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Abstract. Edge casing is a well-known method to improve the read-
ability of drawings of non-planar graphs. A cased drawing orders the
edges of each edge crossing and interrupts the lower edge in an appro-
priate neighborhood of the crossing. Certain orders will lead to a more
readable drawing than others. We formulate several optimization criteria
that try to capture the concept of a “good” cased drawing. Further, we
address the algorithmic question of how to turn a given drawing into an
optimal cased drawing. For many of the resulting optimization problems,
we either find polynomial time algorithms or NP-hardness results.

1 Introduction

Drawings of non-planar graphs necessarily contain edge crossings. The vertices of
a drawing are commonly marked with a disk, but it can still be difficult to detect
a vertex within a dense cluster of edge crossings. Edge casing is a well-known
method—used, for example, in electrical drawings and, more generally, in infor-
mation visualization—to alleviate this problem and to improve the readability
of a drawing. A cased drawing orders the edges of each crossing and interrupts
the lower edge in an appropriate neighborhood of the crossing. One can also
envision that every edge is encased in a strip of the background color and that
the casing of the upper edge covers the lower edge at the crossing. See Fig. 1 for
an example.

If there are no application specific restrictions that dictate the order of the
edges at each crossing, then we can in principle choose freely how to arrange

Fig. 1. Normal and cased drawing of a graph
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them. Certain orders will lead to a more readable drawing than others. In this
paper we formulate several optimization criteria that try to capture the concept
of a “good” cased drawing. Further, we address the algorithmic question of how
to turn a given drawing into an optimal cased drawing.

Definitions. Let G be a graph with n vertices and m edges and let D be a
drawing of G with k crossings. We want to turn D into a cased drawing where
the width of the casing is given in the variable casingwidth . To avoid that the
casing of an edge covers a vertex we assume that no vertex v of D lies on (or
very close to) an edge e of D unless v is an endpoint of e. Further, no more than
two edges of D cross in one point and any two crossings are far enough apart so
that the casings of the edges involved do not interfere. With these assumptions
we can consider crossings independently. Without these restrictions the problem
changes significantly—optimization problems that are solvable in polynomial
time can become NP-hard. Additional details can be found in the full paper.

We define the edge crossing graph GDC for D as follows. GDC contains a
vertex for every edge of D and an edge for any two edges of D that cross. Let C
be a crossing between two edges e1 and e2. In a cased drawing either e1 is drawn
on top of e2 or vice versa. If e1 is drawn on top of e2 then we say that C is a
bridge for e1 and a tunnel for e2. In Fig. 2, C1 is a bridge for e1 and a tunnel
for e2. The length of a tunnel is casingwidth/ sinα, where α ≤ π/2 is the angle
of the edges at the crossing. A pair of consecutive crossings C1 and C2 along an
edge e is called a switch if C1 is a bridge for e and C2 is a tunnel for e, or vice
versa. In Fig. 2(a), (C1, C2) is a switch.

Stacking and weaving. When we turn a given drawing into a cased draw-
ing, we need to define a drawing order for every edge crossing. We can choose
to establish a global top-to-bottom order on the edges, or to treat each edge
crossing individually. We call the first option the stacking model and the second
the weaving model, since cyclic overlap of three or more edges can occur (see
Fig. 2(b)).

Quality of a drawing. Globally speaking, two factors may influence the read-
ability of a cased drawing in a negative way. Firstly, if there are many switches
along an edge then it might become difficult to follow that edge. Drawings that
have many switches can appear somewhat chaotic. Secondly, if an edge is fre-
quently below other edges, then it might become hardly visible. These two con-
siderations lead to the following optimization problems for a drawing D.

(a) (b)

e1

e2
C1

C2

Fig. 2. (a) Tunnels and bridges. (b) Stacking and weaving.
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MinTotalSwitches Minimize the total number of switches.
MinMaxSwitches Minimize the maximum number of switches for any edge.
MinMaxTunnels Minimize the maximum number of tunnels for any edge.
MinMaxTunnelLength Minimize the maximum total length of tunnels for

any edge.
MaxMinTunnelDistance Maximize the minimum distance between any two

consecutive tunnels.

