,x as before. Let E, be 

the union of these queries For each element of ER, proceed as follows: 

Let <T.a= b> be an element of ER. Let W = twR/RE R. wRITag1=R1 be a 

collection of tagged rows sharing no symbols with each other or with Sym(T). Let 

be rows with tag X which rows result from permuting the symbols in 

URER(UAExieveA//AERI) in all ways consistent with the domain definitions. 

Construct the set of conjunctive queries with inequalities 

1«TUW.vi>labj>11 sispj. 

Let E., be the union of all these queries. 

We claim the union of E l UE., calculates ?X/ R. D I. The proof is a, oefore with the 

observation that if any element of ER is violated by a state, the set tit queries so 

constructed will force the result to be the appropriate X-product. 

The equivalence 344.4 is as before. Note that a conjunctive query with 

inequality is monotonic, so Lemma . 2, suitably modified, holds for the larger class of 

expressions considered here. 

We complete the chain by demonstrating 3 	If < <T.x>.S> is an element 

of the union given by (3), construct the sentence 

-26- 



vy(T'.x'vs') 

where 

	

	T'=A(R(wIRI) I w(Tagl =R, WET) 

x'=2ax) 

s'=v(a=b1c1=bES) 

and y is the vector of all variables appearing in this sentence. We claim this 

sentence is implied by 2: (by (3)) and apply the result of McKinsey referenced earlier 

to reduce the resulting finite set to a subset of DR.x, as before. We then claim this 

set to be finitely equivalent to DR.x. !Does this really work? I think so but I'm 

passing on. The next paragraph can also be used to prove this (or 42)1 

The weakening assumption in this theorem is a result of the particular 

expansion of canonical queries which we've adopted. Suppose we were to choose an 

expansion which distinguish consistent and inconsistent states via some first-order 

property. In other words, suppose there exists, with respect to this putative 

expansion, a sentence ip  on a single predicate (of arity the cardinality (AM such that 

I. is true at ?XI R, D 1(p) exactly when p is consistent. If ?X is algebraic, the first 

order formula 0 which expresses ?X can be composed with (I.) to produce a sentence 

of LR true of a state p exactly when p is consistent. (This composition is the 

syntactic exercise of replacing the atomic formulae of w with the formuia 0, due 

care being taken to rename variables as 	But in that case. ER is finite. 

by the results of [GV]. 

6. Discussion and Conclusions 

We have considered the question: When is a canonical query algebraic, i.e., 

equivalent to an expression of the relational algebra? It is natural to ask the 

converse question. When is an expression of the relational algebra equivalent to 

- 27 - 



some canonical query? The answer is the same. Such an expression must be 

monotonic and therefore equivalent to a union of conjunctive queries. Each such 

query is essentially a multirelational tgd, which may be considered a unirelational 

tgd simply by ignoring the tags. Thus each monotonic expression E gives rise to a 

set of tgd's D such that Ein?Xl.  R, D I (X the "target scheme" of E). Every 

monotonic expression is canonical for some set of dependencies. 

In the above discussion, we chose D after having seen the expression E. The 

reader may object to this procedure, considering the dependenCies to come "first" and 

the queries only "later". But is this order correct? The purpose of canonical queries, 

window functions [MRW] [WV] and universal relation interfaces [KU] is to make 

some set of queries very easy to formulate. Which set of queries should this be? We 

believe the database administrator, in cooperation with the end users, knows very 

well which queries are important. The dependencies and perhaps even the schema 

may be derived from the queries, rather than conversely. It is usual to declare the 

dependencies to be derived from "nature", that is, from knowledge of the application. 

We do not dispute this. We have shown that they describe an inference engine for 

the calculation of certain pre-selected queries. 
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Abstract 

A database is consistent with respect to a set / of 

dependencies if it has a weak instance. A weak instance is 

a universal relation that satisfies I. and whose projections 
on the relation schemes are supersets of the relationi in the 

database. In this paper we investigate the complexity of 

testing consistency and the logics that can axiomatize con-

sistency. relative to a fixed set I of dependencies. If T. is 

allowed to include embedded dependencies, then con-

sistency can be non-recursive. If I consists only of total 

dependencies. then consistency can be tested in polynomial 

time. The degree of the polynomial can, however, be arbi-

trarily high. Consistency can be axiomatized but not 

finitely axiomatized by equality generating dePendencies. 

If embedded dependencies are allowed then consistency 

cannot he finitely axiomatized by any effective logic. If. 

on the other hand. only total dependencies are allowed 

then consistency can be finitely axiomatized by fixpdat 

logic. 

1. Introduction 

Soon after the introduction of the relational model 

[C11, the important role of srrttantic bpecification was real-

ized [MAN]. The purpose of semantic specification is to 

define which databases •  are senrintically meaningful. called 

To be prescuwd in the 3rd ACM S ,.mp. on Piinciples of 
Database Siteins. Watt:rim. April 19/i4 

The research recanted here sva, done while this author was 
at Stanford Limey...0 and .urtrorted by u Weitntann 
Nu.st•Dottoral :mu .110SR grant SO-0212. 

consistent in database terminology. The languages used for 

semantic specification are logical languages. Thus, the 

database is consistent if and only if it satisfies certain sen-

tences in the language. An example of such a language is 
the language of functional dependencies [C2]. 

Traditionally. the logic used for semantic 

specification languages was first-order logic. The reason for 

that is probably the fact that this is the logic that most 

researchers and practitioners were familiar with. Recently, 

however, researchers in the area of semantic specification 

realized that there does not seem to be a straightforward 

way of specifying semantics of databases with incomplete 
information by means of first-order logic [Ho]. 

The situation is as follows. In principle, there is a 

conceptual database with complete information, called 

weak instance in database terminology, that completely 

describes reality. The semantics of this idealized database 

is given in first-order logic. In practice, however, we very 

often do not have all the information needed to describe — 

reality. . That is. the actual database does not contain 

enough information to uniquely dctennine the conceptual 

database. How we do know whether our partial descrip-

tion of reality is semantically meaningful? The intuitive 

answer is that it is semantically meaningful if it can be 

completed to a full description of reality. This is the 

justification for the definition in [Ho] that an actual data-

base. which may have incomplete information. is consistent 

if it can be completed to a consistent datababc with com-

plete information. 
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While this definition was readily adopted by 
researchers and triggered numerous investigations of its 
implications (e.g.. [GMV. Sit MUVD, its logical aspects 
were not yet investigated. - 

A logic consists of three essential components: a 
language, a class of structures and a satisfaction relationship 
between structures and sentences in the language. The 
notion of structure in database theory is well understood: 
databases are essentially finite relational structures. What 
we are interested here is in the language and satisfaction 
relationship components. Specifically, we try to answer the 
two follow/ins questions: 

(1) What is the complexity of testing consistency? 

(2) What is the language required to axiomatize con-

sistency? 

More formally, we are given a set I of first-order sen-
tences that the conceptual database (with complete infor-
mation) is supposed to satisfied. Let CONS(i) be the 
class of actual database (with incomplete information) that 
can be completed to satisfy - I. We try to find out what is 
the complexity of recognizing databases in CONS(I) and 
whether we can axiomatize it. that is. construct a set 
(preferably finite) r of sentences in some language such 
that CONS() is exactly the class of actual databases that 
satisfy r. We are interested here in the case where the 
conceptual database is required to satisfy first-order sen-
tences of a special form, the so called data dependencies 
RM. Fa21. This class of sentences is considered to be 
appropriate to semantic specification of databases with 
complete information. 

Our first finding is that there exists a set I of aid's 
such that CONS(i) is not recursive! We are hence forced 
to restrict ourselves to the subchis of total (or full) depen-
dencies 03V1. Fa21. In this case we show that CONS(/) 
is in PTlir1E. Tne degree of the polynomial can. however, 
be arbitrarily high! 

With this in mind we turn to the issue of axioma-
tizabilky. By using classic model-theoretic techniques. we  

show that consistency is axiomatizable by first-order logic 
and even by dependencies. but is not finitely axiomatizable 
by first-order logic. The fact that consistency can be tested 
in polynomial time. and the strong connection between 
polynomial time amputation and *point logic shown in 
Dm,Var2j, suggest that fixpoint logic might be the right 
logic to axiomatize consistency. Indeed. the deepest result 
in the pa.  per is that consistency is finitely axiomatizable by 
fixpoint logic. 

We discuss some -philosophical" aspects of our 
work in the concluding part of the paper. 

2. Basic Definitions 

2.1. Tuples, Relations, and 1)atabases 

Attributes are symbols taken from a given finite set 
U called the universe We use the letters A ,B .0 , • • • to 
denote attributes and X ,Y , • • • to denote sets of attri-
butes. Sets of attributes are also called relation xhernes for 
reasons to become clear shortly. As a convention, we do 
not distinguish between the attribute A and the set (41, 
and we denote the union of X and Y by XY. 

With each attribute A is associated an infinite set 
called its domain. denoted DOUG°. The domain of a set 
X of attributes is DOM (X)= U DOM(A). An X-wdue is 

AU 

a mapping w:X —PDOM(X), such that w(A)ED0,11(A) 
for all A EX . A tupk is an X-Valtle for some X. A rela-
tion on a relation scheme X is a finite set of X-values. We 
use a,b,c, • • • to denote elements of the domains, 
sa. • • • to denote tunics. and 1,J, • • • to denote rela-
tions. 

A database scheme is a sequence R=(R 1.....R h ) 

of relation schemes such that U=UR,. We will occa- 
i,i 

sionally consider U as a database scheme, meaning (U). 
A sequence 1=(11 4) of relations on R  Rt, 

cocrespondingly, is called a dawbase on R. Let 
1—(1,  11) and .1=(J 1 Jr ) be databases on R. 
We say that I is contained in J 	 denoted ICJ. if 1„,C_J„, 
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for m=1.....k. 

For an X-value w and a set YCX we denote the 

restriction of w to Y by w[Y]. We do not distinguish 

between w[4 which is an A -value, and w(A), which is 

an element of DOM(A). Let / be a relation on X. Then 

its projection on 7, denoted /[Y], is a relation on Y. 

/[Y]={w[Y]: wE/}. Let R be a database scheme. We 

associate with R a projection map w it, defined as follows. 

Let I be a relation on U. Then w,(/) is the sequence 

(4R1], ... JIRO, which is a database on R. The set of 

all attribute values in a relation I is VAL(I)=U1[A]. 
AEX 

and the set of values in a database I is 

4  VAL(I)= 1.) VAL(/1 ). The database I is nonempty if 
-1 

VAL(I)4 0. 

2.2. Dependencies 

A 	valuation 	is 	a 	partial 	mapping 

a: DOM (U)—BDOM (U) such that for all A EU and 

a eat/ (A) we have a(a)EDOM(A). We say that a is a 

valuation on a tuple w (resp., relation I. database I) if it is 

defined on VAL(w) (resp.. VAL(!), VAL(I)). Let a be a 

valuation on a tuple w. then a(w) is the tuple aow (i.e.. a 

composed with w). Valuations are defined on relations 

and databases in the natural way, i.e., they are defined on 

relations mole-wise. and they are defined on databases 

relation-wise. 

For any given application only a subclass of all pos-

sible databases is of interest. This subclass is defined by 

semantic constraints that are to be satisfied by the data-

bases of interest. A family of constraints that was exten-

sively studied in the literature is the family of dependen-
cies. 

A tupk generating dependency (abbr. tgd) says that if 

some tuples. satisfying certain equalities exist in the data-

base. then some other tuples (possibly with some unknown 

values), must also exist in the database. Formally. a tgd 

on a database scheme R is a pair <1.1> of nonempty data-

bases on R. It is satisfied by a database K on R if for  

every valuation a on I. such that SOCK, there exist a 

valuation /. on I and .1 that agrees with a on V AL(I) such 

that /iU)CK. If VAL(J)CVAL(1) then <LI> is a total tgd 

(abbr. ttgd). 

An equality generating dependency (abbr. egd) says 

that if some tunics, satisfying certain equalities exist in the 

database. then some values in these tuples must be equal. 

Formally, an egd on a database scheme R is a pair 

<1.a1sia2) where I is a database and (al.a21g YALU). It 

is satisfied by a database K on R if for every valuation a 

on I such that a(l)c1( we have a(a1)=a(a3). A func-
tional dependency (abbr. fd) is a statement X— ► Y. It is 

satisfied by a relation / on U if for every two tuples u and 

v in I. if u[X]= v[X] then u[Y]=01. It is equivalent•to 

an cgd on U. 

We will use the term dependencies or embedded 
dependencies to refer to the dass tgd's and egd's, and we 

will use the term total to refer to the class of uscrs and• 

egd's. We note that dependencies are equivalent to first-

order sentences of a special syntax [F32]. 

23. Satisfaction and Consistency 

If we are given a database scheme R and a set I of 

dependencies on R. then it is quite obvious how to define 

the class of semantically meaningful databases on R. It as 

just the collection 

SAT(R.E)={1:l is a database on R that satisfies 

However, a basic idea in database theory is that of 

universal relation interface [MUVJ. According to this 

approach. conceptually the database is a single relation on 

U. and consequently the semantic specification has to be 

given as a set of dependencies on U. In practice. how-

ever. information is often given to us not as tuples on U 

but in smaller units. tunics on subsets of U. and some 

information may even be missing. The database scheme 

	Rd describes the actual database, and its 

relations reflects parts of the bigger corceptual database. 
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Such a database on R is semantically meaningful if indeed 
it reflects a•eaningful conceptual relation on U. 

This lead Honeyman [Ho] to the following 

definitions. Let X be a set of dependencies on U. and let 
. , /k ) be a database on a database scheme 

R=(R1, .R k ). We say that I is consistent with respect 
to X. if there exists a relation I on U. such that 
/ESAT(U,i) and IC‘R(/). I is called a weak instance 
for 1. Note that 1 does not reflect exactly the breakdown 
of the information in I to smaller units of information, but 
rather it reflects a subset of that information, since // can 
be a proper subset of /[R,]. We denote the set of dla-
bases on R that are consistent with respect to X by 
CONS(R.n. 

We now define a condition on database schemes 
that will play an important role when it comes to axioms-
tizabilky of consistency. A set X of dependencies over U 
is said to be m-bounded with respect to a database scheme 
R. for some natural number m, if for every database I on 
R, we have that 1 is in coNs(R,D if and only if for all 
JO with I YAL(J)1<m, we have that J is in 
CONS(R.I). We say that I is bounded with respect to R 
if it is m-bounded with respect to R for some m. 

3. Complexity 

Several researchers investigated the complexity of 
testing satisfaction and consistency [13V2,GMV,MSY,Y]. 
What they tried to do is to find the complexity of the set 
{W./ . X> : IESAT(11.1)} and the set 
f<R.I. I> : IECONS(R. I)}. In this context several lower 
bounds were shown. We find these lower bounds some-
what misleading. In a specific application the database 
administrator has a specific universe Un. a specific database 
scheme Ro. and a specific set 2.43 of dependencies that 
describe the semantics of the application. Thus, he has no 
interest in the complexity of the above mentioned sets, but 
rather he is interested in the complexity of the sets 

We use the generalization in [GNIVJ of the original ideas 
in [Ito). 

SAT(U0.1 0) and the set CON.5(10,L). Thus. what seems 
to be of interest in general is the complexity of the sets 
SAT(U.I) and CON.StIt..13 for fixed U. It and X. In 
the terms of [Var2] we are interested here the the data 
complexity rather then the expression complexity or the 
combined complexity. 

Let us consider first satisfaction. 

Lemma I. [CM Let R be a database scheme and let E be 
a finite set of dependencies on U. Then SAT(R,I) is in 
LOGSPACE ■ 

Unlike satisfaction, the complexity of consistency 
depends on the kind of dependencies we have in X. 

Theorem L 

(1) Let R be a database scheme, and let E -be a finite 
set of embedded dependencies on U. Then 
CONS(R.X) is recursively enumerable. 

(2) There 'exist- a universe U and a finite set X of 
embedded dependencies on U such that 
CONS(U.i) is not recursive. 

(3) The set of pairs (1LX). where X is a finite set of 
embedded dependencies on U and CONS(R.1) is 
recursive. is not recursive. 

Idea of Proof. 

(1) Given a database on R, we just have to enumerate 
all relations on U and check whether any of them is 
a weak instance for the database. 

(2) First, by reduction from the word problem for finite 
semigroups [Gu], we construct a universe U and a 
finite set I. of dependencies on U such that the set 
la:a is an egd and X logically implies a} is not 
recursive. Then, we show that this set is Turing-
reducible to CONS(U,X). The reduction involves 
exponentially (in the length of the given cgd) many 
tests for consistency. 

(3) The claim follows from a general characterization of 
undecidable properties of sets of dependencies in 
[Varl]. ■ 



Theorem I strengthens the results in [GM VI that the set 

{<R.I.I>: I is a set of embedded dependencies and 

IECONS(R.I)}. 

is not recursive. Both results indicate very strongly that 
the weak instance approach is not practical when embed-
ded dependencies are necessary to specify the semantics of 
the application. When all dependencies in E are total, the 
situation is radically different. 

Theorem 2. 

(1) Let R be a database scheme. and let I be a finite 
set of total dependencies on U. Then CONS(R,M). 
is in PTIME 

(2) There is a universe U and a finite set I of total 
dependencies on U such that CONS(U,I) is 
logspace complete in PTIME 

(3) For every natural number k, there exist.  a universe 
Uk and finite set Ik of total dependencies on Uk. 

such that CONS(Uk,I)  can not be accepted in 
DTIME(nk). 

Idea of Proof. 

(1) In [GMV,Ho] there is an algorithm to test for con-
sistency. Given a database, the algorithm tries to 
construct a weak instance. It either succeeds, 
demonstrating consistency, or it fails, proving that 
there does not exists a weak instance. The complex-
ity of the algorithm is 0(n'). where n is the size of 
the database and I is the size of R and Z. 

(2) Hardness for PTIME is proven by reduction from 
the path system problem of [.11.]. 

(3) By a generic reduction from deterministic polyno-
mial time Turing machines. ■ 

Theorem 2 strengthens the result in [GMV] that the set 

(<RJ,I> : I is a set of total dependencies and  
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IECONS (R. I)). 

is logspace complete in EXPTIME. It shows that testing 
consistency of I with respect to E is polynomial in the size 
of I and exponential in the size of E. 

It is interesting to note in connection with Theorem 
2, that if I consists of Us. then CONS(11,1) can be 
accepted in time 0(n logn) and linear space, by computing 
the dosure of some congruence relation as in [DST]. 

Let us now consider bounded sets of dependencies. 
Intuitively, it seems that it should be easier to test con-
sistency with respect to bounded sets than for general ones. 

Theorem 3. bet R be a database scheme, and let E be a 
set of dependencies on U. such that I is bounded with 
respect to R. Then CONS(R,I) is in LOGSPACE. 

Idea. of Proof. Assume that E is m-bounded with respect 
to R. To check that IECONS(R.X) it suffices to check 
that JECONS(R.X) for all JCI such that I V A L(J)I •<, n. 

It is easy to verify that checking each J requires space log-
arithmic in the size of L ■ • 

4. Axiomatizability 

A subject of great interest in mathematical logic is 
that of axiomatizability. Given a class II of structures, the 
logician tries to axiomatize it by defining a logic A. which 
consists of a language L and a satisfaction relationship 
between structures and sentences in L. U is axioniatizabk 

by A if there exists a set 2r of sentences of A, such that a 
structure M is in if and only if M satisfies all sentences 
in E. It' E is finite, then l2 is finitely axiomatizabk by A. 
This notion of axiomatizability enables us to classify the 
expressive power of logics according to the dames of struc-
tures that they can axiomatize or finitely axiomatize. 

We first try to axiomatize consistency by first-order 
logic. We have to bear in mind, however. that every class 
of databases is axiornatiz.able by first-order logic. This fol-
lows from the fact that every database can be described, 
up to iscmorphism. by a single first-order sentence. The 
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axioms for the class are the negations of the descriptions of 
all databases not in the class. In fact. one can show that 
every class of databases is even axiomatizable in a proper 
subset of first-order logic. This subset, which we call 
universal-existential logic. is the set of all first-order sen-
tences whose prefix consists of a string of universal 
quantifiers followed by a string of existential quantifiers. 
Thus. axiomatizability results for first-order logic are not 
interesting, unless they talk about finite axiomatizability or 
about a proper subset of universal-existential logic. 

The proof of next theorem uses disjunctive  equality 

generating dependencies A disjunctive equality-generating 
dependency (abbr. degd) on a database scheme R is a pair 
<1.6>, where I is a finite database and 3 is a sequence of' 
equalities with 

{ay ....bk}cVAL(1). It is satisfied by a database K on 
R if for every valuation a on I such that a(I)CIC we have 
that either a(a1)=a(b), or ... or cc(ak)=a(bk). Observe 
that an egd is a degd where the sequence of equalities is of 
unit length. 

'Theorem 4. Let R be a database scheme, and let X be a 
set of dependencies on U. Then CONS(R.E) is axioma-
tizable by egd's. 
Idea of Proof. The proof goes in three steps. First, using 
the method of diagrams [CK] we show that CONS(R,I) is 
axiomatizable by degd's. That is, there exists a set r of 
degd's on R such that CONS(11.1)=SAT(It,r). Now, 
using the fact that X is a set of dependencies. which are 
Horn sentences, we show that CONS(R.I) is closed under 
direct products. Finally, using the last fact, we prove by 
McKinsey's technique [McKiJ that we can assume without 
loss of generality that all the degd's in X .  are actually 
egd's. ■ 

The above result is interesting theoretically, but does 
not really have practical significance because the set of 
egd's promised by the theorem can be non-recursive! 
What we would like to have is finite axiomatizability by 
first-order logic. because then we would be able to apply 
Lemma 1. and get logarithmic space complexity. Now, 

Theorem 3 gives us a case where consistency can be tested 
in logarithmic space. namely, when the given set of depen-
dencies is bounded with respect to the database scheme. 
Can it be that Theorem 3 is just a corollary of Lemma 1? 
The answer is positive. 

