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Abstract

We study biplane graphs drawn on a finite point set S in the plane in general position. This is
the family of geometric graphs whose vertex set is S and can be decomposed into two plane graphs.
We show that two maximal biplane graphs—in the sense that no edge can be added while staying
biplane—may differ in the number of edges, and we provide an efficient algorithm for adding edges
to a biplane graph to make it maximal. We also study extremal properties of biplane graphs such
as the maximum number of edges and the largest minimum degree of biplane graphs over n-element
point sets. In a companion paper we study how to draw a biplane graph on a given point set S, or
how to augment a given biplane graph on S, in such a way that the resulting graph is biplane and
has good connectivity properties.

1 Introduction

In a geometric graph G = (V, E), the vertices are distinct points in the plane in general position, and the
edges are straight line segments between pairs of vertices. A plane graph is a geometric graph in which
no two edges cross. Every (abstract) graph has a realization as a geometric graph (by simply mapping
the vertices into distinct points in the plane, no three of which are collinear), and every planar graph
can be realized as a plane graph by Fary’s theorem. The number of n-vertex labeled planar graphs is
at least 27.22" - n! [18]. However, there are only 20(") plane graphs on any given set of n points in the
plane [2, 25].

We consider a generalization of plane graphs. A geometric graph G = (V, E) is k-plane for some
k € N if it admits a partition of its edges F = F1U...UE} such that Gy = (V, Ey),...,Gy = (V, Ey)
are each plane graphs. Let S be a point set in the plane in general position, that is, no three points in .S
are collinear. Denote by Gi(S) the family of k-plane graphs with vertex set S. With this terminology,
G1(5) is the family of plane graphs with vertex set S, and G2(S) is the family of 2-plane graphs (also
known as biplane graphs) with vertex set S.

In this and a companion paper, we study Go(.S) and contrast combinatorial properties of plane graphs
G1(S) and biplane graphs Go(.S). If only plane graphs drawn on S are considered, there are limitations
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on achieving some desirable properties, such as high connectivity, as it is known that every plane graph
H has a vertex with degree at most 5, hence k(H) < A(H) < 6(H) < 5 (we use standard graph theory
notation as in [8]). It is natural to expect that significantly better values can be obtained if the larger
family Go(S) is used. This is precisely the topic we explore in these papers, mostly focusing on graph
size and graph connectivity.

Related concepts. Note that the above generalization of plane graphs is reminiscent to, although more
restrictive, than the notion of thickness, geometric thickness, and book thickness, which are defined for
abstract graphs. We recall their definitions for ease of comparison. The thickness of an (abstract) graph
G = (V,E) is the smallest £ € N such that G admits an edge partition £ = E;1U...UE) with the
property that G = (V, Ey),...,Gr = (V, E}) are each planar graphs. The geometric thickness of an
(abstract) graph G = (V, E) is the smallest k € N such that G admits an edge partition £ = E1U...UEy
satisfying that G; = (V, Ey),...,Gr = (V, Ex) can be simultaneously embedded as plane graphs where
the vertex set is mapped to a common labeled point set. The book thickness is a restricted version of the
geometric thickness where G, ..., Gy are simultaneously embedded on a point set in convex position.

Notice that every k-plane graph, if interpreted as an abstract graph, has geometric thickness at most
k, but in addition we are given a specific embedding in the plane in which the decomposition into k
plane layers is possible. In other words, the term k-plane graph refers to a geometric object, a drawing,
while having geometric thickness & is a property of the underlying abstract graph.

For disambiguation, we also mention two additional notions, which are commonly used in the graph
drawing community, but have little to do with our subject matter. An (abstract) graph is called k-
planar if it has a drawing in the plane (where the edges are Jordan arcs) such that each edge crosses
at most k other edges. It is NP-hard to recognize already 1-planar graphs [22]. The other notion worth
mentioning is 1-plane that is used for a specific geometric drawing of a 1-planar graph [11] in which edges
are crossed at most once. Therefore, both these notions have a different meaning from the definition of
k-plane graphs introduced above.

Prior work and organization of the paper. We call maximum graphs in Go(S) those that have the
largest number of edges; this concept should not be confused with mazimal graphs in Go(S), which are
those in which no additional edges can be added because the resulting graph would not be biplane. In
contrast to plane graphs, two maximal biplane graphs on the same point set do not have necessarily the
same number of edges. In Section 2 we give several interesting properties of biplane graphs.

