103 research outputs found

    Testing non-isometry is QMA-complete

    Full text link
    Determining the worst-case uncertainty added by a quantum circuit is shown to be computationally intractable. This is the problem of detecting when a quantum channel implemented as a circuit is close to a linear isometry, and it is shown to be complete for the complexity class QMA of verifiable quantum computation. This is done by relating the problem of detecting when a channel is close to an isometry to the problem of determining how mixed the output of the channel can be when the input is a pure state. How mixed the output of the channel is can be detected by a protocol making use of the swap test: this follows from the fact that an isometry applied twice in parallel does not affect the symmetry of the input state under the swap operation.Comment: 12 pages, 3 figures. Presentation improved, results unchange

    Quantum interactive proofs and the complexity of separability testing

    Get PDF
    We identify a formal connection between physical problems related to the detection of separable (unentangled) quantum states and complexity classes in theoretical computer science. In particular, we show that to nearly every quantum interactive proof complexity class (including BQP, QMA, QMA(2), and QSZK), there corresponds a natural separability testing problem that is complete for that class. Of particular interest is the fact that the problem of determining whether an isometry can be made to produce a separable state is either QMA-complete or QMA(2)-complete, depending upon whether the distance between quantum states is measured by the one-way LOCC norm or the trace norm. We obtain strong hardness results by proving that for each n-qubit maximally entangled state there exists a fixed one-way LOCC measurement that distinguishes it from any separable state with error probability that decays exponentially in n.Comment: v2: 43 pages, 5 figures, completely rewritten and in Theory of Computing (ToC) journal forma

    Oracle Complexity Classes and Local Measurements on Physical Hamiltonians

    Get PDF
    The canonical problem for the class Quantum Merlin-Arthur (QMA) is that of estimating ground state energies of local Hamiltonians. Perhaps surprisingly, [Ambainis, CCC 2014] showed that the related, but arguably more natural, problem of simulating local measurements on ground states of local Hamiltonians (APX-SIM) is likely harder than QMA. Indeed, [Ambainis, CCC 2014] showed that APX-SIM is P^QMA[log]-complete, for P^QMA[log] the class of languages decidable by a P machine making a logarithmic number of adaptive queries to a QMA oracle. In this work, we show that APX-SIM is P^QMA[log]-complete even when restricted to more physical Hamiltonians, obtaining as intermediate steps a variety of related complexity-theoretic results. We first give a sequence of results which together yield P^QMA[log]-hardness for APX-SIM on well-motivated Hamiltonians: (1) We show that for NP, StoqMA, and QMA oracles, a logarithmic number of adaptive queries is equivalent to polynomially many parallel queries. These equalities simplify the proofs of our subsequent results. (2) Next, we show that the hardness of APX-SIM is preserved under Hamiltonian simulations (a la [Cubitt, Montanaro, Piddock, 2017]). As a byproduct, we obtain a full complexity classification of APX-SIM, showing it is complete for P, P^||NP, P^||StoqMA, or P^||QMA depending on the Hamiltonians employed. (3) Leveraging the above, we show that APX-SIM is P^QMA[log]-complete for any family of Hamiltonians which can efficiently simulate spatially sparse Hamiltonians, including physically motivated models such as the 2D Heisenberg model. Our second focus considers 1D systems: We show that APX-SIM remains P^QMA[log]-complete even for local Hamiltonians on a 1D line of 8-dimensional qudits. This uses a number of ideas from above, along with replacing the "query Hamiltonian" of [Ambainis, CCC 2014] with a new "sifter" construction.Comment: 38 pages, 3 figure

    Constant-Soundness Interactive Proofs for Local Hamiltonians

    Get PDF
    \newcommand{\Xlin}{\mathcal{X}} \newcommand{\Zlin}{\mathcal{Z}} \newcommand{\C}{\mathbb{C}} We give a quantum multiprover interactive proof system for the local Hamiltonian problem in which there is a constant number of provers, questions are classical of length polynomial in the number of qubits, and answers are of constant length. The main novelty of our protocol is that the gap between completeness and soundness is directly proportional to the promise gap on the (normalized) ground state energy of the Hamiltonian. This result can be interpreted as a concrete step towards a quantum PCP theorem giving entangled-prover interactive proof systems for QMA-complete problems. The key ingredient is a quantum version of the classical linearity test of Blum, Luby, and Rubinfeld, where the function f:{0,1}n{0,1}f:\{0,1\}^n\to\{0,1\} is replaced by a pair of functions \Xlin, \Zlin:\{0,1\}^n\to \text{Obs}_d(\C), the set of dd-dimensional Hermitian matrices that square to identity. The test enforces that (i) each function is exactly linear, \Xlin(a)\Xlin(b)=\Xlin(a+b) and \Zlin(a) \Zlin(b)=\Zlin(a+b), and (ii) the two functions are approximately complementary, \Xlin(a)\Zlin(b)\approx (-1)^{a\cdot b} \Zlin(b)\Xlin(a).Comment: 33 page

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher

    Universal Quantum Hamiltonians

    Get PDF
    Quantum many-body systems exhibit an extremely diverse range of phases and physical phenomena. Here, we prove that the entire physics of any other quantum many-body system is replicated in certain simple, "universal" spin-lattice models. We first characterise precisely what it means for one quantum many-body system to replicate the entire physics of another. We then show that certain very simple spin-lattice models are universal in this very strong sense. Examples include the Heisenberg and XY models on a 2D square lattice (with non-uniform coupling strengths). We go on to fully classify all two-qubit interactions, determining which are universal and which can only simulate more restricted classes of models. Our results put the practical field of analogue Hamiltonian simulation on a rigorous footing and take a significant step towards justifying why error correction may not be required for this application of quantum information technology.Comment: 78 pages, 9 figures, 44 theorems etc. v2: Trivial fixes. v3: updated and simplified proof of Thm. 9; 82 pages, 47 theorems etc. v3: Small fix in proof of time-evolution lemma (this fix not in published version
    corecore