Theorem 5. Let R be a database scheme. and let X be a 
set of dependencies on U. Then CONS(R. X) is finitely 
axiotnatizable by egd's if and only if X is bounded with 
respect to R. 
Idea of Proof. If CONS(R.1) is finitely axiomatizable by 
egd's. then CONS(R.X)=SAT(RX) for some finite set 

of egd's. Let 
m= max {k :a.a1=a2>Er and I VAL(1)1=k}. Then X 
is m-bounded with respect to R. Conversely, if X is m-
bounded with respect to R, then CONS(R.i) is axiomatiz-

able by egd's <1.a1=a2> with VAL(I)I=m. m 

Theorem S leaves open the possibility that con-
sistency is finitely axiomatizable by first-order logic though 
not by egd's. However, since first-order satisfaction can be 
tested in logarithmic space, finite axiomatizabiliti ,  of con-
sistency by first-order logic will entail, by Theorem 2. that 
PTIME= LOGSPACE! This suggests the following result. 

Theorem 6. There is a universe U, a finite set X of total 
dependencies on U, and a database scheme R, such that 
CONS(R.E) is not finitely axiomatizable by first-order 

logic. 

Idea of Proof. Let U={A.B,C), R={4B,AC}, and 
I={A-- ►C,B-♦C}. We now show by an ultruproduct 

argument' Irk] that CONS(R.I) is not finitely axiomatiz-
able by first-order logic. ■ 

In vie..v of the last two theorems, we would like to 
be able to tell, given a database scheme R and a set of 
dependencies X. whether X is bounded with respect to R. 
Unfortunately, there is no effective test for boundedness. 

Theorem 7. Tne following set of pairs (ELI). where E is 
a finite set of dependencies on U and 	is bounded with 

2  Thus we haw to go to infolitc htructures in order to prove 
a claim about finite stnictures. 
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respect to U. is not recursive. 

Idea of Proof. The claim follows from a general character-

ization of undecidable properties of sets of dependencies in 

[Vara ■ 

We do not know whether boundedness is decidable when 

we restrict ourselves to total dependencies. We believe 

that if we restrict ourselves to functional dependencies. 

then it is decidable. 

Since we can not finitely axiomatize consistency by 

firworder logic, we try to do it by higher-order logics. 

Studying the definition of consistency we observe that 

essentially it consists of existentially quantifying over % -Pik 

instances, which are relations over a possibly extended 

domain. The logic of such definition is called in 

mathematical logic many-sorted projective logic [Fe]. It is a 

very powerful logic, whose satisfaction relationship is not 

necessarily recursive (by Theorem 1: see also [Ha]? One 

can try to bound the size of the extended domain in order 

to make the satisfaction relationship recursive [MZ], but 

Theorem 1 implies that when the given dependencies are 

embedded this can not be done. 

Let us now consider the case that the given depen-

dencies are total. As we shall see in this consistency can 

be finitely axiomatized by the fixpoint logic of [AU.CFI]. 

Let P be a new nary relation name, and let 

L(R,P) be the language obtained by adding P to L(R). 

The fixpoint sentences of L(R) are of the form LFP(p). 
where ep is a first-order formula of L(12,11 ) with free vari-

ables x„, where P occurs positively. Let M be a 

structure of L(R) with domain D. Let Q be the minimal 

n-ary relation on the domain of M. such that the sen-

tences Vxi • • • 1.(P(xl x,,)-mp) is satisfied in the 

structure Of ,Q) of the language L(R.P). The relation Q 

is the least fixpoint of tp in the structure M. We now 

'define the satisfaction relationship: M satisfies LFP(T) if 

Q = D". The following facts hold for fixpoint logic. 

(1) 	Any class of databases that is finitely axiomatizable 

in fixpoint !odic is in Iii ME [Cl 1J.  

(2) There is a class of databases that is finitely axioma-

tizable in fixpoint logic and is logspace complete in 

PTIME [Var2]. 

(3) Let Q be a class of databases that include a linear 

order relation, such that 2 is in PTIME. Then 2 is 

finitely axiomatizable by fixpoint logic [1m,Var2]. 

(The linear order seems to be essential in order to 

simulate Turing machines.) 

There are two reasons to suspect that consistency 

with respect to total dependencies can be finitely axioma-

tized by fixpoint logic. The first reason is, in view of the 

aforementioned facts, that consistency with respect to total 

dependencies can be tested in polynomial time. The 

second reason is that from the -algorithm for testing con-

sistency of [GMV.Ho] it follows that consistency with 

respect to total dependencies can be axiomatized by 

fixpoint logic over extended domains. Both observation 

show that with some "extra" tool. either a linear order or 

an extended domain, we can finitely axiomatized con-

sistency by fixpoint logic. The question is whether we can 

do it without the "extra" tool. The answer is positive. 

Theorem & Let R be a database scheme, and let I be a 

finite set of total dependencies on U, then CONS(R./) is 

finitely axiomatizable by fixpoint 

Idea of Proof. It turns out that the extended domain is not 

essential. The information conveyed by the new elements 

can be captured by relations over the old elements. These 

relations can be defined by fixpoint logic. The construc-

tion. however. is very involved. The length of the fixpoint 

sentence needed to axiomatize CONS(R.I) is exponential 

in the length of I! ■ 

5. Philosophical Remarks 

Another use of logical languages in relational data-

base management system is as query languages. The result 

of applying a formula of the language to a database is the. 

set of all tuples that satisfy the formula. An example of 

such a language is the relational calculus 1C31. The logic 

used for query languages was also traditionally first-order 
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logic. However. in the last few years, it was realized that 
first-order logic does not have a sufficient expressive power 
as a query language. This was realized first by Aho and 
Ullman [AU], .who observed that transitive closure is not 
first-order definable (this fact was originally proven in 
[Fal]). Following that observation. several works investi-
gated higher-order logics for query languages, e.g., [CH, 
MZ, Var2]. 

One can also object to the exclusive use of first-
order logic in database theory on an "ideological" basis. 
The reason for the prominence of first-order logic in 
mathematical logic is that first-order logic is mathemati-
cally tractable and has very rich proof and model theories, 
e.g.. we have completeness and compactness theorems. 
However, mathematical logic usually deals with general 

structures, either finite or infinite. In database theory, one 
usually wishes to consider only finite structures. Under 
this restriction- many of the nice properties of first-order 
logic evaporate. In particular, we do not have complete-
ness and compactness. Thus, there is no a priori reason to 
prefer first-order logic to other logics, and one should base 
his preference on practical considerations, such as ease -of 
use and computational complexity. 

First-order logic has the advantage of almost being a 
"lingua franca". It is a logic with which many practition-
ers are familiar, unlike the more esoteric higher-order log-
ics. On the other hand. if one takes polynomial time as a 
yardstick for computational tractability. then there is evi-
dence that fixpoint logic is the natural logic for finite struc-
tures [lm. Var]. Our results strengthen this evidence by 
showing that fixpoint logic rather than first-order logic is 
the adequate logic to specify semantics of databases with 
incomplete information. We believe that fixpoint logic 
should be given far more attention than it has been given 
in the past. 
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ABSTRACT 

Transactions are the atomic units of work in a database system. This implies, in 
the most general case, that concurrent transactions must be run serializably and 
that a transaction be run to completion before it affects long-term system state. In 
this paper, we consider the latter property. Transaction schedulers are described 
which guarantee that incomplete transactions do not affect long-term system state: 
this property is proven for each scheduler. Also, the interaction with serializability is 
considered. 



1. Introduction. 

A database mana9ementsystem is expected to provide "atomicity" for the 
transactions which use it. The system provides the illusion that the transactions are 
atomic operations without internal structure. If we assume that every transaction 
submitted to the system successfully completes, serializability theory is sufficient for 
understanding atomicity. 

Of course, real world computing is subject to failure. Beyond that, all popular 
concurrency control techniques are capable of aborting transactions, i.e., causing 
them to fail. Locking policies use aborts to prevent or resolve deadlock; nonlocking 
policies use it as their basic tool for providing serializability. Atomicity requires that 
aborted transactions appear to have never executed. The system must be able to 
recover from aborted transactions; this capability is called recoverability. The idea 
of recoverable schedules was defined in [H831. In a recoverable schedule, a 
transaction does not commit until there is no possibility that it will be rolled back. If 
the underlying hardware or software is unreliable, this must not occur until all 
transactions which have written values read by the transaction have themselves 
committed. 

A common solution for guaranteeing that a schedule is recoverable is to "hold 
write-locks to commit point," or more generally, to prohibit any access to a data-
item which has been changed by a transaction until the transaction commits. Such a 
policy guarantees that no other transaction can ever read or overwrite a data-item 
value until the previous transaction writing it has committed. This prevents any 
transaction from committing before the values it has read have been committed by 
the writing transaction. 

This policy fits well with two-phase locking, since write-locks are held to "lock 
point" anyway, but does not fit so well with timestamping protocols or even with 
locking protocols which allow earlier release of locks. Also, this policy may not fit at 
all if serialization is not required. We call this policy "pessimistic" and describe 
three other policies which appear to be worth considering: an "optimistic" policy, 
which does not block but will abort a transaction trying to commit if it has read data 
written by an aborted transaction, a "realistic policy," which blocks reads but not 
writes of uncommitted data, and a "paranoid policy" which aborts a transaction 
which attempts to access uncommitted data. These four policies can be compared 
with respect to their effect on concurrency, on the number of aborts, and on 
preservation of membership in serializability classes. 

The effect on concurrency can be summarized as follows: The pessimistic 
policy allows the least concurrency of the four. In contrast, the optimistic policy 
does not redlice concurrency at all, the realistic policy reduces concurrency 
somewhat, and the paranoid policy seems, on the basis of simulations [GM841, to 
fall between realism and pessimism. This contrasts with the number of aborts a 
policy introduces. The optimistic policy will cascade aborts. The pessimistic policy 
may introduce many aborts due to deadlocks but it will not cascade aborts. The 
paranoid policy will introduce aborts but is deadlock free. The realistic policy will 
not introduce aborts if we can assume that all reads of a transactions precede all 
writes. 
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Finally, with respect to preservation of serializability classes, the pessimistic 
and realistic policies preserve membership in the class of DSR schedules (schedules 
that can be serialized by swapping non-conflicting adjacent operations). The 
optimistic and paranoid policies preserve membership in a somewhat larger class of 
schedules, but it do not preserve membership in SR. The realistic policy preserves 
membership in SR, the class of all serializable schedules, assuming only that all reads 
in a transaction precede all writes. The primary practical implication of these facts is 
that the realistic scheduler appears better in all cases than the pessimistic scheduler. 
Simulation and analysis comparing the various policies are ongoing. The 
simulations indicate that, as expected, the optimistic scheduler performs better 
than the other schedulers if few transactions abort, and, surprisingly, the paranoid 
scheduler has better performance than the pessimistic scheduler in some cases 
[GM84]. 

The recovery schedulers described here can be used in a wide variety of 
systems, with many different criteria for correctness of a schedule. In particular, the 
properties of recoverability and serializability have been considered separately, so 
that the recovery policies can be used even for transaction systems which do not 
require serializability, such as described by several authors [L82, G81, A83]. 

2. Definitions and Preliminaries. 

We mostly follow Hadzilacos [H83]. However, we alter the notion of the 
meaning of a database operation to reflect the intention that aborted transactions 
should not affect subsequent transactions. 

Let D = { x,y,z,... } be a set of data items. Database operations are Rt[x]. 
Wt[x], Ct, A t , tET, xED. These symbols are intended to represent, respectively, a 
read of data item x by transaction t, a write of x by transaction t, a commit of 
transaction t, and an abort of transaction t. We use the notation Dt[x] to mean 
either Wt[xJ or Rt[x], and Et to mean either At or Ct. Two operations conflict if they 
are read or write operations accessing the same data item and at least one of them 
is a write, or if one of them is a commit or abort. 

A transaction, t, is a partially ordered set ( opt, <t) where 

opt S { Rt[x] , Wt[x] : x E D} 

and satisfying the following: 

i) At  E opt  iff Ct  e op t; 
ii) if At  E opt, then vaEopt - iAt 1, a < t At; 
iii) if Ct opt, then va( opt- Ct), a <tCt; 
iv) any two conflicting operations are ordered by <t. 

Our definition of a transaction is slightly more general than is usual: for instance, 
we allow a transaction to write twice to the same data item, or to read a data item it 
has previously written. We do not require all reads to precede all writes. Observe 
that < t  is not restricted to the pairs required by i)-iv) above; additional pairs will 



generally be of the form ( Rt[x] , Wt[y] ) and should be taken to imply that the value 
written to y depends on the value read from x. 

Let T be a set of transactions; let OP = Ut E T opt. A log 1 is a pair ( OP , < ) 
where < is a a partial order on OP which respects the transaction orders <t. We 
further require that < order each pair of conflicting operations in OP (and possibly 
other pairs as well). We will write OP(L) and <L when necessary to avoid ambiguity. 

A transaction, t, is committed in a log L if Ct E OP; t is aborted in L if At E OP; t 
is active if it is neither committed nor aborted. We let COM(L) denote the set of 
committed transactions in L, ABO(L) the set of aborted transactions in L, and T-ABO(L) 
the set of non-aborted transactions.The projection of a log, L, onto a subset 't of its 
transactions, denoted by II T (L), is the restriction of L to Ut e  opt. We will be most 
interested in the projection of a log onto its committed transactions: II c0m(L) (L). 

For mathematical simplicity we extend all logs with (fictitious) initializing and 
terminating transactions to and tf. The initializing transaction to writes all database 
items and then commits before any other transaction begins execution. The 
terminating transaction tf reads all database items after all other transactions have 
committed and then commits. Thus, any read of a data item is preceded by a write 
to that data item, and any write of a data item is followed by a read of that data 
item. 

We define an immediately preceding write relation on OP determined by <, as 
follows. For Dt[x] EOP, we write W u  [x] a Dt[x] if W u  [x] < Dt[x] and for every W v  [x] 
with W u  [x] < Wv [x] < Dt[x] we have Wv  [x] < Av  < Dt[x]. We often write Wu 4  Dt 
when the data item involved is immaterial; however, by definition W u  and Dt 
operate on the same item. When W u  [x] 4 R t[x], we say t "reads x from" u. We now 
define a meaning function M I., in the standard way, for data accesses: 

ML (Re) = ML (W e ) ) where Wu 4  Rt 
ML ( We[x] ) = ge* ( ( ML (Re' )g • • • • ML (Re k ) ) 

where { Rt i l 1 <= i<=k} is the set of all reads by t with Rt<tWeIxi and gt x  is an 
uninterpreted function. Although our meaning function is defined in the standard 
way, the relation 4 is non-standard as it takes aborts into account. This contrasts 
with the treatment given by Hadzilacos in [H83]. 

A log L is recoverable if for every prefix L' of L the meaning of each committed 
read and write in L' is the same as its meaning in %ow) (L'). The major implication 
of this definition is that if we want recoverability we must not allow a transaction to 
commit unless all transactions whose values it has read have previously committed. 

We can also define serializable logs or logs having any other properties not 
involving the commit and abort operations. We say that a log L belongs to such a 
class of logs if n coMo.j  (L) belongs to the class. The classes which will be discussed in 
this paper are SR, DSR, and 2PL, a la Papadimitriou [P79], and two other classes 
introduced here. A log is serial if there is no pair Dt[x], Dt[y] of data accesses of 
transaction t such that for some data access D u[z] with u * t, De[x] < Du[z] < Dt[Yl• 
Logs L and L' are equivalent if ML(Rf[x]) = M e(Rf[x]) for all data items x in the 
database. A log is serializable if it is equivalent to a serializable log. Logs L and L' 
are D-equivalent (L L') if L and L' are identical up to an interchange in < of two 
non-conflicting data accesses. Define = to be the transitive closure of —• A log L is 
D-serializable (DSR) if L = L' for some serial log L'. We use,pL to denote position in 



-4- 

1; thus paWi [xi) ) = n means that Wi [x] is the nth element in <L. A log L is two-
phase locked if there exist distinct real numbers 	, I n  and a partition of each opt 
g OP into gt (the growing phase) and st (the shrinking phase) such that the 
following conditions hold: 

i) for all Dt E gt, PIA) < It and for all Dt E st, It < PON); 

ii) for conflicting operations Dt E gt and D u, if pL(Dt) < paDu) then It < 
pi(Du) and It < lu; 

iii) for conflicting operations Dt E st and Du, if pL(Dt) < pL(Du) then pL(Dt) < 
iu. 

Finally, we introduce two new serializability classes. We say that a set S of 
transactions is restricted in a log L if t E S and W u[x] 4 L Rtrx] implies that u E S. A log 
is restricted project serializable (RPSR) if the projection of the log onto any 
restricted set is serializable. A log is project serializable (IISR) if the projection of the 
log onto an arbitrary subset of the set of transactions is serializable. Clearly, IISR 
RPSR S  SR. It is a consequence of Lemma 3.1, proved below, that DSR ASR. All 
containments are proper, as the following examples show: 

A log which is SR but not RPSR: R2Ix1W2[x]W1lxiW3Ixi 

A log which is RPSR but not IISR: R [z]Wi[z]Riz1R3(x1W2[x]Wix)Wl[x] 

A log which is IISR but not DSR: R1tz1W2(z1R3(z]W3[x1W1[x] 

3. Recovery Schedulers. 

The transaction system consists of a collection of transaction processes and 
two online schedulers (a serializer and a recovery scheduler) which communicate 
with each other by passing a log back and forth. The transactions submit operations 
(Ct, At, Rt(xJ, and Wt[x]) asynchronously to the serializer. The serializer's role is to 
guarantee that the operations interleave acceptably. (We call it a serializer since 
serializability is frequently required, but the model used here does not actually 
require that the so-called serializer produce serializable logs. In fact, the serializer 
need not have any effect, simply adding operations to its output log as they arrive.) 

The serializer output is a sequence of logs. Each log in this output is input for 
one step of the recovery scheduler. The recovery scheduler modifies its input log 
returns the new log (its output log 0i) to the senalizer, and passes a log Xi which 
contains a subset of the operations in oi to the system for execution. The serializer 
needs to check that Oi is still an acceptable interleaving of the operations. It uses 01 
and any new operations submitted by the transactions to produce another input 
Ii + 1 for the recovery scheduler. Figure 1 illustrates this behavior. 

A transaction submits operations one at a time to the serializer. The recovery 
scheduler will often process operations in its input log in the log order. Operations 
which have been entered in the execution log are not processed a second time, but 
all other operations may be processed. The scheduler can make one of the 
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following choices for each operation it processes:put the operation in the execution 
log X and the output long 0 immediately; defer the operation, usually adding it to 
the end of 0; or abort the submitting transaction. 

The behavior of the transaction system is constrained by the following rules: 

(1) Transactions are well-formed, that is, each transaction is a partially ordered 
set of operations terminated by either a commit or an abort; 

(2) OP(Ii) - {Ct : t T) is contained in OP(0j) and OP(0j) - {At : t T) is contained 
in OP(lij; 

(3) Xi is the restriction of Oj to a subset of its operations; 

(4) Xj is the restriction of 	ito a subset of its operations; 

(5)xj  is a prefix of Xi • 1, that is, if Dt[x] E Xi and DulY1 < DtlY1 in Xj then DuIY1 
Xj; and 

(6) The serializer does not change any prefix of the log if the prefix could have 
been serializer output; similarly, the recovery scheduler does not change any 
prefix of the log if the prefix could have been recovery scheduler output (see 
Papadimitriou, ...). 

The first rule requires only that no transaction submits an operation after it has 
terminated. The second rule requires the recovery scheduler to honor the data 
accesses and aborts submitted by the serializer. It is not allowed to make a log 
recoverable by throwing any operation other than a commit away. In other words, 
it can discard whole transactions but not individual operations. The second part of 
the rule prohibits adding any operations other than aborts. The third through fifth 
rules prohibit the serializer and the recovery scheduler from submitting an 
operation for execution in one step and taking it back in the next. (The nature of 
time makes such behavior hard to realize.) 

We desire to limit the amount of communication between the serializer and 
the recovery scheduler. If the serializer does not allow all possible interleavings, 
then it may need to recheck all of 0i for serializability and it can happen that the 
serializer and the recovery scheduler take several steps to agree on a log. Consider, 
for example, the recovery scheduler which defers writes of a transaction until it sees 
a commit for the transaction, at which time it outputs the write and the commit. 
Suppose the serializer uses two-phase locking. Let 

= Ri[x]Wi[x1W1Iyi R2IYIWAY1C1 C2 

Then, assuming the transactions do not submit more operations, the sequence of 
logs might be: 
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01 = R lx1R2IYIWINW1 [IfiC 1W2MC2 

12 	= R 1(x1RAYMINW211fiC2Wi bfiCi 
02 = R [4112IYIWAY)C2Wi ExiWi bfiCi 

13 	= 02 

In contrast, a recovery scheduler which fit well with a serializer might always 
produce an coi  that is a possible output of the serializer. In this case, the serializer 
will not change 0i, by rule (5). Thus we will look for positive results of the form: 

If Ij is in class X of logs and the recovery scheduler has property Y then Oj 
is in class X. 

and negative results of the form: 

No recovery scheduler having property Y produces an output log Oi in 
class X for every Ij in class X. 

We define four potential "property Y"s for recovery schedulers here, three of which 
are semantic and one syntactic. In all definitions we assume that Ij includes the 
fictitious initial and a terminal transaction. The first property defined here allows 
operations to be moved in the log, but only if the move has no effect on meaning 
(in particular, the scheduler must not move Wt[x] and R u [x] relative to each other if 
Wt[x] 4 i i Ru[x]). It does not allow introduction of new aborts: 

A recovery scheduler is strong meaning-preserving if for every log Ii 
(1) OP(Ii) = OP(01) and 
(2) for every Dt in OP(00, Mi 1(Dt) = Moi(Dt). 

A second property allows a recovery scheduler to introduce aborts and rearrange 
operations as long as the meaning of non-aborted operations is unchanged: 

A recovery scheduler is meaning-preserving if for every log Ij, every t not 
in ABO(0i), and every Dt in opt, ML (Dt) = A/10(Dt). It is fully meaning-
preserving if it is meaning-preseriing and the final transaction is never 
aborted. 

Using a fully meaning-preserving recovery scheduler guarantees that the final 
database values will be the same in Oi as in Ii. Any meaning-preserving scheduler 
must cascade aborts if any transaction reads data which was written by a 
transaction that later aborts. To avoid excessive abortment, we define two less 
restrictive properties for recovery schedulers, both of which allow the scheduler to 
pick a different writer for a reader to use when the writer used in the input log Ij 
aborts. First, we consider a property which refers only to meaning-preservation: we 
allow meaning to be changed as long as the meaning in Oj is what it would have 
been in Ij if none of the transactions aborted by the recovery scheduler had been 
present in Ii. 