Algorithmic issues are studied in Section 3. First, we give an algorithm for determining whether a
given geometric graph is biplane or not. We then show how to augment a biplane graph to a maximal
biplane supergraph. This result belongs to the family of problems called graph augmentation, in which
one would like to add new edges, ideally as few as possible, to a given graph in such a way that
some desired property is achieved. There has been extensive work on augmenting a disconnected plane
graph to a connected one (see [20] for a recent survey) or on achieving good connectivity properties
[1, 3, 4, 24, 26].

In Section 4, we study the highest values of connectivity that can be attained for the graphs in Ga(5)
over all n-element points set .S. Similar extremal problems have been considered for thickness-two graphs
[6, 21], including the geometric thickness version. Due to lack of space, some of the proofs have been
omitted in this reduced version.

In a companion paper [16] we consider several problems on augmenting plane graphs to biplane
supergraphs with higher connectivity, including the case in which the input is only a point set S and
the goal is to construct a good biplane graph on S. These problems are closely related to the results we
present here, and have also received substantial attention for the case of plane graphs [9, 15, 17].

2 Fundamental Properties of Maximal Biplane Graphs

A (geometric) graph G = (V, E) is mazimal (a.k.a. edge-mazimal) in a family of graphs F if there is no
graph G’ = (V, E’) in F such that E C E’. Some of our main results in this and the companion paper
concern finding a biplane graph of high connectivity or high vertex degree in Go(S) for point sets S.
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Figure 1: Two maximal biplane graphs on the same point set. The left graph is a maximum biplane
graph with 18 edges, whereas the right one is maximal with 17 edges.

Since the addition of new edges does not decrease the vertex connectivity, we can restrict our attention
to maximal graphs in Go(S). In this section, we summarize some of the basic properties of maximal
biplane graphs on a given point set S.

Recall that a maximal plane graph in G;(5) is a triangulation, that is, a plane graph where all bounded
faces are triangles, and the boundary of the outer face is the same as the boundary of the convex hull
ch(S). We highlight the fact that two maximal graphs in Go(S) may have a different number of edges,
that is, not every maximal biplane graph is maximum (see Figure 1). Our first observation is that a
maximal biplane graph is always the union of two maximal plane graphs.

Lemma 1 If G = (S, E) is a maximal biplane graph in G5(S), then there are two triangulations T' =
(S,E") and T" = (S, E") such that E = E'UE".

Proof. By definition, G = (S, E) has an edge partition F = E{UFE,, where G; = (S, F1) and Gy =
(S, Es) are plane graphs. Augment GG; and Gs, independently, to maximal plane graphs 77 = (S, E’)
and T = (S, E”); thus T” and T" are triangulations. By construction, we have E C E' U E”. The
geometric graph (S, E’ U E”) is biplane by definition. Hence E = E' U E”, otherwise G would not be
maximal. O

The two triangulations, 7" = (S, E’) and T” = (S, E"), share some edges. The edges of the convex
hull ch(S) are always part of both triangulations, but they may also share some interior edges. There is
a simple characterization of shared edges in terms of edge flips. An edge e in a triangulation is flippable
if the union of the two adjacent faces (triangles) is a convex quadrilateral.

Lemma 2 Let G = (S,F) be a maximal biplane graph in Go(S) such that E = E' U E”, where
T = (S,E’) and T" = (S,E") are two triangulations. If e € E' N E”, then e is flippable in neither T’
nor T"”. In particular, any maximal biplane graph is 3-connected

Proof. Suppose, on the contrary, that e € E' N E” is flippable in T (the case that e is flippable in T" is
analogous). We can modify 7" by flipping edge e. Specifically, let f be the other diagonal of the convex
quadrilateral formed by the two faces of 77 adjacent to e, and define a new triangulation 77" = (S, E"")
with B = (E'\ {e}) U{f}. Tt is clear that (S, E” U E"") is biplane, and it contains edge f and all
edges in F (including e € E”). Hence it is a biplane graph strictly larger than G, contradicting the
maximality of G. Three-connectivity follows from the fact that a separating chord in a triangulation is
always flippable. O