Fig. 3 illustrates that the weaving model is stronger than the stacking model for
MinTotalSwitches—no cased drawing of this graph in the stacking model
can reach the optimum of four switches. For, the thickly drawn bundles of c > 4
parallel edges must be cased as shown (or its mirror image) else there would be
at least c switches in a bundle, the four vertical and horizontal segments must
cross the bundles consistently with the casing of the bundles, and this already
leads to the four switches that occur as drawn near the midpoint of each vertical
or horizontal segment. Thus, any deviation from the drawing in the casing of the
four crossings between vertical and horizontal segments would create additional
switches. However, the drawing shown is not a stacked drawing.

Related work. If we consider only simple arrangements of line segments in the
plane as our initial drawing, then there is a third model to consider, an inter-
mediate between stacking and weaving: drawings which are plane projections
of line segments in three dimensions. We call this model the realizable model.
Clearly every cased drawing in the stacking model is also a drawing in the real-
izable model, but not every cased drawing in the weaving model can be realized
(see [8]). The optimal drawing in Fig. 3 can be realized, hence the realizable
model is stronger than the stacking model. In the full paper we show that the
weaving model is stronger than the realizable model.

Results. For many of the problems described above, we either find polynomial
time algorithms or NP-hardness results in both the stacking and weaving models.
We summarize our results in Table 1. In this paper we assume that our input
drawing is a straight line drawing, but several of our results also generalize
to curved drawings. Section 2 presents the results concerning the optimization
problems that seek to minimize the number of switches and Section 3 discusses
our solutions to the optimization problems that concern the tunnels. In the full
paper we show that MinTotalSwitches becomes NP-hard in both the weaving

c edges

Fig. 3. Optimal drawing in the weaving model for MinTotalSwitches



80 D. Eppstein et al.

Table 1. Table of results: n is the number of vertices, m = Ω(n) is the number of edges,
K = O(m3) is the total number of pairs of crossings on the same edge, k = O(m2) is
the number of crossings of the input drawing, and q = O(k) is the number of its odd
face polygons

Model Stacking Weaving
MinTotalSwitches open O(qk + q5/2 log3/2 k)
MinMaxSwitches open open
MinMaxTunnels O(m log m + k) exp. O(m4)
MinMaxTunnelLength O(m log m + k) exp. NP-hard
MaxMinTunnelDistance O(m log m + k log m) exp. O((m + K) log m) exp.

and the stacking model if we allow more than three edges to cross in one point.
We conclude with some open problems.

2 Minimizing Switches

In this section we discuss results related to the MinTotalSwitches and Min-

MaxSwitches problems. We first discuss some non-algorithmic results giving
simple bounds on the number of switches needed, and recognition algorithms
for graphs needing no switches. As we know little about these problems for the
stacking model, all results stated in this section will be for the weaving model.

Lemma 1. Given a drawing D of a graph we can turn D into a cased drawing
without any switches if and only if the edge crossing graph GDC is bipartite.

Corollary 1. Given a drawing D of a graph we can decide in O((n+m) log(n+
m)) time if D can be turned into a cased drawing without any switches.

Proof. We apply the bipartiteness algorithm of [3]. Note that this does not con-
struct the arrangement, so there is no term with k in the runtime. ��

Define a vertex-free cycle in a drawing of a graph G to be a face f formed by the
arrangement of the edges in the drawing, such that there are no vertices of G
on the boundary of f . An odd vertex-free cycle is a vertex-free cycle composed
of an odd number of segments of the arrangement.

Lemma 2. Let f be an odd vertex-free cycle in a drawing D. Then in any casing
of D, there must be a switch on one of the segments of f .

Proof. Unless there is a switch, the segments must alternate between those that
cross above the previous segment, and those that cross below the previous seg-
ment. However, this alternation cannot continue all the way around an odd cycle,
for it would end up in an inconsistent state from how it started. ��

Lemma 3. Given a drawing D of a graph the minimum number of switches of
any cased drawing obtained from D is at least half of the number of odd vertex-
free cycles in D.
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(a)

f1

f2

(b)

Fig. 4. (a) A construction with O(n) edges and Ω(n2) triangles. (b) A degree-one
graph, f1 is an odd polygon and f2 is an even polygon.

Proof. Let o be the number of odd vertex-free cycles in D. By Lemma 2, each
odd vertex-free cycle must have a switch on one of its segments. Choose one
such switch for each cycle; then each segment belongs to at most two vertex-
free cycles, so these choices group the odd cycles into pairs of cycles sharing a
common switch, together with possibly some unpaired cycles. The number of
pairs and unpaired cycles must be at least o/2, so the number of switches must
also be this large.