A recovery scheduler is weak meaning-preserving if the final transaction 
is never aborted and for every log Ij, every t in T-A130(01), and every Dt in 
opt, My (Dt) = Mo i(Dt), where = nT-A130(00(Ij)• 
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Second, we define a syntactic property which requires the overall order of 
operations to remain the same. 

A recovery scheduler is order-preserving if for every log Ij, every t and u in 
T-ABO(0), and every pair of operations Di and D2 in t and u, 
respectively, if Di 	D2 then Di <ID;  D2. 

We will show that the first property is too strong for any situation, the third is too 
weak, and that while the second property provides some interesting information 
about recovery schedulers it does not guarantee that it preserves any class of 
interest, i.e., any class contained in DSR. On the other hand, the property of order-
preservation does imply preservation of DSR. 

Theorem 3.1. Every strong meaning-preserving scheduler is fully meaning-
preserving and every meaning-preserving scheduler is weak meaning-preserving. 

Proof: The first part of the theorem follows immediately from the definitions. To 
show that a meaning-preserving scheduler is weak meaning-preserving, take any u 

T-ABO(0j) and Du  E opu . If Du  = Ru[x], then Mo,(R u[x]) = Wt[x] where WAX] 4 o; 
Ru [x]. Meaning-preservation implies that Mo (R ulx1) = Mi.(Rukl) = Wt[x]. Any ' 
writes Wv  such that Mk] <1, Wv[x] <1. Raid de aborted id before Ru[x] and 
therefore they are also aborted in Oi ?since O• must honor aborts). Thus in Ii', which 
is the restriction of I 1  to the transactions in T -ABO(00, Wt[x] <a . Raid and there are 
NO writes Wv  such that Wt[x] <I,' Wax] <I,' R u [x]. Therefore Wax) 4 I,' R u[x] and 

= Mix] = Mo,(Rax1). It follovis immediately that all writes of unaborted 
transactions also have the same meaning in Oj and 

Meaning-preservation and order preservation do not have any simple 
relationship in general. None of the meaning-preservation properties imply order-
preservation, as the following example shows: 

= R2[x]W2k1W 1[x1W3k1 C1C2C3 
= R2Ex1W1Ix1W21x1W3ExlC iC2C3 

The above transformation from lj to 0; is perfectly legitimate for any of the 
meaning-preserving schedulers but it does not preserve the order of Wi[x] and 
Wix]. Similarly, order-preservation does not imply either strong meaning-
preservation or meaning-preservation as the following example shows: 

= R i[x]WiNR2k1W2[4C2A1 
= Ri[x]Wi[x]AiR2rxiW2rxiC2 

Although the order of the data accesses is unchanged from input to output, the 
meaning of R2[x] is Wi[x] in the input and Wax] in the output. We note that, in the 
absence of any aborts in the input, order preservation implies strong meaning-
preservation, but this is a particularly uninteresting case when we are studying 
recovery schedulers. Order-preservation also implies weak meaning-preservation, 
but we will see below that weak meaning-preservation is too weak a property to be 
of interest. 

We claim that the property of strong meaning-preservation is so strong that 
any "interesting" class of logs contains at least one log which cannot be made 

[1 
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the final transaction reads W3[x] in I;  and W2[x] in Oj. Even though the final 
transaction is a fiction, it is a reasonable fiction, since we might not want to consider 
meaning to be preserved unless the final results written in the database were the 
same for both logs. 

Theorem 3.4. Every order-preserving recovery scheduler preserves the serializability 
classes IISR and DSR. 

Proof: It follows immediately from the definition that EITAB0(0,)(1j) •FIT-ABO(o)(0j) 
Preservation of IISR follows from this. 

In order to show that our schedulers preserve the property of being DSR we 
establish the following variant of Papadimitriou's Corollary 21P791: 

Let S(Wi ), resp S ), denote the set of data items written by, resp. read by, 
transaction ti. Recall that a denotes position in the temporal sequencing of 1; thus 
PaWi [xi ) = n means that Wi (xl is the nth element in <L. We write pL Oftfi)< pL(Wj 
if there is an xES (1/1/i ) S (Wj ) with pi. (Wi [x] ) (Wj Ixj ). This is not, in general, a 
partial order. 

Lemma 3.1: A log, L, on transactions ti ,t2 	to  is DSR iff there exist real numbers 
Si ,52 ,...,Sn  such that Si < Sj if any of the following hold: 

a) 5(W1) n S(Wi ) * and pL 	< PL (Nj ) (ti writes some x after which tj also 
writes x); 

b) S 	) ("1 S(Wj ) * 4) and pi (Fti) < PL (Wi ) (ti reads some x after which tj writes 
x); 

c) S (W;) n S (Ri  ) 4) and pt. (Wi) < PL (RI ) (ti writes some x after which tj reads 
x). 

Proof: Suppose L is DSR; let L' denote a serialization of L f1 { Rt 	. Wt[x] : tEN , 

x(D) obtained by interchanging non-conflicting operations. For each transaction ti 
let Si be the position in L' of the first operation on ti's behalf. The Si's have the 
required property because if either a), b), or c) holds, then in L', and therefore in L, 
all of ti's operations occur before tj's operations. 

For the converse we show that if numbers St ,S2 	Sn as described exist, then 
all operations of each transaction can be collected into adjacent locations by 
interchanging non-conflicting operations in L n { Rt[x] 	). Suppose that for 
some pair Day], Daz] of operations, Si < Sj. Take the last operation DM between 
Di[x] and Di[z] satisfying: 

PL (Dj[Y1) < PL (Dila and Si < Sj. 

Then we claim that Dj[y] does not conflict with any operation DIM with 

PL (Dj[y]) < Pt. (Dk[wl) < Pl. (Dila 

or with Daz] itself. But Si <Si means that there is no x E D such that N. (IMO > PL 
(DX for conflicting operations Di and Dj. Therefore, Di[z] and Dj[y] do not conflict. 
Similarly, since Sk < Si < Si, Dk[wl and Day] do not conflict. As a result, we can 
construct a D-equivalent log by moving Dj[y] immediately to the right of Di[z] 
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Repeating this procedure for every such pair will eventually produce a serial log. 
The procedure terminates because we reduce the number of pairs satisfying (*) at 
each step. 

The following immediate consequence of Lemma 3.1 will prove most useful. 

Corollary: Let L be a log; let be any subset of the transactions of L. If L is DSR then 
fig (0 is DSR. 

In particular if L is DSR and recoverable then II CON(.)  (L) is a DSR log in which 
every Mx] has the same meaning it had in L. Thus RI:mm(0) is DSR, that is, an 
order-preserving recovery scheduler preserves serializability. 

We conclude this discussion of meaning-preservation by showing that weak 
meaning-preservation does not preserve any serializability classes of interest and 
meaning-preservation does not preserve any of the "syntactically" defined classes. 

Theorem 3.5. A weak meaning-preserving recovery scheduler need not preserve SR 
or RPSR. No meaning-preserving scheduler need preserve any serializability class 
contained in nsR. 

Proof: We use counterexamples to establish the theorem. First, consider the input 
log: 

Ij 	= Walz1Ri fziWi[z]RiziR3IxiW2Ix1W3NW II4C1C2C3A4 

We show first that this log is RPSR and then display an output log which is not SR but 
which would be permitted by some weak meaning-preserving recovery scheduler. 
To see that the log is RPSR, note that the restricted sets are {1}, {3}, {1,2}, {1,3}, 
and {1,2,3} since 2 reads z from 1. The projection onto 1 and 2 is serializable in the 
order 21 (2 is dead). The projection onto 1 and 3 is DSR (the order is 31). The entire 
log is serializable in the order 321, with 2 dead. The output log 

Oj 	= W4rzlR1izIWi[z]A4W1[x]A1R2[ziR3[x]W2IxiW3Ix1C2C3 

satisfies the weak meaning-preservation property, since the projection of Ij onto 2 
and 3 is equal to the projection of Oi onto 2 and 3. But this projection is 

R2[ziR3[x1W2DOW3rxiC2C3 

which is not serializable. 

To establish the claim that no meaning-preserving scheduler (strong, weak or 
ordinary) need preserve any serializability class which is contained in IISR, consider 
the serial input log: 

lj = Ri[x]WiNW2WW3Ix1C1C2C3 

A strong meaning-preserving scheduler could output the log: 

Ri[x]W2Ix]Wi[x]W3IxiC1C2C3 



but this log is not IISR, since the projection onto transactions 1 and 2 is the 
nonserializable log: 

R11x]W2[x]W1[x] 

Thus the property of meaning-preservation does not tell us when a recovery 
scheduler will preserve the classes of logs most likely to represent output from an 
online serializer, that is, those logs contained in DSR. 

Most of the algorithms developed in the next few sections are order-
preserving. Two of them are also meaning-preserving. We assume that each 
transaction starts with a 'begin transaction t' message to the scheduler, which has 
the effect of causing the scheduler to allocate and initialize any required data 
structures. 

4. Pessimism. 

A pessimistic scheduler blocks all data accesses to uncommitted data. It is the 
policy used by a 2PL system in which locks are held to commitment. It proceeds as 
follows: 

Data Structures-- 

lock data: 
for each data item x ED 

committed [x]: Boolean, initialized to true 
if not committed [x] then 

owner [x]: 	transaction id 
waiting for [x]: queue of (transaction id, operation) pairs 

transaction data for each active transaction: 
t.locked: 	 set of data items 
twaiting_on: 	data item 

global data: 
waits for graph: graph whose node set is T, initially empty. 
blocked: 	 queue of operations, initially empty 
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Proof is by induction on the number of writes of data item x. If there are only two 
writes to x they must be W [x] and Wt[x]. By assumption Ct o  appears in 0 before 
any "real" operation and after all the "imaginary" initializing writes. 

If there are j > 2 writes to x in 0 let the last two be Wt[x] and W u[x]. If the 
request write (u ,x) found committed[x] = true then release locks(t) must have 
previously been'executed; release locks(t) is only executed (lowing the entering 
of Ct or At in O. If the request write (u ,x) found committed[x] = false then (u, write) 
was added to the queue waiting for [x]. In this case W u [x] is entered in 0 by 
release locks(tY after entering dither Ct or At and zero or more R v[x] into 0. 1) 

Observe that the Pessimistic Scheduler preserves the temporal order of 
requests on behalf of a transaction, and preserves the order of conflicting reads and 
writes. 

Theorem 4.1: The Pessimistic Scheduler is a recovery scheduler. 

Proof: That 0 = I if I could have been an output of the Pessimistic Scheduler follows 
almost immediately from Lemma 4.1. The prefix of I that is equal to X has this 
property follows from Lemma 4.1. Consider the remaining operations. These 
operations are accesses to uncommitted data and will therefore be entered in the 
queue blocked when the Pessimistic Scheduler first encounters them. When it has 
reached the end of the log, it will copy these operations from the queue to 0, 
without changing their order. Thus 0 = I. 

To show that 0 is recoverable, we actually prove a stronger assertion, namely 
that for all reads R t[x] in 0, if 0' is the initial segment up to and including Rt[x], and 
if Icw [x] = "last committed writer of x" in 0', then either 

Mc) ( Rt[xl) ) = Ma( Wicw(x)[x] ) 

Or 

Mo Rt[xl ) = Ma( Wt[x] )• 

It follows that for every prefix 0' of the output 0 and tECOM(0), M0'( Rt[x]) = 

MIlcomon(0) Rt[xl ). Since the scheduler respects the order of the requests on 
behalf of t, it also follows that Ma( Wt[x] ) = MIlcomm(0 1)(Wt[x] ). 

So let Rt[x] be in 0; write 0 as 01 Rt[x] 02. Rt[x] can have been entered in 0 by 
read or by reltase locks. If Rt[x] was entered by read then at the time Rt[x] was 
entered either owner [x] = t or committed [x] = true. In the first case the preceding 
write to x was by t and Mo ( Rt[x] ) = ma( Wt[x] ); in the second case the last 
preceding write, Wv[x], in 0' must be followed by a C v  or an Av. By lemma 1 any 
Wu[x] preceding Wv[x] is either committed or aborted. Thus Mo ( Rt[x]) = 
Mos(Wicw(x)[x] )• 

If Rt[x] was entered in 0 by release locks then Rt[x] is one of group Rt, [xl 
Rtk  [X] immediately preceded by either at or an A v, which is preceded by a W v[x]. 
Again we see from Lemma 1 that all writes W u [x] which precede Rt[x] are either 
committed or aborted and so Mo( Rt[x] ) = Ma(WIcw(x)Ixi)• 
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Pessimism is not meaning preserving. To illustrate this claim, consider the 
input 

W1[x]R2[x]A1C2 

In the output, transaction 2 reads from the initial transaction. Pessimism is meaning 
preserving in the absence of aborts. However, as we show in the following 
theorem, pessimism is order-preserving. 

Theorem 4.2: The pessimistic scheduler is order-preserving. 

Proof: Let Di and D2 be conflicting data accesses with Di <1 D2. The Pessimistic 
Scheduler processes D1 and D2 in the order they appear in the input log. Thus if D1 
is not deferred we will have Di <o D2. If Di is blocked, then some conflicting write 
precedes Di. If the latest write is committed or aborted before D2 is processed then 
Di is output before D2 is processed. Otherwise D2 is queued behind Di. 

The following example shows that the Pessimistic Scheduler does not preserve 
2PL. Let 

Ii 	= W tx1R2iYiR3I4W2[4W4EY] 

and 

Xj.i = W1[x]R2[Y] 

is a 2PL log. (Locks can be inserted as follows: 

WL 114W i[x]U lx1RL2IYIR2IYIRL314R3[4U314W1-21x1W2ixiUgx.Y1WL4IY1W4IY].) 

The output of the Pessimistic Scheduler corresponding to this input is 

Oj 	= W1[x1R2iY]W4[Y]R3[x]W2[x] 

and 

xi 	= Wifx1R2[YiW4Ni 

Oi is not 2PL. Transaction 2 must release its lock on y before W4[Y], but it cannot lock 
x until after R3(x]. Therefore transaction 2 cannot be two-phase in a legal log. 

Examination of the log with the locks will show that the Pessimistic Scheduler 
should have blocked W4IY], because transaction 2 still held a read lock on y. If the 
Pessimistic Scheduler operates on locks and unlocks instead of reads and writes, 
however, we find that it then enforces the policy of holding write-locks to commit 
point. The required changes to the Pessimistic Scheduler are summarized here: 

i) Any operation requested by a blocked transaction is deferred and appended 
to the end of the blocked queue; 

ii) An operation requested by a transaction which is not blocked is dealt with 
as follows: 
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a) Reads, writes, and unlocks of read locks are output immediately ; 

b) Unlocks of write locks are deferred and the requesting transaction is 
blocked; 

c) Read and write locks of locked data items are deferred and the 
requesting transaction is blocked; read and write locks of unlocked data 
are output immediately; 

d) Aborts and commits are output immediately after all the unlocks of 
write locks held by the transaction being terminated. After the commit 
or abort has been output, subsequent locks on the newly unlocked data 
items are output, the corresponding transactions are unblocked, and 
execution of the other operations in the blocked queue is reconsidered. 

This example illustrates that the serializer and the recovery scheduler may not "fit" 
together well unless they use they are scheduling the same operations. Thus a 
recovery scheduler which fits well with all serialization policies is unlikely. 
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5. Optimism 

The Pessimistic Scheduler enforces recoverability by severely limiting 
concurrency. If there is little likelihood of spontaneous aborts by transactions, the 
reads and writes can be allowed as they come in as long as commits are reordered by 
the scheduler to enforce recoverability. 

Optimism. Allow arbitrary reads and writes; hold commits until all values read are 
committed. Abort transactions which read data which is later aborted. 

Data Structures -- 

local wait data: 
for each x ED 

committed fxJ: 
pending writers [x]: 

transaction data: 
for each active transaction a 

t.commit requested: 
t.read from: 
t.wroce–  to: 
t.items —written:  

Boolean, initialized to true 
queue of transactions, initially nil 

record 
Boolean, initialfzed to false 
list of transactions, initially nil 
list of transactions, initially nil 
list of database items, initially nil 

global data: 
waits for graph: graph with node set T, initially empty edge set 
abort— quFae: queue of transactions, initially empty 
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Procedures-- in response to database requests the Optimistic Scheduler takes the 
following actions; processing of aborts is deferred until all other operations have 
been processed. After all operations in the log have been processed, 
process_aborts is called: 

read (t,x ) = 
(enter Rt[x] in X,O 
if not committed [x] 
then add last(pending writers [x]) to t.read from 

add t to last(pending writers [x]).wrofe_to) 

write (t,x) = 
(enter Wt[x] in X,0 
add x to t.items written 
committed [x] 4—false 
add t to pending writers [x]) 

commit (t) = 
(if t.read from = nil 
then putTon commit list 

commit (commie list) (* see below *) 	 
else (* someone t readTrom is not yet committed *) 

t.commit requested (-true 
for each raread from 

add < t,u > M waitsfor graph) 

commit (commit list) = 
(while commit list * nil 

t.-first ere-ment of commit list 
remove t from commit list- 
enter Ct on X,O 
for each u E t.wrote to 

remove t fronfirsead from 
if u.commit request -fa 
then removr< u , t > from waits for graph 

if u.read from = nil 	— 
then adcri, to commit list 

for each x Et.items written 	— 
if t = last(periaing writers [x]) 
then committed [47-true 
delete t from pending writers [x] 

remove t from waits for graph) 

abort (t) = 
(putt on abort queue ) 

process aborts (abort queue) = 
— (while abort—queue * nil 

t (-firstlrem on abort queue 
remove t from abort■queue 
enter At on S 
for each u E t.wrote_to 
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if u e abort queue 
then add uT8 abort queue 

remove < u , t > from warms for graph 
for each u (tread from 

remove t froirtu.wrote to 
remove < u , t > from Waits for graph 

for each x aitems written 
remove t froff -pending writers [x] 
if pending writers [xJ nil 
then committed [x] =true 

remove t from waits for graph) 

If a cycle occurs in the waits for graph the transactions may be all committed 
provided a means exists for atomically committing multiple transactions. We 
assume such a means exists. 

Observe that the Optimistic Scheduler outputs reads and writes in the same 
order in which they are received. Also, if transactions may continue to submit 
requests after they have been aborted by the scheduler some means must be 
provided to ignore later requests. 

Theorem 5.1: The Optimistic Scheduler is a recovery scheduler. 

Proof: A transaction, t, is only allowed to commit if tread from = nil, that is, all 
data read by t has previously been committed. Thus 0 is reroverable. 

Let I be a log which could have been output from the optimistic scheduler. 
Then all aborts appear at the end of the log and no commit is requested by a 
transaction until all of the data it has read from has been committed. Thus each 
commit will be output immediately. The aborts will be enqueued in the order they 
are encountered and then processed in exactly that order. No new aborts will need 
to be added to the queue since I could have been output; therefore exactly that set 
of aborts is processed. 

Theorem 5.2: The Optimistic Scheduler is order preserving and meaning-
preserving but not fully meaning-preserving. 

Proof: Reads and writes are output immediately by the Optimistic Scheduler. 
Therefore it is order-preserving. To see that it is meaning-preserving, let Rdx] be 
any read operation of a transaction t in T - ABO(0). Suppose that W u [x] 4 Rtixj. 
Then transaction u is also in T - ABO(0). This is true because, at the time t tries to 
read x, either u has committed or data item x is still uncommitted, putting t in 
v.read from for some transaction v. If v * u then there must be an abort of v in I 
and thWiefore also in 0, so that t would be aborted by process aborts. Therefore v 
= u. If u aborted during process aborts, then t would also haTe  been aborted. 

To see that the Optimistic Scheduler is not fully meaning-preserving, consider 
the log: 

lj 	= Ri[x]WilxjAiRf(x1Cf 

The abort of transaction 1 is postponed to the end of the log, forcing an abort of 
the final transaction. 
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The importance of postponing processing of aborts until the end of the log is 
illustrated by the following log: 

lj 	= R Ix1W l tx1R2rx1W2IxiC2AiR3Ix1W3Ix] 

If aborts were processed immediately, the Optimistic Scheduler would abort 
transactions 1 and 2 but not 3. The meaning of R3Ix] would then be changed from 
W214 to Wo[xl. 

Let RW = {Rt[x], Mix] I x E D and t E T} 

Theorem 5.3: Optimism has the property that 

ncom(o)(0) n RW = ncom(0)(1) f1 RW 

and therefore preserves 2PL. 

Proof: Reads and writes are output immediately and unchanged. 
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6. Realism 

Although the Optimistic Scheduler is "correct" it has the potentially 
troublesome property that aborts can cascade. The problem is caused by 
undisciplined reading of uncommitted data. In our Realistic Scheduler we hold up 
reads until committed values are available. Since we wish not to postpone 
overwrites we must either tolerate the possibility of starvation or keep a list of 
values for overwritten data items. We choose to do the latter, so that the realistic 
scheduler requires multiple versions of the data items. 

Whenever a read is output (in Oj or Xj), the data item is subscripted with the 
transaction whose write it should read. Thus Rt[x u] means that transaction t reads 
data item x from transaction u. We require that W u[x] precede Rt[x u] in the log. To 
make this work correctly, we alter the meaning function so that MaRt[xj) = W„ [x]. 
As a result, even though reads are blocked, it will not be necessary to change their 
position in Oj, although of course they will appear as "late reads in Xj. Consider, 
for example, the input log: 

li 	= R1[x]Wi[x]W1[y]R2[x]R3MW2[Y]W3[x] 

Pessimism would block W2[y] and W3[x] until transaction 1 has been committed, but 
the realistic scheduler allows it to proceed. The output log corresponding to this is: 

Oj = Ri[xo]W [x]W [y]R2rx 1Rgy iWAy1W3[x] 

and the execution log is: 

Xj 	= R1[xo]W1[x]W1[Y]W2[Y]W3[x] 

R2ix ] and R3[y1] cannot be output yet because the most recent write could be 
either committed or aborted. If transaction 1 commits, then the recovery scheduler 
outputs C1R2[xl]Ft3[Y1]  in the execution log. If it aborts, either because the serializer 
output an abort or because the recovery scheduler found a deadlock and chose to 
abort transaction 1, the recovery scheduler outputs A1R2[xc]R3[Y01 in the execution 
log. In no case do we change the order of data operations from li to Oi. 
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Realism -- Allow arbitrary writes; hold reads until committed data is available. 