We now study the minimum number of edges that a biplane graph must have in order to be maximal.
It is known that every triangulation in G;(S) has 3n — h — 3 edges, where n = |S| > 3 and h > 3 is the
number of vertices of the convex hull ch(S). Since a maximal biplane graph G € G3(S) is the union of
two triangulations, 7" and T, that share the convex hull edges, G has at most 6n — 3h — 6 < 6n — 15
edges. Hutchinson et al. [21] proved that every biplane graph in G5(S) has at most 6n — 18 edges for
n > 8. That is, when h = 3, the triangulations 77 and 7" have to share at least 3 interior edges. In
the remainder of this section we establish lower bounds for the number of edges in a maximum graph
in Go(S) in terms of n = |S| and h, the number of vertices of ch(S).
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Theorem 3 For every set S of n > 3 points in the plane, every maximal graph in Go(S) has at least
3n — 6 edges. Moreover, this bound is the best possible.

Proof. Let S be a set of n > 3 points in the plane, and let & > 3 be the number of vertices of ch(S).
Let G1 = (S, E1) be an arbitrary triangulation of S, with 3n — h — 3 edges. Hoffmann et al. [19] proved
that every triangulation of S contains at least max(§ — 2,h — 3) flippable edges. (In fact they prove
a stronger statement, that there is a set of at least max(4 — 2,h — 3) pseudo-flippable edges, but each
edge in that set is also flippable.)

Now, let G = (S,E) be a maximal biplane graph in G2(5), and suppose that T3 = (5, E1) and
Ty, = (S, Es) are two triangulations such that £ = F; U E;. By Lemma 2, an edge in Fq N Ey is
flippable in neither T} nor T5. Thus all flippable edges that are in F; must be in E; \ E2. Hence,
|E1\ B3| > max(§ —2,h —3), and so |E| = |Ex| + |Ey \ Eo| > 3n —h — 3 + max(§ —2,h —3) >
max(Zt —h—5,3n—6) > 3n — 6.

The bound 3n — 6 is the best possible whenever S is a set of n > 3 points in convex position. In this
case, every biplane graph is planar (by Lemma 1(i) in the companion paper [16]) and has at most 3n —6
edges for n > 3. O

Theorem 4 For every set S of n > 3 points in the plane whose convex hull has h vertices, the largest
graph in Go(S) has at least 4n — h — 6 edges if h > 4 or n = 3; and at least 4n — h — 7 edges if h = 3
and n > 3. Moreover, these bounds are the best possible.

Proof. We proceed by induction on n, the number of points. The base case is n = h, where the union
of two triangulations of a convex n-gon gives a biplane graph with n +2(n—-3)=3n—-6=4n—h —6
edges.

Suppose now that n > h, and the claim holds for every set of n — 1 points with a convex hull of h
vertices. Let s € S be a rightmost point in the interior of ch(S), and let S” = S\ {s}. Let G' = (5', F’)
be a maximum biplane graph on S’. By induction, G’ has at least 4(n — 1) — h — 6 edges if h > 4 or
n—1=3; and at least 4(n — 1) — h — 7 edges if h = 3 and n — 1 > 3. By Lemma 1, it is the union of
two triangulations T} = (S’, E}) and T3 = (S, E}).

We construct a biplane graph G = (S, E) by augmenting G’ with the new vertex s and some incident
edges. If h = 3 and n = 4, then G’ is a triangle, and s can only be joined to the 3 vertices of G’. Hence
G has 6 = 4n — h — 7 edges, as required.

If h >4 orn>5, wejoin s to at least 4 vertices of G’. Point s lies in the interior of a triangle A’
of T}, and a triangle A” of Tj. We can augment 7] and T4 each with 3 new edges that join s to the
corners of A’ and A”| respectively, to obtain two new triangulations 7} and Ty'. If A’ and A" together
have at least 4 distinct vertices, then the induction step is complete.

It remains to consider the case in which A’ and A” together have only 3 distinct vertices, i.e., A’ = A”.
Since h > 4 or n > 5, T} is not a wheel, and since s is the rightmost point in the interior of ch(S), the
rightmost vertex of A’ is a vertex of ch(S). It is easy to see that one of the edges of A’ is flippable in
T/ (proof of this claim is given in Property 3 of [16]). As this flippable edge is common to A" and A"
after flipping it in 7}, we augment G’ with 4 new edges.