Lemma 4. For any n large enough, a drawing of a graph G with n vertices and
O(n) edges exists for which any crossing choice gives rise to Ω(n2) switches.

Proof. A construction with three sets of parallel lines, each of linear size, gives
Ω(n2) vertex-free triangles, and each triangle gives at least one switch (see
Fig. 4(a)). ��

Lemma 5. For any n large enough, a drawing of a graph G with n vertices and
O(n2) edges exists for which any crossing choice gives rise to Ω(n4) switches.

Proof. We build our graph as follows: make a very elongated rectangle, place
n/6 vertices equally spaced on each short edge, and draw the complete bipartite
graph. This graph has (n/6)2 edges. One can prove that there is a strip parallel
to the short side of the rectangle, such that the parts of the edges inside the strip
behave in the same way as parallel ones do with respect to creating triangles
when overlapped the way it is described in the previous lemma. This gives us
the desired graph with Ω(n4) triangles, and hence with Ω(n4) switches. ��

We define a degree-one graph to be a graph in which every vertex is incident to
exactly one edge; that is, it must consist of a collection of disconnected edges.

Lemma 6. Let D be a drawing of a graph G. Then there exists a drawing D′ of
a degree-one graph G′, such that the edges of D correspond one-for-one with the
edges of D′, casings of D correspond one-for-one to casings of D′, and switches
of D correspond one-for-one with switches of D′.

Proof. Form G′ by placing a small circle around each vertex of G. Given an
edge e = (u, v) in G, let ue be the point where e crosses the circle around u and
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similarly let ve be the point where e crosses the circle around v. Form D′ and
G′ by replacing each edge e = (u, v) in G by the corresponding edge (ue, ve),
drawn as the subset of edge e connecting those points.

As these replacements do not occur between any two crossings along any edge,
they do not affect the switches on the edge. Both drawings have the same set of
crossings, and any switch in a casing of one drawing gives rise to a switch in the
corresponding casing of the other drawing. ��

In a drawing of a degree-one graph, define a polygon to be a sequence of segments
of the arrangement formed by the drawing edges that forms the boundary of a
simple polygon in the plane. Define a face polygon to be a polygon that forms
the boundary of the closure of a face of the arrangement; note that there may
be edges drawn in the interior of this polygon, as long as they do not separate
it into multiple components.

Lemma 7. In a drawing of a degree-one graph, there can be no vertex on any
segment of a polygon.

Proof. We have already required that no vertex can lie on an edge unless it is
the endpoint of an edge. And, if a segment contains the endpoint of an edge, it
cannot continue past the endpoint to form the boundary of a polygon. ��

Note, however, that a polygon can contain vertices in its interior. Define the
complexity of a polygon to be the number of segments forming it, plus the
number of graph vertices interior to the polygon. We say that a polygon is odd
if its complexity is an odd number, and even if its complexity is an even number
(see Fig. 4(b)).

Lemma 8. Let p be a polygon in a drawing of a degree-one graph. Then, modulo
two, the complexity of p is equal to the sum of the complexities of the face polygons
of faces within p.

Proof. Each segment of p contributes one to the complexity of p and one to the
complexity of some face polygon. Each vertex within p contributes one to the
complexity of p and one to the complexity of the face that contains it. Each
segment within the interior of p either separates two faces, and contributes two
to the total complexity of faces within p, or does not separate any face and
contributes nothing to the complexity. Thus in each case the contribution to p
and to the sum of its faces is the same modulo two. ��

Lemma 9. Let p be an odd polygon in a drawing of a degree-one graph. Then
there exists an odd face polygon in the same drawing.

Proof. By Lemma 8, the complexity of p has the same parity as the sum of the
complexities of its faces. Therefore, if p is odd, it has an odd number of odd
faces, and in particular there must be a nonzero number of odd faces. ��

Lemma 10. Let D be a drawing of a degree-one graph. Then D has a casing
with no switches if and only if it has no odd face polygon.