Data Structures -- 

local wait data: 
for all xED 

opsix):doubly linked list of triples (op st, status) 
where op ER,W} 

status t {pending, committed} 
initialized to ((W, to, committed)) 

transaction data: 
for each active transaction 

t.writes: 	set of data items, initially nil 
twaiting_on :data item, initially nil 

global data: 
waits for graph: graph with node set T, initially empty edge set 
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Procedures-- in response to database requests the Realistic Scheduler takes the 
following actions: 

read (t,x) 
(if last(ops [x]) (W,u, committed) 
then enter Rt[x u] on X,O 
else if last(ops [x]) (W, u, pending) (* last unaborted write is pending *) 

then enter Rt[x u] on 0 
add (R,t, pending) to ops [x] 
t.waiting on 4-- x 
add < t, ti> to waits for graph where (W,u, pending) is 
the last write triple or7opsiTc]) 

write (t,x) = 
(enter Wt[x] on X,O 
add (W,t, pending) to ops [x] 
add x to t.writes) 

commit (t) = 
(enter Ct on X,O 
for each xEtwrites 

in ops [x] change (W,t, pending) to (W,t, committed) 
cleanup (x, (W,t, committed)) (ft see below *) 

remove t from waits for graph) 

cleanup (x, (W,t, committed)) = 
(while (R,u, pending) is next item after (W,t, committed) on ops[x] 

enter R u [xt] on X 
delete (R,u, pending) from ops [x] 
u.waiting on •-nil 
remove < u , t > from waits for graph 

if next item on ops [x] is (W, v, committee) then 
delete (W,t, committed) from ops [x] 

if previous item on ops [x] is (W,v, committed) then 
delete (W, v, committed) from ops [x]) 

abort (t) = 
(enter At on X,0 
for each xEt.writes 

delete (W, t, pending) from ops [x] 
if preceding item in ops [x] = (W,u, committed) 
then cleanup (x, CW,u, committed)) 

remove t from waits_for_graph) 

deadlock recovery = 
--(while there is a cycle in waits for graph 

choose t on a cycle 
for x = t.waiting on 

enter Rt[x ull-an X 
delete (R,t, pending) from ops [x] 

abort (t)) 
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The pairs Rt[x ul place in the execution log by the Realistic Scheduler are 
intended to instruct the database manager to return to t the value of x written by u; 
this instruction is issued only after u has committed and x may have been 
overwritten many times in the interval between the requests read(t,x) and 
commit(u). 

To examine the meaning-preserving and order-preserving properties of the 
Realistic Scheduler, we construct an order on a single-version log which gives the 
same meaning to each non-aborted operation as the logs 0 and X. If one tries to 
construct an order on all the operations, the simultaneous restrictions of respecting 
the internal order of the transactions and reordering reads so that only eventually 
committed data is read leads to cycles. Fortunately, such cycles must involve 
transactions which are aborted. Since we wish to eliminate the effects of aborted 
transactions anyway, we will only construct our order on Bc0m(0) 0. 

Definition: Let C(0) = nCOM(o) (0); let 0 = C(0) - { Rt[x u] }. Define <' on C(0) by 

a) for all t <' It = <t 

b) 0 x  o = < rrl Ox 0, where < rT is the restriction of the order on 0 to 
conflicting operations 

c) for each Rt[x u] E C(0) 

Waxl <' Rt[xu] 

ii) for each W„ [x] E C(0) with Wu [x] < W„ [x], R tkul .4'Wv[x]. That is, 
Rt[xu] falls 'logically' between Wax] and any subsequent committed 
writes to x 

iii) for each Cv  E C(0) let Cv  <' RtEx ul if Cv <1 Rt[x) and let Rt[x u] < 1  Cv  if 
Rt[x] <1 Cv 

Let <o be the reflexive and transitive closure of <'. 

Lemma 6.1: If ai <I a2 then al <1a2. 

Proof: If neither of al and a2 is a read then we let ai <' a2 using condition b. above, 
that is al <, a2. If both al and a2 are reads then they must both be from the same 
transaction and thus a i <' a2 iff al <t a2 iff a t <1 a2. Condition c. iii) correctly orders 
reads and commits so it only remains to verify that reads and writes are ordered 
correctly. But this follows from the way read(t,x) and cleanup(x, (W,t, committed)) 
interact with ops[x]. If cleanup emits Rt[x u], Wax] must precede Rt[x] in ops[x] and 
must therefore have preceded it in the input. Further any W„ [x] which falls between 
Wu[x] and Rt[x] must have aborted before Rt[x u] was emitted. 

Corollary: <o is a partial order on C(0) and < C(0), <0 > is a log. 
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Theorem 6.1: The Realisitic Scheduler is a recovery scheduler. 

Proof: By reasoning similar to that of Lemma 4.1 shows that between any write 
operation in X and a subsequent read, there must be either a commit or an abort of 
the writing transaction. Therefore the log X is recoverable. 

If the input log I could have been output from the Realisitic Scheduler, then 
bY@S% tg 

Theorem 6.2: Realism is order-preserving. 

Proof: This follows immediately from Lemma 6.1. 

7. Paranoia 

The Paranoid Scheduler uses abort as its only tool for maintaining 
recoverability. It operates much like Pessimism except instead of blocking it aborts 
the transaction. (A variant similar to Realism in which only read operations may 
cause aborts is possible.) Paranoia is the simplest of all the schedulers; to our 
surprise, ongoing simulations show it occasionally to have better throughput than 
Pessimism [GM84]. 

Paranoia -- Abort a transaction which attempts to read or overwrite uncommitted 
data. 

Data Structures -- 

local lock data: 
for each )(ED 

committed [x]: Boolean, initialized to true 

transaction data: 
for each active transaction 

t.locked: set of data items, initialized to empty 

U 
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Procedures -- in response to database requests the Paranoid Scheduler takes the 
following actions: 

read (t,x) 
(enter Rt[x] in X,0 
if not committed [x] and x e t.locked 
then abort (t)) (* see below *) 

write (t,x) 
(enter Wt[x] in X,O 
if committed [x] or xEt.locked 
then committed [x]*.-false 

t.locked t.locked U x } 
else abort (t)) 

abort (t) 
(for each Dt R 0 

enter Dt in X,O 
enter At on 0 
for each xEt.locked 

committed [x]4-true) 

commit (t) 
(enter Ct on 0 
for each xEt.locked 

committed (44--true) 

Theorem 7.1: The Paranoid Scheduler is a recovery scheduler. 

Proof: For all Rt[x] EOP(0) if W u  [x] to lit[x] then Cu  <0 Rt[x]. Therefore 0 and X are 
recoverable. If the input log I could have been produced by the Paranoid Scheduler, 
then there is no attempt to read or write uncommitted data and therefore no extra 
aborts will be inserted. Since this is the only change that the scheduler can make, 
there will be no changes. 

0 

Theorem 7.2: The Paranoid Scheduler is meaning-preserving but not fully 
meaning-preserving. 

Proof: Any read which is output read from data in I which was already committed in 
I and which was also committed in 0. Therefore the meaning of reads is unchanged 
and the Paranoid Scheduler is meaning-preserving. However, the final transaction 
may be aborted, for example in the following input log: 

Ij 	= Ri[x]Wi[x]Rf[x]Cf 

In fact, any time there are uncommitted transactions in the input log the final 
transaction is aborted. 

a 
• 

Since the Paranoid Scheduler is non-blocking and non-deferring 110m) (0) = 
nCOm(o) (I) and hence 
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Theorem 7.3: The paranoid scheduler is order-preserving and preserves 2PL. 
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Introduction  

Nested transactions as described by Moss in [3] were motivated in part by the hope of 

improving system reliability by insulating an action from failure of a nested subaction. However, 

maintaining atomicity of nested transactions may require blocking access to some objects for long 

periods of time. In this paper, we consider the possibility of committing a nested subaction of a 

transaction immediately on its completion. It is a surprising and very useful result that this 

technique can be considered correct if there is an inverse action to the action being committed. This is 

a weak sense of correctness. That is, the stite at the level of abstraction of the top-level actions can be 

guaranteed, under certain conditions, to be the same as would be reached by running only the top-

level committed actions. However, the final state actually reached may differ, at the lowest level, 

from the final state that would result from running only the top-level committed actions. We also 

develop the conditions on the interleaving of actions and on the inverse actions which guarantee this 

type of correctness. This work extends the wok of Beeri et al. in [2] on serializing nested transactions 

in that the additional concurrency gained using their methods is preserved rather than reduced by 

the recovery technique. 

Some frequently-cited nested actions which cause undesirable and apparently unnecessary 

blocking include actions which allocate pages and actions which manipulate indexes, such as B-trees. 

(Many other examples can be found in [II.) A pessimistic recovery scheme would require blocking 

allocation of new pages until a transaction which has been allocated a page has been committed. Of 

course, entirely different pages could be legitimately allocated, but because both transactions 

manipulate the same object--the page table--one of them is blocked. (We recognize that it is always 

possible to bypass a recovery scheme and use clever coding of the page allocation algorithms instead, 

but we are concerned here with automatic recovery schemes.) 

A similar problem, which we will use an an example throughout the paper, arises when actions 

manipulate indexes. In Figure 1 transaction T1 is adding keys X and Y to the index. Transaction 

T2, meanwhile, is interleaved in time with Ti, and trying to add key Z to the same index. Suppose 

that the index is a B-tree and that adding key X has required that several nodes be split. Some time 

after key X has been added, let us suppose that T1 will be aborted--due to software failure, 

concurrency control deadlock, or act of God. When T1 aborts, we would invalidate T2 if we restored 

before-images of pages. It appears that we must either block T2 when it tries to Add(Z,B) or risk a 

cascaded abort. But instead, as Figure 1 shows, we can simply delete the keys added by T1. 

In this paper, we generalize this solution to arbitrary actions and address some of the issues 

raised, such as state-dependence of the above undo operations. (For example, if X was already in the 

database when add(X,B) was performed, then the undo is a no-op rather than a delete(X,B)). The 

major contributions of the work are the technique of committing individual actions immediately, 
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instead of waiting for the top-level commit, the characterization of allowable interleavings of nested 

transactions to allow each incomplete action to be either committed or aborted, and characterization 

of conditions allowing the undos to be safely applied. For an action to be committed immediately, 

there must be an undo which will restore the prior state for any result state. (We assume that the 

"undos" are coded along with the "dos". Obviously, it may not be practical or even possible to supply 

such undos for all actions. The issue of how to determine which actions should be undo-able is left for 

future work.) 

Basic Definitions 

We assume a system partitioned into a finite number of levels of abstraction 0, 1, 2, ... , n, 

where 0 is the lowest level, corresponding to the intuitive notion of primitive objects and actions. 

The approach to levels of abstraction is based loosely on the work of Schaffert [4]. Unlike Schaffert, 

we do not allow creation of new objects; instead we assume an infinite supply of objects from which we 

pick "new" ones as necessary. 

At each level i there is a set of abstract states Si, a collection Ai of actions and a collection Oi 

of objects. Each object has a state, given by the mapping 

Si x Oi Obj(Si) 

where Obj(Si) is the union over all of Oi of the possible states of o: 

Obj(Si) = U 0E0 1  States(o) 

Conversely, we assume that the state at a level of abstraction is uniquely determined by the states of 

the objects at that level. System states are identical if they differ only in the identification of objects. 

For example, a consistent renumbering of disk blocks and references to disk blocks would not change 

the state. 

An action aE Ai defines a partial function f a  from Si to Si. An action a touches an object o if 

it either changes it or looks at it, that is,either oi(s,o) oi(f a(s),o) or for some s, t, if po then 

oi(s,p)= oi(t,p), but fa(s) fa(t).The value of the function fa  is determined by the states of the objects 

touched by a. 

We may compose two actions a and b in Ai by applying first one and then the other. Thus 

fa  a fb  (5) = fb (fa  (s)). Actions a and b conflict if there is some state s such that f a  ofb (s) fb o fa  (s). 

Otherwise they commute. If a and b conflict, they must both touch some object o. The converse does 

not necessarily hold, as illustrated by the operations of increment and decrement on the set of positive 

and negative integers. 

Abstract states at adjacent levels (i-1) and i are related by a representation mapping 

pi: 	—> Si which is a partial function from Si... 1  onto Si. Thus some states in Si_1 may not 
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correspond to valid abstract states, but every state in Si is represented by some state of Si4. Also, 

several lower level states may correspond to a single higher level state. By composing representation 

mappings pi +  pj+  2 	we get a representation mapping from Sj to Si. 

An action trace  is a set of actions together with a partial order which orders all pairs of 

conflicting actions. Each action at level i >0 is implemented in terms of nested subactions at level i 

and below. For each action a at level i 	I) we may imagine an associated program text, which 

determines the action trace to be used when the action is executed in state s. For a correct 

implementation, executing the actions in the action trace on any state tES0 which represents state 

sESi should result in a state uE Si which represents fa(s). 

The program text also specifies terminating actions to be used when execution of the action is 

terminated, either because it is complete or because it cannot be completed. If it is complete, the 

action is called a commit  action. If it cannot be completed, the action is called an abort action. 

Commit actions conflict with all other actions. Abort actions do not conflict with any other actions. 

The trace of an abort includes an "inverse" action, called an "undo", to reverse the effect of each 

committed nested subaction of the action being aborted. The partial order relating the undos will be 

the reverse of the order of the actions being undone. Thus undos a- 1  and b- 1  of conflicting actions a 

and b, with a < b, will be ordered b- 1  < a-1. The set of action traces implementing a given action will 

be called Imp(a,$). This set includes the complete trace terminated by a commit action and a set of 

aborted traces each of which is a prefix of the complete trace terminated by an abort action. 

To describe the effect of running an action trace, we introduce a special kind of action trace, 

called an action tree,  in which a set of actions is structured as a tree and conflicting actions are 

ordered by a partial order. The tree structure reflects the nesting of actions and the partial order 

reflects the order of execution. An action tree is thus an action trace with additional structure. 

We say that an action in an action tree has been committed  if it has a child which is a commit 

action. We say that an action in an action tree has been aborted  if it has a committed child which is 

an abort action. Otherwise, the action is incomplete. Since we want actions to be insulated from 

;allures of their children, an action may have aborted children without being aborted itself. An abort 

action may even be aborted. Similarly, aborted actions may have committed children (all of which 

must be undone by the abort action, which is the last child of the aborted action). In Figure 2, T1 has 

nested subactions A and 13. A is committed, B is aborted, and T1 is incomplete. At this point, Ti 

could be either committed by adding a commit subaction, or aborted by adding an abort subaction. 

Given an action and an initial state, we can describe execution of the action using an action 

tree. The root of the tree is the original action. Its children are the actions belonging to some action 

trace in Imp(a,$), ordered as in the trace. This process continues recursively down to the primitive 
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(level 0) actions to define the entire tree. The partial order in each action trace is retained in the tree 

and if actions are ordered then their descendants inherit the order, i.e., if parent(a) < parent (b) then 

a < b. There may be additional conflicting actions which are not ordered; the partial order is 

extended arbitrarily to include these. The set of action trees obtained in this manner is called Ex(a,$). 

The effect of executing an action tree T is determined by the leaves. If the initial state is sES0 

then the result state is determined by applying the composition of the functions defined by the leaves 

in an order consistent with the partial order. Denote the function so defined by PrW ). We say that 

actions trees T and U are equivalent  if Woks) = f( (11)(s) for all states s. 

We now consider when an action tree defines a mapping at level i. Define an equivalence 

relation E.-  on states of So where s 	t if pi 	pi(s)= 	pi(t). We say that fT(CH  is a level i 

homomorphism if fr":" (s) =i Pr"))  (t) for s 	t. In this case, there is a well-defined function 

Pr(i)  :Si Si where tr" )  (pt °•.. o pi(s)) = P1 ° -.• o  Pi(fr(c" (s)). If a is an action at level i (aEAi) and T is 

an action tree which implements a instate s, then T is a correct implementation if and only if the 

function fr' o ' is a level i homohorphism and fT( ` )  (s) =a (s). 

Inverse Actions 

Let f: E -> E be a function mapping a set E onto itself. Define range(f)={ f(x) I xEE }. f is 

surjective if range(f) = E. f is infective if whenever x, yEE and f(x) f(y) then x=y. f is bijective if 

it is both surjective and injective. 

Lemma A.  If 	and g:E-)E are bijective then they have inverses (1 -1  and g-1 ) and if f 

and g commute with each other then f and g -1 , g and 	and f I and g-1  also commute. 

We will call actions which are one-to-one (injective) invertible actions.  The inverse of action a is al. 

An action trace consisting entirely of invertible surjective actions can be run backwards almost 

as easily as forward. The following lemma characterizes the degree of freedom we are allowed in 

rolling back. First, we need a few definitions. A prefix P of an action trace T is an action trace 

containing some set of actions of T and having the property that if b E P and a < b for some a E T 

which conflicts with b, then a E P. The partial order on the prefix is the restriction of the partial 

order on the original trace to the actions in the prefix. 

A set X of actions of a trace T is final in the partial order of T if T-X is a prefix of T. If X is 

ordered by the restriction to X of the partial order on T, then X is also an action trace. The inverse  

trace X -1  is the set {a- 1  I aE X}, together with the partial order <I in which 	a- 1  <1 b- 1  if and 

only if b <a. The subtrace X of T is said to be reversible  if the action trace TUX -1  ordered by 

< U <1 U {(t,x-1 ) I tET and xE X} is equivalent to the action trace T.-X. 
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Lemma B. If T is an action trace consisting entirely of invertible surjective actions then a 

subtrace X of T is reversible if and only if it is final in the partial order of T. 

Thus to roll an action back we need only run its inverse and the inverses of all subsequent conflicting 

actions. Alternatively, we can avoid "cascading" rollback by blocking conflicting actions. 

If actions do not define bijective functions, however, apparently non-conflicting actions on the 

same object may not be so easily reversible. Consider two successive adds of the same key to an index 

which does not contain the key initially. The first add action adds the key; its inverse deletes it. The 

second add action is identity on any state in which the tree already contains the key; its inverse is also 

the identity. The add actions commute, so the singleton set consisting of either add by itself is final in 

an action trace. However, the singleton set consisting of the first add, by itself, is not reversible, since 

running the inverse trace would remove the key. 

In general, consider two non-conflicting invertible actions a and b. Take any state 

s€range(a) such that b(s)E range(a). Then 

a-1  o b (s) = b(a-i(s)) is undefined 

but 

b a-1  (s) = 	(b(s)) is defined. 

Even if we extend a -1  to be the identity where it is undefined, it is still true that 

a-1  (b(s)) b(a -1  (s)) = b(s), 

So that a-1  and b still conflict. 

The conditions we require to guarantee that the inverses commute with the actions and each 

other are: (1) sE range(a) er> b(s)Erangc(a) for all s, and (2) sEdom(a) <=> b(s)Edom(a) for all s. 

Actually, we are only interested in these conditions when a and b commute, and in this case we 

already have half of them, because if sE range(b) then a(s)=a(b(t))= b(a(t))E range(b) and if 

b(s)Edom(a) then a(b(s))= b(a(s)) is defined, so that sEdom(a). However, the converses do not 

necessarily hold. Consider b(i) = i + 1 for integers i in the set {0 , , n }. b(0)Erange(b) but 

Ogrange(b), so that b does not respect itself. In fact, no action respects itself if it is defined on a value 

outside its range (this applies to allocate, free, and adding a key to an index). We say that action a 

respects action b if a(s)E range(b)4sE range(b) and sEdom(b) 4 a(s)Edom(b). We say that actions 

a and b r-commute if a respects b, b respects a, and a ob= b .a. Otherwise, a and b r-conflict. 

Lemma C. If actions a and b r-conflict, then they touch some common object. 

This lemma follows from the observation that if they don't touch any common object, then clearly 

they commute, and whenever a(s) = b(t), a state u can be constructed in which all objects touched by 

the action a 

5 



have the same state as they do in s and objects touched by the action b have the same state as they 

do in t. But then s = b(u), so that a and b commute and respect each other, i.e., they r-commute. 

We assume that actions which touch the same object will be ordered when an action tree is 

actually executed (by the order in which they touch the object), whether or not they are ordered in the 

partial order of the action tree. We call the execution order the r-order and say that a set X is r-final 

in an action trace T if T-X is a prefix of T in the r-order of T. Because abort actions are the last 

actions in the implementation of an action and do not conflict with any other action, a set consisting 

only of abort actions is always r-final. 

Lemma D.  If T is an action trace consisting entirely of invertible actions then a subtrace X of 

T is reversible if and only if it is r-final in the r-order of T. 

We now consider non-invertible actions. The standard way of dealing with such actions in a 

DBMS is to log enough information (e.g., the prior state or some part of it) to make the action one-to-

one. Thus the modified action on the augmented state is invertible. Suppose that we have non-

invertible non -conflicting actions a and b. Augmenting the state by recording the prior state will 

not affect their mutual respect. We will henceforth assume that all actions are invertible. 

An undo may be either state-based, such as restoring the before image of the pages involved, or 

general, such as a delete of a key which has been added to a B-tree. In the latter case, the undo applies 

to any state in the range of the add. Thus any action which r-commutes with the add may proceed 

without causing a dependency of its parent action on the parent of the add. 

Aborting Actions 

A completed invertible action a can be undone by running the inverse action, as long as every 

action which has run subsequently r-commutes with a. If, however, an r-conflicting action has run, 

its effects must be reversed before the original action can be undone. 

If an action has begun but not completed, then it is possible that some but not all of the nested 

suhactions in the action trace have been run. In this case the nested "abort" action consists of an undo 

for each nested subaction in the trace of the original action, with the order the reverse of the forward 

actions. That is, if a < b in the trace, then 11 -1<a-1  in the trace of the abort. 

If no subsequent actions r-conflicted with the nested subactions in the trace of an action, then 

as a consequence of Lemma D the effect of the trace with the abort will be as if neither the action nor 

the abort had run. We now consider conditions on a trace that allow us to either commit or abort any 

incomplete action, knowing that the state achieved by the trace is the same as would have been 

achieved if only the committed actions had run. First, we define wo partial orders on actions, one 

reflecting the order in which they are executed and the other reflceting dependencies. 
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An action a immediately precedes an action b in a trace if a and b r-conflict; a <b in the 

r-order of the trace; and there is no action c which r-conflicts with both a and b such that a <c <b 

in the r-order. An action a precedes b if there is a sequence al, ... a n  of actions such that a = al, 

b = an, and ai immediately precedes ai +  The relation "precedes" is a partial order on actions. 