Finally, we note that the bounds are tight in the sense that there are configurations of points for which
the largest biplane graph has exactly 4n — h — 7 (resp., 4n — h — 6) edges. The construction consists
of n — 1 (resp., n — 2) points on a parabola z — 22, and one point far below on line z = 0 so that the
convex hull of S has 3 vertices (resp., two points on line z = 0 one far below, and the other is far above
so that the convex hull has 4 vertices). ]

3 Constructing Maximal Biplane Graphs

We now consider computational aspects related to biplane graphs. The most fundamental algorithmic
question is how to recognize one, thus we start by showing how to determine if a given graph is biplane.

Lemma 5 Given a geometric graph G = (S, E) with n vertices and m edges, there is an O(nlogn)-time
algorithm that tests whether G is biplane and produces, if possible, a partition E = E1UE, such that
both (S, E1) and (S, Es) are plane graphs.
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Proof. Let G = (S, FE) be a geometric graph with n vertices and m edges. We show that if m >
2(3n —6) —3 =6n — 15 and n > 3, then G cannot be biplane. Indeed, every biplane graph is the union
of two triangulations that share at least three hull edges by Lemma 1, and by Euler’s formula, we have
m < 2(3n —6) —3 = 6n — 15 for n > 3. Assume now that m < 6n — 15 or n < 3. Let Gx be the
intersection graph of the open line segments in F, that is, the nodes of Gx correspond to the edges of
G, and two nodes are adjacent in Gx if and only if the corresponding edges cross. An edge partition
E = E1UE,, where G; = (S, E1) and Gy = (S, E») are plane graphs, corresponds to a bipartition of
Gx. Given a intersection graph Gx of m line segments in the plane, an algorithm by Eppstein [12] can
test whether G x is bipartite and produce a bipartition in O(mlogm) time. Recall that m € O(n), thus
the algorithm runs in O(nlogn) time. O

Another natural algorithmic question is how to augment a given biplane graph to a maximal one.
That is, given G € Go(5), can we find a maximal graph G’ € G3(S) such that G C G'? It is easy to
augment a plane graph G € G1(S) to a triangulation: we can augment G with all edges of the convex
hull ch(S), and then triangulate each bounded face independently. However, it is not obvious how to
augment two layers F = F; U Es into maximal plane graphs independently. In particular, the converse
of Lemma 1 is not true: if 7" = (S, E’) and T = (S, E") are triangulations, then G = (S, E' U E") is
not necessarily maximal biplane.

If we are only interested in a polynomial-time algorithm, we can use Lemma 5 to obtain one: consider
all O(n?) edges of the complement of G successively, and augment the graph with the new edge as long
as the augmented graph remains biplane. Since each test takes O(nlogn) time, we obtain an algorithm
that runs in O(n3logn)-time. In the following we show that, by exploiting several geometric properties,
we can reduce the running time to O(nlogn).

(b)

Figure 2: (a): A biplane graph with three types of edges: only in red triangulation, only in blue
triangulation, and in both (shown purple). (b): Subdivision created by purple edges.

We are given a biplane graph G = (S, E) that we would like to augment to a maximal biplane graph.
By Lemma 5, G decomposes into two plane graphs, Tr = (S, R) and Ts = (S, B), such that E = RU B.
Without loss of generality, we can assume that Tk and Tg are triangulations. Now we classify the edges
in E as red if they appear only in R, blue if they appear only in B, or purple if they appear in both R
and B. See Figure 2(a). Let P = RN B denote the set of purple edges. Intuitively, we would like to
minimize the number of purple edges.

If a purple edge is flippable in Tk or Tg, then we can flip it in one triangulation and retain it in
the other, thereby increasing the total number of edges by one (and decreasing the number of purple
edges by one). A natural approach would be to flip purple edges whenever they are flippable in either
Tr or Tp. However, the decomposition ¥ = B U R is not unique: it is possible that a purple edge is
not flippable in either triangulation, but there is a different decomposition £ = R’ U B’ that admits a
flippable edge in R’ N B’. To overcome this difficulty, we introduce the concept of a color-blind flippable
edge.

Consider the plane graph (S, P) formed by all purple edges. The purple graph (S, P) is a subgraph
of both triangulations, T and Tz, and contains all convex hull edges. Each bounded face of (S, P) is a
weakly simple polygon (possibly with holes), see Figure 2(b). Denote by Fi, ..., Fx the bounded faces
of the purple graph (S, P), where k € N.
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Let e € P be a purple edge that is not an edge of the convex hull. We say that e is color-blind flippable
(with respect to R and B) if e is adjacent to two different faces of (S, P), and it is adjacent to a red
triangle in Tz and a blue triangle in Tz that form a convex quadrilateral. A purple edge e € P is called
flippable (with respect to R and B) if it is flippable in the triangulation Tg or Tg, or it is color-blind
flippable with respect to R and B. With this definition we can obtain a local characterization of maximal
biplane graphs.