Edges and Switches, Tunnels and Bridges 83

Proof. As we have seen, D has a casing with no switches if and only if the
edge crossing graph is bipartite. This graph is bipartite if and only if it has no
odd cycles, and an odd cycle in the edge crossing graph corresponds to an odd
polygon in D. For, if C is an odd cycle in the edge crossing graph, it must lie on
a polygon p of D. Each crossing in C contributes one to the complexity of this
polygon. Each edge of D that crosses p without belonging to C either crosses it
an even number of times (contributing that number of additional segments to
the complexity of p) and has both endpoints inside p or both outside p, or it
crosses an odd number of times and has one endpoint inside p; thus, it contributes
an even amount to the complexity of p. Thus, p must be an odd polygon. By
Lemma 9, there is an odd face polygon in D. Conversely, any odd face polygon
in D can be shown to form an odd cycle in the edge crossing graph. ��
Theorem 1. MinTotalSwitches in the weaving model can be solved in time
O(qk+q5/2 log3/2 k), where k denotes the number of crossings in the input draw-
ing and q denotes the number of its odd face polygons.

Proof. Let D be the drawing which we wish to case for the minimum number
of switches. By Lemma 6, we may assume without loss of generality that each
vertex of D has degree one.

We apply a solution technique related to the Chinese Postman problem, and
also to the problem of via minimization in VLSI design [2]: form an auxiliary
graph Go, and include in Go a single vertex for each odd face polygon in D. Also
include in Go an edge connecting each pair of vertices, and label this edge by
the number of segments of the drawing that are crossed in a path connecting the
corresponding two faces in D that crosses as few segments as possible. We claim
that the minimum weight of a perfect matching in Go equals the minimum total
number of switches in any casing of D.

In one direction, we can case D with a number of switches equal to or better
than the weight of the matching, as follows: for each edge of the matching,
insert a small break into each of the segments in the path corresponding to the
edge. The resulting broken arrangement has no odd face cycles, for the breaks
connect pairs of odd face cycles in D to form larger even cycles. Therefore, by
Lemma 10, we can case the drawing with the breaks, without any switches.
Forming a drawing of D by reconnecting all the break points adds at most one
switch per break point, so the total number of switches equals at most the weight
of the perfect matching.

In the other direction, suppose that we have a casing of D with a minimum
number of switches; we must show that there exists an equally good matching in
Go. To show this, consider the drawing formed by inserting a small break in each
segment of D having a switch. This eliminates all switches in the drawing, so by
Lemma 10, the modified drawing has no odd face polygons. Consider any face
polygon in the modified drawing; by Lemma 9 it must include an even number
of odd faces in the original drawing. Thus, the odd faces of D are connected in
groups of evenly many faces in the modified drawing, and within each such group
we can connect the odd faces in pairs by paths of breaks in the drawing, giving a
matching in Go with total weight at most equal to the number of switches in D.
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The number of vertices of the graph Go is O(q), where q is the number of odd
face polygons in D. We can construct Go in time O(qk) where k is the number of
crossings in D by using breadth-first search in the arrangement dual to D to find
the distances from each vertex to all other vertices. A minimum weight perfect
matching in a complete weighted graph with integer weights bounded by k can
be found in time O(q5/2 log3/2 k) using the algorithm of Gabow and Tarjan [5].
Therefore the time for this algorithm is O(qk + q5/2 log3/2 k). ��

3 Minimizing Tunnels

In this section we present three algorithms that solve MinMaxTunnels, Min-

MaxTunnelLength, and MaxMinTunnelDistance in the stacking model.
We also present algorithms for MinMaxTunnels and MaxMinTunnelDis-

tance in the weaving model. MinMaxTunnelLength is NP-hard in the weav-
ing model.

3.1 Stacking Model

In the stacking model, some edge e has to be bottommost. This immediately
gives the number of tunnels of e, the total length of tunnels of e, and the short-
est distance between two tunnels of e. The idea of the algorithm is to deter-
mine for each edge what its value would be if it were bottommost, and then
choose the edge that is best for the optimization to be bottommost (smallest
value for MinMaxTunnels and MinMaxTunnelLength, and largest value
for MaxMinTunnelDistance). The other m − 1 edges are stacked iteratively
above this edge. It is easy to see that such an approach indeed maximizes the
minimum, or minimizes the maximum. We next give an efficient implementation
of the approach. The idea is to maintain the values of all not yet selected edges
under consecutive selections of bottommost edges instead of recomputing it.