An action b depends on an action a in an action tree if there is a child action c of a and 

another child ction d of b such that c immediately precedes d. This definition generalizes the 

notion of a dependency between transactions Ti and T2,  where T2 depends on T1 if T2 reads a data-

item written by T1. We will say that an action tree is r-serializable if the relation which is the 

closure of "depends on" is a partial order. If this is the case, we then denote this partial order < D. 

This a much weaker condition than serializability, saying only that < D separates (in the sense of 

[2]) any two-level forest consisting of a set of actions from the action tree and their children. If this is 

the case, we then denote this partial order < D. Note that if a and b are aborted actions and b< D a 

then <D also orders abort(a) and abort(b). We assume henceforth that all action trees are r-

serializable. 

An action tree is revokable if every abort of an action follows (in <D) the abort of any action 

which depends on the action. Suppose that a trace is revokable. Then the following proposition 

states that the set of aborted actions is r-final in the action trace, and therefore reversible. (That the 

undos have been performed in such a way as to reverse the actions will also have to be verified.) 

Proposition 1. The set of aborted actions is r-final in a revokable action trace. 

A trace is recoverable if every commit of an action precedes (in <D) the commit of any action 

which depends on it. Suppose that a trace is recoverable. Then the following proposition states that 

any uncommitted actions can be aborted without requiring the abort of any committed actions. 

Proposition 2. The set of uncommitted actions is r-final in a recoverable action trace. 

In an action trace which is recoverable, uncommitted actions can be either committed or aborted. In 

an action trace which is revokable, the set of aborted actions is a set whose effects can be reversed. 

Proposition 3. The action trace containing just the committed actions of an action tree T is an 

action forest F. Define an action a whose normal implementation is the set of roots of F. 

Then there is an action trace LIE Ex(a,$) whose projection onto U{a} is equal to F. 

Proof: This follows because all leaves of F are committed actions, so that all actions are 

initiated in the same state in F as in T and therefore the implementation is the same]❑ 

There are a number of things that we would like to say but cannot say about the state after 

aborting all incomplete actions. For example, we would like to say that the result state is the same as 
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it would he if we ran only the committed top-level actions. We would also like to say that the state at 

initiation of a committed action depends only on the previously committed actions. Neither of these is 

quite true. 

Consider the example in Figure 1. The state in So depends not only on the committed top-level 

action T2 but also on the committed actions Add(X,B), Add(Y,B), Delete(Y,B), and Delete(X,B). 

The effect on the index and the actual pages allocated may be different for the sequence: 

Add(W,B) Add(Z,B) 

than for the sequence: 

Add(W,B) Add(X,B) Add(Z,B) Add(Y,B) Delete(Y,B) Delete(X,B) 

The following theorem says, however, that at the highest level of abstraction the state resulting is the 

same as the state resulting from running only the top-level actions. We interpret a in the theorem as 

an action which initiates the actual top-level actions. In fact, we can take any set of actions at a 

single level of abstraction in the tree, and considering the these as the top - level actions, we find that 

the theorem still applies. 

Recovery Theorem.  If an action tree T = Ex(a,$) for some action a is recoverable and 

revokable and if the children of a are all at a single level of abstraction i then the action trace 

S expanding all of the committed actions in T has fs (i)(s)=--fu(i)(s) for some action trace LT 

which expands only the committed children of a. 

Proof Consider the action forest F which is the set of trees whose roots are the committed 

actions. This includes committed top-level actions as well as some actions which are committed 

children of aborted actions. We need to verify that these children of aborted actions have no 

effect on the final state. 

By the definition of revokable, an aborted action is aborted only after all actions which depend 

on it.Consider some last aborted action a in <D (<i) is acyclic). Any action b which occurs 

between a and abort(a) in the execution order will see the effect of a on the state and 

therefore its action trace may be different from the action trace generated if it had occurred 

before a or after abort(a). However, since all of its children r-commute with all children of a, 

we see that we can move the children either before a or after abort(a) and the result state 

should be the same, although the expansion of the children may be different. 

Repeating this procedure recursively, we bring together a and abort(a) in the trace. The 

result is equivalent to a trace in which these have been deleted. After repeating this for all 

aborted actions, we have only the top-level actions left (possibly with entirely different 

traces).❑ 
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Conclusions 

The standard criterion for correctness of transactions is atomicity, that is, only the effects of 

complete transactions are visible to other transactions. The recovery theorem states that 

transactions are atomic at the highest level of abstraction if the actions trees are r-serializable, 

recoverable, and revokable. However, this is not true at lower levels of abstraction. Lower-level 

actions may be run to completion and even committed even though the top-level action requesting 

them has been aborted. But the properties mentioned above do ensure that any effects which could be 

visible at the highest level are eventually reversed. 

We argue that, from the application point of view, the only atomicity that is appropriate as a 

criterion of correctness is atomicity at the highest level of abstraction. The lower-level states are 

only used to implement the top-level state, thus we should be satisfied as long as the state reached by 

executing an action tree is equal to the state that would have been reached had only the top-level 

committed actions been executed. Furthermore, to require atomicity at lower levels of abstraction 

seems far too strong, since a nested transaction may be sufficiently time -consuming that its lack of 

atomicity may become apparent in any case. 

Other issues to be investigated in future work include investigation of the impact of immediate 

commitment on the number of log operations and the size of the log required to recover from 

transaction aborts; techniques for recovering from system crashes as well as from transaction aborts; 

and special-case techniques for undoing actions which conflict with later actions, without having to 

undo the later actions. 
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Introduction.  

A database transaction is usually required to have an "all-or-none" property, that is, either all 

of its changes to the database are installed in the database or none of them are. This property can be 

violated by a hardware or software failure occurring in the middle of the execution of a transaction or 

even by a decision to abort a transaction to avoid an inconsistent (non-serializable) schedule. In such 

a situation, we must recover from the failure by restoring the database to a state in which the failed 

transaction never executed. The idea of recoverable schedules  was defined in [H831. In a recoverable 

schedule, a transaction does not commit until there is no possibility that it will be rolled back. If the 

underlying hardware or software is unreliable, this must not occur until all transactions which have 

written values read by the transaction have themselves committed . 

The standard solution for guaranteeing that a schedule is recoverable is to "hold write-locks to 

commit point," or more generally, to prohibit any access to a data-item which has been changed by a 

transaction until the transaction commits. Such a policy guarantees that no other transaction can 

ever read or write a data-item value until the last transaction writing it has committed. This 

prevents any transaction from committing before values it has read have been committed by the 

writing transaction(s). 

This policy fits well with two-phase locking, since write-locks are held to "lock point" anyway, 
but does not fit so well with timestamping protocols or even with locking protocols which allow earlier 

release of locks. Also, this policy may not fit at all if serialization is not required. We call this policy 

the "pessimistic" policy and describe two other policies--the "optimistic" policy, which does not block 

but will abort a transaction trying to commit if it has read data written by an aborted transaction--

and the "realistic policy," which blocks reads but not writes of uncommitted data. These three 

policies can be compared, using the results of this paper, with respect to their effect on concurrency, 

on the number of aborts, and on preservation of membership in serializability classes. 

The pessimistic policy allows the least concurrency of the three. In contrast, the optimistic 

policy does not reduce concurrency at all and the realistic policy reduces concurrency somewhat. The 

optimistic policy will, however, cascade aborts. The pessimistic policy will introduce aborts due to 

deadlocks by it but it will not cascade aborts. The realistic policy will not even introduce aborts if we 

can assume that all reads of a transaction precede all writes and that the schedules are serializable. 

Finally, the pessimistic policy preserves membership in the class DSR of schedules (schedules 

that can be serialized by swapping adjacent operations). The optimistic policy preserves membership 

in a somewhat larger class of schedules, PSR (schedules all of whose prefixes are also serializable). 

The realistic policy preserves membeship in SR, the class of all serializable schedules, assuming only 

that all reads of a transaction precede all writes. The primary practical implication of these facts is 
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that the realistic scheduler appears better in all cases than the pessimistic scheduler. Simulation and 

analysis comparing the various policies are ongoing. 

There are several contributions in this abstract in addition to the new policies for producing 

recoverable schedules. In order to discuss schedulers for recoverable sequences of operations as well 

as the sequences themselves, we have had to distinguish between the "temporal order," in which the 

scheduler sees the operations, and the "log order," which determines the interpretation of the 

operations. This distinction is of interest independently of the results; for example, it applies nicely to 

describing the behavior of multi-version timestamping described in [R781. The properties of 

recoverability and serializability have been considered separately, so that the recovery policies can be 

used even for transaction systems which do not require serializability, such as described by several 

authors [L82, G81, A831. 

Definitions.  

We mostly follow Hadzilacos [H83]; however, we alter the notion of the meaning of database 

transaction to reflect the intention that aborted transactions should not affect subsequent database 

transactions. We use the term IA as in [H831 to mean schedule, or history of transaction operations. 

Let D = {x, y, z, ...} be a set of data items. Transaction operations are R t[xl, Wt[x], Bt, Ct, At , 

tE N, xE D. These symbols are intended to represent, respectively, a read of x by transaction t, a write 

of x by transaction t, the 'begin' of transaction t, commit of transaction t, and an abort of transaction t. 

We also use Dt[xl (access to data-item x by transaction t) to mean an operation which may be either 

a read or a write. Two operations conflict if they are read or write operations accessing the same data 

item and at least one of them is a write, or if one of them is a begin, commit, or abort. 

A transaction, t, is a partially ordered set (op t, < t) where 

opt  C {Rt[xl, Wt[x] : x E 	U {Bt, Ct, At} 

satisfying the following: 

i) Bt  E opt; 

in At  E opt if Ct Q opt; 

iii) V o E opt — {Bt}, Bt <t o; 

iv) if At E opt, then V o E opt — {At}, o < t At; 

v) if Ct E opt, then V o E opt — {Ct.}, o <t Ct; 

vi) any two conflicting operations are ordered by < t. 



Our definition is more general than some, since transactions may contain concurrent subtransactions 

and we do not require all reads to precede all writes. 

A complete log,  L, is a triple (OP, <L, <T) where 

1) OP= U topt ; 

2) for each t, <tC  <L, any two conflicting data accesses are ordered by <L, and <L is 

the smallest partial order satisfying these two conditions; 

3) <T is a total order on OP such that for all transactions t, u and data items x, 

a) < tg <T and 

b) if Wt[x] <1, Ru[x] then Wt[x] <T Ru[x] 

<L is the log order  of L and reflects the intended meaning; <T is the temporal order  of L and 

reflects the order in which operations are submitted to a scheduler. We say that any order on OP 

which satisfies 2) is a log order for OP and any order on OP which satisfies 3) is a temporal order on 

OP. A log is a temporal order prefix of a complete log. A transaction, t, is committed  in a log L if Ct 

E OP; t is aborted  in L if At  E OP; t is active if it is neither committed nor aborted. We let 

COM(L) denote the set of committed transactions in L. 

The temporal order of a log reflects the order in which it is submitted to the scheduler, i.e., the 

actual interleaving of transaction requests on the system. The log order reflects the order in which it 

is interpreted (defined formally below). Ordinarily, the temporal order is a topological sort of the log 

order, but in concurrency control methods such as multiversion timestamping we may wish to allow 

some independence between the two orders. We need to make this distinction between log order and 

temporal order not only to allow input to the recovery scheduler from a multiversion timestamping 

method, but also to describe the output in the case of the realistic policy. It is not necessary for the 

other policies. 

The projection of a log, L, onto a subset z of its transactions, denoted by fl t(L), is the 

restriction of L to Lit" opt. We will be most interested in the projection of a log onto its committed 

transactions: licom(L) (L). For mathematical simplicity we extend all logs with a fictitious 

initializing transaction to, which begins, writes all database items, and then commits. Any access to 

a data item is preceded by a write to that data item by to, where "preceded" refers to both log order 

and temporal order. 

The semantics  of read and write operations in a log L is defined by a function ML (the 

meaning in L), satisfying 
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1) ML (Rtlx1) = ML (Wu(xI)  where Wu[x] <L Rtbd  and for any v such that 

Wu[x] <L Wv[xi  <L  Rt[xJ we have Av  <T Rt[x].  That is, the meaning of a read is the meaning 

of the most recent unaborted write to the same data item. This is different from Hadzilacos' 

definition, where a read operation may use the value from an aborted write. 

2) ML (Wt[z1) = gtx (ML (Rt[Y1 1) ,  • • • ML (Rt(Yril)) where Rt[yi],.. • At[Yn] are all the reads by 

t which < t  precede Wt[x] and gtx  is a function which computes the new value of x to be 

wrtten by transaction t from the values previously read by transaction t. 

A log L is recoverable  if for every prefix L' of L the meaning of each committed read and 

write in L' is the same as its meaning in Ilcom(L•) (L I). The major implication of this definition is 

that if we want recoverability we must not allow a transaction to commit unless all transactions 

whose values it has read have previously committed. 

A scheduler  takes a log as input, one operation at a time in temporal order, and outputs a new 

log. It may do one of three things with the operation: 

1) output it; 

2) abort the requesting transaction; 

3) take either action after reading more operations from the input and choosing one of 

these three actions for each. 

An operation which has appeared in the scheduler's input log but not in its output log is said to be 

blocked.  If an operation of of a transaction t is blocked then t may not request any operation o2 

such that of <Lo2. 

Since the operations are input to a scheduler and output from a scheduler in temporal rather 

than log order, the "position" of each operation in the log order must also be part of the input and 

output. To do this, we define a function POSL mapping reads and writes of L in (0P-OP to) to OP 

as follows: 

POSL(Du[xl) = D e(xl 

where 

1) Du[x] and Dt[x] are conflicting operations; 

2) Dt[xl<LD,Axl; 

3) 'Mid< TDurx); and 

4) if 13,[xl<LD u[x] for v x t then either Dy(xl < L Dt(xl or Du[xl<T(L)Dv(xl 
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We can reconstruct a log order containing <L fom OPL, <T, and POSL by taking the transitive 

closure <* of <, defined as follows: 

1) Dt[x]<Dt[yl if Dt(x)<TDt[y]; and 

2) Dt(xl<Du[x] if Dt[x] = POSL(Du(x)) 

or recursively if POSL(Dt[x])< D u[x] and Du[x]<TDt(x] 

Each read or write will be preceded, in the reconstructed log order, by any operation which preceded it 

in the original log order. In fact, the immediately preceding conflicting operation must be the same, 

so that the interpretation of each read will depend on the same write. Writes, however, may be 

preceded by additional reads of the same transaction. If we make the reasonable assumption that 

these additional reads have no effect on the outcome of the writes, then we may assume that the 

interpretations are equivalent, in the sense of returning the same values to a terminal transaction of 

all reads, under the two log orders. 

Formally, a scheduler is a 4 -tuple < 	> where A is a set of logs without commits or 

aborts; 0 is a set of pairs <o, POS(o)>, where o is an operation; a is a state transition mapping 

<LAX 0 A 

and (.0 is an output function 

w:AX 0 ♦ 0* 

Extend a to a' on AX O+ by defining 

a'(A,o0=a(A,o0 

o'(A,oi...ou)= o(o'(A,ot...ou_i),on) 

and extend ca to w' on AX 0 + by defining 

co . (A,o1)= w(A,o1) 

cd(A,oi ...on) = co(o l (A,oi...on-0,0n) 

We will say that S=(0Ps, <s, <us)) is the output of a scheduler if OPs is the set of operations 

output, ot<T(s)ou if of is output before o u, where of and ou  are arbitrary operations of transactions 

t and u, and <s is constructed from POSs as described above. 

A scheduling policy restricts the choices a scheduler can make. We will describe policies 

somewhat informally by stating (1) the types of operations which may be blocked while other 

operations are processed, under what conditions they will be blocked, and under what conditions they 

will be output; and (2) the conditions which require a transaction to be aborted. For a given 
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scheduling policy, we can define a mapping P from input logs to sets of output logs, such that each 

output log could have been produced from the corresponding input log. A scheduler implements a 

scheduling policy if for each input log L (OP, <L, <T), if of o n  is the set of operations in OP 

ordered by <T, then cd(0,431,...,o u) is in P({o1, on} <Pos, <T). 

Schedulina Policies and Schedulers. 

If 5= (OPs, <s, <T(s)) is the output produced from an input log L =(OPL, <L, <T(L)), then for 

all schedulers we will require the following: 

 

(LI) for each otEOPs either ot=At or  otEOPL; 

(L2) if AtEOPs then C t EOPs and for all otEOPs, ot<T(S)At; 

(L3) if ct<Lo't and ottEOPs then otEOPs and Ot <T(S) o't; 

(L4) POSs (Dt[x]) <T(s)Dt[x]  and there is no conflicting read R u[c] with 

POSs(Dt[xl) <T(s) Rufx1 <T(s) Dt[c]. 

Condition LI states that each operation output by the scheduler was either an operation input by the 

scheduler or an abort. Condition L2 states that no operations of a transaction are output after an 

abort of the transaction has been output. Condition L3 states that the order of operations in a 

transaction is preserved and that no operation is output until and unless all previous operations of the 

transaction have been output. Condition L4 states that knowledge of the future is not required. It 

follows from these conditions that S is a log. 

We also require that if the input log is a complete log, (that is, all transactions have either 

committed or aborted), then 

(CI) if CtEOPL then either CtEOPs or A tEOPs; and 

(C2) if AtEOPL then AtEOPs. 

(CI) and (C2) clearly imply that if the input log is complete then so is the output log. 

We first describe optimistic policies. A scheduler implementing an optimistic policy blocks 

commits of transactions which have read uncommitted data. All other operations are output 

immediately. If a transaction abort At is output, then so must be aborts A u  of all transactions which 

have read data (Ru[x]) last written by the aborting transaction (Wad = POSL(R u[xJ)). POSE is 

equal to POSL. 

Proposition  0. If S is the output log from an optimistic scheduler and if W t[x] <sRufx1 and if for 

each W„ [x]such that Wt[x]  <sWvfxl <sRu[x] there is an operation Av  such that AV  < T(Mitufx I 

then Cu EOPs CtEOPs and Ct<T(s)Cu. 
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Proposition 0 states that commits are blocked until all transactions which have written data read by 

the committing transaction have committed. 

Theorem 1. Any output of an optimistic scheduler is a recoverable log if the input is a log. If the input 

Iog is complete then so is the output log. If S is the output log produced from input log L by a 

scheduler which implements an optimistic scheduling policy then 

ficum(s)(S)= ncom(s)(L) 

One scheduler which implements an optimistic policy behaves as follows: Every operation 

which is input is output immediately unless it is a commit. If it is a commit, then the commit can also 

be output immediately unless the transaction being committed has read data written by an 

uncommitted transaction. In that case, the commit must be blocked until all transactions from which 

it has read data have committed. If a transaction aborts, then all transactions which have read data 

from it must also abort. It is possible that a cycle of transaction dependencies may form. In this case, 

the scheduler is free to either abort all involved transactions or to commit all involved trasnactions, 

in a single atomic operation. The latter course can be chosen only if provision has been made. 

Next, we describe pessimistic policies. A scheduler implementing a pessimistic policy must 

block all data accesses to uncommitted data. Otherwise, operations are output immediately. 

POSs(D tbd) is equal to the most recent non-aborted write, as ordered by <ms ) • 

Proposition P1. If L is an input log to a pessimistic scheduler and if W u(x) <L Dt[xJ then for every 

operation o t  such that Dt(x1 <L ot , either C u  < - T(L) ot  or Au  < -T(C.) 'h. 

Proposition P1 states that operation D t[3d is blocked until transaction u has committed. 

Proposition P2. If S is the output log from a pessimistic scheduler and if W t[x] EOPS and D u[xIEOPs 

and Wt[x] <s Dub(' then either Ct <T(S)Du[xJ or At < T(S) Du[x]. 

Proposition P2 states that no operations are output until any preceding conflicting operations are 

either committed or at )rted. 

Theorem 2. Any output of a pessimistic policy is a recoverable log if the input is a log. If the input log 

is a complete log then so is the output log. If for every A tEOPs we also have At E OPL and 

<s  C < L then 

ficop,f(s)(S) = ncopcs)(L)• 

One way to implement a pessimistic scheduler would be to set a lock when a data-item is 

written. The lock is not released until the writing transaction is either committed or aborted. If 
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cycles develop among transactions awaiting completion (by commit or abort) of other transactions, 

then a victim should be selected to be aborted. Waiting operations may be dispatched in any order, 

but to guarantee that HCOM(S)(S) = ricOm(s)(L) it is necessary either to dispatch them in temporal 

order consistent with log order or to specify the immediately preceding write operation with POSE. 

Finally, we describe what we call a "realistic" scheduling policy. A scheduler implementing a 

realistic policy must block all reads of uncommitted data. A read R u[x] may be output as soon as 

some write Wax] which <L preceded it in the input log has committed and all other writes W v[x] 

with Wt[x] <L Wv[x] <L Ru[x] have been aborted. POSs(R u(x]) is defined as Wt[x]. If a data access 

Dt[x] was never blocked, then POSE(Dtficl)= POSL(Dt[xJ). 

Proposition Rl.  If L is an input log to a realistic scheduler then for every R t[x], if Wui(xl <L Wu2[x] 

< L  . . . < L  Wuk[x] is the sequence of all writes preceding Raid then there is some i s k such that for 

all of  with Rt[x] <ot, Cui <T(L) ot, and for all j > i , Aui  <T(L) ot. 

Proposition R1 states that a transaction issuing a read operation is blocked until some preceding 

write has been committed and all subsequent writes preceding R t[x] have been aborted. 

Proposition R2.  If S is an output log from a realistic scheduler and if Wt[x]EOPs and Ru[x] E OPs 

and Wt[x]<s Ru[x] then either Ct <T(s) Ru[x]  or At <T(S) Ru[x] or there is a Wv[x] with Wt[x] <s 

Wv[x] <S Ru[x] and Cv <T(S) Ru[x]. 

Proposition R2 states that a read may not be output until the most recent non-aborted write has been 

committed. 

Theorem 3.  Any output of a realistic scheduler is a recoverable log if the input is a log. If the input 

log is complete then so is the output log. If A t  E OPE implies At E OPL and if <S C < L then 

ncom(s)(s) = ncom(s) (L). 

To implement a realistic scheduling policy, the scheduler could behave similarly to the 

pessimistic scheduler, except that writes are output immediately in all cases. A read is output as soon 

as the most recent non-aborted write is committed. As with the pessimistic scheduler, if a cycle of 

waits develops, then a victim must be selected to be aborted. In a realistic scheduler, <E may be 

distinct from <T(s). Suppose, for example, that we have a sequence of operations 

Wt[s] • • Ru[s] • • • Wv[s] • • Ct • • • 

Then Wv[s] is output without blocking whereas R u[x] is not output until after W v(sl. Thus 

Ru[sl <s Wv[x] bt t Wv[xl <T(s)Ru(xl. 
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Serializability and scheduling policies. 