Theorem 6 Let G = (S, E) be a biplane graph, and let E = R U B such that T = (S,R) and
T = (S, B) are two triangulations of S. Then G is a maximal biplane graph if and only if it contains

no edge e € RN B flippable with respect to R and B.

Before proving this result we first establish a helpful lemma. Recall that a bounded face of the purple
plane graph (S, P), P = RN B, is a weakly simple polygon F, possibly with holes. A chord of F is an
internal diagonal of F (connecting two vertices through the interior of 7). Denote by R(F) (resp., B(F))
the set of chords of F in R (resp., in B). Note that R(F) and B(F) are two different triangulations of
F, and by definition, R(F) N B(F) = §. By exchanging the triangulations R(F) and B(F), we obtain a
new decomposition £ = R’ U B’ into R’ = (R\ R(F))U B(F) and B’ = (B \ B(F)) U R(F). We show
that, essentially, those are the only possible changes that can be done to a decomposition of FE into two
triangulations.

Lemma 7 Let F be a weakly simple polygon, and let R(F) and B(F) be two disjoint sets of chords,
each of which forms a triangulation of the interior of F. Then the intersection graph G of the open
line segments R(F) U B(F) is connected.

Proof. For an edge e € R(F)U B(F), denote by v(e) the corresponding node in the intersection graph
Gz. The chords R(F) and B(F) form two distinct triangulations of F, which we call the red and the
blue triangulation of F. We prove that if e, e’ € B(F) are edges of a triangle A in the blue triangulation,
then Gz contains a path between the nodes v(e) and v(e’). It follows that all blue chords in B(F) must
be in the same connected component of G, since the dual graph of the blue triangulation is connected.
Analogously, all red chords in R(F) are in the same connected component of G z. Since every red edge
crosses a blue edge (and vice versa), Gr is connected.

Let e, ¢’ € B(F) be two blue edges adjacent to a triangle A in the blue triangulation of F; see Figure 3.
We show that there is a path in Gz between the corresponding nodes v(e) and v(e’). There are two
situations to consider. If a red chord e, € R(F) intersects both e and €', then there is a path of length
2 from v(e) to v(e’) in Gx. Otherwise, no red edge in R(F) intersects both e and €’. There must be
a red edge e, € R(F) that crosses e and a red edge e/. € R(F) that crosses e¢’. Since e, and e. do not
cross each other, neither of them can be incident to any vertex of A. Hence both e, and e]. cross the
third edge of A, which must be a blue chord in B(F) (rather than an edge of F). Therefore v(e) and
v(e’) are connected in G by a path of length 4. O

Figure 3: The blue edges e, e’ € B(F) are adjacent to a common blue triangle A. Left: a red edge e,
crosses both e and ¢’. Right: no red edge crosses both e and €', but there is a red edge that crosses e
and e”, and another red edge that crosses e’ and ¢e”.

By Lemma 7, the edges in R(F) U B(F) have a unique bipartition. Therefore, if any edge in R(F)
changes its color, then all edges in R(F) U B(F) must also change their colors. We are now ready to
prove Theorem 6.
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Proof. [Proof of Theorem 6.] Let G = (5, E') be a biplane graph and let E = R U B such that (S, R)
and (S, B) are two triangulations of S.

Suppose that there is an edge e € E flippable with respect to R and B. We show that G cannot be a
maximal biplane graph. If e is a flippable in R or B, then we can flip it in one triangulation and retain
it in the other, thereby increasing the total number of edges by one. Let e € P = RN B be a color-blind
flippable edge. Denote by F; and F; the faces of the purple graph (S, P) adjacent to e, and assume
without loss of generality that e is adjacent to a red triangle in R(F;) and a blue triangle in B(F;) such
that they form a convex quadrilateral. Then we can obtain a new decomposition E = R’ U B’ with
R' = (R\ R(F;))UB(F;) and B' = (B \ B(F;)) U R(F;). By flipping e in the triangulation R’, and
retaining it in B’, the total number of edges increases by one.