We start by computing the arrangement of edges in O(m log m + k) expected
time, for instance using Mulmuley’s algorithm [7]. This allows us to determine
the value for all edges in O(k) additional time.

For MinMaxTunnels and MinMaxTunnelLength, we keep all edges in a
Fibonnacci heap on this value. One selection involves an extract-min, giving
an edge e, and traversing e in the arrangement to find all edges it crosses. For
these edges we update the value and perform a decrease-key operation on the
Fibonnacci heap. For MinMaxTunnels we decrease the value by one and for
MinMaxTunnelLength we decrease by the length of the crossing, which is
casingwidth/ sinα, where α is the angle the crossing edges make. For MinMax-

Tunnels and MinMaxTunnelLength this is all that we need. We perform m
extract-min and k decrease-key operations. The total traversal time along
the edges throughout the whole algorithm is O(k). Thus, the algorithm runs in
O(m log m + k) expected time.

For MaxMinTunnelDistance we use a Fibonnacci heap that allows ex-

tract-max and increase-key. For the selected edge we again traverse the
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arrangement to update the values of the crossing edges. However, we cannot
update the value of an edge in constant time for this optimization. We maintain
a data structure for each edge that maintains the minimum tunnel distance in
O(log m) time under updates. The structure is an augmented balanced binary
search tree that stores the edge parts in between consecutive crossings in its
leaves. Each leaf stores the distance between these crossings. Each internal node
is augmented such that it stores the minimum distance for the subtree in a vari-
able. The root stores the minimum distance of the edge if it were the bottommost
one of the remaining edges. An update involves merging two adjacent leaves of
the tree and computing the distance between two crossings. Augmentation al-
lows us to have the new minimum in the root of the tree in O(log m) time per
update. In total this takes O(m log m + k log m) expected time.

Theorem 2. Given a straight-line drawing of a graph with n vertices, m = Ω(n)
edges, and k edge crossings, we can solve MinMaxTunnels and MinMaxTun-

nelLength in O(m log m + k) expected time and MaxMinTunnelDistance

in O(m log m + k log m) expected time in the stacking model.

3.2 Weaving Model

In the weaving model, the polynomial time algorithm for MinMaxTunnels

comes from the fact that the problem of directing an undirected graph, and
minimizing the maximum indegree, can be solved in time quadratic in the num-
ber of edges [9]. We apply this on the edge crossing graph of the drawing, and
hence we get O(m4) time. For minimizing tunnel length per edge, we can show:

Theorem 3. MinMaxTunnelLength is NP-hard in the weaving model.

Proof. The reduction is from planar 3-sat, shown NP-hard by Lichtenstein [6].
The reduction is similar to the one for maximizing minimum visible perimeter
length in sets of opaque disks of unit size [1]. Note that the proof implies that
no PTAS exists. The reduction only uses edges that intersect two or three other
edges, so restricting the number of intersections per edge to be constant leaves
the problem NP-hard. Also, the number of orientations of edges is constant.

A cased drawing of a set of line segments has property (A) if every line segment
has at most two tunnels at crossings with a perpendicular segment, or one tunnel
at a crossing with a non-perpendicular segment. Our reduction is such that a
planar 3-sat instance is satisfiable if and only if a set of line segments has a
cased drawing with property (A).

We arrange a set of line segments of equal length, using only four orientations.
The slopes are −4, − 1

4 , + 1
4 , and +4. If two perpendicular line segments cross,

then one has tunnel length equal to the width w of the casing at the crossing.
If two other line segments cross, then one edge has tunnel length w/ sin(γ) =
2, 125 ·w at the crossing, where γ = 2 ·arctan(1

4 ) is the (acute) angle between the
line segments. Therefore, a cased drawing with property (A) has tunnel length
at most 2, 125 · w, whereas a cased drawing that does not satisfy property (A)
has an edge that has tunnel length at least 3 · w. This shows the direct relation
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between property (A) and MinMaxTunnelLength, and provides the gap that
shows that no PTAS exists.

