556 research outputs found

    Deploying rural community wireless mesh networks

    Get PDF
    Inadequate Internet access is widening the digital divide between town and countryside, degrading both social communication and business advancements in rural areas. Wireless mesh networking can provide an excellent framework for delivering broadband services to such areas. With this in mind, Lancaster University deployed a WMN in the rural village of Wray over a three-year period, providing the community with Internet service that exceeds many urban offerings. The project gave researchers a real-world testbed for exploring the technical and social issues entailed in deploying WMNs in the heart of a small community

    Supporting unified distributed management and autonomic decisions: design, implementation and deployment

    Get PDF
    Nowadays, the prevailing use of networks based on traditional centralized management systems reflects on a fast increase of the management costs. The growth in the number of network equipments and services reinforces the need to distribute the management responsibilities throughout the network devices. In this approach, each device executes common network management functionalities, being part of the overall network management platform. In this paper, we present a Unified Distributed Network Management (UDNM) framework that provides a unified (wired and wireless) management network solution, where further different network services can take part of this infrastructure, e.g., flow monitoring, accurate routing decisions, distributed policies dissemination, etc. This framework is divided in two main components: (A) Situation awareness, which sets up initial information through bootstrapping, discovery, fault-management process and exchange of management information; (B) Autonomic Decision System (ADS) that performs distributed decisions in the network with incomplete information. We deploy the UDNM framework in a testbed which involves two cities ( ≈ ≈ 250 km between), different standards (IEEE 802.3, IEEE 802.11 and IEEE 802.16e) and network technologies, such as, wired virtual grid, wireless ad-hoc gateways, ad-hoc mobile access devices. The UDNM framework integrates management functionalities into the managed devices, proving to be a lightweight and easy-respond framework. The performance analysis shows that the UDNM framework is feasible to unify devices management functionalities and to take accurate decisions on top of a real network.info:eu-repo/semantics/publishedVersio

    SARA – A Semantic Access Point Resource Allocation Service for Heterogenous Wireless Networks

    Get PDF
    In this paper, we present SARA, a Semantic Access point Resource Allocation service for heterogenous wireless networks with various wireless access technologies existing together. By automatically reasoning on the knowledge base of the full system provided by a knowledge based autonomic network management system - SEANET, SARA selects the access point providing the best quality of service among the different access technologies. Based on an ontology assisted knowledge based system SEANET, SARA can also adapt the access point selection strategy according to customer defined rules automatically. Results of our evaluation based on emulated networks with hybrid access technologies and various scales show that SARA is able to improve the channel condition, in terms of throughput, evidently. Comparisons with current AP selection algorithms demonstrate that SARA outperforms the existing AP selection algorithms. The overhead in terms of time expense is reasonable and is shown to be faster than traditional access point selection approaches

    Autonomic management of software defined networks : DAIM can provide the environment for building autonomy in distributed electronic environments - using OpenFlow networks as the case study

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Next generation networks need to support a broad range of services and functionalities with capabilities such as autonomy, scalability, and adaptability for managing networks complexity. In present days, network infrastructures are becoming increasingly complex and challenging to administer due to scale and heterogeneous nature of the infrastructures. Furthermore, among various vendors, services, and platforms, managing networks require expert operators who have expertise in all different fields. This research relied on distributed active information model (DAIM) to establish a foundation which will meet future network management requirements. The DAIM is an information model for network solutions which considers challenges of autonomic functionalities, where the network devices can make local and overall network decisions by collected information. The DAIM model can facilitate networks management by introducing autonomic behaviours. The autonomic behaviours for communication networks lead networks to be self-managed and emerge as promising solutions to manage networks complexity. Autonomic networks management aims at reducing the workload on network operators from low-level tasks. Over the years, researchers have proposed a number of models for developing self-managed network solutions. One such example is the common information model (CIM), which is described as the managed environment that attempts to merge and extend the existing conventional management and also uses object-oriented constructs for overall network representation. However, the CIM has limitations coping in complex distributed electronic environments with multiple disciplines. The goal of this research is defined as development of a network architecture or a solution based on the DAIM model, which is effectively distribute and automate network’s functions to various network devices. The research first looks into the possibilities of local decision-making and programmability of network elements for distributed electronic environments with an intention to simplify network management by providing abstracted network infrastructures. After investigating and implementing different elements of the DAIM model in network forwarding devices by utilising virtual network switches, it discovers that a common high-level interface and framework for network devices are essential for the development of network solutions which will meet future network requirements. The outcome of this research is the development of (DAIM OS) specification. The DAIM OS is a network forwarding device operating system which is compliant with the DAIM model when it comes to network infrastructure management and provides a high-level abstracted application programming interface (DAIM OS API) for creating network service applications. Through the DAIM OS, network elements will be able to adapt to ever changing environments to meet the goals of service providers, vendors, and end users. Furthermore, the DAIM OS API aims to reduce complexity and time of network service applications development. If the developed DAIM OS specification is implemented and if it functions as predicted in the design analyses; that will result in a significant milestone in the development of distributed network management. This dissertation has an introduction in chapter 1 followed by five parts in order to draw a blueprint for information model as a distributed independent computing environment for autonomic network management. The five parts include lending weight to the proposition, gaining confidence in the proposition, drawing conclusions, supporting work and lastly is appendices. The introduction in chapter 1 includes motivations for the research, main challenges of the research, overall objectives, and review of research contributions. After that, to lend weight to the proposition as the first part of the dissertation, there is chapter 2 which presents the background and literature review, and chapter 3 which has a theoretical foundation for the proposed model. The foundation consists of a generic architecture for complex network management and agents to aggregate distributed network information. Moreover, chapter 3 is probably more about a state of the art in software engineering than about real implementation to engineer autonomic network management. The second part of the dissertation is to gain confidence in the proposition which includes attempting to implement the DAIM model in chapter 4 with some tests to report good performance regarding convergence and robustness for the service configuration process of network management. Also, the second part has a specification of true abstraction layers in chapter 5. The specification of true abstraction layers proposes a high-level abstraction for forwarding networking devices and provides an application program interface for network service applications developed by network operators and service providers. The implementation in chapter 4 is supported by the fourth part of the dissertation in chapter 10 which supports the theoretical foundation, designing, modelling, and developing the distributed active information model via simulation, emulation and real environments. The third part of this dissertation provides the way to draw conclusions as shown in chapter 7 which has the overall research summary, validation of the propositions, contributions and discussion, limitations and finally recommendations for future works. Finally are the appendices in Appendix A, Appendix B, Appendix C and Appendix D which provide a developing code of the core DAIM model and show different setting up for testbed environments