Suppose now that G = (S, E) is not a maximal biplane graph. We show that there is a flippable
purple edge in E (with respect to R and B). Since G is not maximal, G can be augmented to a larger
biplane graph Guax = (S, Emax) such that E C Fyax. Let (S, Rmax), (S; Bmax) be two triangulations
such that Epax = Rmax U Bmax- (Possibly, R € Ryax or B € Biax-)

Denote the faces of the purple graph (S, P) by Fi,...,Fi. Let R; (resp. B;) be the set of red (resp.
blue) chords in face F;. Recall that R = Ry U...UR,UP and B = By U...U By U P, where P is
the set of purple edges. By Lemma 7, each R; and B; must be completely contained in either Ry ax
or Bhax. That is, we have Ryax = C1 U ... UCr U Rpyq and Bpax = C1 U ... UC} U Biy1, where
{C;,C;} = {R;, B;}, and Ry, and By are two additional sets that complete Ry and Bpax to a
triangulation, respectively.

Consider now the triangulations R’ = C1U...UC, UP, and B’ = C1 U...UC} UP. By construction,
we have £ = R’ U B’, hence this is another decomposition of E into two triangulations. Note that R’
and Rpax share all edges in C7 U ... U Cy.

Consider all triangulations on S that contain the edges C1 U...UC} (i.e., these edges are constrained),
including R’ and Rpax. It is known [23] that between any two constrained triangulations on the same
point set, there is a sequence of edge flips (of unconstrained edges) that transform one into the other. In
particular, there is a sequence of flips that transforms R’ into Ryax, flipping only unconstrained edges.
The first edge flipped in the sequence is in P, implying that P contains at least one flippable edge with
respect to R’. With respect to the original decomposition £ = R U B, this edge is flippable in the
triangulation Tg or Tz, or color-blind flippable with respect to R and B, as required. 0

Before presenting our algorithm, we show that the fact that an edge is flippable is mostly a local
property. In the following we use the term flippability to refer to the condition of an edge as being
flippable or color-blind flippable.

Lemma 8 The flip of an edge e can only change the flippability of edges in the triangles that contain
e.

Proof. The fact that an edge €’ is flippable in R or B only depends on the two triangles that are adjacent
to ¢/ in R and B (more precisely, on the up to four different combinations of adjacent triangles). Thus,
flipping e cannot affect the flippability of €’ if ¢’ is not part of one of the four triangles containing
e. Moreover, by flipping e we reduce the number of purple edges and purple faces by one. Thus, the
color-blind flippability of €’ cannot be affected either if €’ is not in a triangle that also contains e. [

We now describe our algorithm to augment a given biplane graph G = (5, FE) to a maximal biplane
graph. We begin with the biplanarity test (Lemma 5) that in O(nlogn) time returns a decomposition
E = RU B such that (S, R) and (S, B) are plane graphs. In a preprocessing phase, the plane graphs
(S, R) and (S, B) are triangulated. The edges are classified into red, blue, and purple; the faces of the
purple graph (S, P) are computed.

Put all purple edges in a priority queue (). Check for each e € @) whether it is flippable. If e is not
flippable, it is simply discarded. Otherwise, we “flip” e, that is, we insert a flipped counterpart of e as a
new edge, and update the face decomposition as follows. If e is flippable in Tz or T, then the new edge
is part of one triangulation, and all other edges keep their original color; if e is color-blind flippable,
then all chords in one of the adjacent faces of the purple graph change colors. After each flip, up to four
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other purple edges affected by the flip are reinserted into the priority queue @ (since they may become
flippable). The algorithm terminates when the priority queue @ is empty. Theorem 6 guarantees that
the resulting biplane graph is maximal.

Theorem 9 Given a biplane graph (S, E) € G2(S) we can compute a maximal graph (S, Epax) € G2(5)
such that E C Eyax in O(nlogn) time.

Proof. Correctness of the algorithm follows directly from Theorem 6 and Lemma 8. Thus, it remains
to show that the algorithm runs in O(nlogn) time. By Lemma 5, it takes O(nlogn) time to produce
the initial decomposition E = RU B. We can triangulate each of them in O(nlogn) time. We assume
the triangulations are represented in a data structure allowing constant-time navigation between edges
and adjacent faces (such as a doubly connected edge list). Classification of the edges into red, blue, and
purple, as well as creating the face-decomposition of the purple graph, can be done in O(nlogn) time.
For each purple edge, we store its two adjacent red triangles and two adjacent blue triangles. Hence, we
can check whether a purple edge e € P is flippable (with respect to R and B) in constant time.