A Boolean variable xi is modeled by a cycle of crossing line segments as
in Fig. 5. Along the cycle, crossings alternate between perpendicular and non-
perpendicular, and hence it has even length. The variable satisfies property (A)
iff the cycle has cyclic overlap, which can be clockwise or counterclockwise. One
state is associated with xi =true, the other is associated with xi = false. In
each state, the line segments of the cycle alternate in allowing an additional,
perpendicular line segment to have a bridge over the line segment of the cycle.
In the figure, where the cycle is in the true-state, the line segments with slope
+ 1

4 and +4 allow such an extra tunnel under a line segment that is not from
the cycle. If the cycle is in the false-state, the line segments with slope −4
and − 1

4 allow the extra tunnel. We use the line segments of slope − 1
4 to make

connections and channels to clauses where xi occurs, and the line segments with
slope + 1

4 for clauses where xi occurs. Note that the variable can be made larger
easily to allow more connections, in case the variable occurs in many clauses.

Channels are formed by line segments that do not cross perpendicularly. So
any line segment of the channel can have a tunnel at at most one of its two
crossings, or else property (A) is violated. Note that a sequence of crossing line
segments with slopes such as −4, +4, + 1

4 , − 1
4 gives a turn in the channel. The

exact position of the crossing is not essential and hence we can easily reach
any part of the plane with a channel, and ending with a line segment of any
orientation. A 3-sat clause is formed by a single line segment that is crossed
perpendicularly by three other line segments, see Fig. 6. Property (A) holds if
the clause line segment has at most two tunnels. This corresponds directly to
satisfiability of the clause.

Towards a clause where
the variable is used

Towards a
clause where
the negation
of the variable
is used

Variable
set to true

Towards a clause
where the negation
of the variable is used

Fig. 5. Boolean variable and the connection of channels
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From a variable that
makes the clause true

From variables
that do not make
the clause true

clause

Fig. 6. A clause construction

With this reduction, testing if property (A) holds is equivalent to testing if
the planar 3-sat instance is satisfiable, and NP-hardness follows. ��

In the remainder of this section we show how to solve MaxMinTunnelDis-

tance. We observe that there are polynomially many possible values for the
smallest tunnel distance, and perform a binary search on these, using 2-sat

instances as the decision tool.
We first compute the arrangement of the m edges to determine all crossings.

Only distances between two—not necessarily consecutive—crossings along any
edge can give the minimum tunnel distance. One edge crosses at most m−1 other
edges, and hence the number of candidate distances, K, is O(m3). Obviously,
K is also O(k2). From the arrangement of edges we can determine all of these
distances in O(m log m + K) time. We sort them in O(K log K) time to set up
a binary search. We will show that the decision step takes O(m + K) time, and
hence the whole algorithm takes O(m log m + K log K) = O((m + K) log m)
time.

Let δ be a value and we wish to decide if we can set the crossings of edges
such that all distances between two tunnels along any edge is at least δ. For
every two edges ei and ej that cross and i < j, we have a Boolean variable
xij . We associate xij with true if ei has a bridge at its crossing with ej , and
with false otherwise. Now we traverse the arrangement of edges and construct
a 2-sat formula. Let ei, ej , and eh be three edges such that the latter two cross
ei. If the distance between the crossings is less than δ, then ei should not have
the crossings with ej and eh as tunnels. Hence, we make a clause for the 2-sat

formula as follows (Fig. 7): if i < j and i < h, then the clause is (xij ∨ xih);
the other three cases (i > j and/or i > h) are similar. The conjunction of all
clauses gives a 2-sat formula that is satisfiable if and only if we can set the
crossings such that the minimum tunnel distance is at least δ. We can construct
the whole 2-sat instance in O(m+K) time since we have the arrangement, and
satisfiability of 2-sat can be determined in linear time [4].

Theorem 4. Given a straight-line drawing of a graph with n vertices and m =
Ω(n) edges, we can solve MaxMinTunnelDistance in O((m + K) log m) ex-
pected time in the weaving model, where K = O(m3) is the total number of pairs
of crossings on the same edge.
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δ

e1

e2

e3

e4

e5

Fig. 7. The 2-sat formula (x13 ∨ x23) ∧ (x23 ∨ x34) ∧ (x23 ∨ x35) ∧ (x34 ∨ x35)

4 Conclusions and Open Problems

We presented polynomial time algorithms or NP-hardness results for a number
of optimization problems that are motivated by cased drawings. Naturally, we
would like to establish the difficulty of the MinMaxSwitches problem. We
would also like to implement our algorithms to visually evaluate the quality of
the resulting drawings.
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