We state three general results about scheduling policies and classes of logs. A class A of logs 

has the prefix property if every log-order prefix of a log in A also belongs to A . The class DSR of logs 

which can be serialized by swapping non-conflicting operations has the prefix property; the class SR 

does not. The largest class of serializable logs having the prefix property is strictly larger than DSR. 

We will call this class PSR. 

Theorem 4.  If an input log L belongs to a class A of logs having the prefix property, then an output log 

S produced by a scheduler which implements the optimistic scheduling policy also belongs to A. 

A class A of logs has the projection property if every projection of a log onto a subset of the 

transactions in the log also belongs to the class A. The class DSR of serializable logs has the 

projection property. The classes PSR and SR do not. 

Theorem 5.  If an input log L belongs to a class A of logs having the projection property, then an 

output log S produced by any scheduler satisfying L1-1A and C1-C2 belongs to A. 

It follows immediately from theorem 5 that the class DSR of logs is preserved by any scheduler 

satisfying L1-L4 and C1-C2. We get a stronger result for the realistic scheduling policy if we require 

all reads of a transaction to precede all writes of the transaction. In this case, it is not possible for 

cycles of waiting transactions to form (since only reads are blocked) and therefore it is possible to 

avoid having any aborts in the output log that do not also appear in the input log. 

Theorem 6.  There is a realistic scheduler which preserves membership of the class SR, if all reads of 

each transaction precede all writes. 

9 
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We discuss the objectives of including functional dependencies 
in the definition of a relational database. We find two distinct 
objectives. The appearance of a dependency in the definition of a 
database indicates that the states of the database are to encode a 
function. A method based on the chase of calculating the function 
encoded by a particular state is given and compared to methods 
utilizing derivations of the dependency. A test for deciding whether 
the states of a schema may encode a non-empty function is 
presented as is a characterization of the class of schemas which 
are capable of encoding non-empty functions for all the dependen-
cies in the definition. This class is the class of dependency preserv-
ing schemas as defined by Beeri et al. and is strictly larger than 
Lhe class presented by Bernstein. 

The second objective of including a functional dependency in 
the definition of a database is that the dependency be capable of 
constraining the states of the database; that is, capable of uncov-
ering input errors made by the users. We show that this capability 
is weaker than the first objective; thus, even dependencies whose 
functions are everywhere empty may still act as constraints. 
Bounds on Lhe requirements for a dependency to act as a con-
straint are derived. 
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1. Introduction 

It is common when designing a relational database schema to include in its 

description elements of a class of statements called functional dependencies. 

These statements serve two purposes. They act, as constraints on the database 

etates for the schema, declaring some of these states to be illegal. They also 

indicate that the database states for the schema represent, inter cilia, functions 

whose descriptions, i.e., domain and codomain sets, are given by the dependen-

cies. These two purposes are not identical, although they cannot be divorced. We 

will he taking the convenient view that the illegal states do not represent any 

functions. 

The subject of representation of functions in database states of a schema 

has been addressed before. In the 1978 Very Large Database Conference, Bern-

stein et. al. [BBC.] presented an excellent summation of the state of dependency 

theory as it existed at that time. They declared that a schema represents a set, 

F, of functional dependencies exactly .vhen it embeds a cover of F. (The condi-

tion is called Rep2 in [BBC].) They were lead to this idea as a consequence of the 

Universal Relation Instance Assumption (URIA). The URIA states that for any 
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database state there exists an instance of the "universal" relation. the relation 

on all the attributes of the schema, such that the relation instances of the state 

are its projections. There are many objections to this assumption which com-

bine to make it untenable. Indeed the authors of [BBG] objected to the assump-

tion themselves. The first of these objections, and by no means the least, was 

established by Honeyman et. al. in [HLY]. That paper showed that the decision 

problem: Does an arbitrarily chosen database state satisfy the URIA?; is NP-

complete. Thus maintaining the URIA as a database constraint is an impossibly 

difficult task in general. A second objection was put forward by Bernstein and 

Goodman [BC] to the effect that maintaining the URIA reintroduces globally the 

"update anomalies" first mentioned by Codd [C] for single relations. A third 

objection, perhaps the most crucial even though unprovable, is the reasonable 

belief that almost no database state arising in practice will satisfy the URIA. 

We will present an alternative to the URIA, called the weak instance, origi-

nally due to Honeyman [H] and independently to Vassiliou [V]. We will present 

new definitions of functional representation by states and by schemas which rest 

on it. We will show that a dependency may be represented even when it is not 

embedded and may act as a constraint even when it is not represented. 

A secondary result of this research touches on the derivation of a depen-

dency from a set of dependencies. In [B], Bernstein describes an application of 

the inference rule `pseudo-transitivity' (defined in section 2, below) as functional 

composition. He also gives a graphical formulation of a derivation, called a 

derivation tree. A functional dependency can be interpreted as a table-lookup, 

i.e., as an expression in the relational algebra. We will give a method which uses 

a derivation tree as a guide to the composition of such expressions. We point 

out that two distinct derivation trees may result in inequivalent expressions, 

even when applied to a single satisfying instance. We also show that the function 
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represented by a multi-relation database state is not necessarily calculated by 

any of its derivations. 

In the next subsection, we present the basic definitions of relational theory 

which we will need. Definitions of particular concern to our investigation are 

given in the body of the paper when needed. In section 2 we describe the func-

tions corresponding to functional dependencies in the context of single rela-

tions. In section 3 we do the same for multi-relation databases. In section 4 we 

present a new definition of representation by a schema of the function associ-

ated with a functional dependency and give a characterization of those schemas 

which represent all given dependencies. In section 5 we return to dependencies 

as database constraints and give bounds (i.e., sufficient and necessary condi-

tions) on the requirements for a dependency to constrain a database. Section 6 

reviews related work of other authors and makes some comments on the practi-

cal significance of this work. Section 7 recapitulates the results established. 

1.1. Basic Defintions 

The scheme of a relation is a set R of elements called attributes. Associated 

with each attribute A there is a set of values called the domain of A and denoted 

darn (A). Following standard notational convention, we use an attribute name A 

to represent either itself or the set Mi. Also, we elide the operator when taking 

unions of sets of attributes; i.e., XY=X UY. 

An instance of the relation R is a set of tuples. A tuple is a function t from R 

to L..) dom(A ) such that t ).Ectom ). It is customary to use square brackets 
A cR 

instead of parentheses when evaluating a tuple for an attribute; thus 

t [A ]€ dom.(A). By extension, for all X CR. t[X]mt j X: that is, the restriction of t to 

the attributes in X. t [X] is also called an X-value. We will often ignore, both in 

English and in symbols, the distinctions among the constant value ce.Edom,(A ), 
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the A-value which is the function taking attribute A to value a, and the relation 

instance on Lae scheme. A whose sole element is the A-value a. We may do the 

same for sets X of attributes, X-values and singleton X relation instances. 

We will need four of the operators of relational algebra: projection, selec-

tion, natural join and union. 

If I is an instance of the relation R and XcR, the projection of I onto X is 

given by 

nx(/)-=it[X] tcf 

Let C be a conjunction of atomic formulae of the form X=x where XCR and x is 

an X-value. Then crc(i) is the subset of I each of whose elements makes C true. 

For example, 

crilmAY=y(1)==it I t EI At[X]=xAt[Y]=0 

If r is an instance of R and s is an instance of S. then the natural join of r and s 

is a relation on scheme RS given by 

r•smit j i[R]Er At[S]Esi 

rr, are all instances of the scheme R, then we may take their union 

Uri=it 1 (3 l_n)tEri 
i=t 

For more details on these operations, see the text by Ullman [U]. 

2. Functional Dependencies Within One Relation 

We begin our investigation by considering the behaviour of functional 

dependencies within a relation. We first recall the definition of functional depen-

dencies in their role as constraints. 

(Satisfaction-1) Let R be a relation scheme and F a set of functional depen- 

dencies. If I is an instance for R, then we say I satisfies F (or I is a legal 

instance for R) if the following holds: For each dcpcndcncy X-'Y in F, for 

If r 

as 
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every pair of tuples t, u in I. t[X]=u[X] implies t [Y]=u[Y]. • 

Now let us consider the functions described by the dependencies in F. The 

primary means whereby a relation instance relates attribute values is by includ-

ing a tuple in which the values appear. With this in mind, assign each depen-

dency in F a unique label. Let f be the label of X-'Y. Now definet 

faAL Xx• ny(ax=z(I)) 

where I is an instance and x is an X-value. Thus co f. a table lookup as decribed by 

Arora and Carlson [AC], is a function from instances for R to mappings from X-

values to Y-values. Clearly if I is a satisfying instance then cof (/) is a function. A 

key observation of this work is that the instance I may have more information 

about the function f than is given by sof(I). In particular, X-values not in nx(/) 

may nonetheless have Y-values assigned to them by I. We demonstrate this by 

way of an example. 

Example 1. Let F =fg :X 	h:YW-;Z, f :XW-+Zi. Consider the instance 

 

X Y W Z 

  

I= xi Yi wi xi 
X2 yi wZ Z2 

We claim that I assigns the Z-value z2 to the XW-value xiw2. To justify the 

claim, note that any tuple added to I containing XW-value z 111)2 must have 

Y-value y / (by (v(/))(x1)=y1) and Z-value z2 (by (991,(/))(yjw2)=z2) if it is 

to be satisfying. Of course, (co/ (/))(xiw2) is undefined. • 

Wc propose a definition of the function h represented in a satisfying 

instance, I, for the dependency f :X -)Y. 

ti he A-operator is the abstraction operator of the lambda calculus. Say we have some ex-
pression x 2 . Now ow if it is defined at all. x 2 is some number which we know exactly when we 
know X. The expression Itx.x" Is the squaring function, which may be thought of as a set of 
ordorcd pairs. 
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The completion, or chase, of /r , denoted 4, is the result, x(4), of the application 

of any sequence of transformations x=T i . T2 	T such that 

• 7.1 is enabled in Iz  

• T4 4.1 is enabled in rt(rt_1( • • (Tax )) • • • )) 

• no transformation applied to x(Is.) results in a change to it. 

That is well-defined for Ix is proven in [G]. 

Ezample 2. Reconsider example 1. The augmented instance, /%0112 is 

X Y W Z 

Y 1 W1 zl 1 
x2 Y1 W2 z2 2 

We 3 

where the blanks represent the non-distinguished symbols and the tuples 

have been numbered for convenience. The transformation <x-.1; 1, 33> is 

enabled and when applied produces: 

X Y W Z 
zi 1 

z2 Yi "w2 z2 2 
yi 3 

This causes the transformation <YW - ,Z, f2, 33> to become enabled, which 

when applied produces: 

X Y W Z 
x i  Yi Wi z i  1 
Z2 Yi W2 7'2 2 
x1 Y1 W2 Z2 3 

No further changes can be made so this is 4' 0,2. We note, recalling example 

1, that ze=f/(xiw2)=(cof(4 1,„ 2 ))(xiwe). We will now show that, whenever a 

function is defined, it may be calculated in this way. ■ 

It has been shown [H] [G], that for any satisfying instance containing I and a 

tuple with X-value :r, there exists a valuation function [ASIA a function from 
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constants and non-distinguished symbols tb constants, which function is the 

identity on constants and which takes tuples of 4 to tuples of the instance. 

Lemma 1. Let I be an instance of R; let f :X -4Y be a dependency and t an 

X-value. Then fl(z) is defined iff T;00 and no non-distinguished symbol appears 

in (sof(4))(x). Further 

11(x)=(97/(4) )(z) 
when fi(x) is defined. 

Proof. Let t be any tuple with t[X]=x. If 4=0, it is apparent that ./ Ulti is 

not a satisfying instance. Thus no Y-value may be found to satisfy the definition, 

and fi(x) is undefined. Otherwise, assume (pf(4))(x) contains no non-

distinguished symbol, but t [Y];•(9,f (4))(x). But then there is no valuation func-

tion from 4 to / Ufti; therefore, I UM is not satisfying. Finally assume 

(c f  (T;))(x ) contains a non-distinguished symbol in some column; say 

(;cf (4))(x)[I'i ]=b. Assume / Ljt is satisfying and let g be a valuation function 

from 4 to I Ufti. Let g' be defined such that g'(a)=g (a) for a •• b and g'(b)=c 

where c is a Yrvalue not appearing in I LAW. Then g'(Ii) is a satisfying 

instance, implying Mx) is undefined. • 

The crux of examples 1 and 2 is that f may be derived from g and h. Sound 

and complete inference rules for deriving functional dependencies from a set of 

such dependencies have been known since the work of Armstrong [A]. The clo-

sure of a set, F. of dependencies, denoted F*, is the smallest set containing F 

which is closed under the inference rules. Two sets of dependencies, F, C are 

equivalent, written if F4 =G+. G is said to be a cover of F when FEC. C is a 

non-redundant cover of F when no proper subset of C is a cover of F. 

A particular sound and complete set of rules is given by Bernstein Pl. The 

.1n the presence of domain constraints [F2], such an Yrvalue may not be available. 
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rules are reflexivity, augmentation and pseudo-transitivity. 

(reflexivity) 01 —X >X 

(augmentation) fX-0 Yif —XFIr-* Y 

(pseudo - transitivity) IX 	YW 3F -  XW -PZ 

Bernstein has shown that any derivation of any dependency having a single 

attribute on the right from a set of such dependencies can be done using 

pseudo-transitivity as the sole inference rule followed by at most one application 

of augmentation. In [B], he presented a labelled graph construction which 

models derivations using pseudo-transitivity as the sole inference rule. The 

graphs are called derivation trees and they are defined recursively. 

i) lf A is an attribute, a single vertex labelled A is a derivation tree. 

ii) 1f T is a derivation tree, B 1E1 2  • • • Bp -)C is a dependency and C labels a leaf 

of T, then the tree formed from T by adding p leaves labelled B 1,13e, . . . , Bp  

as descendants of C is a derivation tree. 

iii) Nothing else is a derivation tree. 

A derivation tree built with respect to a set of dependencies, F, the leaves of 

-which tree are labelled by the set X and the root of which is labelled, A, is called 

an F-based derivation tree of X.-0A. Such an object need not be unique. 

Bernstein gives the following justification of psuedo-transitivity. "[Let f be 

X -, Y; g be }W . If h is XTV -► Z,] we can say h (xw) is defined to be g (f (x)w)." 

We intend to explore the consequences of this idea. We will interpret each depen-

dency in the given set as the appropriate table lookup expression, So. We will 

compose these expressions using a given derivation tree as a guide. The result is 

called a derivation expression, Having done this, we will compare the derivation 

expressions for a given dependency to each other and to the corresponding 

function as defined above. 

We proceed in stages. The first stage produces an expression over 
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projection and a modified form of selection in which the selection formula may 

involve expressions. The second stage transforms the expression into one over 

selection, projection and join, demonstrating that the modified selection opera-

tor adds no new power to the relational algebra. 

Stage 1. Let Dt be a derivation tree. The expression constructed by stage 1, 

denoted 7(Dt), is defined by recursion on the height of Dt as follows: 

7(Dt )= 

i) if height (Dt)=0, then 1, where / is a formal variable associated with the label 

of the single node in Dt; 

ii) if height (Dt)>0 and letting the degree of the root of Dt be m, then 

71.11(0)11=70i OA • • • AX,,,=7040(1 )) 

where B is the label of the root of Dt; Xi is the label of the root of Dti, the ith  

subtree of Di. As we are concerned with expressions computing functions, 

each evaluation of y(Dti ) returns at most one value (formally, at most a sin-

gleton. unary relation instance). 

The modified selection expression generated by part ii of the definition is 

meant to return the subset of the relation comprised of tuples whose Xi-value is 

the value returned by the expression 7(Dt t ). 

Stage 2. Let e=7(Dt). Define a function 6 recursively on the depth of 

expression nesting of e (equivalently, the height of Dt) as follows: 

if the depth of e is 0, then 6(e)=e, which is some formal variable I; other-

wise, e is ri B (crc (1)) where C may be written 

CiA • - • ACkADIA • • • AA 

for k,1. 0, where Ct is a simple condition of the form "attribute = formal 

variable" and Di  is of the form "attribute = stage 1 expression". In this case 

6(e) is given by 
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where ei  is the stage 1 expression for i J . The join portion of this expression 

is the subset of the relation comprised of tuples whose values: are given by 

the values of the converted stage 1 expressions. Thus, informally, 07071) 

is as desired. 

The expression formed from a derivation tree, Dt, for an fd f :Li. • • Lk- ►l is 

denoted ifrj  and is given by 

lb/ mA-f• At 1 • • ' ligd(7(Dt))) 

where Pi  I 	is the set of formal variables for the leaves of Dt. For 

g:L i _. • • L k Lk+i  • • • L k+m -,A derived by augmentation from f. the corresponding 

expression is 

vg =N  M I  • • • /1,44.1 • • • tic+m.(07(Dt))) 

This effectively ignores the values of the attributes added by augmentation. 

Therefore we will feel free to denote by 'Of  the expression for the derivation of 

any fd from f by augmentation. 

A derivation expression will be called trivial if the tree which generates it is 

trivial: i.e., is of height 0. If the label on the only vertex of a trivial derivation 

tree is A, the dependency derived is A ---)44 (by reflexivity). The expression for this 

tree is 

Xa.a 

which for every instance J is the identity on thm.(4 ). For consistency, we define, 

where v is an A-value, 

((V. Xa.a )(J))(v )mi.0 

This convention allows us to replace the selection operator with a join. This form 

facilitates any proof by induction over the complexity of the expression. Note 

that some trivial dependencies may have non-trivial expressions. 
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Example 3. Reconsider example 1. The derivation tree for f from g and his 

x 

The first stage expression for this tree is 

7(Dt)=Trz(crw=wAi=n yfri,(1))(1 )) 

The output of stage two is 

a(7(Di))=Trz(avr=waTrY(cr1.-.:(/))) */)) 

Rewritten without selection, this becomes 

Trzaw 	((nr(ixi a  I)) a  I)) • 

The following property of derivation expressions is basic. 

Lemma 2. If I is an instance satisfying a set of functional dependencies F 

and ip is a derivation expression for X 	wrt F, then for all X—values x, either 

))(x)=10 or I (31,(/))(r) =1. 

Proof. A simple induction on the depth of nesting in V, which is omitted. ■ 

If (• 1;(/))(x)=0, we say V: is undefined at x in I. If •p(0)(x)--xfai, we will write 

(314.0)(x)=a. Lemma 2 states that, if 11, is a derivation expression for X--.44 built 

with respect to a set of dependencies F, then 7fr is a mapping from instances 

satisfying F to functions from X-values to A-values. 

Since a dependency may be derived from a set of dependencies in more 

than one way, 719 f as defined is uniquely determined only with respect to a given 

derivation tree. Say that there are 7L distinct derivation trees for a given depen-

dency.t Assign the integers 1 • • • n to these trees in any way. Denote by ifi5 the 

There may be infinitely many distinct derivation trees. 
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expression generated by the 	derivation tree for f. We will show, by way of an 

example, that instances may exist for which not only 44(.0a644(/), but indeed 

domain values exist for which these functions return distinct results. 

Example 4. Let F=V -PA, X -•B, YA -'Z, YB -'Z i. Then Fi—n- -4z in two 

different ways. Consider the instance, which satisfies F 

X AB Y Z 
J= si a1 6 1 Ye Z 

X2 ai b2 Yi Z2 
X3 a2 6 1 *Y1 Zs 

The two stage 1 expressions associated with the two derivations of XY-4Z 

are 

nz(aY=y Ad-zir A frx ,(1))(1 )) 

which uses X -PA, and 

1
TZ(CrY=yAB=na(az...(/))(1 )) 

which uses X -•.B. The derivation expressions are: 

11/ 1-V. Xxy. nz(crY=ArrA(crx=z(I))) */)) 

1P2=A-1. Xx Trz( 07'=yanB(aXam(I))) */)) 
Partially evaluating each of these expressions in I at xiyi we have that 

and 

where 

(1P 1 (J ))(x 1Y 1)= 7rx(crY=v i(P)) 

(112(J))(x t)=- 7rz(ar.viV")) 

X AB Y Z  
ir= 	x i 	a 1  b i  112 Z 1 

X2 a 1  b2 yi Z2 

 

   

   

and 
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X A B Y Z  
j,.= 	z1 a, bi y2 Z1 

Z3 a2 61 Vi 2 8 

Which is to say, (Ii i (J))(ziY1)=z2 and ( 11'2(J))(xiy1)=z3. 

Consider calculating XY-sZ at x iy i . 4,y , is given by 

X AB Y Z 
x1 	ai 	b1 1/2 	Z1 

Z2 at 6 2 Y1 Z2 
z3 a2  b 1  yt Z3 

xt Y i 

(the blanks representing non-distinguished symbols) and we apply the 

transformation sequence 

<X -PA, /1, 4i> 
<X-P13, f 1, 4i> 
</A -0a /2, 43> 
<YB- , ,Z/3, 43> 

the last transformation being contradicted. So 4=0 and the function is 

undefined at that point. ■ 

In light of example 4, we define for any functional dependency f, a mapping 

4,f  from instances to functions. For f is defined for an instance / and 

X-value x as 

(4,/(1))(x)=( y (/4(1))(x)) 

where the union is taken over all derivation expressions for f. This definition is 

sensitive to the particular set of dependencies with respect to which the deriva-

tions are carried out. A consequence of this sensitivity is pointed out in a subse-

quent section. We say that Si  (/) is undefinecit at a value x where 

(tiv(/))(x ) *1. As above, if (4,,,(/))(x)= we will write (MI))(x)=a. 

Finally, we add dependencies with multi-attribute right hand sides. For 

tOur use of the term 'undefined' to describe certain behaviour of the evaluation of expres-
sions does not alter the fact that (lif (i))(x ) is well defined for all I, z. (41/(0)(X ) is in 
every case an instance of a relation whose scheme is given by the right hand side of f. 

Nbr 
1 
2 
3 
4 



X A BY Z C 
x i  a 	b1 Ye Z1 Cl 

x2 a1 b 2 lit Z2 Cl 
x3 a 2  bi Yi Z3 C1 
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f:X--,Y where Y= 	• • Y , let lift  be the expression for ft:X-Pri. Then 

f(I)) (X) = 1 (‘11  f 1 (n) (X) . 1f (I) is defined exactly at those points where all of 

the Sip) arc defined, as the reader may verify. For the most part, we will res-

trict ourselves to single attribute right hand sides for convenience. 