The second phase consists in checking all purple edges and trying to flip them. The algorithm main-
tains all purple edges in a priority queue. Note that when a purple edge is flipped, the two adjacent
faces of the purple graph merge. We maintain the set of red and blue chords of the purple graph in a
standard union-find data structure, so we can find which face a chord belongs to and merge two faces
in O(logn) time. In this way, processing each purple edge takes O(logn) time. In addition to updating
the face structure, we must check the flippability of up to four more purple edges each time an edge is
added into GG. We charge this extra cost to the added edge.

Since the number of edges in a biplane graph is bounded by 6n, by Lemma 1, the number of edges we
will check is also bounded by O(n). That is, after an O(nlogn)-time preprocessing, our algorithm will
check the flippability of O(n) edges. Each purple edge can be processed in O(logn) time: in constant
time if the edge is not flippable and in O(logn) time otherwise. Thus, we conclude that the algorithm
runs in O(nlogn) total time. O

Remark The algorithm in Theorem 9 augments a biplane graph (S, F) drawn on a point set S into a
maximal biplane graph incrementally, adding edges one-by-one. If we need an arbitrary maximal biplane
graph on S, then we can start with the empty graph (.9, 0); if we would like to generate another maximal
biplane graph, it suffices to execute the algorithm again where the initial graph consists of a single edge
not present in the previously obtained maximal graph.

4 Connectivity of Maximal Biplane Graphs

In this section we consider the following question. What is the maximum possible connectivity of a
graph in G5(5) over all n-point sets S? In other words, this sections studies the problem of finding the
value
kop(n) = max max k(G).
|S|=n GEG2(S)

If the points in S are in convex position, then every graph in Go(.S) is planar (by Lemma 1(i) in our
companion paper [16]), and thus cannot be 6-connected. However, a biplane graph in G»(S) may achieve
higher connectivity for certain sets S. As noted above, Hutchinson et al. [21] proved that every biplane
graph in G2(S) has at most 6n — 18 edges for n > 8. Therefore the sum of the vertex degrees is at most
12n — 36, and there is always a vertex of degree at most 11 (for any n € N). Consequently, 11 is an
upper bound for vertex-connectivity. In the following we show how to construct a biplane graph with
minimum vertex degree 10, and then we modify this construction to obtain an 11-connected biplane
graph. The construction combines elements of a construction by Huntchinson et al. [21] with fullerenes.

Huntchinson et al. [21] constructed a biplane graph with n vertices and 6n — 20 edges (for sufficiently
large values of n). The core of their construction is a set of k? points placed on a k x k section of the
integer grid with coordinates (i,7) for 1 <4 < k and 1 < j < k. Essentially, a vertex (4, j) is connected
to vertices (i £1,5), (4,j£1), i £1,j+1), i1, —-1), ¢ 4+2,j+1), ¢t —2,j—1), i +1,5 —2),
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Figure 4: Scheme of the 10-connected biplane graph formed by two planar triangulations. Empty dots
correspond to the vertices of degree 6 in the grid. Each one must have also degree 6 in the 5-connected
graph attached to its side.

and (¢ — 1,7 + 2) whenever they exist (see Figure 4). We say that a vertex (¢,7) is a boundary vertex
if i € {1,k} or j € {1,k}, and an interior vertex otherwise. The graph is the union of two lattice
triangulations, as shown in Figure 4. Observe that all interior vertices have degree 10 or higher, but
the boundary vertices have lower degree: the degree is 4 at the four corners, 6 at four neighbors of the
corners and 7 at the other boundary vertices.

Fullerenes [5] are planar 3-regular graphs with exactly 12 pentagonal faces, and whose all other faces
are hexagonal. It is known that a fullerene of 2k vertices can be constructed for £k = 10 or & > 12.
Moreover, there exist fullerenes in which pentagonal faces are sufficiently far from each other: for
example, for k > 36 (and for k& = 30), there is a fullerene with 2k vertices in which there are no two
adjacent pentagonal faces [7]. The dual of such a fullerene is a planar graph with k + 2 vertices and
triangular faces, where all vertices have degree 6 except for twelve pairwise nonadjacent vertices of degree
5. Since every fullerene is cyclically 5-edge connected [10], its dual graph is 5-connected [5]. Thus the
dual graph can be represented as a biplane graph drawn on points in convex position (c.f., Lemma 1(ii)
in [16]).