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Distributed Optimization in Energy Harvesting Sensor Networks with Dynamic In-network Data Processing

    Get PDF
    Energy Harvesting Wireless Sensor Networks (EH- WSNs) have been attracting increasing interest in recent years. Most current EH-WSN approaches focus on sensing and net- working algorithm design, and therefore only consider the energy consumed by sensors and wireless transceivers for sensing and data transmissions respectively. In this paper, we incorporate CPU-intensive edge operations that constitute in-network data processing (e.g. data aggregation/fusion/compression) with sens- ing and networking; to jointly optimize their performance, while ensuring sustainable network operation (i.e. no sensor node runs out of energy). Based on realistic energy and network models, we formulate a stochastic optimization problem, and propose a lightweight on-line algorithm, namely Recycling Wasted Energy (RWE), to solve it. Through rigorous theoretical analysis, we prove that RWE achieves asymptotical optimality, bounded data queue size, and sustainable network operation. We implement RWE on a popular IoT operating system, Contiki OS, and eval- uate its performance using both real-world experiments based on the FIT IoT-LAB testbed, and extensive trace-driven simulations using Cooja. The evaluation results verify our theoretical analysis, and demonstrate that RWE can recycle more than 90% wasted energy caused by battery overflow, and achieve around 300% network utility gain in practical EH-WSNs

    Estabelecimento de redes de comunidades sobreponíveis

    Get PDF
    Doutoramento em Engenharia InformáticaUma das áreas de investigação em Telecomunicações de interesse crescente prende-se com os futuros sistemas de comunicações móveis de 4a geração e além destes. Nos últimos anos tem sido desenvolvido o conceito de redes comunitárias, no qual os utilizadores se agregam de acordo com interesses comuns. Estes conceitos têm sido explorados de uma forma horizontal em diferentes camadas da comunicação, desde as redes comunitárias de comunicação (Seattle Wireless ou Personal Telco, p.ex.) até às redes de interesses peer-to-peer. No entanto, estas redes são usualmente vistas como redes de overlay, ou simplesmente redes de associação livre. Na prática, a noção de uma rede auto-organizada, completamente orientada ao serviço/comunidade, integralmente suportada em termos de arquitetura, não existe. Assim este trabalho apresenta uma realização original nesta área de criação de redes comunitárias, com uma arquitetura subjacente orientada a serviço, e que suporta integralmente múltiplas redes comunitárias no mesmo dispositivo, com todas as características de segurança, confiança e disponibilização de serviço necessárias neste tipo de cenários (um nó pode pertencer simultaneamente a mais do que uma rede comunitária). Devido à sua importância para os sistemas de redes comunitárias, foi dado particular atenção a aspetos de gestão de recursos e controlo de acessos. Ambos realizados de uma forma descentralizada e considerando mecanismos dotados de grande escalabilidade. Para isso, é apresentada uma linguagem de políticas que suporta a criação de comunidades virtuais. Esta linguagem não é apenas utilizada para o mapeamento da estrutura social dos membros da comunidade, como para, gerir dispositivos, recursos e serviços detidos pelos membros, de uma forma controlada e distribuída.One of the research areas with increasing interest in the field of telecommunications, are the ones related to future telecommunication systems, both 4th generation and beyond. In parallel, during the last years, several concepts have been developed related to clustering of users according to their interested, in the form of community networks. Solutions proposed for these concepts tackle the challenges horizontally, for each layer of the communication stack, ranging from community based communication networks (e.g. Seattle Wireless, or Personal Telco), to interest networks based on peer-to-peer protocols. However, these networks are presented either as free joining, or overlay networks. In practice, the notion of a self-organized, service and community oriented network, with these principles embedded in its design principles, is yet to be developed. This work presents an novel instantiation of a solution in the area of community networks, with a underlying architecture which is fully service oriented, and envisions the support for multiple community networks in the same device. Considerations regarding security, trust and service availability for this type of environments are also taken. Due to the importance of resource management and access control, in the context of community driven communication networks, a special focus was given to the support of scalable and decentralized management and access control methods. For this purpose, it is presented a policy language which supports the creation and management of virtual communities. The language is not only used for mapping the social structure of the community members, but also to, following a distributed approach, manage devices, resources and services owned by each community member

    Self-Configuration and Self-Optimization Process in Heterogeneous Wireless Networks

    Get PDF
    Self-organization in Wireless Mesh Networks (WMN) is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR) and the ad hoc on demand distance vector (AODV) routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network’s scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed
    corecore