Now we present some facts relating derivation expressions to functions in 

the setting of a single relation. may, for a given instance, be defined at more 

values than .pf is defined. However, the two functions agree wherever both are 

defined. 

Proposition 1. For any satisfying instance I, fd f :X ->11  

(9/ VDC(*/(/)) 
Furthermore if fi(x) is defined then 

fi(x )= (lif (I))(x) 

Proof see [G]. • 

This proposition, with lemma 1, states that the value of a function at a point 

is computed by some derivation of that function. It suggests that the derivations 

may provide more information than is actually present in the relation, returning 

values where the function is undefined. This can in fact occur. 

Example 5. Add to the set F in example 4, the dependency Z -.C. Let g be 

XY ->C and let K be the instance 

K= 

Then (4,9 (10)(x 1y 1 )=e 1 , but gif (x iy 1) is undefined, as in example 4. ■ 

In the many relation case considered in the next section, we will see that the 

derivations may be less defined than the function. 
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We end this section by stating a fact about derivation trees. Whenever F 

allows derivation trees to be built within which an attribute may label more than 

one node on some root to leaf path, then F allows the construction of infinitely 

many derivation trees. (This occurs, for example, when F41-43, B -■A 1.) Those 

trees in which no attribute appears more than once on a root to leaf path are 

called bounded trees; there are clearly only finitely many of them. 

Proposition 2. For any satisfying instance I and dependency f :X 	if f1(a) 

is defined then fi(x)=(ifr(/))(r) where ip is the expression for some bounded 

derivation tree for f. 

Proof see [O]. ■ 

Observe that at values of X for which fr is not defined, it may be that a non-

bounded expression may return a result not returned by any bounded expres-

sion. Sets of dependencies exist such that for any k >0, an instance satisfying 

the given set may be constructed in which k distinct results are returned by k 

different expressions for the same dependency. 

Example 6. Let 

R =X DX pit' 2X 3X 4X 5  

F 	X3-'X1 
X4X5-+X3, 

For ease of construction, for each i let dom(Xi)=N, the natural numbers. 

Let f be X0X2X5-)X 3  one of whose non-height-bounded trees is 

X 0 v  
4 X1 	>&3 

---/ 

X
i 	)(+ v 

s.7.1%  X 
■ 	  

Consider the instance of R given by 
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I 
X5 X i 	XL X3 X4 X5 

0 	0 
0 	0 	0 
1 	 1 	0 	0 
1 	0 	1 
2 	 2 	1 	0 

k-1 0 	k -1 
k 	 k 	k -1 0 

in which the blanks represent unique values. Therefore I has 2k +1 tuples, 

the first of which contains 0 in XoXi. The i +1" contains 

• for i odd 1-
2 

in XiX4. 0 in Xs: 

A • for i even 
2 
— A 

v 

2 	
1.11 	4, 	111 .01. 5. 

The reader may wish to verify that 

(.10 1 (1))(000)=1: 6fr 2(I))(000)=2 

and that, if IV is the tree formed by adding 1-1 copies of .0 to *I , then for 

1_1k 

(f i(I ))(000)=1 ■ 

3. Functional Dependencies in Multi-relation Databases 

We now take up the behaviour of functional dependencies in databases con-

taining more than one relation. The schema of such a database.is of the form 

R=IR . , Rk 3. A state of such a database is of the form p=fr 1, . . . rk 3, where 

for each i, ri is an instance of Ri. We associate with such a database a universal 

relation scheme R where R= u Ri . An instance of R is called a universal 
ISiSk 

instance for R Let F be the set of functional dependencies which we wish all 

states to satisfy and represent. The set F 1  is the subset of F+  which mentions 

only attributes in RI. We say that p is locally satisfying if for each i, r1 satisfies 
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We say that R is cover-embedding if ( U Fir=F+. 
i‘k 

Consider a schema R and a state p for R which satisfies the Universal Rela-

tion Instance Assumption. That is. there exists an instance I of R such that for 

every instance ri of p 

TrRi (I)=T{ 

Such a state is said to be join consistent, since the join of such a state is such an 

instance. Now if R is cover-embedding and each instance ri  of p satisfies Ft , then 

I satisfies F. Thus for join consistent states of cover-embedding schemas, local 

satisfaction may be taken as a definition of satisfaction for the state. If p is not 

join consistent, then this definition is vacuous and another must be sought. 

If p is a state and C is an instance of R. then C is said to be a containing 

instance for p if nRi(C)Zri  for each instance n of p. If C satisfies F. then C is said 

to be a weak instance. Our definition of satisfaction is straight-forward. 

(Satisfaction-2) A database state is satisfying if there exists a weak 

instance for it. 

Say that fir is a weak instance for a satisfying state, p. Then p may be expanded 

to a join consistent state through insertion of certain tuples, namely those 

tuples in 7TRi (iir)—r{ for each 	such that the resulting universal instance 

satisfies all the dependencies of interest. A non-satisfying slate can not be 

modified so as to have a satisfying universal instance without some data being 

dropped. The intuition behind this definition is that a satisfying state is one for 

which it. can not be proven that some dependency has been violated. 

Even within cover-embedding schemes, local satisfaction is not sufficient for 

satisfaction. We demonstrate this through an example. 
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Example 7. Let F=fA 	B -'C i. Lct R=MB, AC, BC R is the output of the 

schema synthesis algorithm of Biskup et. al. [BDB] when given input F. Let p 

be the state 

A B 

 

A C 
0 0 

  

B C 

     

0 0 

   

0 1 

      

No weak instance exists for p. Any such instance must have a tuple with AB-

value 00. The C-value of that tuple must be simultaneously 0 and 1. • 

In [H], Honeyman gives an algorithm based on the algorithm of Downey et 

al. [DST] for deciding if a database state has a weak instance. The algorithm has 

time complexity 0 (nlogn) where n is roughly the number of tuples in the state. 

Our interest is in the functions represented in a database state, to which we now 

turn. 

(Representation-2) Let R be a schema and F a set of fd's. Let f :X -*I' be a 

dependency in F or derivable from it. Let p be a state for R. Then for x any 

X-value and y a Y-value, f 0(x)=y if and only if 

i) there rxists some weak instance, w, for p in which fw (x)=y and 

ii) for any weak instance w' for p, either f„,.(x)=y or fue  is undefined at x. 

Otherwise f p  is undefined at x. • 

The functions represented in a database state map values in their domains 

to results which are required by the information in the state. By this definition, 

non-satisfying states represent only empty functions. 

This definition does not suggest an effective means of calculating the func-

tions. The method used in the single relation case may be adapted for use,in the 

multi-relation case through the use of the tableau for the state, which is a con-

taining instance for the state in which certain places are occupied by variables. 
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(Tableau) For each tuple, t, of each relation instance, n , in a state p, there 

is a row, u, of the tableau Ts, with t ]=u [A ] for every attribute, A, in 

For every attribute. B. not in 	u[B] is a non-distinguished symbol 

appearing nowhere else in 7',. 

The chase procedure as described in section 1 may be applied to a tableau. 

The result of chasing a tableau T, denoted T s  and called a completed or chased 

tableau, does not depend on the order in which the transformations are applied 

[G] nor on the cover with respect to which the transformations are formed 

[AAIS]. If T;,= 0, where p is not the empty state, then p has no weak instance (H] 

LG .I. As for augmented instances in section 1, there is a valuation function from 

the completed tableau into every weak instance for the database state. Lemma 

1 can now be restated for multi -relation database states. 

Lemma 3. Let R be a scheme; F be a set of fd's. Let p be a satisfying state 

for R and let f :X -kel be a dependency in F or derivable from it. Let ,ro be an X-

value. Let T be T to which a row is added containing X-value x o  and new, distinct 

non-distinguished symbols everywhere else. Then 

fp(zo)=(Vi (n)(xo) 
where T' is the completion of 7' with respect to F and f i,(x0) is undefined if T 4=c6 

or (cof (T 4))(x0) contains a non-distinguished symbol. ■ 

Example 8. Consider the system defined by: 

F=PC1 -•Y 1, 	Y 1 Y2-► X 1, Y1Y2-•Xz  X1X2-► 21 

R=fX1Y1, X2 Y2, nYoZ 

Let p be the state given by 

Xl Yi 

  

X2  Y2 

   

Y 

  

xp ye 

  

y1 Y2, z 

       

Let f be the dependency 11X2-+Z. We may use lemma 3 to compute 

fp (x i z 2). T is 
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Xi Xo Yi YZ Z 

ti zi  b i Yi 	6 2 	b 3  
t2 6 4 xe be Ye be 
t3 67 be yi y2 	z 
t4 x1 Z2 be b to 6 11 

where the subscripted Ifs are non-distinguished symbols. A transformation 

sequence for T with respect to F is 

<X1 -0 	isi> 
<X2- ► Y• iteot ,d> 

<Y iY2-+X 1. it s.t 4i> 
<Y 1 Y2-+X it 3,t 4j> 

pra-,Z, it a, t4i> 

which sets 611=z.  Therefore (sof ( 71)(x izz)=z =fp (xix2). This example 

justifies our interest in calculating functions on values not present in a 

database state. It does not seem reasonable to believe that any state of R 

"contains" any X iX2 value. Nonetheless, R has states in which f is defined. ■ 

In proposition 1 we saw that for the single relation case, a function is no 

more defined than its derivation expressions. We now demonstrate that this is 

not true in the multi-relation case. The derivation expressions can only be 

applied to a satisfying single relation. The tableau 7'; is the natural candidate. 

The prior example demonstrates the falseness of proposition 1 for the multi-

relation case, as the only derivation expression for X1X2- ► Z with respect to F is 

just the simple select, project expression, co. However. this result depends upon 

our choice for F. The proposition gives an example insensitive to the choice of 

cover. 

For the fd, f:X-#Y, an expression 'Of will be considered undefined in T; at x 

unless (MT; ))(x)=y for some constant Y-value. Similarly. (iff (T;))(x) is said 

to be undefined unless it contains exactly one constant Y-value and when defined 

will be said to be equal to that value. We say that a function f is more defined 

than a function g, if for all x at which g (x) is defined, f (x)=g(x), and some 

value x' exists at which f (xi) is defined and g (x') is not. 
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Proposition 3. There exists a schema R having a state p such that a func-

tion gp  for gEF+  is more defined than Sg (ri, ). This is insensitive to the choice of 

cover for F with respect to which ifg  is defined. 

Proof. 	We give an example of such a system. 	Let 

X2-.X4. X3 -oX4. X4X5 -117. X4X6-PX73. Let ft= /X3X4X07. XaX5Xe. XaCzi 

Let the state p be given by 

 

X3 X4 Xe X7 

  

X2 X5 X0 

  

X1 X2 

        

 

0 	0 	0 	0 

  

0 	0 	0 

  

0 	0 

T; is given by 

      

Xi X2 X3 X4 X6 Xe X7 

0 	0 	0 	0 
0 	b1 	0 	0 	ba 

0 	0 	a l  

where the blanks stand for non-distinguished symbols which are not repeated. 

Let g be X iX9X8-•X7. There are two derivations of g from F; one uses X 1 -,X4. the 

other X3-0X4. Using lemma 3, we can calculate gD(00)=0. But (11 ,g (TD)(00) is 

undefined. The derivation through X1-+X 4  returns b 2. The derivation through 

X 3 -.X4  returns cb. Proofs of these contentions a:e left to the reader. 

We can prove the result to be insensitive to the choice of cover for F. by 

showing that F is unique; that is, for any set of fd's G such that the right hand 

side of each dependency in C is a single attribute, C=F and C non-redundant 

implies C =F. 

So let C be non-redundant and equivalent to F. We know CF—X1 -■X4. So 

there is some fd in C with left hand side X 1 , since, by inspection, none of the 

inference rules decrease the left hand side of any fd. X4 is the only attribute in 

the closure of X1 wrt F (other than X1 itself). So X 1 -PX 4EC. Similar arguments 

hold for X2-0(4, X2-)X4. Now note that each of X4, X5 determines only itself in 

F. Therefore the derivation of X 4X6-►X7  from C does not proceed by pseudo- 
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transitivity from X 4-,  W, X5 W-->X7  for any W (and symmetrically). So there is an fd 

X.I.X 5-Y in G. If Y is other than X7, then C%F. The same argument shows 

X 4X13 -)X 7  is in C. 

Since FCC. Cs---F and C is non-redundant, C=F as claimed. • 

4. Representation by a Schema 

In the previous section we gave a definition of function representation in the 

state of a mul' iple relation schema. We now discuss what it means for the 

schema to represent, or fail to represent, a function. 

(Representation-3) Let R be a schema and F a set of fd's. Let f be a depen-

dency in or derivable from F. We say that R represents f if there exists a 

state p for R such that f p  is not the empty function. • 

Consider the contrapositive of this definition. If in every state p for R f p  is 

defined nowhere, then surely it is reasonable to state that R does not represent 

f. Therefore any reasonable definition must be at least as strong as this one and 

the results of this section are implied by any such definition. 

The main result of this section is that a schema represents all the functions 

of interest exactly when it is dependency preserving with respect to them. 

Before we can present the result, we need to make some preliminary definitions. 

Associated with any schema there is an expression called the projection-

join mapping of the schema. If . . . , Rki is a schema, the associated map-

ping, denoted rn, R, is given by 

mita'AL (nR I (I) .  • • ' s nRk U)) 

where I is an instance of the universal relation for R. Thus mR is a mapping from 

universal instances to universal instances. R is a dependency preserving schema 

if for any satisfying instanced, m (1) is a satisfying instance. 



- 24 - 

A tableau, Tmn, may be constructed for the projection-join mapping associ- 

ated with a schema. Let J be a universal instance for R consisting of a single 

tuple. For uniqueness and conformity with [ASU] and others, a special constant 

called a distinguished symbol is used in each column of this tuplc. Let o be the 

state formed by projecting this instance onto the schemes of R. 7,,,n  is just r,, 

the tableau for this state. 

A set of attributes W is said to be embedded in a tableau if there is some row 

t of the tableau such that for each A EFPI, t [A ] is the distinguished symbol. A 

functional dependency X -PY is embedded in a tableau if the set XY is embedded 

in it. The following theorem is proven in [BMSI11. 

Theorem 1. The following are equivalent: 

i) A schema R preserves a set of dependencies F 

T ix  embeds some non-redundant cover of F 

iii) nix  embeds every non-redundant cover of F. 

From this theorem we can immediately see that any schema which is either 

cover-embedding or a lossless decomposition is dependency preserving. (A 

schema is a lossless decomposition if Tm.  contains a row of only distinguished 

symbols. In this case for all satisfying universal instances I, mR(I)=I.) 

The following states a basic relationship between an arbitrary state and the 

table au Trni. 

Lemma 4. Let t, u be rows of x(7'12) for a state p of a schema R and some 

transformation sequence x. Let t correspond to a tuple from relation T, u one 

from relation U. Let A be an attribute. 

1) If t [A ]=/24/1 ] _hen in T:n1  TEA ]=U[A] where the relation names are used to 

denote the rows of T;In1  representing them. 
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2) If t [A] is constant then T[A ] is distinguished. 

Proof. We show that any transformation sequence on a database state 

tableau can be carried out in the tableau T. Let <h, ir,s 3> be a transformation 

of the sequence where r is from relation R, s from relation S. Convert this to 

i>. Note that if R =S, this is a null transformation and if it makes the 

premise of 1 or 2 true the consequence will also hold. 

We prove the lemma by induction on the length of the transformation 

sequence preceding the transformation making the premise of 1 or 2 true. 

Basis The first transformation in the sequence involves an fd whose left 

hand side is a subset of one of the relation schemes of R. 

Induction Assume the lemma holds for prefixes of length no greater than m. 

Assume a prefix of length rrL+1. We need to show that the m+2'nd transforma-

tion becomes enabled and if it makes the premise of property 1 or 2 true in To, 

then the consequence will hold in 77, 1. 

Let T=<W 	fr,s 3> be the m+2'nd transformation where W= W 1  • • • Wi• 

Consider the transformation, if one exists, which set r[Wd=s[W i ] lNi V. If no 

such transformation exists then this equality holds in the 7'0  and therefore in 

TmR  since WI ER, WiE.S. Assuming such a transformation does exist, it preceded 

T. has been executed and R [Wt]=S[WW] by induction after its execution (and 

possibly before). So T becomes enabled in Tm 2. Now assume r has the effect of 

!tti ng t [B ]=u[B]. Then, possibly after renaming, r[B]=t[B] and s [13 ]=u [B 

beforc execution of T: that is, these equalities were established by a transforma-

tion, which preceded T. Therefore, by induction, R [B ]=T [B ] and S[B]=U[B] 

and after T is executed in Tma  T [B 1=U [B ] (and possibly before). 

Now assume r sets the B-value of some row to a constant. This constant 

appeared in one of r [B or s[B]. Thus R [B (or S[B]) is distinguished by induc- 
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tion. Thus property 2 holds after r is executed in T, (and possibly before). ■ 

For a schema R, the tableau Tx is the tableau T„, 2  to which a row is added 

containing only distinguished symbols in the X-columns and new, non-

distinguished symbols everywhere else. This added row will be called the X-row. 

Lemma 5. A schema R represents a dependency f:X-)Y in or derivable 

from a set of fd's F if and only if in Tj the Y-value in the X-row is all dis-

tinguished symbols. 

Proof (Only if) This is an easy consequence of lemma 4. Tx is the tableau 

of the projection-join mapping of the schema RUM. The procedure of lemma 3, 

which calculates the value of a function at a point, is the chase of a state of this 

schema. 

(If) Consider a state p for R which is the set of projections of an instance of 

the universal relation containing a single tuple, t. We claim fo(t[X])=t[Y]. 

Let T be Tp u It t ! where tz [X]=t [X] as in lemma 3. T is (up to isomorphism) 

the tableau Tx. By hypothesis, T .' contains a row containing only constant values 

in the XY-columns. Since the only Y-value in 7' is t [Y I, the claim is established. • 

It is not difficult to show that dependency preserving schemas satisfy the 

conditions of lemma 5 for all dependencies in or derivable from F. Such sche-

mas represent any dependency appearing in any non-redundant cover, as a 

consequence of theorem 1. For a dependency X--)Y, not in any cover, representa-

tion is an immediate consequence of the following proposition and the fact that 

any superset of a dependency preserving schema is dependency preserving. 

Proposition 4. ([BMSU], proposition 1) Let R be a dependency preserving 

schema. Let X be the set of attributes of a row r of T m5  containing distinguished 

symbols. Then the row of Tr.n5  corresponding to r has distinguished symbols in 

the attributes 	X-044 €F 41 and no symbol of r outside of X+  repeats in 
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T s  . (X* is called the closure of X and is called a closed set of attributes.) m a   

We will now show that dependency preserving schemas are in fact the only 

schemas which satisfy the conditions of lemma 5 for all dependencies. 

Let X -0A. be a dependency in F not embedded in nil,, but embedded in T. 

We may assume without loss of generality, that no row of 7„ 1. 11  has only dis- 

tinguished symbols in the X-columns. Assume otherwise. Note that 77 may be 

formed by chasing 7,,,g n u ftxi where tx is the X-row. If some row of Tr% has all 

distinguished symbols in the X-columns, then T:nit  U/ixi contains T;n1  in the 

tableau containment senset. Since the chase preserves the containment rela-

tionship and X -+A is embedded in TA:. it must be embedded in Tn.% li, a contradic-

tion. Assume however that X--'A is embedded in T. 

We may begin the chase of Tx by first chasing the rows of Tm5, transforming 

them to Tr.45. Let x be any sequence of transformations with respect to F which 

completes the calculation of 71 from this point. We wish to distinguish two types 

of transformations. 

i) A transformation is of type i if it equates a non-distinguished symbol in the 

X-row to some other non-distinguished symbol. 

A transformation is of type ii if it equates a non-distinguished symbol in a 

row of T„,. a  to a distinguished symbol. 

Lemma 6. If x makes any two symbols in rows of Vita  equal which were not 

equal in T,', 11, then x contains a transformation of type i or 

Proof. Assume otherwise. Let 7-=<Z-►ei, ti,t23> be the first transformation 

of x which makes two such symbols equal. Since there are no transformations of 

IA tableau T 1  contains a tableau T2. if a function exists from the symbols of T1 to the sym-
bols of T2 which i) maps rows of T i  to rows of T2 and it) preserves distinguished symbols. 
Such a function is called a containment mapping. 
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type ii in x, t 1 [A], t2P1 I must both be non-distinguished. Neither £ 1  nor t2 may 

be the X-ro ►  by the exclusion of type i transformations. T must not have 

become enabled during the calculation of T, 1, else tjA j=tAA 1. Therefore it 

became enabled during x. But then two of the symbols in t i, t2 became equated 

during x, violating the choice of r as the first transformation with this effect. • 

Lemma 7. The dependency of the first transformation of type i or ii which 

appears in x is not embedded in TIT,' a  but its left hand side is embedded. 

Proof. Let r= <Z -,A, it 1,t 2i> be this dependency, if it exists. By lemma 6, 

one of t i , t 2 must be the X-row. Let t 2 be the other row, corresponding to a row of 

T .  Since there are no prior transformations of type i, it must be that t2[Z] is m r  

all distinguished. Since there are no prior transformations of type ii, all these 

symbols must have been distinguished in 7',4„, a. But t 2[44 ] is not distinguished, 

otherwise r would not be of type i or ii. • 

As we have seen before, if Z is embedded in some row of T„,,. 1  but Z-->C is not, 

then 71; will not embed Z -PC and R will not represent it. Therefore we may 

assume that no transformation of type i or ii appears in x. Further we may 

assume that every transformation of x involves the X-row. Let F' be the subset of 

F appearing in transformations of x. It can be shown that F'F—X-'Y (see [G]). 

But X -•Y can not be in F', since no row of Tm. , will have X become embedded in 

it. Therefore X -0Y is not in F or F is redundant. 

We have shown that a non-dependency preserving schema fails to represent 

at least one functional dependency in every cover. The reader should note that 

it may represent some of the non-embedded dependencies in a non-redundant 

cover. In example 8, the dependency X iX2-,Z was shown to be represented, even 

though it is not embedded in nt . Note that Lhe dependencies (i=1, 2) 

are not represented in that example. We express this result as a theorem. 
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Theorem 2. A schema R represents all the functional dependencies in or 

derivable from F if and only if it preserves the dependencies in F. ■ 

We can now prove a property of dependency preserving schemes which rein-

forces the belief that they are "good," namely that when an instance of the 

universal scheme is stored as the state of a dependency preserving schema, the 

functional associations of the decomposed state are exactly those of the 

instance. 