We modify the k x k grid construction of Huntchinson et al. [21] as follows. Deform slightly the
bounding box of the k X k integer grid in a way that each side becomes a reflex curve. Note that these
curves need to be sufficiently flat to maintain the intersection pattern of the non-boundary edges (see
Figure 4). Attach a 5-connected biplane graph to each side of the grid. Align the 5-connected biplane
graphs along each side of the grid such that a vertex of degree 6 in the 5-connected biplane graph is
identified with a vertex of degree 6 in the grid (marked with empty dot in Figure 4). Denote by G1o(k)
the resulting graph: it has k? vertices, and is clearly biplane. Moreover, all vertices of Gio(k) have
degree at least 10. In fact, each side of the grid only has thirteen vertices of degree 10 and there are
four more interior vertices of degree 10; all the other vertices have degree 11 or higher. That is, for any
k > 0, there is a constant number of vertices whose degree is exactly 10, whereas the others have higher
degree.

Proposition 1 For any k > 40 it holds that k(G1(k)) = 10.

The proof of this claim is deferred to a forthcoming full version of this paper.

We highlight that G10(k) is not 11-connected because it has a constant number of vertices of degree
10 (i.e., the only way to disconnect G1o(k) by removing only 10 vertices is by removing the neighbors of
a vertex of low degree). By making some local flips around those vertices, the minimum vertex degree
(and connectivity) can be increased to 11.

For this purpose we first characterize the points that have degree 10 in G1o(k). Consider first those
in the boundary of the grid and recall that we used a fullerene construction in each boundary side.
In particular, all but twelve points will have six adjacencies with other vertices in the same boundary
side (regardless of the value of k). The remaining twelve points will only have 5 adjacencies within the
boundary side. Note that it is possible to choose where to place these vertices so that, for a sufficiently
large k, the points with 5 adjacencies satisfy: (¢) they are not adjacent in G19(k), (i7) they are sufficiently
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far apart (say, with at least 12 vertices in the grid in between any two of them), and (ii7) they are also
far from the grid corners. Note that property (7i7) guarantees that these vertices also have 5 adjacencies
towards the interior of the grid (thus their degree is 10).

The other situation in which a boundary vertex can have degree 10 is if it has degree 6 within the
boundary, but only 4 adjacencies towards the interior of the grid. This only happens to the vertices at
positions (1,2), (2,k), (k,k — 1) and (kK — 1,1). Note that corner vertices have 6 adjacencies on each
boundary side (and 2 towards the grid), thus their degree is 14. That is, regardless of the value of k,
each boundary side will have 12 + 1 = 13 vertices of degree 10.

Finally, we must consider points in the interior of the grid that have degree 10. Note that only those
at locations (2,2), (2,k—1), (k—1,2), and (k— 1,k — 1) will have low degree. It is easy to see that, by
the construction of Huntchinson et al. [21], any other vertex in the grid has at least 11 other neighbors
(and in most cases, it will have 12 adjacencies). Thus, in total we have (12 + 1) x 4+ 4 = 56 vertices of
degree 10. Note that four couples of such vertices are located around the grid corners, while the others
are spaced along the boundary of the grid.

N
AN

Figure 5: Four and two flips are sufficient to increase the minimum vertex degree around the corner
(left) or along the boundary side (right), respectively. In both cases, blue (fat) edges must be added
while the red (dashed) edges are removed. White dots represent the vertices that originally had degree
10.

In Figure 5 (left) we show the changes needed to increase the vertex degree for the lower right corner
(for clarity purposes, only one of the triangulations is shown). The construction for the other corners is
analogous, although the flips might happen in the other triangulation. The case in which the vertex of
degree 10 is along the grid only needs 2 flips (see Fig 5 (right)). Observe that, these transformations are
local, thus for a sufficiently large k, they can be done without one transformation affecting the others.
Let G11(k) be the resulting biplane graph. By construction all vertices have degree 11 or higher.

We summarize the results of this Section with the following theorem.

Theorem 10 There exist infinitely many 11-connected biplane graphs, and no biplane graph is 12-
connected.

The proof of this claim is also deferred to a forthcoming full version.
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