14 research outputs found

    Choosing Colors for Geometric Graphs via Color Space Embeddings

    Full text link
    Graph drawing research traditionally focuses on producing geometric embeddings of graphs satisfying various aesthetic constraints. After the geometric embedding is specified, there is an additional step that is often overlooked or ignored: assigning display colors to the graph's vertices. We study the additional aesthetic criterion of assigning distinct colors to vertices of a geometric graph so that the colors assigned to adjacent vertices are as different from one another as possible. We formulate this as a problem involving perceptual metrics in color space and we develop algorithms for solving this problem by embedding the graph in color space. We also present an application of this work to a distributed load-balancing visualization problem.Comment: 12 pages, 4 figures. To appear at 14th Int. Symp. Graph Drawing, 200

    Spanners for Geometric Intersection Graphs

    Full text link
    Efficient algorithms are presented for constructing spanners in geometric intersection graphs. For a unit ball graph in R^k, a (1+\epsilon)-spanner is obtained using efficient partitioning of the space into hypercubes and solving bichromatic closest pair problems. The spanner construction has almost equivalent complexity to the construction of Euclidean minimum spanning trees. The results are extended to arbitrary ball graphs with a sub-quadratic running time. For unit ball graphs, the spanners have a small separator decomposition which can be used to obtain efficient algorithms for approximating proximity problems like diameter and distance queries. The results on compressed quadtrees, geometric graph separators, and diameter approximation might be of independent interest.Comment: 16 pages, 5 figures, Late

    Edges and switches, tunnels and bridges

    Get PDF
    Edge casing is a well-known method to improve the readability of drawings of non-planar graphs. A cased drawing orders the edges of each edge crossing and interrupts the lower edge in an appropriate neighborhood of the crossing. Certain orders will lead to a more readable drawing than others. We formulate several optimization criteria that try to capture the concept of a "good" cased drawing. Further, we address the algorithmic question of how to turn a given drawing into an optimal cased drawing. For many of the resulting optimization problems, we either find polynomial time algorithms or NP-hardness results

    Edges and switches, tunnels and bridges

    Get PDF
    Abstract. Edge casing is a well-known method to improve the readability of drawings of non-planar graphs. A cased drawing orders the edges of each edge crossing and interrupts the lower edge in an appropriate neighborhood of the crossing. Certain orders will lead to a more readable drawing than others. We formulate several optimization criteria that try to capture the concept of a "good" cased drawing. Further, we address the algorithmic question of how to turn a given drawing into an optimal cased drawing. For many of the resulting optimization problems, we either find polynomial time algorithms or NP-hardness results

    Geometric biplane graphs I: maximal graphs

    Get PDF
    We study biplane graphs drawn on a finite planar point set in general position. This is the family of geometric graphs whose vertex set is and can be decomposed into two plane graphs. We show that two maximal biplane graphs-in the sense that no edge can be added while staying biplane-may differ in the number of edges, and we provide an efficient algorithm for adding edges to a biplane graph to make it maximal. We also study extremal properties of maximal biplane graphs such as the maximum number of edges and the largest maximum connectivity over -element point sets.Peer ReviewedPostprint (author's final draft
    corecore