Proposition 5. Suppose R preserves a set of dependencies F and p is the set 

of projections of a satisfying universal instance I. Then for every ler'', f p =f1. 

Proof. (Sketch) It can be shown that since p is join consistent, 77, contains a 

set of isomorphic images of Tt1a, one image for each tuple of ./. Since R is depen-

dency preserving, every row of Tp has constants in a closed set of attributes and 

no non-distinguished symbol appears more than once. Suppose we wish to calcu-

late fp  at a value x. The chase of n uf t.1 will, unless and until it finds a con-

tradiction, make no change to the rows of T. So every transformation will make 

a non-distinguished symbol of t 2  constant. Exactly the same is true of any 

transformation sequence for I. From these facts it can be shown that for every 

transformation sequence on 7'; Uit x 3 there is one on IZ  with the same effect on 

the row t z  and conversely. The proposition follows from that. A complete proof 

may be found in [G]. 

5. Functional Dependencies as Constraints 

We have shown that a schema may represent functional dependencies which 

are not embedded in any relation of the schema. This has salutory effects on 

schema design. It has long been known that there exists sets of dependencies 

for which no cover-embedding schema may be found each of whose relations is 

in .Boyce-Codd Normal Form (BCNF)t. It has also been known that lossless 

1.  A scheme R is in BCNF if for every functional dependency X-•.1 embedded in R, X is a key of 
X -0R 
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decompositions in arbitrarily stringent normal forms can always be found for 

any set of dependencies. (BCNF is the strongest normal form when only func-

tional dependencies are considered.) Theorem 2 suggests that a lossless decom-

position is ''good enough". We present further evidence for this belief. 

Example 9. Consider R =ABC, F=f.A.B --0C, C 	No BCNF, cover- 

embedding decomposition of R exists. However the schema P.=fAC, BC; is 

lossless and therefore dependency preserving. Therefore R represents the 

dependency AB which it does not embed. States for R may be con-

structed which are not satisfying precisely because they violate AB 

A C 
a 1 	c 1 

 a1  c 2  

B C 
b l 	C l  
bl 	C2 

This state is locally satisfying. However the reader may convince himself 

using the techniques of the prior sections, that no weak instance exists for 

it. The state is the projection of a universal instance containing the two 

tuples a ib i c i  and a lb i ce. This instance does not satisfy F. ■ 

Expanding on example 9, we would like to know under what circumstances a 

dependency has the power to act as a constraint on database states. If a schema 

represents the dependency X -.Y, then it is capable of assigning a Y-value to any 

X-value. It seems reasonable to believe that such a schema is capable of assign-

ing more than one distinct Y-valuc to a given X-value. A state of the database in 

which this occurs would be illegal, were this X-value to appear in the database. 

Moreover, we can show that dependencies which are not represented may still 

act to constrain the set, of satisfying database states. 

Example 10. Let 1" be 	B 	CD -+E;. Let R be MB, BDE, C3.Let a 

state p be 
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A 13 

 

1_13  D E 
0 0 0 
1 0 1  

0 0 
0 	1 

 

   

with the instance for C empty. p is locally satisfying but not satisfying as 

the reader may verify. The reader may also verify that no dependency in F 

is represented by R. However, if any dependency is removed from F, p has a 

weak instance satisfying the remaining dependencies. ■ 

If R is a relation scheme, it is customary to define 

SAT (R,F) ----ir J r is an instance of I? satisfying F 

By analogy, if R is a database scheme we define 

SATIV (ItF)=-4 I p is a state of R having a weak instance wrt F 

We may now define what is meant by a dependency acting as a constraint. 

(Constraint.) Let R be a database scheme; F a set of fd's. Let f be a func-

tional dependency. We say that f acts as a constraint on R wrt F if 

SATW(R,F Li if DoSATW(R,P—if i) 

Note that SATW(R,F uif NSA TW(R,F—ff I) holds for all R. F, f. The 

definition implies that, when f constrains R. chasing states of R using all the 

dependencies in F uff gives a different yes,/no result for some states than is 

given by not using f. Thus if f does not act as a constraint on R it does not affect 

the dctcrmination of satisfaction for any state of R. 

From the definition, we see immediately that if 	 f does not act as 

a constraint. This is an application of the easily proven fact that for sets of 

dependencies F and C. F-----C implies SATW(RF)=SATW(R,C) for any R. The con-

verse of this statement is false, as we show by way of example. 

Example 11. Let F be IA -)Cl. Let R be 1A13, BO. From lemma 5 we deduce 

that R does not represent A -0C. Therefore the chase of the tableau for any 

state of R never produces a tuple with a constant AC-value. Thus no such 

state contradicts A -IC. In short 
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SATFV(R, f A - ► C;)=SATW (R. 95) 

and every state of R is satisfying. ■ 

We now present a sufficient condition for a dependency to act as a con-

straint. We will then present a necessary condition. The two conditions are simi-

lar but not identical. We end the section by demonstrating that acting as a con-

straint is a "cover-sensitive" property of dependencies. 

Assume that F is non-redundant and f EF. Define the contribution of f wrt F 

by 

contri(f 	—(F — 

An element of contrF(f) is a dependency all of whose derivations use f. Since F 

is non-redundant, we always have f EccrntrAf). Let d be a vector of dis-

tinguished symbols; the length of the vector may be deduced from the context 

in which it appears. 

Theorem 3. Let R be a schema and F a non-redundant set of fd's. A depen-

dency f EF acts as a constraint on R if there exists a dependency g in contrAf) 

such that (4,  g (T:, 1 ))(e1)=a. 

Proof. Let g Eccmtri(f ) be L -4B and let (4,9 (7',„6 2 ))(0=a. Construct 10 a two 

tuple universal instance. Let these tuples be t 1, t2 and let ti[A ]=t2[A ] precisely 

when L -'A EV—if . Let p be the set of projections of w onto the schemes of R. 

We show that p witnesses the fact that f acts as a constraint on R. That is, we 

show pESATFY (R,F f 1)—SATFT (11,F). 

Part 1. pESATW(R,F f i). 

We show w is in SAT (R,F —if 3). Let h ->C be any fd in F-If 	If 

t i [M]=t 2[M] then L -.41‘f 	—fflr so L-,C€V-If 0+  and t 1 [C]=t2[C] by con- 

struction. 

Part 2. p%SATW(R,F) 
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Assume to the contrary. that p satisfies F. We note that Tp  contains two iso-

morphic images of Tmi, namely, the projections of each of t, and t 2.t Let these 

two images be T 1  and T2. Since T;*95, T; contains, in the set theoretic sense. 

the two images 71, T; of T,'„ R. Since (lfi,(T„,' 2 ))(d)=a then for some derivation we 

know (44(TI R ))(0=a. So (41,(71 ;))(t 	I)= t 	] and (i14(71))(t2[L])=t2[B]. 

That. is to say, I etfrgT;))(t i[T,])1 >1 contradicting lemma 2. It must be that p is 

not satisfying. • 

Theorem 4. For database schema R, F a non-redundant set of fd's, if a 

dependency f eF acts as a constraint, then there is a dependency g EF+  and 

some derivation tree Dii  constructed using f. such that (14(7.,,* R ))(d)=a. 

Proof. If f acts as a constraint, then there exists a witness to that fact, i.e., 

an element p of SATW (R F — f SATW (RP). Let x(Tp)=0. We analyze x with the 

goal of finding a derivation tree in which f is used and then show, using lemma 4, 

that the expression for this tree returns the distinguished symbol on the vector 

of distinguished symbols. 

Let. be some proper prefix of x. Consider two rows r, s of C(T p ) such that 

for some attribute A, r[A]=s[A]. The set of transformations 11"r[il]=s[A ]") is 

the subset of x directly responsible for this equality. if the equality holds in 7'0, 

then r("r[A]=s[A]")=0. Otherwise, there is a unique transformation 

v=<X-PA, it,ui> in such that before its execution r[A ]mss [A ] and after its exe-

cution r[A]=s [A]. This requires, possibly after renaming, that r[A]=t[A] and 

]=u [A ] hold before execution of v in Then 

F("r [A ]=s [A]")=1 ur("T [A ]=f[A]")Ur("s[A]=u[A]") 

Let r.---<Z -0C, fv,w?> be the last transformation of x; i.e., r is a contradic-

tion. Let v[C]=ei, w[C]=e2 just before execution of r. The sets F("v [C ]=c 1"), 

tCompare proposition 5. 
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l'("w [C]=c 2") can be defined. We can now superimpose a directed graph on x. 

The directed, arc-Iabelled acyclic graph C r(x) has a node for each transfor-

mation of x and the nodes 1 and T . The arcs of C r(x) are given by 

• an arc labelled C is directed from T to T and to each transformation in 

r( "v [C ]=c 1 ")Ur("w [C 1= c 2" ). 

• from a transformation <Y1 • • Yk-+B, fx,y i> in x, for each iEfl, • , ki, an 

arc labelled Y1  is directed to each element of l'("x[Yi]=y[Yi ]"). If this set is 

empty, then an arc labelled Yi  leads to 1 . 

The acyclicity of G.,.(x) is apparent: no arc leads to T nor from 1 and if 

t> is an arc then precedes v in x. 

One can establish by an easy induction that the set of all paths from T to I 

contains that subset of x which is necessary to reduce 7'0  to a. Since p is a wit-

ness for f, one of these transformations must use f. 

Now consider any set H of paths from T to I in Cr(X) which satisfies the fol-

lowing criteria: 

i) every path in H begins with the same arc 

ii) for every ?I mo', • • • Yh -,B, fx,y I> on some path in H, exactly k of the 

arcs leaving 77, no two labelled the same, are on paths of H. 

H corresponds in a natural way to a derivation tree: Let H be the graph formed 

from H by letting the nodes of H be the arcs of H, labelled accordingly, and an 

arc lead from nodc n 1  to node n 2  in H if the node which arc ni of H enters is the 

node from which arc n2 of H leaves. H is the line digraph of H [Ha]. (For H to be 

a tree, node splitting may be necessary in H for those transformations with two 

incoming arcs!' Assume therefore H is a tree as well.) The dependencies used to 

TTo find all the derivation trees in C i.(x), node splitting should be done before selecting the 
paths of H. However, here we are searching for only one tree. 
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form the derivation tree H are the dependencies used in the transformations of 

H. The left hand side of the dependency represented by H is the set of attributes 

labelling arcs incoming to 1; the right hand side is the label on the arc leaving 

T C in this case. 

As noted above, we may assume H contains a transformation on f; therefore 

H is a derivation tree utilizing f. Let # be the expression for H. It remains to 

show that (44 T,7; ))(d )=a. 

Each subexpression nA(craI)) of * corresponds to a transformation of H. 

Call the set of tuples returned by cro (1) during some evaluation of # the selected 

set for the transformation. Let the height of a transformation in H be the length 

of the longest path from it to 1 . By Induction on the height of a transformation, 

we show that its selected set when *is evaluated in Tm. R at d includes the rows of 

Trenn  representing the schemas of the rows of T o  in the transformation. 

The basis references those transformations of H enabled in To. For 

-+A, fr,si> such a transformation, clearly X CR nS (R the scheme of r; S the 

scheme of s) so the hypothesis holds. 

For the induction, let 77 -=-<Y1 • • • Y4 -►13, Ins i> be at height •rri. If the Yt-arc 

leads from 77 to <Z-PY.i.17.,,w then by construction r[Yd=v[Yi]=w[Yd=s[Yi] 

at the point during the execution of x at which 77 appears. Therefore, 

R [Yd= V[Yi]=W[Yd=S[Yd in T;n1  by lemma 4. If it leads to 1, then 

R[Yi ]=S[Yi l=a in T1 n. By the induction hypothesis and the expression for 77. 

R, SI is a subset of the selected set for 77. So the induction is established. 

Now consider the selected set for the root of •ft, the expression for the sole 

descendant of T in H. The rows of this transformation are constant in 

(x±i)(Tp) on the label of the arc leaving T (C in our example). Therefore they 

are distinguished on that attribute in the selected set, by lemma 4. This corn- 
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pletes the proof. • 

We may use the techniques of the proofs of theorems 3 and 4 to narrow the 

gap between them somewhat. If the collection S is a subset of a schema R, the 

mapping me  is a mapping from universal instances for R to universal instances 

for S. The rows of the tableau T,„ 8  form a subset of the rows of T,ns. The reader 

will note that the reasoning of lemma 4 applies to Tms. 

Theorem 5. Let R be a schema, F a non-redundant set of fd's, f EF. Suppose 

there exists SCR, g eF 4', such that 

1) N►g (T,'„ g ))(d)=a and 

2) for every derivation tree Dtt such that (34(T„,. 5 ))(d)=a. f is used in D. 

then f constrains R with respect to F. 

Proof. Let X be a set of attributes. For each B EV—X, say that f is 

unnecessary for <B,X,S>, if there is some derivation tree Dti for X -'LB in which f 

is not used and (14,B(T,p8  9 ))(d)=a. Define the set X by 

X=IA IA EX +  and f is unnecessary for <A,X,S>i 

We have Xc.XS.X 4 	 Form a two tuple relation over the universe 

which tuples agree exactly on the set X. Let p be the projection onto S of these 

two tuples. We will show that p is a witness for f. 

We can show that pg'SATW (R, F) in the manner used in the second part of 

the proof of theorem 3. To show that pESATW (R,F —if 1), we will prove that any 

sequence x such that x(710)=0 contains a transformation using f. 

Again we exploit the two images T 1, T2 of Tmg  in Tp. Let us separate these 

images and chase each individually. (This may cause some duplication of rows, if 

some scheme of S is a subset of X. If this occurs, ensure by renaming that 

T; share only values in X.) Let be any transformation sequence such that 

T2)=0. By the methods of theorem 4, we construct the graph G(0. As in 
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theorem 4. we can extract from this graph, derivation trees whose expressions 

are defined in T 8  at d to be a. An attribute labelling the leaf of any such tree is 

the label on an arc of C(0 leading to 1. The rows of the transformation from 

which this arc emanates agree on this attribute in Ti u  n. We claim that every 

such attribute is an element of X. We establish this claim by proving that every 

transformation in ?* involves a row of Ti and a row of T. Such a pair of rows 

agree only on attributes in X, by construction. 

During the execution of no two rows r, s of T: (i=1 or 2) become equal on 

any attribute on which they were not already equal. They may not become equal 

on any attribute unless the corresponding rows of T ni.  are equal on that attri- 

bute, by lemma 4. As T( is an isomorph of n4. they are equal on that attribute. 

Therefore no transformation on any two rows of T becomes enabled during the 

execution of 

We have established our claim that every derivation tree which we may 

extract from C(0 has its leaf attributes within I. We therefore have expressions 

for dependencies of the form Y-43 for YCX which expressions return a at d in 

T,8,15. Clearly B E.X+ —X. Therefore, each of these expressions must use f. There- 

fore, f must be used in some transformation of t". • 

We end this section by showing that the property of acting as a constraint is 

'cover sensitive'. 

Proposition 6. There exist non-redundant sets of dependencies CoF with 

f EF nc and a schema R such that f constrains R with respect to F but not with 

respect to C. 

Proof. Let R and F be as given in example 6. Let C be F without X1X2-+Z and 

with Y 1 Y2-'Z. Let f be Y1Y2-►X1. Now Y1Y2-•ZEcontrr(YIY2-,X1) and 

(hriyez(Tm8  2 ))(aa)=a. Thus Y1Y2-PX 1  acts as a constraint on R with respect to F 
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by theorem 3. 

We claim that no transformation on Y1Y2- ► i can be contradicted in any 

state of R (This fact is insensitive to the choice of cover.) By lemma 4, only two 

tuples from an instance of Y 1 Y2Z may agree on Y1Y2 as only that scheme has 

Y1Y2 in the closure of its set of attributes. No tuple from Y1Y2Z may have a con-

stant in X1, again by lemma 4, so the claim is established. 

If <Y1Y2-•X1, 441> appears in the graph described in the proof of 

theorem 4, it must appear in r("r [X 1]=s [X1]") for some r, s and by the above 

reasoning all of r, s, t 1 , t 2  come from Y 1 Y2Z and agree on 11Y2. Thus application 

of <X1-0'1, ir,s?> has no effect and may be omitted. But X1-•Yi is the only 

dependency in C with X1 on the left. Thus, we have shown directly that 

SATW (11C)=SATW(R,C — IY I Y 2-4.1 1). • 

6. Other Approaches 

Other researchers have concerned themselves with the functions 

represented in a database state for the functional dependencies of the schema. 

Both Ling and Tompa [LT] and Arora and Carlson [AC] define the function h for 

the single relation case to be q) .t (/). They are both concerned with determining if 

the function represented by a multi-relation stale is equivalent to the same 

function in a single relation. Arora and Carlson consider only join consistent 

states; that is, their work makes the universal relation instance assumption. 

Ling and Tompa offer no model of the database as a whole. Both sets of authors 

give methods of calculating a function from its derivations. Neither method is 

presented in the relational algebra and it is not apparent that their methods can 

be converted to such a presentation. Ling and Tompa are particularly con-

cerned that all such calculations produce the same function, something we have 

shown riot to be feasible even when the database consists of a single relation. 

Arora and Carlson specifically reject the method of calculation presented here 
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after noticing that it results in functions more defined than the table lookup 

functions we denoted 97. Significantly, they do not apply their method of calcu-

lating derived functions to their counter-example (figure 1 in [AC]). It produces 

the same result as the equivalent p—function. This is not surprising. as all sound 

techniques must produce the same result. if any. Neither set of authors consid-

ers the technique of lemmas 1 and 3. 

We have argued that restricting the function fi to be 97/ (/) is unnatural. We 

have demonstrated that a function is not necessarily calculated by its deriva-

tions. It is not clear, however, how the result of a function should be interpreted 

on a value not "present" in the state. If the functions in the state model func-

tions in the world represented by the state, then these functions say something 

about that world, even at values not recorded in the database. In the single rela-

tion case, the user may wish to interpret the absence of a value as denoting the 

non-existence of some entity, relationship or whatever. Thus if a function is 

defined at such an absent value, it might be interpreted as stating that should 

such an entity, etc., come into existence, certain of its attributes are fixed by 

what is already known. On the other hand, if the database is thought to capture 

only partial information about the world, statements about existence in that 

world are less certain. As shown by example 8, in the multi-relation case it is 

much less certain which values arc present or absent. In any case, these aspects 

of the user's interpretation are not captured by the theoretical model underly-

ing this paper. That model attempts to derive statements which are true for any 

interpretation in which the dependencies are true. 

The fact that distinct derivations of a given dependency may be none-

quivalent when interpreted as relational expressions has long been known. The 

"uniqueness assumption" [B] requires that all such derivations calculate the 

same function. In the single relation case, proposition 1. verifies the uniqueness 
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assumption at those values present in the instance. Some authors, in particular 

Sciore [Sc], claim that the presence of nonequivalent derivation expressions 

indicates the "semantic overloading" of some attributes. It is questionable 

whether such an easy transition between user semantics and the syntax of 

dependencies is justifiable. Perhaps the user should be given the freedom to 

require nonequivalent derivations to be constrained to be equal while allowing 

provably equivalent derivations to disagree. This latter freedom requires "attri-

bute renaming". 

As a consequence of theorems 2 and 3, a schema designed by either a syn-

thetic [BDB] or decompositional [Fl] algorithm represents and is constrained by 

all the functional dependencies given. One may wonder whether any practical 

benefit is to be gained by closing the gap between theorems 4 and 5. Although 

these algorithms guarantee nice theoretical properties, it is, not certain that 

they guarantee "good" designs in practice. Dependencies do nIot capture all the 

semantics inherent in the user's interpretation and they completely ignore per-

formance considerations. There is much more to schema design than these algo-

rithms capture. It is perhaps more useful to consider theoretiCal results such as 

these as providing schema analysis rather than design. Tsichritzis and Lochov-

sky [TL] present a fuller account of theoretical issues in this light. It seems that 

it is important to consider arbitrary designs, even though the class of practi-

cally useful designs is likely to be small, since that class has yet to be identified. 

7. Summary 

We have investigated the interrelationship of a schema, considered as a col-

lectien of subsets of the universe, and a set of functional dependencies. We have 

studied two properties of this interrelationship. A functional dependency may be 

interpreted as the description of a function. We have given the 7onditions under 

which a given schema represents a given dependency as a function and when it 
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represents all of a given set of dependencies as functions. Interestingly, this last 

property is enjoyed by exactly the class of dependency preserving schemas as 

defined by [BMSU]. This class is strictly larger than the class of cover embedding 

schemas, which class has heretofore been considered the largest class 

representing all of a given set of dependencies. 

We have studied the calculations of the functions descried by the depen-

dencies. We considered the derivation of a dependency as a blueprint for the 

construction of a relational algebra expression. This is in keeping with the 

description of Armstrong's rules given by Bernstein [B]. Th le expression pro- 

duced in this way does not, we discovered, always calculate the function. In the 

single relation case, if the function is defined at a given value, then at that value 

it agrees with the collection of its derivation expressions. HoWeyer, if the func- 

tion is undefined due to the non-existence of the requisite weak instance, this 

may not be noticed by the derivation expressions. In the mult-relation case, we 

have shown by example that the derivation expressions may fail to return a 

result at a value at which the function is defined. In general, therefore, we have 

shown that the method of derivation expressions is incomparable to the method 

of the chase. 

We noted that under certain circumstances a set of dependencies may allow 

for infinitely many derivations. This can be ignored when the existence of any 

derivation of a given dependency is being tested, as in [B]. iowever, we have 

shown that it is possible for each of an infinite set of derivations of a given 

dependency to correspond to a different mapping from database states to  func-

Lions. 

Functional dependencies are also meant to act as constraints on the slates 

of a schema. Although we have not fully characterized this phenomenon, we have 

shown necessary and sufficient conditions for a given dependency to act as a 
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constraint with respect to a schema and set of functional dependencies. In par-

ticular, a dependency may act as a constraint even though the function it 

describes is empty in every state. Before these investigations, the distinct pro-

perties of being represented as a function and acting as a contraint on states 

which a dependency may enjoy with respect to a schema hadlbeen confused by 

ether researchers, as we have shown. 
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